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I. INTRODUCTION

Velocity (or rf) compression has been suggested as a technique for bunch compression [4] complementary to the more
established technique involving magnetic chicanes and represents an important research item being investigated at
the SPARC test facility [1]. One of the aspects of this technique still not sufficiently understood is its possible impact
on the microbunching instability. The purpose of this report is to present the analytical framework for investigating
this instability in rf compressors. We use methods similar to those successfully applied to magnetic compressors [2, 3]
and derive some integral equations yielding the gain for the instability in linear approximation. The focus here is on
the derivation of the relevant equations. Although examples of solutions to these equations are provided we defer a
more comprehensive discussion of their implication to a future report. The present study is part of a larger effort for
a more comprehensive investigation that eventually will include macroparticle simulations and experiments.

II. SINGLE-PARTICLE DYNAMICS THROUGH AN RF COMPRESSOR

A. Equations of motion

The longitudinal motion of an electron in a travelling wave structure is described by the Hamiltonian H =√
m2c4 + p2

sc
2 − eφ(s, t) where −e is the electron charge and φ = (E0/krf) cos(krfs− ωrft + ψ0) the electric potential,

yielding the longitudinal electric field Es = −∂φ/∂s = E0 sin(krfs − ωrft + ψ0). Our notation uses the coordinate s
for the longitudinal direction along the RF structure as we want to reserve z for other uses (see below).

The canonical equations are readily written

ds

dt
=

psc
2

√
m2c4 + p2

sc
2
, (1)

dps

dt
= −eE0 sin ψ, (2)

where we have introduced the phase ψ = krfs− ωrft + ψ0.
Next, we are interested in turning s into the independent variable while promoting t to the status of dynamical

variable. Also, we select the relativistic factor γ =
√

m2c4 + p2
sc

2/mc2 as the second dynamical variable replacing ps.
The equations for t(s) and γ(s) are easily written. The equation for t(s) follows immediately from (1)

dt

ds
=

√
m2c4 + p2

sc
2

psc2
=

1
c

γ√
γ2 − 1

, (3)

while

dγ

ds
=

dγ

dps

dps

dt

dt

ds
=

dps

dt

1
mc2

= − eE0

mc2
sinψ. (4)
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We tag a particular solution of (3) and (4) as the orbit of the reference particle, which we denote as (tr, γr). The
orbit of any other particle can be described in terms of the deviation variables ∆t = t − tr and ∆γ = γ − γr, where
(t, γ) are also solutions of (3) and (4). The space separation ∆z between an electron and the reference particle is
∆z ' −cβ(s)∆t, where cβ(s) is the beam velocity. The negative sign results from the convention that a particle in
the head of the bunch has ∆z > 0. In the following for the only purpose of determining ∆z from ∆t, we will assume
that the beam is sufficiently relativistic that β ' 1 and effectively ∆z = −c∆t.

Having introduced the variable z = −ct, and the dimensionless parameter α = eE0/krfmc2, we rewrite the equations
of motion (3) and (4) as

dz

ds
= − γ√

γ2 − 1
, (5)

dγ

ds
= −αkrf sin(krfs + krfz + ψ0). (6)

Similarly, we write the equations of motion for the deviation variables (∆z = z − zr,∆γ = γ − γr) as

d∆z

ds
=

γr√
γ2

r − 1
− γr + ∆γ√

(γr + ∆γ)2 − 1
, (7)

d∆γ

ds
= αkrf sin(krfs + krfzr + ψ0)− αkrf sin(krfs + krf(zr + ∆z) + ψ0). (8)

Through first order

d∆z

ds
=

∆γ

[γ2
r (s)− 1]3/2

, (9)

d∆γ

ds
= −αk2

rf cos(krfs + krfzr(s) + ψ0)∆z. (10)

The solution of the above linear system can be expressed in terms of the transfer matrix M : x(s) = Mx0, where
x(s) = (∆z(s), ∆γ(s)) and x0 = x(s0). The matrix M obeys

dM

ds
= AM (11)

with initial condition M(s0) = 1 and matrix A defined by

A(s) =
(

0 [γ2
r (s)− 1]−3/2

−αk2
rf cos(krfs + krfzr(s) + ψ0) 0

)
. (12)

Because Eq.’s (7) and (8) are canonical (one can easily verify they can be derived from an effective Hamiltonian)
the transformation M is symplectic.

B. Approximate analytical solution

Exact solutions for the orbit of the reference particle (3) and (4) as well for the the linear equations (9) and (10) in
general can be determined only numerically. However, having approximate analytical solutions at our disposal may
still be useful.

Write z = −s + ζ, and assume γ À 1 and ζkrf ¿ 1. We can then Taylor expand Eq.’s (5) and (6) through first
order:

dζ

ds
' − 1

2γ2
, (13)

dγ

ds
= −αkrf sin(krfζ + ψ0) ' −αkrf sin ψ0 − ζαk2

rf cosψ0. (14)
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Next, introduce the new variable ζ̂ = ζ + k−1
rf tan ψ0 in place of ζ. The resulting equations of motion

dζ̂

ds
' − 1

2γ2
, (15)

dγ

ds
= −ζ̂αk2

rf cosψ0, (16)

can be derived by an effective Hamiltonian

H =
1
2γ

+
αk2

rf cosψ0

2
ζ̂2. (17)

Being s−independent, H is also an invariant. Let us denote γ0 = γ(s = 0) and ζ̂0 = ζ̂(s = 0). Having defined the
constant γ as

1
2γ

=
1

2γ0
+

αk2
rf cos ψ0

2
ζ̂2
0 , (18)

and used the invariance of the Hamiltonian we have

ζ̂ =
1

krf

√
α cosψ0

(
1
γ
− 1

γ

)1/2

. (19)

The above expression can then be inserted in (16) and the equation integrated to determine γ implicitly as a function
of s:

[√
x(x− 1) + log(

√
x +

√
x− 1)

] ∣∣∣
x=γ/γ

x=γ0/γ
= −skrf

(
α cosψ0

γ3

)1/2

. (20)

A reasonable approximation of the LHS in the above expression for x > 1 up to x ' 3 is given by

√
x(x− 1) + log(

√
x +

√
x− 1) ' 2(x− 1)1/2 +

1
3
(x− 1)3/2. (21)

Roughly, this means that with this approximation we can follow the beam up to an energy that about three times
larger than the initial energy. This approximation can be used in (20) to find γ as an explicit function of s. The end
result is

γ(s) ' γ
(
4A−2/3 + A2/3 − 3

)
(22)

with A = (
√

32 + a2 − a)/2 and a = 3sk̂ − [6(x− 1)1/2 + (x− 1)3/2]x=γ0/γ , where k̂ = krf

√
α cosψ0/γ3.

In a similar way we can now write an expression for ζ̂. Using again the expression for the Hamiltonian and expanding
through second order in ζ̂:

1
2γ2

=
1
2

(
1
γ
− αk2

rf cos ψ0ζ̂
2

)2

' 1
2

(
1
γ2 −

2αk2
rf cosψ0ζ̂

2

γ

)
. (23)

We insert in (15) and integrate to obtain

ζ̂(s) = − 1√
2k̂γ2

tanh

(
sk̂√

2
− arctanh(

√
2k̂γ2ζ̂0)

)
. (24)

Having determined the solution ζ̂ = ζ̂(ζ̂0, γ0; s) and γ = γ(ζ̂0, γ0; s) with initial conditions (ζ̂0, γ0), the linear map
around a reference orbit can be determined by calculating the Jacobian matrix
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FIG. 1: Reference orbit. Exact numerical solutions (black lines) and approximate analytical (blue lines) solutions.

M =

(
∂ζ̂

∂ζ̂0

∂ζ̂
∂γ0

∂γ

∂ζ̂0

∂γ
∂γ0

)
. (25)

with the derivatives evaluated at the initial conditions for the reference orbit (ζ̂0, γ0) = (ζ̂r0, γr0). These derivatives
can be carried out using a symbolic manipulation program starting from (22) and (24). Manageable expressions are
obtained when the initial phase vanishes (ψ0 = 0) and we set ζ̂r0 = 0 at s = 0. In particular, using k̂ = krf

√
α/γ3,

and the following definition B = (32 + 9s2k̂2)1/2 − 3k̂s we have

M11 ' 1

cosh2(k̂s/
√

2)
, (26)

M12 ' 3s

4γ3
r0 cosh2(k̂s/

√
2)

+
tanh(k̂s/

√
2)

2
√

2γ3
r0k̂

, (27)

M21 ' 8k̂γ3
r0

(32 + 9s2k̂2)1/2

(
B2/3

25/3
− 25/3

B2/3

)
, (28)

M22 ' 8
√

2

(32 + 9s2k̂2)1/2

(
B1/3

25/6
+

25/6

B1/3

)
− 3. (29)

Examples of solutions of Eq.’s (5) and (6) for the reference orbit and (12) for the transfer matrix are reported in
Fig.’s 1 and 2. The exact numerical solutions are compared to the approximate analytical expressions worked out
in this section. Noticing that in Fig. 2 the two bottom pictures appear to provide a relatively better approximation
of the exact solution suggests that perhaps better analytical approximations for M11 and M12 could be obtained by
making use of the relationships dM21/ds = A21M11 and dM22/ds = A21M12 implied by (11).

III. GAIN CURVE: UNIFORM BEAM

Consider a beam propagating through a drift followed by a RF compressor. The entrance of the drift is positioned
at s = s0. We start by studying the model of a beam with longitudinal uniform unperturbed density. For pedagogical
reasons in the next two subsections we will consider both the case of a flat-top beam with periodic boundary conditions
and a coasting beam. (The two models are essentially the same, but we found it useful to spell out both derivations
to straighten out issues of normalization that can be a nuisance when trying to make comparisons with simulations
and also to make contact with the case of a beam with gaussian density treated treated in Sec. IV in the limit of an
infinitely long bunch).

A. Flat-top beam with periodic boundary conditions

The dynamical variables in vector notation are x = (∆z, ∆γ). With change of notation form the previous section:
from now on we will use z to mean ∆z and denote ∆γ with p, i.e. x = (z, p). In the absence of collective effects the
unperturbed dynamics in linear approximation is described by the transfer matrix
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FIG. 2: Entries of the transfer matrix M . Exact numerical solutions (black lines) and approximate analytical solutions (blue
lines).

M(s0 → s) =
(

M11 M12

M21 M22

)
. (30)

In the following we will use M , M(s), or M(s0 → s) interchangeably to denote the transfer map from s = s0 to
s and use the notation M(s′ → s) to represent the matrix from s′ ≥ s0 to s ≥ s′. The transfer map M will be a
combination of the map for a drift and the map for the RF compressor discussed in the previous section. In particular,
for large γ the portion of transfer map through a drift reads

Mdrift(s0 → s) =
(

1 γ−3
r

0 1

)
. (31)

We assume that the beam distribution f(x0; s0) = f0(x0; s0) + f1(x0; s0) at s = s0 consists of a uniform zero-order
smooth density uniform in z and gaussian in p with a chirp h

f0(x0; s0) =
1

Lb0

√
2πσp

e−(p0−hz0)
2/2σ2

p (32)

and a first-order perturbation f1(x0; s0). The bunch has initial length Lb0 and contains Nb particles; for f(x; s) we
assume periodic boundary conditions in z and normalization to unity.

Consider the evolution of the unperturbed beam density first. The beam density function f0(xs; s) at s is related
to the beam density at f0(x0; s0) at s0 by f(xs, s) = f(M−1xs; s0). The (normalized) charge density evolves from
ρ(z0; s0) =

∫∞
−∞ dp0f0(x0; s0) = 1/Lb0 at s = s0 to
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ρ(zs; s) =
∫ ∞

−∞
f(xs, s)dps

=
1

Lb0

√
2πσp

∫ ∞

−∞
e−[(M−1

21 zs+M−1
22 ps)−h(M−1

11 zs+M−1
12 ps)]2/2σ2

pdps

=
1

Lb0

√
2πσp

∫ ∞

−∞
e−[zs(M−1

21 −hM−1
11 )+ps(M−1

22 −hM−1
12 )]2/2σ2

pdps

=
1

Lb0

√
2πσp

∫ ∞

−∞
e−[ps(M−1

22 −hM−1
12 )]2/2σ2

pdps (33)

=
C

Lb0
, (34)

with the coefficient C = C(s) given by

C =
1

M−1
22 (s)− hM−1

12 (s)
=

1
M11(s) + hM12(s)

, (35)

which clearly identifies C(s) as a compression factor. In the above equation the second equality follows from the
symplectic properties of the matrix M . The length of the beam at s is Lb = Lb(s) = Lb0/C(s).

Define the Fourier integrals of the charge density function at s

ρ̃(k; s) =
1
Lb

∫ Lb/2

−Lb/2

dzse
−ikzs

∫ ∞

−∞
dpf(xs; s). (36)

The effect of collective forces described by the impedance Z(k; s) (to be specified later) is to change the particle
energy according to

dp

ds
≡ F (ρ̃, zs; s) = −e2Nb

mc

∞∑
n=−∞

eikzsZ(k; s)ρ̃(k; s) (37)

where the sum
∑

is over the discrete set of frequencies k = kn = 2πn/Lb, due to the periodic boundary conditions.
The starting point of our analysis is the Vlasov equation expressed in the form of Eq. (10) in the Huang-Kim paper

[3]:

f(xs; s) = f(x0; s0)−
∫ s

s0

ds′F (ρ̃; zs′ ; s′)
∂f(xs′ ; s′)

∂ps′
. (38)

Specialized to the linear approximation the above equation reads

f1(xs; s) = f1(x0; s0)−
∫ s

s0

ds′F (ρ̃1; zs′ ; s′)
∂f0(xs′ ; s′)

∂ps′
, (39)

where the collective force F will depend on the FT ρ̃1 of the first-order perturbation to the beam density. Next,
we want to take the FT of both sides of the above equation. To this end it is convenient to think of both sides as
functions of the dynamical variables at current time s:

f1(xs; s) = f1(x0(xs); s0)−
∫ s

0

ds′F (ρ̃1; zs′ ; s′)
∣∣∣
zs′=zs′ (xs)

∂f0(xs′ ; s′)
∂ps′

∣∣∣
xs′=xs′ (xs)

. (40)

where x0(xs) denotes the linear transformation x0 = [M(s0 → s)]−1xs and similarly xs′(xs) = [M(s′ → s)]−1xs.
Before proceeding further we make a more definite assumption about the form of the initial perturbation. We

assume an expression of the form
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FIG. 3: Reference orbit for a model of beam line consisting of a 1 m drift followed by 3 m long RF compressor (exact numerical

solutions). The initial condition for ζ̂ is set by the requirement that the phase is ψ = ψ0 when the reference particle enters the
RF compressor.

f1(x0; s0) = ρ̃1(k0; s0)eik0z0
e−(p0−hz0)

2/2σ2
p

√
2πσp

+ c.c., (41)

i.e. consisting of a sinusoidal perturbation to the charge density (while the p density is the same as in the unperturbed
distribution).

We are now ready to integrate over the phase space both sides of Eq. (40) after multiplying by e−ikzs/Lb. By
definition, see (36), the FT of the LHS of Eq. (40) yields ρ̃1(k; s). The FT of the first term on the RHS requires more
work. First, we carry out the transformation of variables xs → x0 and exploit symplecticity d2xs = d2x0 to write

I1 ≡ 1
Lb

∫ Lb/2

−Lb/2

∫ ∞

−∞
d2xsf1(x0(xs); s0)e−ikzs =

1
Lb

∫ Lb0/2

−Lb0/2

dz0

∫
dp0f1(x0; s0)e−ikzs(x0) (42)

where zs(x0) = [Mx0]1 = M11z0 + M12p0. Let’s write I1 = I
(a)
1 + I

(b)
1 where I

(a)
1 and I

(b)
1 correspond to the first

term on the RHS of (41) and its c.c. respectively. Then insert expression (41) into (42)

I
(a)
1 =

1√
2πσp

ρ̃1(k0; s0)
∫ ∞

−∞
dp0

1
Lb

∫ Lb0/2

−Lb0/2

dz0e
−(p0−hz0)

2/2σ2
peik0z0e−ik(M11z0+M12p0). (43)

Before carrying out the integration over p0 introduce the change of variable t = p0 − hz0, yielding

I
(a)
1 =

1√
2πσp

ρ̃1(k0; s0)
Lb0

Lb

1
Lb0

∫ Lb0/2

−Lb0/2

dz0e
iz0(k0−k/C)

∫ ∞

−∞
dte−t2/2σ2

peikM12t

= C(s)ρ̃1(k0; s0)δk0,k/C(s)e
−(kM12σp)2/2, (44)

with the δ function in the above equation coming from the integral

1
Lb0

∫ Lb0/2

−Lb0/2

dz0e
iz0(k0−k/C) = δk0,k/C . (45)

Similarly

I
(b)
1 = C(s)ρ̃∗1(k0; s0)δ−k0,k/C(s)e

−(kM12σp)2/2. (46)

We can now tackle the evaluation of the FT of the second term in the RHS of Eq. (40):

I2 = − 1
Lb

∫
d2xse

−ikzs

∫ s

s0

ds′F (ρ̃1; zs′ ; s′)
∣∣∣
zs′=zs′ (xs)

∂f0(xs′ ; s′)
∂ps′

∣∣∣
xs′=xs′ (xs)

= − 1
Lb

∫
d2xs′e

−ikzs(xs′ )
∫ s

s0

ds′F (ρ̃1; zs′ ; s′)
∂f0(xs′ ; s′)

∂ps′

= − ik

Lb

∫ s

s0

ds′M12(s′ → s)
∫

d2xs′F (ρ̃1; zs′ ; s′)f0(xs′ ; s′)e−ikzs(xs′ ) (47)
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FIG. 4: Entries of the transfer matrix M (exact numerical solutions).
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The second equality above follows from a change of variables, the third from an integration by parts and zs(xs′) =
M11(s′ → s)zs′ + M12(s′ → s)ps′ .

A further change of variables to x0 yields:

I2 = − ik

Lb

∫ s

0

ds′M12(s′ → s)
∫

d2x0f0(x0; s0)F (ρ̃1; zs′(x0); s′)e−ikzs(xs′ (x0)) (48)

where we have made use of f0(xs′ ; s′) = f0(x0; s0). Observe that in the argument of the exp function in the expression
above zs(xs′(x0)) = [M(s0 → s)x0]1 = M11z0 + M12p0.

Using the expression (37) for the collective force we find

I2 =
e2Nb

mc

ik

Lb

∑

k′

∫ s

0

ds′M12(s′ → s)Z(k′, s′)ρ̃1(k′, s′)
∫ Lb0/2

−Lb0/2

dz0

∫ ∞

−∞
dp0f0(x0; s0)eik′zs′ (x0)−ikzs(x0) (49)

As before we carry out the integration over p upon the change of variables p0 → p0 = t + hz0. First observe

k′zs′(x0)− kzs(x0) = k′[M11(s′)z0 + M12(s′)p0]− k[M11(s)z0 + M12(s)p0]
= z0A + tB, (50)
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where the coefficients A and B are defined as

A = k′M11(s′)− kM11(s) + h[k′M12(s′)− kM12(s)]
= k′[M11(s′) + hM12(s′)]− k[M11(s) + hM12(s)] = k′/C(s′)− k/C(s) (51)

B = k′M12(s′)− kM12(s) (52)

and we have used the short-hand notation Mij(s) = Mij(s0 → s) for the entries of the transfer matrix M .
The integral on z0 in (49) yields a delta function

1
Lb0

∫ Lb0/2

−Lb0/2

dz0e
iz0[k

′/C(s′)−k/C(s)] = δk′,kC(s′)/C(s). (53)

This reduces the sum
∑

k′ to one term with k′ = kC(s′)/C(s).

I2 =
e2Nb

mcLb
ik

∫ s

s0

ds′M12(s′ → s)Z(k′, s′)ρ̃1(k′; s′)
1√

2πσp

∫ ∞

−∞
dte−t2/2σ2

peitB

∣∣∣∣∣
k′=kC(s′)/C(s)

=
e2Nb

mcLb
ik

∫ s

s0

ds′M12(s′ → s)Z(k′, s′)ρ̃1(k′; s′)e−[k′M12(s
′)−kM12(s)]

2σ2
p/2

∣∣∣∣∣
k′=kC(s′)/C(s)

.

(54)

Finally, combining the various pieces we arrive at the following integral equation for the Fourier components of the
first-order density perturbation:

ρ̃1(k; s) = C(s)e−[C(s)k0M12σp]2/2[ρ̃1(k0; s0)δk0,k/C(s) + ρ̃∗1(k0; s0)δ−k0,k/C(s)]

+
∫ s

s0

ds′K(s′, s)ρ̃1(k′; s′)

∣∣∣∣∣
k′=kC(s′)/C(s)

(55)

with kernel

K(s′, s) = 4πi
I(s)
IA

kM12(s′ → s)
Z(k′, s′)

Z0
e−[k′M12(s

′)−kM12(s)]
2σ2

p/2

∣∣∣∣∣
k′=kC(s′)/C(s)

, (56)

where I(s) = ecNb/Lb(s) = ecNbC(s)/Lb0 is the bunch peak current at s, IA = ce/re ' 17kA is the Alfvén current,
and Z0 the vacuum impedance. We have used

e2NbZ0c

mc2Lb
=

e2Nb

ε0mc2Lb
= 4π

e2Nb

4πε0mc2Lb
= 4π

reNb

Lb
= 4π

reecNb

ecLb
= 4π

I(s)
IA

. (57)

Because of the presence of the delta function the inhomogeneous term in Eq. (55) vanishes unless k = ±k0C(s).
Therefore for k 6= k0C(s) the solution of the integral equation is ρ̃1(k; s) = 0. Assuming positive[7] k, k = k0C(s) > 0
we can rewrite the integral equation as
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ρ̃1(C(s)k0; s) = C(s)ρ̃1(k0; s0)e−[C(s)k0M12σp]2/2 +
∫ s

s0

ds′K(s′, s)ρ̃1(C(s′)k0; s′) (58)

with kernel

K(s′, s) = 4πi
I(s)
IA

C(s)k0M12(s′ → s)
Z(C(s′)k0, s

′)
Z0

e−k2
0[C(s′)M12(s

′)−C(s)M12(s)]
2σ2

p/2. (59)
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FIG. 7: Linear gain for a single mode of wavelength 100µm along the beam line.
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The integral equation (58) and the kernel (59) is shown to be formally the same as in the Huang-Kim paper (except
for the more general form of the unperturbed dynamics allowed here which results into a more general dependence of
the compression factor C on the transfer matrix M) by dividing both sides of Eq. (58) by C(s), writing

ρ̃1(C(s)k0; s)
C(s)

= ρ̃1(k0; s0)e−[C(s)k0M12σp]2/2 +
∫ s

s0

ds′K(s′, s)
C(s′)
C(s)

ρ̃1(C(s′)k0; s′)
C(s′)

, (60)

and setting b(C(s)k0; s) = ρ̃1(C(s)k0; s)/C(s) to obtain
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b(C(s)k0; s) = b(k0; s0)e−[C(s)k0M12σp]2/2 +
∫ s

s0

ds′K̂(s′, s)b(C(s′)k0; s′) (61)

with kernel K̂(s′, s) = K(s′, s)[C(s′)/C(s)]:

K̂(s′, s) = 4πi
I(s′)
IA

C(s)k0M12(s′ → s)
Z(C(s′)k0, s

′)
Z0

e−k2
0[C(s′)M12(s

′)−C(s)M12(s)]
2σ2

p/2. (62)

The only difference between (59) and (62) is in the argument of the peak current: I(s) and I(s′) respectively.
Notice that in terms of ρ̃1(C(s)k0; s) the conventional definition of the gain curve reads

g(k0; s) =
1

C(s)

∣∣∣ ρ̃1(C(s)k0; s)
ρ̃1(k0; s0)

∣∣∣ (63)

whereas in terms of b we have

g(k0; s) =
∣∣∣b(C(s)k0; s)

b(k0; s0)

∣∣∣ (64)

(i.e. no C factor in the denominator).
For the space-charge impedance we will consider the following two models. The first yields the on-axis longitudinal

component of the electric field for a beam with transverse uniform density and circular cross-section:

Z(k, r = 0) =
iZ0

πγrb

1− ξK1(ξ)
ξ

∣∣∣∣
ξ=krb/γ

, (65)

where Z0 ' 120π is the vacuum impedance, K1 the modified Bessel function, γ the relativistic factor, and k = 2π/λ
the perturbation wavenumber. A second model yields the longitudinal component of the electric field for the same
beam model, Zavg(k) =

∫ rb

0
Z(k, r)rdr/(r2

b/2) averaged over the transverse beam model,

Zavg(k) =
iZ0

πγrb

1− 2I1(ξ)K1(ξ)
ξ

∣∣∣∣
ξ=krb/γ

. (66)

In Fig.’s 3 through 9 we show a numerical example for a model of beam line consisting of a 1 m drift followed
by a 3 m RF compressor. The beam start at 5.6 MeV energy with a I0 = 50 A peak current. We assume a beam
transversely uniform with circular cross section with radius rb = 0.5 mm remaining constant through the beam line.
Max. compression is 1.87. The gain curve as a function of the wavelength of the initial perturbation is reported in
Fig. 6, and shows a max value of about 2.5 in the λ0 ' 200µm region. The following three pictures show the evolution
along the beam line of the gain for three selected initial modes.

B. Coasting beam

The form of the beam distribution f(x0; s0) = f0(x0; s0) + f1(x0; s0) is the same as before with the zero-order
smooth density uniform in z given by

f0(x0; s0) =
1√

2πσp

e−(p0−hz0)
2/2σ2

p . (67)

The normalization is such that n0dz
∫∞
−∞ dp0f(x; s) gives the no. of particles in the interval dz, where n0 is the

particle line density.
Define the Fourier integrals of the charge density function at s
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ρ̃(k; s) =
1
2π

∫ ∞

−∞
dzse

−ikzS

∫ ∞

−∞
dpf(xs; s). (68)

with the effect of collective forces described by the impedance Z(k; s) described by

dp

ds
≡ F (ρ̃, zs; s) = −e2n0

mc

∫ ∞

−∞
dkeikzsZ(k; s)ρ̃(k; s). (69)

For the initial perturbation we take

f1(x0; s0) = Aeik0z0
e−(p0−hz0)

2/2σ2
p

√
2πσp

+ c.c., (70)

Following the derivation in the preceding section, we have

I1 =
A

2π
√

2πσp

∫ ∞

−∞
dz0e

iz0(k0−k/C)

∫ ∞

−∞
dte−t2/2σ2

peikM12t =
[
Aδ

(
k0 − k

C(s)

)
+ A∗δ

(
k0 +

k

C(s)

)]
e−(kM12σp)2/2,

where δ(·) is the Dirac function and

I2 =
e2n0

mc
ik

∫ s

s0

ds′C(s′)M12(s′ → s)Z(k′, s′)ρ̃1(k′; s′) exp

(
−σ2

p

2
[k′M12(s′)− kM12(s)]2

)∣∣∣∣∣
k′=kC(s′)/C(s)

(71)

The integral equation obeyed by ρ̃1(k; s) is then

ρ̃1(k; s) = e−k2M2
12σ2

p/2

[
Aδ

(
k0 − k

C(s)

)
+ A∗δ

(
k0 +

k

C(s)

)]
+

∫ s

s0

ds′K(s′, s)ρ̃1(kC(s′)/C(s); s′) (72)

with kernel

K(s′, s) = 4πi
I(s′)
IA

kM12(s′ → s)
1
Z0

Z

(
k

C(s′)
C(s)

, s′
)

exp

(
−σ2

p

2
k2

C(s)2
[C(s′)M12(s′)− C(s)M12(s)]2

)
. (73)

One should look for solutions of (72) in the space of generalized functions (or distributions). Such solutions will
have the form

ρ̃1(k; s) = b(k; s)δ
(

k0 ± k

C(s)

)
, (74)

with the ordinary functions b obeying the equation

b(C(s)k0; s) = Ae−[Ck0M12σp]2/2 +
∫ s

s0

ds′K(s′, s)b(C(s′)k0; s′) (75)

with kernel

K(s′, s) = 4πi
I(s′)
IA

C(s)k0M12(s′ → s)
1
Z0

Z (C(s′)k0, s
′) exp

(
−σ2

pk2
0

2
[C(s′)M12(s′)− C(s)M12(s)]2

)
. (76)

Notice that a proper definition of gain in terms of the quantity ρ̃1(k; s) involves an integration over frequencies:

g(k0; s) =
1

C(s)
| ∫∞−∞ dkρ̃1(k; s)|

|A| (77)

Inserting (74) into the above equation we obtain

g(k0; s) =
|b(C(s)k0; s)|

|A| , (78)

consistent with (64).
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IV. GAIN CURVE: BUNCHED BEAM MODEL

In this section we will explore a bunched model for the beam with bi-gaussian density in phase space. We are in
part motivated by results in [6] where a better agreement with numerical simulations for low-energy transport in a
drift was claimed using this model.

In comparison to the uniform beam model there are two complications. The first is that the problem involves
multifrequencies, as the Fourier modes cease to be orthogonal. A practical consequence is that the kernel in the
integral equation for the modes analogous to (58) will contain an additional integration over frequencies, introducing
a numerical complication.

A second and perhaps more limiting complication is that the evolution of the smooth part (or zero-order) density of
the beam will respond to the presence of the collective effects. This dynamics is difficult to determine self-consistently
in the framework of our model and can only be approximated by resorting to some simplifying assumptions. Here is
our strategy.

Let us begin with defining the smooth part of the density function at s = s0:

f0(x0; s0) =
1

2πσpσz
e−z2

0/σ2
ze−(p0−hz0)

2/2σ2
p . (79)

In first approximation this evolves according to the transfer matrix M for motion under external forces defined in
Sec.II. We then use this transformation to determine the charge density at later times

ρ0(z; s) =
B(s)√
2πσz

e−z2B(s)2/2σ2
z , (80)

where the coefficient B is defined as

B(s) =
1

[
[M11(s) + hM12(s)]2 + M12(s)2

σ2
p

σ2
z

]1/2
. (81)

In the limit where M12(s)2
σ2

p

σ2
z

is negligible small, which should always be the case in applications of interest for
x-ray FELs, then B(s) ' C(s).

We can then use this expression to calculate the resulting energy changes due to space-charge. We linearize this
contribution and add it to the dynamics under the external forces. This model will not account for the beam expansion
caused by space charge but will capture, in first approximation, the built-up of an energy-position correlation, which
may affect compression in the RF structure. Having defined the FT of the longitudinal charge density for a beam
with unlimited support as

ρ̃(k; s) =
1
2π

∫ ∞

−∞
dze−ikz

∫ ∞

−∞
dpf(x; s), (82)

the effect of collective forces described by the impedance Z(k; s) is to modify the energy as in

dp

ds
≡ F (ρ̃, z; s) = −e2cNb

mc2

∫ ∞

−∞
dkeikzZ(k; s)ρ̃(k; s). (83)

The FT of the smooth density (80) is

ρ̃0(k) =
1
2π

e−k2σ2
z/2B2

. (84)

We are now interested in computing the linear term (in z) of F (ρ̃0, z; s), which is straightforwardly obtained by
expanding eikz in (83) through first order:

F (ρ̃0, z; s) ' −e2cNb

mc2

(∫ ∞

−∞
dkZ(k; s)ρ̃0(k; s) + iz

∫ ∞

−∞
dkkZ(k; s)ρ̃0(k; s)

)
. (85)
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FIG. 10: Bi-gaussian beam. Reference orbit for a model of beam line consisting of a 1 m drift followed by 3 m long RF
compressor (exact numerical solutions). The initial condition for ζ̂ is set by the requirement that the phase is ψ = ψ0 when
the reference particle enters the RF compressor.

The first integral on the RHS of the above equation vanishes (Z(k; s) is purely imaginary and therefore Z(−k) =
Z(k)∗ = −Z(k) is an odd function in k while ρ̃0(k; s) is even in k). As for the second term, specializing the calculation
to the impedance model of Eq. (66) we have

F (ρ̃0, z; s) = z
e2cNb

mc2

Z0γ

πr3
b

1
2π

∫ ∞

−∞
dx[1− 2I1(x)K1(x)]e−η2x2/2, (86)

where η = γσz/(rbC). A good approximation of the above integral can be obtained if η À 1 by using

[1− 2I1(x)K1(x)] ' −x2

2

[
log

(x

2

)
+ γE − 1

4

]
. (87)

We have

1
2π

∫ ∞

−∞
dx[1− 2I1(x)K1(x)]e−η2x2/2 ' 1

η3

log η

2
√

2π
, (88)

and find

F (ρ̃0, z; s) = 2z
I0B

IA

B2

γ2σ2
z

log(γσz/rbB), (89)

where I0 is the initial peak current defined as I0 = ecNb/
√

2πσz; I0B(s) is then the peak current at s.
This modifies the equations of motion for determining the transfer matrix (9) and (10)

dz

ds
=

p

(γ2
r − 1)3/2

, (90)

dp

ds
=

[
2I0B(s)

IA

B(s)2

γ2
rσ2

z

log
(

γrσz

rbB(s)

)
− αk2

rf cos(krfs + krfzr + ψ0)
]

z. (91)

We will denote the transfer matrix associated with this system of equations as M̂ . We can possibly try to improve
on the inconsistency of this model in the following way. After solving for the transfer matrix M̂ associated with (90)
and (91) we determine the resulting compression coefficient

B̂ =
1

[
[M̂11(s) + hM̂12(s)]2 + M̂12(s)2

σ2
p

σ2
z

]1/2
. (92)

Next, we insert (92) into (91) in place of B, recalculate the transfer matrix M̂ and continue with this procedure
hoping to achieve convergence. (Of course, it will have to be verified that indeed a convergence can be achieved).

We can now proceed and write an integral equation for first order density perturbations of a bi-gaussian beam. We
start by assuming a small perturbation to (79) of the form.
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FIG. 11: Bi-gaussian beam. Entries of the transfer matrix M (exact numerical solutions).
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FIG. 12: Bi-gaussian beam. Snap-shots of the solution ρ̃1(k; s) of the integral equation as a function of λ = 2π/k of the integral
equation along the beam line. The initial perturbation has wavelength λ0 = 2π/k0. The solution remains relatively narrow

with the peak evolving as λ = λ0/Ĉ(s).

f1(x0; s0) = 2πρ̃1(k0; s0)eik0z0
e−z2

0/2σ2
z√

2πσz

e−(p0−hz0)
2/2σ2

p

√
2πσp

+ c.c. (93)

The 2π coefficient is required for consistency with (82).
We then multiply both sides of (39) by e−ikz/2π and integrate over the phase space. Going through the same

derivation as in the preceding section we find the following equation

ρ̃1(k; s) = e−[kM̂12(s)σp]2/2[ρ̃1(k0; s0)e−[k0−k/Ĉ(s)]2σ2
z/2+ρ̃∗1(k0; s0)e−[k0+k/Ĉ(s)]2σ2

z/2]+
∫ s

s0

ds′
∫ ∞

−∞
dk′K(k′, k; s′, s)ρ̃1(k; s′)

(94)
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FIG. 14: Gain corresponding to the solution reported in Fig. 13

with kernel

K(k′, k; s′, s) = 2i
I0

IA

√
2πσzkM̂12(s′ → s)

Z(k′, s′)
Z0

×

exp


−σ2

z

2

[
k′

Ĉ(s′)
− k

Ĉ(s)

]2

 exp

(
−σ2

p

2
[k′M̂12(s′)− kM̂12(s)]2

)
, (95)

and compression factor Ĉ defined as

Ĉ =
1

M̂11(s) + hM̂12(s)
. (96)

To make contact with results from the previous sections we are interested in considering the limit of a long bunch
σz →∞. To this end observe

lim
σz→∞

√
2πσz exp


−σ2

z

2

[
k′

Ĉ(s′)
− k

Ĉ(s)

]2

 = 2πĈ(s′)δ

(
k′ − k

Ĉ(s′)
Ĉ(s)

)
. (97)

Therefore, the reduced kernel reads

Kred(k; s′, s) =
∫ ∞

−∞
dk′K(k′, k; s′, s)

= 4πi
I0Ĉ(s′)

IA
kM̂12(s′ → s)

Z(k′, s′)
Z0

exp

(
−σ2

p

2
[k′M̂12(s′)− kM̂12(s)]2

) ∣∣∣∣∣
k′=kĈ(s′)/Ĉ(s)

, (98)
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FIG. 15: Amplitude of energy modulation ∆E = mc2
∫∞
−∞∆p̃(ks, s)dks induced by the charge density modulation solving the

integral equation (assuming an initial max. 5% density modulation on the density profile).

identical to (73). In this limit the inhomogeneous term of Eq. (94) vanishes unless k = k0Ĉ(s), in which case the exp
term equals unity. Therefore, for k 6= k0Ĉ(s) the solution for the integral equation is ρ̃1(k, s) = 0 while for k = k0Ĉ(s)
the equation becomes formally identical to that of a coasting beam.

A possible definition for the gain of mode k0 is

g(k0; s) =
1

Ĉ(s)

| ∫∞−∞ dkρ̃1(k; s)|
| ∫∞−∞ dkρ̃1(k; s0)|

=
1

Ĉ(s)

| ∫∞−∞ dkρ̃1(k; s)|
|ρ̃1(k0; s0)|

∫∞
−∞ dke−[k0−k/Ĉ(s0)]2σ2

z/2
=

σz

Ĉ(s)

| ∫∞−∞ dkρ̃1(k; s)|
|ρ̃1(k0; s0)| , (99)

having used Ĉ(s0) = 1 and M̂12(s0) = 0. This definition is consistent with (77) in the limit σz →∞.
A relevant quantity is the first-order energy change induced by the exit of the RF compressor by the first-order

density modulation. From (83) we have

∆p(s, z) =
∫ s

s0

dp

ds′
ds′ = −e2Nb

mc

∫ s

s0

ds′
∫ ∞

−∞
dk′eik′zZ(k′; s′)ρ̃1(k′; s′) (100)

with Fourier components

∆p̃(ks, s) =
1
2π

∫ ∞

−∞
e−iksz∆p(s, z)dz

= −e2NbZ0

mc

∫ s

s0

Z(ks′ ; s′)
Z0

ρ̃1(ks′ ; s′)ds′

= −4π
I0

IA
σz

√
2π

∫ s

s0

Z(ks′ ; s′)
Z0

ρ̃1(ks′ ; s′)ds′. (101)

If we assume that the wavelength 2π/k is much smaller than the bunch length σz so that the solution to the integral
equation ρ̃1(k; s) is narrowly peaked at k = k0C(s) then the energy modulation ∆p(s, z) will be almost sinusoidal
with amplitude

∆p(s, z) =
∫ ∞

−∞
eiksz∆p̃(ks, s)dks ' eiC(s)k0z

∫ ∞

−∞
∆p̃(ks, s)dks. (102)

Numerical examples of solutions of the integral equation for a bi-gaussian beam of rms length σz = 1mm are
presented in Fig.’s 10 through 15.
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V. CONCLUSIONS

We have presented a derivation for the integral equations yielding the gain curve for the microbunching instability
developing in an rf compressor as the result of longitudinal space charge. We considered both the case of a bunched
and coasting beam. The latter is of course less realistic but yields equations that are simpler to solve and may
nonetheless be sufficiently accurate for the high-frequency region of the noise spectrum. The preliminary numerical
examples to illustrate the form of the solutions to the above integral equations show that for reasonable values of beam
parameters the instability gain appear to remain below unity. Work is underway to combine the results from linear
theory discussed in this report and macroparticle simulations for a more definite evaluation of the microbunching
instability in rf compressors.

VI. ACKNOWLEDGEMENTS

We thank M. Ferrario for useful discussions. One of us (MV) would also like to thank the SPARC group at the
INFN Frascati National Laboratory LNF for their hospitality and support during a visit in which part of this work
was carried out. Work carried out in part under Department of Energy contract No. DE-AC02-0SCK11231.

[1] SPARc Web Site, http://www.sparx.it.
[2] S. Heifets, G. Stupakov, and S. Krinsky, Phys. Rev. ST Accel. Beams 5, 064401 (2002).
[3] Z. Huang and K.-J. Kim, Phys. Rev. ST Accel. Beams 5, 074401 (2002).
[4] L. Serafini and M. Ferrario, Velocity Bunching in Photo-Injectors, LNF Report, LNF-00/036 (2000).
[5] M. Venturini, Phys. Rev. ST Accel. Beam 11 034401 (2008).
[6] J. Wu, Z. Huang, and P. Emma, Phys. Rev. ST Accel. Beams 11 040710 (2008).
[7] Having found the solution of the following integral equation ρ̃1(k; s) for positive k we can then reconstruct the entire function

from ρ̃1(−k; s) = ρ̃∗1(k; s).

This document was prepared as an account of work
sponsored by the United States Government. While
this document is believed to contain correct
information, neither the United States Government
nor any agency thereof, nor The Regents of the
University of California, nor any of their
employees, makes any warranty, express or implied,
or assumes any legal responsibility for the
accuracy, completeness,or usefulness of any
information, apparatus, product, or process
disclosed, or represents that its use would
not infringe privately owned rights. Reference
herein to any specific commercial product,
process, or service by its trade name, trademark,
manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement,
recommendation, or favoring by the United States
Government or any agency thereof, or The Regents
of the University of California. The views and
opinions of authors expressed herein do not
necessarily state or reflect those of the
United States Government or any agency thereof,
or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National
Laboratory is an equal opportunity employer.

jawolslegel
Typewritten Text
This work was supported by the U.S. Department of Energy under Contrat No. DE-AC02-05CH11231.

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text




