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Abstract.

We associate to outer automorphisms of generalized Kac–Moody algebras gener-

alized character-valued indices, the twining characters. A character formula for

twining characters is derived which shows that they coincide with the ordinary

characters of some other generalized Kac–Moody algebra, the so-called orbit Lie al-

gebra. Some applications to problems in conformal field theory, algebraic geometry

and the theory of sporadic simple groups are sketched.

——————
† Slightly extended version of a talk given by C. Schweigert at the XXI International Colloquium on
Group Theoretical Methods in Physics (Goslar, Germany, July 1996)
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1 Generalized Kac–Moody algebras

Generalized Kac--Moody algebras constitute a class of Lie algebras which comprise many Lie algebras
that describe symmetries in physical systems. In particular, they include the finite-dimensional simple
Lie algebras (i.e. the four series of classical Lie algebras and the five exceptional simple Lie algebras),
twisted and untwisted affine Lie algebras (i.e. centrally extended loop algebras), hyperbolic Lie algebras
(such as E10), as well as the Monster Lie algebra and its various relatives. Moreover, any chiral algebra
of a conformal field theory, i.e. any vertex operator algebra, gives rise to a generalized Kac--Moody
algebra.

Any finite-dimensional simple Lie algebra is generated (as a Lie algebra) by several copies of sl(2),
one copy for each simple root. This is also true for ordinary Kac--Moody algebras; a generalized
Kac--Moody algebra, however, is generated by copies of sl(2) and of the Heisenberg algebra which
has a basis {e, f,K} with K a central element and non-trivial Lie bracket [e, f ] = K. Nonetheless,
generalized Kac--Moody algebras can still be characterized by a square matrix, the Cartan matrix
A = (aij)i,j∈I . The index set I can either be finite, I = {1, 2, ... , n}, or countably infinite, I = Z+.
In case of finite-dimensional simple Lie algebras the entries of A are integers; here we allow for real
entries, but still we keep the following properties of A:

(i) aij ≤ 0 if i 6= j; (ii)
2aij

aii
∈ Z if aii > 0;

(iii) if aij = 0, then aji = 0;

(iv) there exists a diagonal matrix D = diag(ǫ1, ..., ǫn), with ǫi a positive

real number for all i, such that DA is symmetric.

(1.1)

From these data the generalized Kac--Moody algebra is constructed by the same procedure that is
used to construct a finite-dimensional simple Lie algebra from its Cartan matrix. One starts with an
abelian Lie algebra g0 of dimension greater or equal to n and fixes n linearly independent elements
h1, ... , hn of g0 and n linear forms αj on g0, the simple roots, such that αj(hi) = aij. The generalized
Kac--Moody algebra g = g(A) with Cartan matrix A and Cartan subalgebra g0 is then the Lie algebra
generated by ei, fi , i∈I, and g0, modulo the relations

[ei, fj ] = δijhi , [h, ei] = αi(h)ei , [h, fi] = −αi(h)fi ,

(ad ei)
1−2aij/aiiej = 0 = (ad fi)

1−2aij/aiifj if aii > 0 ,

[ei, ej ] = 0 = [fi, fj ] if aij = 0 .

(1.2)

2 Automorphisms of generalized Kac–Moody algebras

We now turn to the main object of our interest: a class of outer automorphisms of generalized
Kac--Moody algebras and some new structures associated to them. Such automorphisms occur natu-
rally in many physical applications; for some examples see the last section and [5]. We start with a
permutation ω̇ of finite order of the index set I which leaves the Cartan matrix A invariant:

aω̇i,ω̇j = ai,j . (2.3)

If the generalized Kac--Moody algebra has a Dynkin diagram, ω̇ corresponds to a symmetry of the
Dynkin diagram. Such a permutation ω̇ induces an automorphism ω : g → g of the Lie algebra g,
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which is defined by its action on the generators ei, fi and hi:
1

ω(ei) := eω̇i , ω(fi) := fω̇i , ω(hi) := hω̇i . (2.4)

The automorphism ω gives rise to a map τω : HΛ → Hω⋆Λ of integrable highest weight modules
(and analogously also for Verma modules) which ‘ω-twines’ the action of g:

τω(RΛ(x) · v) = Rω⋆Λ(ω(x)) · τω(v) , (2.5)

and maps a fixed highest weight vector vΛ of HΛ to a highest weight vector vω⋆Λ of Hω⋆Λ. Analogous
maps can also be defined for Verma modules; they are compatible with the submodule structure of
the Verma modules and hence also with their null vector structures. Pictorially, the map τω can be
represented as follows:

HΛ Hω⋆Λ

v = xvΛ τωv = ω(x)vω
⋆Λ

τω

x∈U(g
−

) ω(x)∈U(g
−

)

vΛ vω⋆Λ

τω

3 Fixed points

Note that τω is generically a linear map from a module HΛ to a different module Hω⋆Λ. A particularly
interesting situation occurs when the highest weight Λ is symmetric, i.e. satisfies ω⋆(Λ) = Λ. In this
case the heighest weight module HΛ is called a fixed point of ω and τω is an endomorphism of the
vector space underlying the module HΛ. To keep track of some properties of the endomorphism τω,

we introduce a character-like object, the twining character χ[ω]
Λ :

χ[ω]
Λ (h) = trHΛ

τω e2πiRΛ(h) for h∈g0 . (3.6)

Like ordinary characters the twining characters are (formal) functions on the Cartan subalgebra. They
are the generating functions of the trace of τω on the weight spaces, i.e. they are generalized (since ω

1 In general, one also must describe the action of ω on the derivations of the generalized Kac–Moody algebra.
For more details see section 3 of [2].
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does not necessarily have order two) character-valued indices. Clearly, for the trivial automorphism
ω = 1 we recover the ordinary character of the module HΛ.

It is a rather surprising result [2, 1] that the twining character is essentially identical to the
character of some other generalized Kac--Moody algebra ğ, called the orbit Lie algebra. This result
makes the twining characters explicitly computable. In particular, it implies that the coefficients in
the expansion of the twining character are not arbitrary complex numbers, but non-negative integers,
and hence justifies a posteriori the name twining character.

The orbit Lie algebra corresponding to g and its diagram automorphism ω is obtained by a simple
prescription which corresponds to folding the Dynkin diagram of g according to the action of ω̇.
Pictorially we have e.g.:

ğ = G
(1)
2 ğ = B̃

(2)
5

g = E
(1)
6 g = B

(1)
6

In formulæ, the orbit Lie algebra is described as follows. Denote by Î a set of representatives in I
for each ω̇-orbit. The Cartan matrix of the orbit Lie algebra is then labelled by the subset

Ĭ := {i∈ Î |
Ni−1
∑

l=0

ai,ω̇li ≤ 0 =⇒
Ni−1
∑

l=0

ai,ω̇li = aii} (3.7)

of Î. For each i∈ Î we define the number

si :=

{

aii/
∑Ni−1

l=0 ai,ω̇li if i∈ Ĭ and aii 6= 0 ,

1 otherwise ,
(3.8)

which is either 1 or 2. The Cartan matrix Â = (âij)i,j∈Ĭ of the orbit Lie algebra is then defined by
summing over one index of the Cartan matrix of g:

âij := sj

Nj−1
∑

l=0

ai,ω̇lj . (3.9)

We emphasize that ğ is not constructed as a subalgebra of g; in particular the orbit Lie algebra is
in general not isomorphic to the subalgebra of g that stays fixed under ω. One can also show that
the algebra g and the orbit Lie algebra ğ are 2 of the same type (i.e. simple, affine, indefinite); the
orbit Lie algebra of hyperbolic Lie algebras is hyperbolic as well. A particularly interesting situation

2 except for the order-N automorphisms of sl(N)
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is illustrated on the right hand side of the figure: for certain orbit Lie algebras, one obtains the

twisted affine Lie algebras B̃
(2)
n which are the only twisted affine Lie algebras for which the characters

have good modular transformation properties. This had been predicted [6] on the basis of level-rank
dualities of N = 2 superconformal coset theories.

We conjecture that when the original Lie algebra g is an untwisted affine Lie algebra and the
symmetry of the Dynkin diagram corresponds to the action of a simple current, 3 then the modular
matrix S of the orbit Lie algebra ğ describes the modular transformation properties of the chiral
blocks for the one-point function of the relevant simple current on the torus. This would provide a
conceptual explanation of the observation that in these cases the twining characters of g span again a
unitary representation of SL(2,Z). For some further evidence for this conjecture, see [5].

4 Sketch of the proof

We will now outline the main ideas which enter in the proof of a character formula for the twining
character; for the full details we refer the reader to the original publications [2, 1]. The first step is
to show that the subgroup Ŵ of the Weyl group W of g that consists of those elements of W whose
action on the weight space of g commutes with ω⋆ is isomorphic to the Weyl group W̆ of the orbit Lie
algebra ğ. This part of the proof also provides new insight in the structure of Coxeter groups.

The idea is to show that Ŵ plays for the twining characters the role the full Weyl group plays for
the ordinary characters: First, the twining characters of Verma modules are Ŵ -odd. More precisely,

let V
(ω)
Λ denote the twining character of the Verma module; then V(ω) := e−ρ−Λ V

(ω)
Λ (which does not

depend on Λ) is antisymmetric under Ŵ , ŵ(V(ω)) = ǫ̂(ŵ)V(ω). Here ǫ̂ is the sign function associated
to Ŵ as a Coxeter group, and not the restriction of the sign function of W . The twining characters
χ[ω]

Λ of the irreducible modules, on the other hand, are symmetric under the action of Ŵ :

ŵ(χ
[ω]
Λ ) = χ[ω]

Λ . (4.10)

We can now generalize the arguments used in the proof of the Weyl-Kac-Borcherds character formula
of ordinary characters and implement the symmetry properties under Ŵ to derive an explicit character
formula for the twining characters:

χ[ω]
Λ =

∑

ŵ∈Ŵ ǫ̂(ŵ) ŵ(Sω
Λ)

∑

ŵ∈Ŵ ǫ̂(ŵ) ŵ(Sω
0 )

, (4.11)

where
Sω

Λ = eΛ+ρ
∑

ǫ̂(β) e−β (4.12)

and ǫ̂(β) = (−1)n if β is the symmetric sum of n pairwise orthogonal imaginary simple roots, all
orthogonal to Λ, and ǫ̂(β) = 0 otherwise. Comparison with the character formula for the orbit Lie
algebra then proves the claim.

3 Dynkin diagram symmetries coming from simple currents [7] are elements of the unique maximal abelian
normal subgroup of the diagram automorphisms. This subgroup is isomorphic to the center of the universal
covering Lie group that has the horizontal subalgebra ḡ ⊂ g as its Lie algebra.
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5 Applications and conclusions

Orbit Lie algebras and twining characters are novel structures in the representation theory of general-
ized Kac--Moody algebras. They already found several applications in two-dimensional conformal field
theory, e.g. in the solution of the problem of field identification fixed points in coset conformal field
theories [3] and in fixed point resolution for integer spin simple current (‘D-type’) modular invariants
of conformal field theories [4]. More details can be found in the original publications and in [5].

In the case of WZW theories, integer spin modular invariants describe the WZW theory on a
non-simply connected group manifold. In general, twining characters and orbit Lie algebras play a
role as soon as one considers non-simply connected Lie groups. In particular, they allow to describe
Chern-Simons theories based on such groups [8] and they give a Verlinde formula also for non-simply
connected groups [4]. Other applications concern the biggest sporadic simple group, the monster group,
which acts on a generalized Kac--Moody algebra, the monster Lie algebra, by outer automorphisms
(recently, this group has been proposed as the symmetry underlying N = 2 string theory). We expect
that orbit Lie algebras and twining characters will be a useful tool in this situation as well. Finally,
twining characters of finite-dimensional simple Lie algebras are closely related to the characters of
non-connected finite-dimensional simple Lie groups (the latter have e.g. been studied in [9]).
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ported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, of the
U.S. Department of Energy under Contract DE-AC03-76F00098 and in part by the National Science
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