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We advocate the idea that proton decay may probe physics at the Planck scale instead of the GUT
scale. This is possible because supersymmetric theories have dimension-5 operators that can induce
proton decay at dangerous rates, even with R-parity conservation. These operators are expected
to be suppressed by the same physics that explains the fermion masses and mixings. We present
a thorough analysis of nucleon partial lifetimes in models with a string-inspired anomalous U(1)X

family symmetry which is responsible for the fermionic mass spectrum as well as forbidding R-parity
violating interactions. Protons and neutrons can decay via R-parity conserving non-renormalizable
superpotential terms that are suppressed by the Planck scale and powers of the Cabibbo angle.
Many of the models naturally lead to nucleon decay near present limits without any reference to
grand unification.

I. INTRODUCTION

Baryon number is an accidental symmetry of the Stan-
dard Model (SM). However, it is unlikely that baryon
number will remain a symmetry up to the highest energy
scales. Because of the gauge hierarchy problem it is
strongly believed that the SM must be augmented by
new physics at the TeV scale. There is no theoretical
reason to believe that such new physics will still conserve
U(1)B. In fact, baryon number violation is one of the
necessary ingredients in models that explain the matter-
antimatter asymmetry in the universe [1]. We therefore
expect U(1)B to be violated at some higher energy scale.
Current and future experiments of nucleon decay may
thus be probes of high-scale physics. For example,
the partial lifetime of the decay mode p → K+ν̄ is
greater than 1.6 × 1033 years [2], which places stringent
constraints on scenarios of new physics.

On the other hand, supersymmetry is considered the
leading candidate for physics beyond the SM because it
solves the gauge hierarchy problem once and for all and it
is also consistent with grand unified theories (GUTs). It
is often said that since quarks and leptons lie in the same
GUT multiplets, an observation of proton decay will be
a signal of a GUT. Indeed, the minimal supersymmetric
SU(5) GUT has been excluded because the unification

∗On leave of absence from Department of Physics, University of
California, Berkeley, CA 94720, USA.
†New address as of April 2004: Physikalisches Institut der Univer-
sität Bonn, Nußallee 12, 53115 Bonn, Germany.

of gauge couplings forces the model into a region of
parameter space where the proton decays too quickly [3].

However, it is an under-publicized fact that super-
symmetric models predict proton decay even without

unification. Conventionally R-parity (Rp) is imposed
as an exact symmetry in order to prevent the proton
from decaying through renormalizable operators. But in
a generic supersymmetric model one can still write down
Rp-conserving, yet baryon and lepton number violating,
D = 5 operators suppressed by a single power of the
cutoff scale, which we take to be the reduced Planck
scale MPl ∼ 2.4× 1018 GeV. These operators come from
the superpotential

W5 =
ǫabc

MPl

(
Cijkl

L (Qa
i Qb

j)(Q
c
kLl) + Cijkl

R U
a

i U
b

jD
c

kEl

)
.

(1)
Here Q, L are quark and lepton doublet superfields
and U, D, E are SU(2)L singlets. The SU(2)L indices
are contracted between the terms in parentheses, while
i, j, k, l are generational indices and a, b, c are color
indices. From an effective field theoretic point of view
one expects these operators to appear with coefficients
CL and CR of O(1).

Supersymmetry’s dirty little secret is that if one were
to pick generic O(1) numbers for the coefficients CL and
CR, the proton lifetime would be about 1017 years, many
orders of magnitude below the experimental limit. Thus
the coefficients CL and CR must be highly suppressed in
any viable supersymmetric model.

We do not consider this embarrassment a death-blow
for supersymmetric models, however. This is because
the SM already contains highly suppressed dimensionless
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numbers, namely the Yukawa coupling constants. It is
unsatisfactory to have an effective theory that is valid up
to the Planck scale without explaining the origin of small
coefficients for HUQiU j , HDQiDj and HDLiEj . Such an
explanation should naturally determine the coefficients
of QiQjQkLl and U iU jDkEl, likely suppressing them
as well [4]. In the context of supersymmetric models
the most promising scenario for generating small Yukawa
couplings is that of Froggatt and Nielsen [5] (see [6] for an
exhaustive list of references), for which the suppression
of proton decay has been demonstrated [4, 7]. In [6]
the tight experimental bounds on exotic processes were
brought to bear on certain Froggatt-Nielsen models found
in the literature. Indeed, many models were found
to be incompatible with data solely due to insufficient
suppression of QiQjQkLl. The relation between the
fermion mass hierarchy in the SM and the suppression
of proton decay also occurs in other non-supersymmetric
models such as [8, 9].

In order to predict proton decay rates originating from
Planck scale D = 5 operators we have to specify the
framework of fermion masses and mixings. We would like
the framework to be specific enough so that we can make
quantitative predictions, but also general enough so that
we can study the generic features of Planck scale proton
decay. In this paper we will focus on a recently proposed
class of models based on a single, anomalous Froggatt-
Nielsen flavor symmetry [10]. In this class of models the
MSSM superfields are charged under a horizontal U(1)X

symmetry that is spontaneously broken by the non-zero
VEV of a flavon field, A. The MSSM Yukawa terms are
then suppressed by the ratio ǫ = 〈A〉/MPl raised to the
the appropriate power necessary to conserve U(1)X . The
models in [10] are ambitious:

1. The U(1)X is the only symmetry beyond the SM
gauge groups.

2. The only fields charged under the SM gauge groups
are those in the MSSM. However, there may be
(hidden sector) fields charged only under U(1)X .

3. The U(1)X charge assignments and breaking scale
are inspired directly from string theory. Anomalies
are canceled by the Green-Schwarz mechanism
which places sum rules on the X-charges.

4. The Cabibbo angle is calculated. It is set by
the flavon VEV which is is determined by string
theory, yielding the phenomenologically interesting
value ǫ = 〈A〉/MPl = 0.17–0.22.

5. The charge assignments are chosen to yield the
measured quark and lepton masses, including CKM
mixing.

6. Neutrino mixings are also a result of the charge
assignments.

7. R-parity is an exact (accidental) symmetry of the
U(1)X charge assignments, preventing tree-level
nucleon decay.

That these seven goals can be achieved within a single,
simple framework is non-trivial and encouraging. As
was shown in [10], there is only a finite number of X-
charge assignments with these properties.∗ It is very
interesting that the predicted nucleon partial lifetimes
in these models are generically within a few orders of
magnitude of the current limits of about 1032 years. This
already rules out some specific charge assignments, and
means that others will be directly tested very soon. It
is important to note that in general these models do not

have GUT-compatible X-charges, but they nonetheless
lead to very interesting nucleon decay rates not much
smaller than those predicted by GUTs.

In this paper we systematically explore the nucleon
partial lifetimes predicted by the U(1)X Froggatt-Nielsen
models presented in [10]. In Section II we briefly
review these models, then in Section III we do some
quick estimates of the lifetimes. In Section IV we
describe our method of computing the nucleon decay
rates. Section V contains our main results, namely that
the U(1)X models of flavor are already constrained by
current nucleon decay data, and they will continue to
be tested by future experiments. Our conclusions are
presented in Section VI, while Appendix A carefully
explains the dressing diagrams relevant for our analysis,
and Appendix B discusses the effects of canonicalizing the
Kähler potential and transforming from the interaction
basis into the mass basis.

II. FROGGATT-NIELSEN FRAMEWORK

We will analyze the class of Froggatt-Nielsen models
presented in [10]. In this section we summarize the
results that are relevant for our analysis and refer readers
to that paper for details. Below the reduced Planck
scale the gauge group and particle content are those
of the MSSM, with the addition of two right-handed
neutrinos, a single flavon superfield A, and a generation-
dependent U(1)X gauge group with anomalies canceled
by the Green-Schwarz mechanism [11]. Since all matter
fields are charged under U(1)X , their couplings to the
flavon are determined by U(1)X invariance. The goal
is to have the flavon couplings generate the generation
dependent masses and mixings in the fermion spectrum.

For example, masses for the up-type quarks originate
from the non-renormalizable operator

gU
ij

(
A

MPl

)XHU
+XQi

+XUj

HU Qi U j , (2)

where the flavon charge is defined to be XA = −1 and

∗ With further assumptions, discussed in [10], these models can
also explain the scale of neutrino masses by invoking only two
right-handed neutrinos and using only two fundamental mass
scales, MPl and msoft ∼ 1 TeV.
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gU
ij are O(1) coefficients that are undetermined within

the effective theory below MPl. The dimensionless gU
ij

is zero if XHU
+XQi

+XUj
is negative or fractional. The

powers of A in Eqn. (2) compensate the U(1)X charges
of HU Qi U j yielding U(1)X gauge invariants. The Dine-
Seiberg-Wen-Witten-generated Fayet-Iliopoulos term for
U(1)X induces a VEV for the scalar component of the
flavon field [12, 13, 14, 15]. The VEV is given by 〈A〉 =
ǫMPl, where ǫ naturally turns out to be the size of the
sine of the Cabibbo angle, ǫ ∼ 0.2. After U(1)X -breaking
one gets the Yukawa couplings

GU
ij = gU

ij ǫ
XHU

+XQi
+X

Uj , (3)

which are suppressed by powers of ǫ. In this way the
charge assignments of the MSSM matter fields determine
the fermion mass hierarchy. Once the X-charges are cho-
sen to reproduce the mass spectrum, the ǫ-suppressions
of other superpotential terms are determined up to
O(1) coefficients, with higher-dimensional operators like
QiQjQkLl being suppressed by additional powers of MPl.
It is this connection that we will be exploiting to estimate
the nucleon decay lifetimes within this Froggatt-Nielsen
framework.

The X-charges are determined by requiring cancel-
lation of chiral anomalies between U(1)X and the SM
gauge group, prohibition of all Rp-violating interactions,†

and generation of the phenomenologically viable fermion
masses and the CKM matrix. The X-charges of the
MSSM superfields are then specified by six integer pa-
rameters, as demonstrated in [10] and displayed in their
Table 2. These X-charges are further constrained by the
phenomenology of neutrino mixing, which fixes two of
those six parameters . The X-charge of each superfield is
determined by the four remaining parameters, x, y, z and
∆H , and is shown in Table I. The physical significance
of these parameters will be explained below.

Only the three parameters x, y and z are relevant
for nucleon decay. They are restricted to a small set of
integers, which leads to 24 distinct models with different
nucleon decay signatures. The allowed values are x =
0, 1, 2, 3; y = −1, 0, 1, ‡ and z = 0, 1.

The parameter x is related to the ratio of the bottom
and top quark masses, and is thus also connected to tanβ,

mb

mt
∼ ǫx

tanβ
. (4)

† All Rp-even terms are supposed to have an overall integer X-
charge, while all Rp-odd terms are supposed to have an overall
half-odd-integer X-charge.

‡ In Ref. [6] y = −7,−6 are also considered because at first sight
they give a viable CKM matrix once the supersymmetric zeros
are filled in. However, Ref. [16] demonstrates that this is not
the case. See also Refs. [17]. Therefore we do not consider y =
−7,−6 in this paper.

XHD
= −24+12y+z(9+4z)+x(4x+22+6z)−2∆H(2x+12+3z)

10 (6+x+z)

XHU
= −z − XHD

XQ1 = 1
3

(
19
2
− XHD

+ x + 2y + 2z − ∆H
)

XQ2
= XQ1 − 1 − y

XQ3
= XQ1 − 3 − y

XD1
= −XHD

− XQ1
+ 4 + x

XD2
= XD3

= XD1
− 1 + y

XU1
= XHD − XQ1

+ 8 + z

XU2
= XU1

− 3 + y

XU3
= XU1

− 5 + y

XL1
= 1

2
+ XHD

+ ∆H

XL2
= XL3

= XL1
− z

XE1
= −XHD

+ 4 − XL1
+ x + z

XE2
= −XHD

+ 2 − XL1
+ x + z

XE3
= −XHD

− XL1
+ x + z

TABLE I: Rp-conserving X-charge assignments of the MSSM
superfields in terms of four parameters: x, y, z, ∆H . The
charge assignments are as in Table 2 of [10] with their ζ
and ∆L

31 both taken to be −z as required by neutrino mixing
phenomenology.

Since ǫ ∼ 0.2, larger x corresponds to smaller tan β,
but because of unknown O(1) coefficients, we cannot
determine tan β exactly. To simplify our analysis we
will choose a specific, reasonable value of tanβ for each
value of x, namely tanβ = 50, 20, 5, 3 for x = 0, 1, 2, 3,
respectively.

The three choices for the parameter y determine the
texture of the up- and down-quark Yukawa matrices and
therefore also the CKM matrix. One finds

y = −1 : VCKM ∼




1 1 ǫ2

1 1 ǫ2

ǫ2 ǫ2 1


 , (5)

y = 0 : VCKM ∼




1 ǫ ǫ3

ǫ 1 ǫ2

ǫ3 ǫ2 1


 , (6)

y = 1 : VCKM ∼




1 ǫ2 ǫ4

ǫ2 1 ǫ2

ǫ4 ǫ2 1


 . (7)

Finally, the parameter z is related to the charged
lepton mass spectrum,

me

mµ
∼ ǫ2+z. (8)
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In combination with neutrino phenomenology and the
requirement that Rp is conserved by virtue of the X-
charges, it turns out that z specifies the texture of the
MNS matrix:

UMNS ∼




1 ǫz ǫz

ǫz 1 1

ǫz 1 1


 . (9)

Here we see that z = 0 corresponds to an “anarchical”
MNS matrix [18, 19], whereas z = 1 corresponds to a
“semi-anarchical” MNS matrix [20].

The minimalist approach is to add only two right-
handed neutrinos. When this approach is taken the
fourth parameter, ∆H , can take two different values for
each set of {x, y, z}, but it has no impact on nucleon
lifetimes and so it is irrelevant for our purposes. However,
our analysis does not depend on the number of right
handed neutrinos.

In addition to specifying the CKM and MNS textures,
the parameters {x, y, z} also have bearing on other as-
pects of the UV physics. For example, SU(5) invariance
is only consistent with y = 1 and z = 0. Also, z =
1 prohibits the operator HDHU , thus allowing the µ-
term to be generated by the Giudice-Masiero mechanism
[21, 22]. If one has a preference towards a specific
physical scenario, the number of models to choose from
is significantly reduced. For example, the models in [10]
were chosen to have z = 1 for the sake of a natural
µ-parameter, y = 0 to obtain the most natural CKM
matrix, and x = 2, 3 to avoid proton decay limits.

Other criteria may be used in choosing one’s favorite
model. For instance, the values of the X-charges are
much more aesthetically pleasing in some models than
others. For example, taking x = 2, y = 1, z = 0 and
∆H = 9, one finds the X-charges of all MSSM superfields
are integers or half-odd-integers, as shown in Table II.
However, in this paper we will treat all 24 distinct models
equally and focus only on their predictions for nucleon
decay.

Generation i 1 2 3

XQi
5/2 1/2 −3/2

XLi
13/2 13/2 13/2

XUi
5/2 1/2 −3/2

XDi
13/2 13/2 13/2

XEi
5/2 1/2 −3/2

XHD
= −3, XHU

= 3

TABLE II: An example of an X-charge assignment for the
matter superfields in the model with x = 2, y = 1, z = 0, and
∆H = 9. ∆H helps to determine the specific charges, but its
effects cancel out in all the nucleon decay operators.

III. QUICK ESTIMATES

A quick estimate shows that the operator Q1Q1Q2L3

leads a proton lifetime of ∼ 1017ǫ−2n years, where n =
9 + x + y + z is the sum of the X-charges for the four
superfields. Since ǫ ∼ 0.2, we need to have n & 11 to
satisfy the experimental limit of about 1033 years for p →
K+ν̄τ . This demonstrates the general trend that larger
values of x, y, and z will lead to greater suppression of
the decay rate and hence a longer lifetime.

It turns out that the nucleon lifetimes predicted by
our Froggatt-Nielsen model are in the same ballpark as
those predicted by GUT models. This can be understood
relatively easily. For the operator Q2Q2Q1L2 we can
rewrite the suppression in terms of Yukawa couplings
(ignoring O(1) factors),

1

MPl
ǫ8+x+z =

ǫ

MPl
ǫzǫ4ǫ2+xǫ =

ǫ

MPl

µ

m3/2
GU

22 GE
22ǫ,

(10)
where we have used the phenomenological constraints
on the X-charges from Section 5 in [10] to identify the
Yukawa couplings. This is to be compared with the
coefficient of the same operator coming from an SU(5)
GUT theory, which is

1

MGUT
GU

22 GE
22λC . (11)

Equating ǫ with λC and noting that the µ-parameter can-
not be too different from the gravitino mass, the differ-
ence between the coefficients is simply λC(MGUT/MPl).
Considering the fact that these two models involve
completely different physics, we find this difference inter-
estingly small. The estimation above is obviously very
crude and calls for a more rigorous analysis which is the
goal of this work.

IV. NUCLEON DECAY COMPUTATIONS

In this section we describe our calculations of the various
nucleon decay modes. We use the standard methods
for the computations, following [4] and [23]. The
starting point is the higher-dimensional UV Lagrangian
shown in Eqn. (1). The dimension-five fermion-fermion-
scalar-scalar terms arising from these operators can be
“dressed”, whereby the scalars exchange a gaugino or
higgsino and are converted into fermions, as shown in
Figure 1. Below the scale of the soft masses they become
four-fermion operators and contribute to nucleon decay.
The matrix elements of these operators can be evaluated
using the well-known chiral Lagrangian technique [24].

The quark doublet superfields Q in Eqn. (1) are
taken to be in the SuperCKM basis, namely Q =
(U, D′) = (U, VCKMD) where U and D are the mass
eigenstates. Thus the couplings to the mass eigenstate
quark operators will come with various CKM factors.
However, we cannot necessarily neglect operators with
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FIG. 1: An example of a dimension-5 operator that can be
dressed by neutral or charged winos and higgsinos.

small CKM factors because they may be offset by the

lesser degree of ǫ-suppression in Cijkl
L,R . In other words,

operators QiQjQkLl containing third generation quarks
will have small CKM couplings to the first generation
quarks in the nucleon, but will have correspondingly

larger coefficients Cijkl
L,R due to the X-charge assignments

for the third generation.
Note that the U(1)X basis is not necessarily the same

as the SuperCKM basis nor the mass eigenbasis. Thus it
is important to take these various changes of basis into
consideration when determining the ǫ-suppression of the
nucleon decay operators. For the most part this only
effects the O(1) coefficients, which we are ignorant of
anyway. Nevertheless, we have performed a thorough
analysis of this effect as described in Appendix B.

The operators QiQjQkLl and U iU jDkEl are not all
independent. Fierz identities may be used to convert
all of the operators into a smaller set which we choose
as our basis of independent operators. One can further
reduce the number of operators in this set by noting
that contributions to nucleon decay can only come from
operators with at least one first-generation superfield.
The Fierz identities and a list of independent operators
are given in Appendix A. Since we do not know the exact
coefficients in front of these operators, we will assume
that in the UV all of the operators in our basis are
generated and that their unknown coefficients are given
by the ǫ-suppression determined by the X-charges and
O(1) numerical factors.

As argued above, the ǫ-suppression is essential for the
predicted nucleon lifetimes to be above the current limits.
This suppression is determined by the X-charges of Qi,
U i, Di, Li and Ei, which are in turn determined by the
choice of the model parameters x, y, and z. Note that ǫ
itself also has mild dependence on the model parameters,

ǫ =
g3

4π
√

2

√
3(6 + x + z) (12)

where the QCD gauge coupling g3 is roughly 0.72 at
high energies. The dependence of the ǫ-suppression on
the choice of X-charges leads to the different patterns
of nucleon partial lifetimes that we study in the next
section.

Renormalization group effects enhance the nucleon
decay operators due to running between MPl and mp.
For simplicity, we compute the supersymmetric running
from MPl down to mZ from the gauge couplings, ignoring
corrections proportional to Yukawa couplings. The left-
and right-handed operators, QiQjQkLl and U iU jDkEl,
are enhanced by a factor

(
α1(MPl)

α1(mZ)

)c1
(

α2(MPl)

α2(mZ)

)c2
(

α3(MPl)

α3(mZ)

)c3

. (13)

Here αi
−1(q) = αi

−1(mZ) − bi

2π ln (q/mZ) with bi =
(33/5, 1,−3) and ci = (1/33, 3,−4/3) for LH and
(2/11, 0,−4/3) for RH operators. Also, g2

1 = (5/3)g′2

Numerically this enhances the LH operators by a factor
of 9.3 and the RH operators by a factor of 5.6.

In general there are many different ways the dimension-
five operators can be dressed to give four-fermion oper-
ators. In our scenario we assume that supersymmetry
breaking is sufficiently flavor blind so that the flavor mix-
ing in gluino-quark-squark vertices is negligible. Then in
the limit of degenerate squarks and degenerate sleptons
the contributions from gluino dressing cancel due to a
Fierz identity, as explained in more detail in Appendix A.
There it is also shown that bino dressing does not con-
tribute to nucleon decay. All contributions from neutral-
higgsino dressing are extremely suppressed by small,
first-generation Yukawa couplings, so we ignore them.
We do include the leading contributions from charged-
higgsino dressing. In the case of charged-lepton decay
modes these contributions turn out to be negligible,
but [23] has shown that they can be important for the
antineutrino decay modes. The bulk of the contributions
come from charged-wino dressing, though the neutral-
wino dressing can be comparable for the antineutrino
decay modes.

The dressing leads to a four-fermion vertex which must
then be run from the scale of the soft masses, roughly
102 GeV, down to 1 GeV where they mediate nucleon
decay. For simplicity we compute the QCD running only
from mZ down to 1 GeV, which leads to an enhancement
given in [25], namely

(
α3(Mlow)

α3(Mhigh)

)2/β0

(14)

where β0 = 11− 2
3f and f is the number of quark flavors

with masses less than Mhigh. There are three of these
enhancement factors for the successive steps between
mZ , mb, mc, and mp. In each step the QCD coupling

is given by α3
(f)(q) = 4π/(β0 ln(q2/Λf

2)), where Λf is
determined by requiring that α3 be continuous between
successive intervals. Numerically we use mb = 4.2 GeV,
mc = 1.2 GeV, and mp = 1 GeV, which gives a total
contribution of 1.3, and is quite insensitive to the exact
thresholds for mb and mc. Together with the high scale
running mentioned above, there is a net enhancement of
approximately 12 for CL and 7 for CR.
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The chiral Lagrangian can be used to determine the
decay rate induced by the four-fermion operators [24].
The partial decay width of a nucleon Bi into a meson
Mj and lepton lk is given by§

Γ(Bi → Mjlk) =
mi

32π f2
π

(
1 − mj

2

mi
2

)2(∣∣Aijk
L

∣∣2 +
∣∣Aijk

R

∣∣2
)

(15)

where Aijk
L,R can be found in Table 1 of [23], given in terms

of the coefficients of the various four-fermion operators
generated by dressing of the superpotential operators
shown in Eqn. (1). The numerical values of AL,R depend
on several input parameters. The coupling between
baryons and mesons in the chiral Lagrangian are given
by D and F . As in [24] we take D = 0.81, F = 0.44, and
fπ = 139 MeV.

Our computations of nucleon lifetimes are subject to
two types of uncertainties, those that reflect our current
lack of knowledge and those that are inherent to the
effective theory framework of our model. The first type
includes the uncertainty in the hadronic matrix element
and the masses of the superpartners, both of which
we assume will be pinned down more precisely by the
time the next generation nucleon decay experiments start
taking data. The second type includes the unknown
O(1) coefficients that come with the non-renormalizable
superpotential operators, which cannot be determined
without a full theory of the Planck scale physics. We
will discuss each of these uncertainties in turn.

The value of the hadronic matrix element must be eval-
uated to convert the four-fermion operators into nucleon
lifetimes. In the framework of the chiral Lagrangian
this appears as two parameters βp and αp, which are
related by αp = −βp. Unfortunately, the value of βp is
only known to roughly a factor of 10. The conservative
range often taken is βp = 0.003–0.03 GeV3. Recently
there has been some progress evaluating βp on the lattice,
yielding the results βp = 0.014± 0.001 GeV3 in [26] and
βp = 0.007±0.001 GeV3 in [27]. Note that the errors are
only statistical, and do not reflect systematic effects such
as quenching. Since βp appears in the amplitude, any
uncertainty in its value gets squared in the decay rate or
lifetime. However, this uncertainty is common across all
modes and all different models, so it simply represents an
overall rescaling of the lifetimes. For our computations
we will use an intermediate value, βp = 0.01 GeV3. A
smaller value of βp would give a smaller decay rate and
a longer lifetime. Allowing for the range 0.003–0.03 thus
corresponds to a change in our results by a factor of 10 in
both directions. Again, we can look forward to reduction
in the uncertainty in the hadronic matrix element, which
will reduce the uncertainty in our computations.

§ Eqn. (15) is written in the notation of [23]: k is a generational
index, but j refers to π0, η0, K0, π± or K+, and i refers to
proton or neutron.

The scale of the superpartner masses is another un-
certainty in our computations that will be reduced if
supersymmetry is discovered at a collider. The super-
partner masses enter through the loop in the dressed
diagrams such as the one in Figure 1. We assume
that the squarks and sleptons all have a common mass,
msoft. If the gaugino (or higgsino) mass is much less
than the squark mass, the contribution from the loop
is given by Mgaugino/m2

soft, whereas if the gauginos are
degenerate with the squarks at msoft, then the loop factor
is 1/(2msoft). One can imagine extremes where all the
superpartners are relatively light, near 100 GeV, leading
to the shortest lifetimes, or the opposite extreme where
the scalars are heavy (TeV) and the gauginos are light
(100 GeV), leading to the longest lifetimes.

We can cover the different possibilities by taking all
superpartners to be degenerate at msoft and then allowing
msoft to range from 100 GeV to 10 TeV. The latter case
does not mean the superpartner masses are actually 10
TeV, but rather represents the case where squark and
slepton masses are around 1 TeV and wino masses are 100
GeV. In our computations we will choose a middle ground
by assuming of msoft = 1 TeV. With this assumption,
the proton lifetime simply scales inversely with m2

soft.
Choosing one of the other two scenarios described above
would change the nucleon lifetimes by a factor of 100.
We reiterate that this uncertainty will disappear once
the superpartner spectrum is measured, most likely at
the LHC.

Our ignorance of the O(1) coefficients appearing in
front of each operator in Eqn. (1) is an uncertainty
inherent in the framework of effective field theory. AL,R

in Eqn. (15) are each the sum of several contributing
amplitudes from different operators that can interfere
with one another. However, since we do not know either
the exact magnitudes or phases of the O(1) coefficients
in the UV Lagrangian, we cannot know whether the
different contributions will interfere constructively or
destructively. As an extreme example, one could pick
a fine-tuned set of numbers such that the amplitude for
a certain decay mode vanishes completely. However, this
is unlikely to occur in the real world unless there is some
symmetry of the high-energy theory that enforces such a
cancellation.

To remove the effects of such unlikely cancellations
from our computations we will add the various terms
contributing to AL,R in quadrature. This effectively gives
the average of many computations with different random
phases between the individual contributions. We take
this as the central value of our results. However, it is
possible that even without fine-tuning there could be
significant effects due to interference between amplitudes.
In order to estimate this effect we perform the calculation
in two other ways, plotting the results as upper and
lower error bars around the central value. The lower
error bar is determined by choosing all the amplitudes to
have the same phase, thereby interfering constructively.
The upper error bar is determined by choosing the O(1)

6



numbers to all be +1 or −1 such that amplitudes of
similar sizes interfere destructively. Even though these
are not rigid upper and lower bounds, they give a
good sense of the possible variations due to interference
between amplitudes. However, it is important to note
that these are in no way 1σ error bars.

Finally, we will compare all of our computations of
the partial lifetimes to the experimental limits, which
are taken from [2] and [28] and are shown in Table III.

Expt. Limit
Mode (1032 years)

p → K+ν̄ 16

p → π0µ+ 37

p → K0µ+ 10

p → η0µ+ 7.8

p → π0e+ 50

p → π+ν̄ 0.25

p → K0e+ 5.4

p → η0e+ 11

n → K0ν̄ 3.0

n → η0ν̄ 5.6

n → π0ν̄ 1.1

n → π−µ+ 1.0

n → π−e+ 1.6

TABLE III: The various nucleon decay modes we consider,
together with the experimental upper bound on the partial
lifetime. Experimental values are from [2] and [28].

V. RESULTS

In this section we present the results of our analysis of the
nucleon partial lifetimes within the context of the U(1)X

flavor model of [10]. When the various amplitudes are
added incoherently, as described in the previous section,
the most constraining mode for all models is p → K+ν̄,
because it has both a relatively large rate and a stringent
experimental bound. First we will focus on this mode and
then come back to the more promising models and look
at other decay modes in more detail to see what we can
expect to learn from nucleon decay experiments in the
near future.

As described in Appendix B, the Froggatt-Nielsen
suppression of the operators QiQjQkLl and U iU jDkEl

are not trivially determined by U(1)X conservation, since
they are affected by the canonicalization procedure of
the Kähler potential and the transformation from the
interaction basis into the mass basis. In Appendix B we
will show that this is not an issue.
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FIG. 2: Plot of proton partial lifetime in years for the mode
p → K+ν̄, shown for models with y = −1, 0, 1. Models with
z = 0 (1) are shown on the left (right), and within each half
x increases from left to right, corresponding to a decrease in
tan β. The error bars are not 1σ bars. Rather, the central
point corresponds to incoherent addition of amplitudes. The
upper and lower ends of the ‘error bar’ are the lifetimes
computed by adding the various amplitudes destructively and
constructively, respectively. The horizontal line shows the
experimental lower limit of 1.6 × 1033 years. The calculation
was done with msoft = 1 TeV and βp = 0.01, but the scales
on the right show the overall shift that would result from
changing either msoft or βp.

In Figure 2 we show the partial lifetimes in the p →
K+ν̄ mode for the 24 models, using the three different
methods of adding the different contributions: incoherent
(central value), constructive and destructive (tips of error
bars). The plot is divided in half, with z = 0 on the left
half and z = 1 on the right half, and in each half the
value of x increases from left to right, corresponding to
a decrease in tanβ. The current experimental bound is
plotted as a horizontal line. We have included scale bars
at the right to indicate the size of the overall systematic
uncertainty due to msoft and βp.

The first thing to notice is that many of the models
are disfavored, unless they are fine-tuned to give a highly
destructive interference or the supersymmetric spectrum
is carefully chosen. The models that survive best are
those with a high x which corresponds to a lower tanβ.
In fact, of the models with x = 0 or x = 1, only one
model has a prediction above the current experimental
limit even when the amplitudes are added destructively.
Recall, however, that the uncertainties in βp and msoft

are not included in the error bar, which can potentially
change the prediction by the factors shown graphically
to the right of Figure 2. Nevertheless, it seems clear
that models with x = 0 or x = 1 are disfavored by
current proton decay limits, barring extremely delicate
accidental cancellations, as was anticipated in [10] based
on a rough estimate. For this reason we will focus on
models with x = 2 or x = 3 in what follows. From
Figure 2 we also see that a long proton lifetime favors
a semi-anarchical MNS matrix (z = 1) and not one
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determined by anarchy (z = 0). Note that the preference
for z = 1 is also consistent with the Giudice-Masiero
mechanism that naturally produces a µ-term of the right
size. However, this preference is only mild (within the
uncertainty).

The current and upcoming experiments are expected
to be able to detect charged leptons with a high efficiency.
It is thus interesting to also focus on modes with charged
leptons in the final state. In fact, for the proton the next
modes to appear after p → K+ν̄ are generally p → π0e+,
p → π0µ+, and p → K0µ+. In Figure 3 we specialize to
models with x = 2 or 3 (i. e. tanβ . 10) and show the
expected lifetime from all four of the above decay modes.
Here we plot the lifetime computed using incoherent
addition of amplitudes, but the uncertainty due to
unknown O(1) numbers should be kept in mind. We
see that most models which survive the constraint from
p → K+ν̄ have a lifetime for p → π0µ+ that is within
two or three orders of magnitude of the experimental
bound, while p → K0µ+ is only slightly larger, and
p → π0e+ can potentially be smaller. This raises the
exciting possibility of two or three decay modes being
detected in the coming round of experiments. Figure 3
also shows how the relative decay rates can be used to
distinguish models with different phenomenology. For
instance, all models with z = 0 (anarchy) have p → π0e+

as the dominant decay mode with a charged lepton in the
final state, whereas its lifetime is substantially higher for
the models with z = 1. In both cases p → π0µ+ and
p → K0µ+ are comparable.

To further illustrate the differences in the pattern of
decay modes from different models, we will focus on three
specific models, namely Model 1 with x = 3, y = −1, z =
1, Model 2 with x = 2, y = 1, z = 0, and Model 3
with x = 3, y = 0, z = 1. Model 3 was specifically
studied in [10]. Model 2 is has a particularly nice charge
assignment as shown in Table II. In Figure 4 we show
the normalized partial lifetimes for these three models
in eight proton decay modes (left side) and five neutron
decay modes (right side).

Various modes, if discovered, may serve as a discrim-
inator between models. For example, among the three
models shown in Figure 4, any mode involving a muon
in the final state can differentiate Model 1 from Models
2 and 3. The decay mode p → π0e+ can differentiate
Model 2 from Model 3, etc.

VI. CONCLUSION

We have shown that the search for nucleon decay is a
powerful probe of physics at the Planck scale. We focused
on a a class of ambitious, string motivated, Froggatt-
Nielsen models. These models explain the masses and
mixings of all SM fermions while automatically enforcing
R-parity as an accidental symmetry. In the context of
these models, we have shown that operators suppressed
by the Planck scale lead to nucleon decay rates that are
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FIG. 3: Comparison of proton lifetime in years for four
different decay modes. The upper plot shows the computed
lifetime for p → K+ν̄ (×, left axis) and p → K0µ+ (N,
right axis). The lower plot shows p → π0e+ (•, left axis)
and p → π0µ+ (�, right axis). For each plot the data for
the two modes have been scaled so that the experimental
limits, represented by the horizontal line, coincide, hence the
different scales on the left and right axes. The lifetimes are
plotted for all twelve models with tanβ . 10.

generically right near the current experimental limits,
even without Grand Unification. In fact, current bounds
disfavor many of the 24 distinct models of this type.

The main unknown in this program is whether super-
symmetry exists, and if so, what the mass spectrum is.
Data from the LHC and a Linear Collider, along with
improved lattice calculations of the matrix element, will
remove much of the uncertainty (see Fig. 2) leaving us
with much tighter constraints. Furthermore, discovery
of several proton decay modes would serve as a good
discriminator between the various model parameters.
Similarly, a measurement of θ13 in neutrino experiments,
or of tanβ at a collider, can help narrowing down the
choice of viable models. We thus conclude that upcoming
experiments may truly be probing physics at the Planck
scale.
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APPENDIX A: DRESSING DIAGRAMS

The superpotential operators QiQjQkLl and U iU jDkEl

are not all independent. In particular,

QiQjQkLl = QjQiQkLl

QiQjQiLl = −1

2
QiQiQjLl (no sum) (A1)

U iU jDkEl = −U jU iDkEl .

Furthermore, contributions to nucleon decay can only
come from operators with at least one first generation
superfield. The list of independent operators that con-
tribute to proton decay is shown in Table IV. Since
we do not know the exact O(1) coefficients in front of
these operators, we will simply work with an indepen-
dent basis of operators and assume that their unknown
coefficients are given by the ǫ-suppression determined by
the X-charges times O(1) numerical factors, excluding
accidental cancellations. The operators are then dressed
by a gaugino or higgsino as shown in Figure 1. In general,
there are many ways each diagram can be dressed.
However, it has been long known that in the limit of
degenerate squarks many dressing combinations cancel
due to a Fierz identity [29, 30]. Here we demonstrate

Operator Independent set of (ijkl)

QiQjQkLl (112l), (113l), (221l), (331l), (123l), (132l), (231l)

U iU jDkEl (121l), (122l), (123l), (131l), (132l), (133l)

TABLE IV: Independent operators relevant for nucleon decay
as labeled by their generation indices.

this cancellation explicitly using gluino dressing as an
example, following the description in [31]. Because
gluinos are flavor blind, they couple to up- and down-
type squarks equally and do not change flavor. Since
they do not couple to leptons, there are three ways that
gluinos can dress a given operator U iU jDkEl.

1 : f(U i, U j) (ElDk)(U iU j)

2 : f(U i,Dk) (ElU j)(DkU i) (A2)

3 : f(Dk, U j) (ElU i)(U jDK)

In these expressions the fields are Weyl spinors con-
tracted within the parentheses. The function f(x, y)
comes from the loop integral and depends on the masses
of the gluino and the squarks x and y. Thus f(x, y)
encodes all the flavor dependence, so in the limit of
degenerate squarks each factor of f above is common
to all three terms. The interesting fact is that the sum
of those three operators vanishes by the following Fierz
identity:

(AB)(CD) + (AD)(BC) + (AC)(DB) = 0, (A3)

which can be easily shown by rewriting the epsilon
tensors used to contract the pairs of Weyl spinors in
terms of Kronecker delta functions. Thus the sum of the
three operators in Eqn. (A2) will vanish whenever they
all have the same coefficient out front, which occurs in the
degenerate squark limit. This can also be explained in
words by noting that in the final four-fermion operator
the three quark fields must be antisymmetric in color,
antisymmetric in flavor (not generation, but flavor) and,
since they are fermions, antisymmetric in spin as well
to make the total operator antisymmetric under fermion
exchange. But since there are three quark fields but only
two spin states for each Weyl spinor, there is no way to
make an operator that is completely antisymmetric in
spin, hence the whole collection must vanish.

This argument holds for all the gluino dressings of
QiQjQkLl and U iU jDkEl. In addition, it also holds for
bino dressing of QiQjQkLl [31]. The bino and neutral

higgsino dressings of U iU jDkEl do not lead to any
operators that contribute to nucleon decay, due to the
inevitable presence of 2nd or 3rd generation up-quarks.
Thus the only relevant dressing of the SU(2) singlet fields
in U iU jDkEl is by charged higgsinos. The QiQjQkLl

operators get contributions from charged and neutral
winos and higgsinos. In general, the dominant contri-
butions are usually from wino dressing of QiQjQkLl ,

except for the U iU jDkEl contribution to the Kντ final
state when tan β is large, as pointed out by [23].
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APPENDIX B: TRANSFORMING INTO THE

MASS BASIS

Once the flavon acquires a VEV the coefficients Cijkl
L,R are

each determined by a dimensionless O(1) coefficient times
an ǫ-suppression. In principle, some coefficients may be
exactly zero due to negative overall X-charge, the so-
called “supersymmetric zeros”, but this does not occur

in the models we consider. The naive Cijkl
L,R cannot be

directly plugged into Eqn. (15). First one needs to take
into account two superfield-transformations, namely the
canonicalization of the Kähler potential (CK), and then
the transformation into the mass basis of the quarks and
leptons (TM):

1. From the outset the Kähler potential need not
have the canonical form (see [6, 32, 33, 34, 35] for
details). For example, the Kähler potential for the
quark doublets takes the form

Qi HQ
ij Qj =

[
CQ · Q

]
i

δij
[
CQ · Q

]
j

(B1)

where HQ is a Hermitian matrix with hierarchical
entries, generated when the flavon acquires a VEV.
It can be diagonalized by the matrix CQ. This
redefinition, i.e. the “CK”, affects the coupling
constants of the superpotential, e.g.

GU → GU
CK =

1√
H(HU )

CQ
−1T · GU · CU

−1. (B2)

2. Transforming the superfields to the mass basis, the
coupling constants are then subject to the “TM”.
One has

GU
CK = UUL

T · diag{mu, mc, mt} · UUR
, (B3)

etc., the U ... being unitary.

The other superpotential coupling constants have to be
transformed correspondingly, e.g.

Cijkl
R → CCK+TM

R

ijkl
=

[(
UUR

· CU

)−1
] i

i′

[(
UUR

· CU

)−1
] j

j′

[(
UDR

· CD

)−1
] k

k′

[(
UER

· CE

)−1
] l

l′
Ci′j′k′l′

R . (B4)

As we lack knowledge of the O(1) coefficients, this
can only be done approximately, supposing no accidental
cancellations. One can show [34] that

[
CQ

−1
]
ij

∼ ǫ|XQi−X
Qj |, etc., (B5)

from which it follows that the CK fills up supersymmetric
zeros but does not change the ǫ-suppression of any other
nonzero entries. Using Table I this gives

CQ
−1 ∼




1 ǫ|1+y| ǫ|3+y|

ǫ|1+y| 1 ǫ2

ǫ|3+y| ǫ2 1


 , (B6)

CL
−1 ∼




1 ǫz ǫz

ǫz 1 1

ǫz 1 1


 , (B7)

CD
−1 ∼




1 ǫ|1−y| ǫ|1−y|

ǫ|1−y| 1 1

ǫ|1−y| 1 1


 , (B8)

CU
−1 ∼




1 ǫ|3−y| ǫ|5−y|

ǫ|3−y| 1 ǫ2

ǫ|5−y| ǫ2 1


 , (B9)

CE
−1 ∼




1 ǫ2 ǫ4

ǫ2 1 ǫ2

ǫ4 ǫ2 1


 . (B10)

The U ... are given in Table V, having used the expressions
in [36].

Since the Cijkl
R,L we consider do not have any

supersymmetric zeros, their ǫ-dependence is not changed
by the CK. As for TM, comparing Table V with the C...

given above, one finds e.g. UUL

∗ ∼ CQ and UUR

† ∼ CU .

Since CQ
2 ∼ CQ (and likewise for the others), we find

that the Cijkl
L,R are not changed substantially when going

into the mass basis either. Thus the naively calculated

ǫ-suppression for Cijkl
L,R remains the same after changing

to the mass basis.
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