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Abstract

A concept for a high brightness, high repetition rate, free electron laser light source
operating in the soft x-ray spectrum is under development at LBNL. The present Report
summarizes recent design studies for the accelerator part of the machine. We highlight
aspects of charged particle dynamics that have the potential to affect the beam quality,
discuss the main components of the beam delivery system, and present the baseline
design for the accelerator utilizing superconducting technology. Particular attention is
devoted to the study of the microbunching instability, which is modeled using state of the
art multi-billion macroparticle simulations, assessment of multibunch instabilities, and
investigation of jitter errors including an approximate model of a feedback system. The
proposed design is expected to be capable of delivering beams with the required
characteristics to meet the performance goals for a new light source.
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Disclaimer

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof, or The Regents of
the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is
an equal opportunity employer.
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1 Introduction

1.1 Machine overview and design goals

This Report describes the design of the beam delivery system for a proposed soft x-
ray free electron laser (FEL) or `Berkeley Free electron laser Array’ (BFA) at the
Lawrence Berkeley National Laboratory. The present work follows a long list of studies
for FEL-based 4th generation light sources either proposed or already under construction
or operation: e.g., SLAC LCLS [Arthur et al.], DESY XFEL [Brinkman et al.],
FERMI@elettra [Bocchetta et al.], MIT X-ray Laser Project [Moncton et al.], BESSY
FEL [Kramer et al.], LBNL LUX [Corlett et al.], Daresbury 4GLS [Alexander et al.] and
others. Designing this system we have borrowed many ideas proposed in the above
publications and other related publications. While some of these ideas are reviewed here
for completeness the focus of the Report is primarily on various concepts and issues that
are specific to the envisioned BFA.

Given that BFA must operate as a user facility with high reliability, the underlining
motive of our work was to produce a design with careful balance of technical difficulties
of individual components that does not overly stress the state of the art of similar systems
demonstrated elsewhere.

The basic functions of the beam delivery system described in this document are to
accelerate electron bunches from 40 MeV to 2.4 GeV and manipulate the beam to
achieve 1 kA peak current while preserving a low slice energy spread E ≤100 keV  and 

low normalized slice emittance  ≤1 m. An additional important demand on the
accelerator is the delivery of beams with charge density and slice average energy that are
as uniform as possible along the bunch core. Although the beam delivery system serves
more purposes than just acceleration of electrons, in the following we will often refer to it
more simply as the `accelerator’ or `linac’ for brevity.

The accelerator, schematically shown in Fig. 1.1, occupies the region between the
injector and FEL undulators. The latter, not shown in the picture, are located at the exit of
the spreader lines.

Figure 1.1: Schematic of the BFA accelerator. Elements of the accelerator include the
laser heater (LH), first linac (L1), harmonic linearizer (HL), bunch compressor (BC),
second linac (L2), spreader, and possibly a module for collimation of the bunch tails (not
shown).
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The laser heater (LH) is the first major subsystem along the accelerator. Located at
the end of the injector and receiving ~40 MeV electron bunches with 60-70 A peak
current it is used to adjust the beam uncorrelated energy spread. The LH is followed by
the first linac (L1), a superconducting linac with 13.5 MeV/m accelerating gradient.
Presently TESLA-style cryomodules hosting 1.3 GHz rf structures are proposed for L1.
However, it is worth pointing out that cryomodules with 1.5 GHz rf structures under
development for the CEBAF upgrade represent an equally viable alternative. The electron
beam energy at the end of the L1 is ~ 260 MeV. L1 is followed by the harmonic
linearizer (HL), a 5 MeV/m accelerating gradient, 3.9 GHz rf structure. The HL
decelerates slightly the electrons and in combination with L1 imparts a linear energy
chirp to the electron bunches before they enter the bunch compressor (BC). The BC,
consisting of a magnetic chicane, compresses the electron bunches thus increasing the
electron peak current up to 1 kA. The BC is followed by the second linac (L2) that
accelerates electrons to approximately 2.4 GeV. The switch yard at the end of L2, the
`spreader’, distributes the electron bunches into ten independent FEL undulator lines. In
addition to the above subsystems a module to provide controlled collimation of the bunch
tails may be necessary. While the exact location of such a system is yet to be finalized,
most naturally it would fit at the beginning of the accelerator to minimize the power
deposition on collimators by stray electrons. The maximum bunch repetition rate in the
machine is 1 MHz corresponding to a bunch repetition rate of 100 kHz for each of the 10
FEL lines operating simulataneously. A bunch repetition rate of 1 MHz in each FEL
operating alone is also an option.

Three modes of operations are currently envisaged, which target the following
scenarios: i) high-charge long electron bunches with bunch length between 100 and 600
fs; ii) medium-charge electron bunches with bunch length between 10 and 100 fs; and
iii) low-charge short electron bunches with bunch length below 10 fs.

The electron beam delivery system is designed with sufficient flexibility to
accommodate all the above options and produce the desired 1 kA peak current regardless
of the bunch charge. The long-pulse mode of operation, which carries the highest bunch
charge and, thus, expected to have the largest beam emittance produced in the electron
gun, is in our opinion the most challenging for the beam delivery system. It will be the
primary focus of this Report.

1.2 Main issues of beam dynamics

Intense electron bunches propagating along the accelerator are exposed to various
collective effects. Sources of these collective effects include wake fields, space charge,
and coherent synchrotron radiation (CSR).

Space charge manifests itself in both the transverse and longitudinal planes.
Transverse space charge may affect the beam emittance at low energy. Longitudinal
space-charge (LSC) effects are also stronger at lower energy but continue to have an
impact on beam dynamics through much higher energies, particularly on a shorter length
scale, and can be responsible for the appearance of microstructures within the electron
bunches.
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Longitudinal wake fields can chirp the electron bunch energy and produce nonlinear
variation of the slice energy along the bunch. Transverse wake fields can affect the
transverse emittance.

Also relevant for beam stability is the emission of coherent synchrotron radiation
(CSR) in the bending magnets of the bunch compressors and spreader. In the absence of
microstructures in the beam density, CSR produces effects very similar to those of
longitudinal wake fields and contributes to the development of an energy chirp along the
beam with possible consequences on the horizontal emittance. In addition, CSR can
aggravate the presence of small fluctuations in the charge density and contribute to the
development of the so-called microbunching instability together with the LSC. This has
the effect of enhancing fluctuations in the beam density, generating energy modulations
on a short length scale that can evolve into a large energy spread and/or fragmentation of
the beam distribution in phase space.

The nonlinear curvature of the rf waveform and nonlinear terms in the transfer
matrix through the bunch compressor relating a particle time-of-flight and energy are
often responsible for the appearance of large spikes in the peak current at the head and
tail of the electron bunches. A spike at the head of the bunch can induce resistive wall
wake fields that can cause a nonlinear energy chirp along the electron bunch during its
motion through the spreader and FEL undulator. The spike at the tail of the bunch can
also induce a nonlinear energy chirp along the bunch due to the CSR in the spreader.

The machine design discussed in this Report accounts for all these effects as well as
limitations arising from various engineering considerations. The choice of beam
parameters for the three modes of operation mentioned at the end of the previous section
reflects a careful balance between technological constrains and mitigation of adverse
effects.

2 Longitudinal beam dynamics

The intensity of the bunch current at the exit of the injector is typically about an
order of magnitude smaller than needed for lasing in FEL. A suitable manipulation of the
beam longitudinal phase space along the beam delivery system is then necessary to meet
the required current specifications. This can be achieved by using a series of rf
accelerating sections and magnetic chicanes (henceforth called the “bunch compression
system”) [Dohlus]. Ideally, this process should preserve the linearity of the longitudinal-
energy correlation in order to avoid `bifurcations’ of the beam density in the longitudinal
phase space which lead to high peak current spikes at the edges of the electron bunch
(and reduce the number of electrons that can be effectively uililized in FEL). A uniform
charge density profile is also desirable for the most efficient utilization of electrons in the
FEL for a given bunch length. Finding an optimum set of design parameters is a rather
complicated process and requires several iterations. Fortunately, an element of
simplification is offered by the fact that for the most part the longitudinal and transverse
dynamics are effectively decoupled and can be treated separately.
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2.1 Longitudinal dynamics without collective effects.

As a first step toward a more complete analysis we start by considering the
longitudinal dynamics in the absence of collective effects. In this approximation the
longitudinal motion of an electron is determined by the energy variations relative to the
reference particle as determined by the rf structures and the presence of dispersion.
Because in the accelerator the motion is relativistic (E>40MeV) slippage of the electrons
with respect to each other will be generally negligible in regions of vanishing dispersion.
Fig. 2.1 shows the basic idea of a chicane-based bunch compressor.

Figure 2.1: Schematic of compression of a chirped bunch through a magnetic chicane.
The head of the bunch is at z<0.

The rf system accelerates the electron beam off-crest and generates a correlated energy
variation (chirp) along the electron bunch. The momentum compaction, the R56 and T566

terms in the transport matrix, relates the electron energy and the trajectory path length in
the chicane in such a way that higher energy electrons follow shorter paths and lower
energy electrons follow longer paths. This correlation between energy and path length
compresses the length of an electron bunch accelerated off-crest by the rf wave, as shown
in Fig. 2.1 with the bunch head at z < 0. A more effective compression can be achieved
[Dowell et al.] by correcting the second-order term in the rf waveform using a 3rd
harmonic rf ‘linearizing’ cavity (in our case a 3.9 GHz structure).

The acceleration seen by the electrons upstream of BC as a function of the distance
z of the electrons from the center of the bunch can be written as:

       33110 3coscoscos   zkUzkUzkUzU , (2.1)

where rfk  /2 is the rf wave number and rf is the rf wavelength for the basic 1.3
GHz linac. 0U is the acceleration amplitude of the injector linac preceding the laser
heater (see, Fig. 1.1) where acceleration is on-crest. 1U is the acceleration amplitude of
Linac L1 placed between the laser heater and the BC, with off-crest acceleration at phase
1 (defined with respect to the crest of the rf wave). 3U and 3 are the amplitude and
phase of the 3rd harmonic linearizer linac. The first, second, and third derivatives of
 zU taken at the bunch center 0z can be written as:
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3311 sin3sin)0(  kUkUzU  , (2.2a)

33
2

11
2

0
2 cos9cos)0(  UkUkUkzU  , (2.2b)

33
3

11
3 sin27sin)0(  UkUkzU  . (2.2c)

The second derivative is zero if

3

110
3 cos9

cos


UU
U


 (2.3)

This condition eliminates the quadratic energy chirp. At the same time the first derivative
becomes

  311011 tancos
3
1sin)0(  UUkkUzU  . (2.4)

A comparison of (2.2a) and (2.2c) shows that )0(  zU can also be written as:

  3110
32 tancos

3
8)0()0( UUkzUkzU  . (2.5)

Having denoted with 0z the longitudinal position of a particle within the bunch at
the entrance of the accelerator we, combine Eq.’s (2.1) - (2.4) to obtain the following
expression for the particle relative energy through Linac L1 and linearizer (the energy
deviation is with respect to the nominal beam energy )0(E ):

   
 

 
  000
0

311011 0
tancos

3
1sin

0
0

 








 zh

U

kz
UUU

E

EzE . (2.6)

where 0 represents the uncorrelated energy spread and the third equality in the
expression above defines the quantity h , the energy chirp along the electron bunch.
Because the motion is ultrarelativistic the longitudinal coordinate of the electron remains
unchanged 0zz  . At the exit of the BC, characterized by the momentum compaction

56R (we neglect the generally small nonlinear correction 566T ) we have, using (2.6),

056056561 )1(  RzhRRzz  . (2.7)
We can then calculate the rms bunch length after the BC:

      056
2

056
2
0

2
56

2
11 11 zzz RhRRhzz    , (2.8)

where 0z and 0 are the rms bunch length and uncorrelated energy spread before the
BC. The compression factor is

|1|
1

560 hR
C

z

z







. (2.9)

The uncorrelated energy spread after compression is 0C . The compression is large
when the denominator in (2.9) is small and for a given 56R it is highly sensitive to small
variations of the rf phases and amplitudes. Fig. 2.2 illustrates the sharp dependence of C

on 1 and 3 .
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Figure 2.2: The plot shows the steep dependence of the compression factor C on the
adjustable phases (Linac L1) and (harmonic linearizer) for fixed R56.

2.2 Longitudinal dynamics with collective effects.

2.2.1 Longitudinal wake fields

A charged particle traveling through accelerating structures with velocity close to
that of light c excites electromagnetic fields, called wake fields, that may affect the
dynamics of a test electron trailing behind at distance ẑ . The longitudinal wake function

)ˆ(zw is defined as the voltage gain experienced by the test particle, typically given in
units of voltage per unit length per unit charge [V/C/m] or in units of [V/C] to represent
the voltage gain integrated over the length of a given device (e.g., in our case a single
accelerating module). Causality requires that the wake be zero if the test particle is in
front of the source ( ẑ < 0). For a given longitudinal charge distribution z , the voltage
gain experienced by a test electron located at z along the bunch due to the wake fields
generated by all the leading electrons is given by the wake potential [Bane 2006]:

      zdzzzwzW
z

z
 



 . (2.10)

An exact calculation of the wake function for an accelerating structure requires extensive
numerical modeling. However, there exists a simple and convenient analytical formula
that fits a numerical determination of the wakes on a short length scale quite accurately,
which can be effectively used over longer distances and a wide range of parameters.
[Novokhatski et al., 1996, 1999, Bane et al. 1998a, 1998b, 2003, 2006]:

    0002
0 /ˆexp)1(ˆ 


 zz

a

cZ
Azw (2.11a)
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where 0Z =377is the vacuum impedance, and 0, A and 0z are fitting coefficients.
Typically 1A and 0z is close to the value given by the following expression
[Novokhatski et al., 1996]:

4.2

6.18.1

0 41.0
L

ga
z  , (2.11b)

where Lga ,, are the geometric parameters defined in Fig. 2.3.

Figure 2.3: A schematic of one period of the accelerating structure.

Strictly speaking Eq. (2.11) only applies to a steady state situation. In general, it
will take approximately the distance za 2/2 from the entrance of the accelerating
section before the wake establishes itself as the steady state. It is easy to see that this
distance is only about 0.5 m for a 1 mm long bunch and 3 cm iris radius, which is small
compared to the rf structures, thus justifying our use of the steady state wake.

Specialized to 1.3 GHz acclerating structures the expression (2.11) for the wake
function reads:

    165.0][65.3/ˆexp165.11.38ˆ 







mmz

mpC

V
zw , (2.12)

while for the 3.9 GHz accelerating structure we have:

    02.0][65.3/ˆexp02.1130ˆ 







mmz

mpC

V
zw . (2.13)

Figures 2.4 and 2.5 show the good agreement between fitting formulas and numerical
calculations in the two cases.
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Figure 2.4: Longitudinal wake function for the 1.3 GHz accelerating structure as a
function of the distance between source and test particles. The blue line is the result of
numerical simulations, the red line represents the fit based on the analytical formula
(2.12).

Figure 2.5: Longitudinal wake function for the 3.9 GHz accelerating structure as a
function of the distance between source and test particles. The blue line is the result of
numerical simulations, the red line represents the fit based on the analytical formula
(2.13).

Next, we make use of the analytical expressions for the wake functions to calculate
the energy loss experienced by an electron as a 1pC bunch travels through both the 25 m
long, 1.3 GHz Linac L1 and the 4.5 m long, 3.9 GHz linearizer linac. We assume a
parabolic longitudinal bunch density profile with 6 mm bunch length (measured at the
base). The energy variation is obtained by carrying out a convolution of the bunch
density with the wake function. The result is shown in Fig. 2.6.

The curve in Fig. 2.6 is well approximated by the following cubic fit:
 

Qazazaza
e

zE )( 01
2

2
3

3
1 

 (2.14)

where e is the electron charge, Q is the total bunch charge measured in pC and 0a -
418 V/pC, 1a 163 V/pC/mm, 2a 17.6 V/pC/mm2, 3a -8.0 V/pC/mm3.
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Figure 2.6: Rf wake-field induced energy loss by an electron with coordinate z along the
bunch (z=0 is the bunch center). The energy loss is per unit of 1 pC bunch charge (see
text for details) and is evaluated for a 6 mm long bunch with parabolic profile.

Now we can modify Eq. (2.3) to account for the effects of wake fields

3

2
2110

3 cos9
/2cos



 kQaUU
U


 (2.15)

and update the resulting expression for the linear energy chirp:

 
 0

/tan/2cos
3
1sin 13

2
211011

U

k
kQakQaUUUh 







  . (2.16)

The cubic energy chirp defined by the third derivative in (2.2c) takes the following
form:

 333311
3 /6sin27sin)0( kQaUUkzU   . (2.17)

As a numerical example consider the case rfk  /2 , rf 230 mm
corresponding to 1.3 GHz rf frequency, Q 1 nC and a typical accelerator set-up with

3 =0 and energy chirp )0(ehU 0.5 MeV/mm. From (2.16) we find 11 sinU =12.4 MV
and compare it with 3

3 /6 kQa 2350 MV, which is the second non-zero term in (2.17).
Cleary, we can conclude that the cubic nonlinearity in the energy chirp is largely
dominated by the contribution from the longitudinal wake potentials. We should point out
that the cubic nonlinearity in the energy chirp is often responsible for the appearance of
bifurcations in the longitudinal phase space that become apparent after the beam passes
the bunch compressor. These lead to the appearance of the characteristic spikes in the
peak current at both edges of the electron bunch that are often observed in simulations. It
is therefore desirable to minimize 3a . One way to achieve this is to use a longitudinal
density distribution other than the parabolic density considered here (see, i.e. [England et
al., Cornacchia et al.]).
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2.2.2 Coherent synchrotron radiation

In this section the effect of CSR is analyzed for the case of a smooth electron
density distribution without microstructures. Radiation is coherent for frequencies

bc / , where c is the speed of light and b is a characteristic length of the order of
the bunch length [Derbenev et al. 1995]. In analogy with the effect of structure wake
fields considered above, CSR causes a variation of the particle energy along the bunch.

Here we follow Ref. [Derbenev et al. 1995] to present a heuristic derivation of the
CSR-induced force experienced by an electron along its direction of motion. The 1D
beam is assumed to travel on a circular orbit of radius R at ultrarelativistic speed. See
diagram in Fig. 2.7. The test particle at present time is located at B (the head of the
bunch) while the whole bunch population is thought of as being concentrated at point A
(the tail of the bunch) when the radiation now reaching B was emitted. Let  be the
angle between A and B. The condition that the tail radiation at a point A will overtake the
head of the bunch at a point B at present time is:

      RRRABlineABarcz 3

24
12/sin2   , (2.18)

where z is the distance between the tail of the bunch and the test electron. Notice that in
this section we adopt the convention that z=0 at the bunch tail rather than at the bunch
center. This condition determines two important geometrical parameters as functions of
z :

3/1
3/1 23 










R

z
 and

    3/13/23/22 232/sin22/sin)( RzRABlined  

Figure 2.7: A geometrical diagram for an electron bunch motion in the bending magnet.

The magnitude of the transverse electric field which acts on the head particle can be
estimated as the field of the charged line produced at the characteristic distance d:

d

e
E z2

 , (2.19)

where z is the electron density function normalized such as Ndzzz 




)( , where N is

the number of electrons in the electron bunch. Because this field was radiated at a point
A, its direction at a point B is perpendicular to the line (AC). Thus, the head particle
experiences the acceleration force:
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  3/23/13/1

22

||
ˆ3
22

ˆ
Rz

e

d

e
EezF zz 




   . (2.20)

In the case of the long magnet with bending angle:
3/1

24 









R
b

M


 (2.21)

one can calculate an average rate of the energy loss per electron and per unit length of the
trajectory:

    3/43/2

2
3/2

||
0

31

b

z
R

Ne
zFzdz

Nds

dU b





   . (2.22)

The integration was performed for a uniform flat-top density distribution bz N / .
Remarkably this is the same result one obtains starting from the following more rigorous
formula [Saldin et al. 1997]:

 
ds

zdE
zdz

Nds

dU
z

)(1





  . (2.23)

The above equation is valid for an arbitrary longitudinal charge density z where
dszdE /)( is the energy variation per unit length experienced by an electron with

coordinate z in the bunch, (also dependent on the profile of the longitudinal bunch
density) , which reads












z

z

zz
zd

NR

Ne

ds

zdE z )(
)(

11
3
2)(

3/13/23/1

2  . (2.24)

We note that (2.22)-(2.24) are correct only if condition (2.21) is satisfied, i.e. the
radiation of the tail particles overtakes the head particles before the electron bunch leaves
the magnet. In reality, it was shown in Ref. [Saldin et al. 1997] that CSR continues to
affect electrons in the drift past the bending magnet as CSR emitted by the electrons
before the exit of the magnet catches up with the beam. However, the accuracy of the
above equations tends to be acceptable when the condition (2.21) is not strongly violated.

Another potentially important limitation to the validity of the above formulas is
given by the presence of the metallic boundaries from the vacuum chamber. The vacuum
chamber acts as a waveguide for the radiation. Not all spectral components of CSR
propagate in the waveguide and therefore the actual radiated energy is smaller than in
free space. We use the recipe suggested in Ref. [Li R.] to estimate this reduction:

   cthcth nnnnEE /2exp/2.4/ 6/5
spacefreeshielded  , cth nn  . (2.25)

Here   2/3/3/2  Rnth  is the threshold harmonic number for a propagating radiation,
 is the total height of the vacuum pipe, and cc Rn / is the characteristic harmonic
number for a Gaussian longitudinal density distribution with c rms length. For a
uniform flat-top density distribution 22.3/bc  , with b being the length of the flat
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top part. The harmonic number cn has the meaning of an approximate divider of the
spectra of the electron bunch radiation into the part where radiation of all electrons in the
electron bunch contribute coherently, i.e. the part with harmonic numbers less than cn ,
and the part where electrons radiate incoherently, i.e. the part with harmonic numbers
larger than cn . Fig. 2.8 shows the calculated effect of the suppression of the CSR for the
vacuum chamber with =8 mm.

Figure 2.8: Suppression of CSR by the vacuum chamber shielding.

Let us first estimate the effect of CSR in the 4th magnet of the BC where the bunch
length is shortest and is expected to be of the order of 0.5 ps (for a case of the high-
charge long electron bunches). This magnet has a length ML =0.25 m and a bending
radius R =2 m. The calculation using a 1 nC bunch charge in (2.22) gives an average
energy loss per electron in free space ~ 0.35 MeV. The arc angle of the magnet is just
right to satisfy (2.21).

Now we want to estimate the energy variation along the electron bunch and
compare the result with the similar variation caused by rf structure wakes. Using the
electron density distribution shown in Fig. 2.9 (flat top with smooth transitions at the
edges with characteristic width of 02~  modelled by erf functions) we obtain:
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Figure 2.9: The longitudinal density of electrons ( 0/b =10 ).

The integral (2.26) can be evaluated in a closed analytical form, but the expression is too
long to report here. The plot of the energy modulation   dszdELM / acquired by a 0.5 ps
long electron bunch with 1 nC bunch charge through the same bending magnet as in
previous example is shown in Fig. 2.10.

Figure 2.10: Energy loss/gain due to CSR as a function of the electron position within the
electron bunch with the density distribution from Figure 2.9 (see text for a description of
beam and bend magnet parameters). The red line shows the fitting function.

We note that 3/1/~)( zzE  over the central part of the electron bunch (  0.2
MeV∙mm1/3). One can also see that the entire span of the energy variation in the central
part is of the order of 0.2 MeV. A meaningful comparison with the energy variation
induced by rf wakes can be done by considering the cubic component of the structure
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wake field in Eq. (2.14), which is the dominant nonlinear term contributed by Linac L1
after the quadratic component is removed by the linearizer. Specifically, the 3rd-order
term in Eq. (2.14), evaluated for a 1 nC bunch yields about a 0.4 MeV energy variation
over the bunch length (this is for the 6 mm long bunch with parabolic profile to which
Eq. (2.14) applies).

2.2.3 Longitudinal space charge effects

In addition to rf-structure wake fields and coherent synchrotron radiation a third
important source of collective effects is represented by space charge. Its actual relevance
is strongly dependent on the scale length of interest. On longer scales comparable to the
bunch length, the effect of space charge is preponderant in the injector at low energy but
it quickly weakens as the beam transitions into the accelerator starting at 40-50 MeV
energy. Starting from this energy range its impact on the evolution of the beam tails in
the longitudinal phase space becomes typically quite modest. The reason is the strong
dependence (~1/2) of space-charge forces on energy at low frequencies. For example,
based on the longitudinal space-charge impedance model (2.27) discussed below and the
same flat-top beam profile with smooth ends considered in the previous section, one finds
peak energy variations through the beam tails of the order of 6 keV/m when =80 and
the transverse radius rb =0.5 mm.

On the other hand space charge remains quite relevant through much higher beam
energies when one is concerned with microbunching effects occurring on much shorter
length scales (typically from about 100 m down to 1 m or less). In this range space-
charge forces when integrated over the length of the machine are typically larger than
those caused by either the rf-structure impedance or those induced by CSR. A detailed
discussion of the microbunching instability is deferred to the next section. Here we
discuss 1D models of longitudinal impedance that can be used with various degree of
accuracy to assess the effect of space charge. Handy analytical expressions can be
obtained if one considers beams with circular cross section of radius rb and uniform
transverse density. The impedance (per unit length) yielding the longitudinal electric field
at radial position r for such beams in response to a longitudinal beam density modulation
with wavelength k reads [Rosenzweig]
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where K1 and I0 are the modified Bessel functions. The expression one obtain from (2.27)
when specialized to on-axis fields (i.e. r=0, yielding I0(kr/)=1 ) is often used and gives
a good approximation of the longitudinal electric field over the entire transverse cross
section provided that the ratio krb /<<1, i.e. the wavelength is large compared to the
transverse radius reduced by the relativistic factor. In this limit
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displaying explicitly the dominant ~1/2 energy dependence mentioned earlier. In the
same limit the above expression can be used to represent the electric field generated by
beams with different shape of transverse density, provided that one interprets rb in a
suitable way. For example, the on-axis electric field generated by a beam with Gaussian
transverse density with rms widths x and y in the horizontal and vertical plane
respectively can, to a good approximation [Venturini 2008], still be represented by
(2.28) with rb =1.747(x + y )/2. At smaller wavelengths when the ratio krb /
approaches or exceeds unity the longitudinal electric field across the transverse direction
becomes less uniform, tapering off toward the beam edges. A better model is then
obtained by averaging (2.27) over the transverse density of the beam. For beams with
circular cross section and uniform transverse density this averaging yields
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Fig. 2.11 shows a numerical test where the two models of Eq. (2.27) and (2.29),
with the impedance in the first equation evaluated on-axis r=0, are compared against the
more accurate prediction one obtains by numerically solving the Poisson equation for a
macroparticle distribution representing a transversally uniform beam with circular cross
section. The quantity reported in the graph is the rms energy spread developed as a
consequence of the LSC electric field as the beam travels with constant energy through a
3 m drift. Notice that indeed the model (2.27) yields a larger estimate at smaller
wavelengths than (2.29). The latter is seen to track more closely the result of the
calculation carried out with IMPACT (dots) [Qiang et al. 2000] (see also Appendix A).

Figure 2.11: Amplitude of energy modulations as a function of distance induced by space charge
starting from an initial 5% sinusoidal modulation of beam current with wavelengths=15 m, 30
m, and 5 mm. Without modulation the beam has a longitudinal smooth flat-top profile with
I=120 A peak-current and it drifts in free space at 120 MeV energy. The initial transverse density
is uniform with circular cross-section of radius rb=200 m, and has vanishing transverse
emittance and initial slice energy spread. The results from IMPACT simulations (dots) are
compared to the longitudinal space-charge impedance models of Eq. (2.27) with r=0, dashed

lines, and the more appropriate Eq. (2.29), solid lines.
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The numerical test shown in the picture is for a density perturbation that while is
modulated longitudinally is uniform transversally. The case where one allows for density
fluctuations across the transverse plane of the beam distribution is unfortunately not
captured but these 1D models of space charge and accurate modeling require high-
resolution computationally intensive macroparticle simulations. There is some evidence
from early commissioning experience in LCLS that such fluctuations may be responsible
for unexpectedly large coherent signals detected in the beam diagnostics [Ratner].
However the problem of the exact origin of these signals is still unresolved.

2.2.5 Microbunching instability

So far we have considered collective effects on a typical scale of the order of the
electron bunch length. We showed that on this scale the CSR induces smooth energy
variations along the electron bunch comparable to those induced by the wake fields from
the rf-structures. We also showed that longitudinal space-charge effects (LSC) on a
smooth beam density distribution in the linac proper are generally weak. The situation
becomes quite different on a scale much smaller than the bunch length.

First of all, as far as CSR is concerned, shielding by the vacuum chamber will be
largely ineffective on this scale and any microstructures present in the longitudinal beam
density will essentially cause the same CSR effects as in a free space. One can then
exclude the possibility of invoking a suitable design of the vacuum chamber to provide
effective shielding. Secondly, the presence of microstructures in the bunch will cause the
electric forces due to LSC also to become significant. The peak magnitude of these
forces is generally smaller than those associated with CSR but their integrated effect over
the length of the linac can actually be significantly larger. The longitudinal electric fields
due to LSC and CSR will then contribute to the creation of energy modulations within
the electron bunches. Their presence is responsible for the onset of what has become
known as the `microbunching instability’ [Saldin et al. 2002, 2003, Borland et al. 2002,
Huang et al. 2004, Heifets et al.] The mechanism for this instability is very similar in its
nature to the process of self-amplified spontaneous emission in FELs. Small density
fluctuations present in the beam when it is first generated will start to seed energy
modulations as a result of LSC. Once the beam traverses a bending magnet, for instance
a dipole in a magnetic chicane used for bunch compression, further energy modulation is
added by CSR and, more critically, a finite dispersion will turn the energy modulations
into larger density fluctuations which in turn will result in even larger energy variations.
Within one chicane or a sequence of chicanes this cycle can rapidly escalate and yield a
significant amplification of the initial perturbation present in the beam. Thus the entire
machine acts as a gigantic noise amplifier with possible serious consequences on the
quality of the longitudinal phase space of the beam at exit. This is a rather fundamental
instability in that density fluctuations when the beam is first generated are unavoidable.
The most fundamental source of these fluctuations is the shot noise due to the
discreteness of the electron charge. The random arrangement of electrons within a beam
distribution creates charge density fluctuations that for typical bunch populations are
fairly small but can nonetheless be amplified to unacceptable degree if the gain of the
instability is particularly high. In addition to shot noise other sources of undesired
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perturbations are irregularities on the surface of the cathode or uncontrolled fluctuations
in the laser pulse in the photo-gun. Features of a beam affected by the microbunching
instability at the exit of the linac are large charge-density fluctuations at the m level, a
large uncorrelated energy spread, energy modulations, and generally an irregular
fragmentation of the longitudinal phase space. These features can compromise the
performance of the FELs if not preventing lasing altogether. In particular, various seeding
techniques that are meant to improve the temporal coherence of the radiation output pose
stricter requirements on the longitudinal uniformity of the beam distribution and make the
FEL performance more sensitive to any possible instability.

There are a few ways one can control the microbunching instability. At the level
of lattice design one precaution is to limit the recurrence of dispersive regions. For
example, using a single chicane is generally preferable to using two distinct chicanes (for
an equal compression factor). Moreover, maximizing R56 in the relatively low-energy
sections of the machine where the magnetic compressors are located can help suppress
the higher frequency components of the instability. However, in the high-energy sections
of the machine where the spreaders are located and the relative energy spread is small
minimizing R56 may be helpful. Still, these lattice-design measures can be insufficient to
control the magnitude of the instability or may not be feasible because of other
considerations. In this case a further remedy one can adopt is to widen the uncorrelated
energy spread right after the injection by use of the so-called ‘laser-heater’, as an
increased energy spread at injection into the accelerator effectively reduces the instability
gain. All the designs of x-ray FEL facilities either proposed or under construction have
provisions for a laser heater located early on in the accelerator. The functioning of the
laser heater and optimization of its tuning will be discussed in some detail in Sec. 4.1 and
4.2.

The very nature of the instability makes its modeling a quite delicate endeavor.
One severe demand imposed upon particle-tracking simulations is the requirement of a
large number of macro-particles to avoid spurious large random fluctuations that may
seed the instability. To illustrate the problem consider a model of gain function G(k) for
the microbunching instability that vanishes everywhere outside a frequency band
k=kmax-kmin where it has the uniform value G0. (Indeed, the features of this model are
not too different from those of the gain curve of the actual physical system, e.g. see Fig.
6.7). Also, consider a model of flat-top bunch with Lb length. The shot noise due to the
discreteness of the elementary charge presents a uniform power spectrum ~(Nb)

-1/2

where Nb is the number of particles in the bunch. One can easily recognize that the
components of the Fourier spectrum in the band k amplified by the instability will
contribute to the development of a relative rms charge density fluctuation given by
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The last equality follows from the assumption that the bandwidth of the gain be
sufficiently broadband kmax >> kmin, which is certainly true for the microbunching
instability. In this case k=kmax-kmin ~ 2min . The minimum wavelength min =2/ kmax

is determined by the presence of smoothing mechanisms due to a finite energy spread and
transverse emittance, that tend to suppress small-scale density fluctuations. The quantity
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Nmin = Nb(min /Lb) has the physical meaning of number of electrons contained in a
beam segment of length min. For a bunch with peak current bI =75 A and assuming a
maximum gain G0=50 and wavelength cut-off min ~150 m (these values are read off
the gain curve of the microbunching instability through the bunch compressor for the
lattice considered in Sec. 6) the above formula gives a modest b =0.46%. The number
of electrons in a 1.5 mm long beam with the above peak current is 9103.2 bN . If we
were to simulate the dynamics of such a beam using Nmp=106 macroparticles we would
overestimate the amplitude of the initial shot noise and the relative density fluctuations
by a factor 50~/ mpb NN , corresponding to a much larger b =23% bunching.

For certain purposes making simulations of the microbunching instability with a
relatively small number of macroparticles may still be useful. For example, the tracking
code ELEGANT [Borland 2000] has been successfully used to determine the gain curve
for the instability using a number of macroparticles significantly smaller (up to mpN = 60
M) than the bunch population. This was done by a judicious use of low-pass filters
[Borland 2008]. Quiet-start techniques to reduce the unphysical component of shot noise,
which have proved quite successful for studies of beam dynamics in FELs could also be
applied in principle to the beam dynamics in accelerators. However, our preliminary
attempts to experiment with these techniques have not yielded satisfactory results. A
more straightforward and robust path toward increasing the accuracy of the simulations is
to employ a larger number of macroparticles. This is the path we decided to pursue by
continuing the development of the code IMPACT [Qiang et al. 2000] (see also Appendix
A) By taking advantage of the multi-processor large-scale computing resources made
available at the National Energy Scientific Computing Center (NERSC) through the
INCITE project [NERSC] we have routinely been able to carry out simulations with one
billion macroparticles (a number comparable to the population of the electron bunches of
interest), with computer job runs typically taking a few hours.

The relevance of the microbunching instability and the importance of using a
large population of macroparticles in the simulations is illustrated by the study
summarized in Fig. 2.12. Here we show the electron distribution in the longitudinal
phase space at the end of the linac designed for the x-ray FEL at FERMI@elettra
[Bocchetta et al.]. The picture contains the superposition of the three simulations. In the
first simulation (blue points) the electron bunch was tracked through the linac while the
LSC and CSR effects were turned off. Here we see that the final electron distribution has
a smooth shape and a fairly small energy spread. In the second and third simulations the
LSC and CSR effects were turned on and the results were obtained using 107 (red points)
and 109 (green points) macroparticles per bunch. Clearly, the LSC and CSR effects
significantly degrade the beam quality and yield a much larger uncorrelated energy
spread accompanied by beam fragmentation in the phase space. The simulation carried
out with a large number of macroparticles clearly shows less degradation.
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Figure 2.12: The electron distribution in the longitudinal phase space at the end of the
linac for FERMI@elettra FEL obtained in simulations using 10 million (red data points)
and one billion macroparticles (green data points). Blue data points show simulation
without the LSC and CSR effects.

In addition to macroparticle simulations we have also pursued an alternative
approach based on the use of grid-based direct methods to solve the Vlasov equation
describing the beam dynamics [Venturini et al. 2007a, 2007b]. The beam density in phase
space is represented on a grid and therefore is immune to sampling noise that occurs
when the number macroparticles is significantly smaller than the bunch population.
Advancement of the beam density is then done by repeated application of interpolations
schemes. To keep errors under control and avoid undesirable deviations from physical
behavior (e.g. the beam density going negative) one has to use sufficiently fine meshes.
Still, the performance of direct Vlasov solvers compare favorably with macroparticle
simulations, at least in a low-dimension phase space. The solver we have developed,
which is described in more detail in Appendix B, is applicable to the longitudinal phase
space and captures all the basics physics features of the microbunching instability. While
the modeling of the physics is necessarily more approximate than the modeling that can
be implemented in macroparticle/PIC codes (e.g. the effect of space charge is represented
by an impedance rather than by solutions of a full 3D Poisson equation) the code
execution time is much shorter (a few minutes on a desktop). This makes it particularly
suitable for carrying out parameter or optimization studies and to assist with the
understanding of the general features of the microbunching instability. A demonstration
of the power of the Vlasov solvers, is shown in Fig. 2.13, highlighting the capability of
the method for high resolution studies of the longitudinal phase space. These are density
plots of the longitudinal phase space in the presence of a particularly strong instability
(example taken from our studies of the FERMI@elettra project). By the exit of the
second bunch compressor in one of the lattices we considered the beam is seen to have
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developed noticeable microstructures in the form of density stripes almost collinear with
the bunch (picture to the left). These stripes contribute to a large slice energy spread and
also contribute to a charge density modulation that, by the end of the accelerator, is
mapped by LSC into the additional energy modulation apparent on the 5-10m length
scale in the picture to the right.

Figure 2.13: Two small sections of the electron distribution in the longitudinal phase
space obtained using Vlasov’s solver for analysis of the microbunching instability in the
FERMI@elettra accelerator. Left plot is taken at the end of the second bunch compressor
and right plot is taken at the end of the beam switch yard.

Finally, among the various tools at our disposal for characterizing the
microbunching the instability we should mention the semi-analytical methods [Heifets et
al.] for solving the linearized Vlasov equation. In fact it was on the basis of these
methods that an appreciation of the relevance of the instability started to emerge, first at
DESY [Saldin et al. 2002, 2003] and later at SLAC for the LCLS project [Huang et al.
2004]. In particular linear theory can be used to determine the gain curve of the
instability which contains essential information for its characterization. Linear theory also
offers useful bench-marks for validating the numerical methods used in the simulations.

During our studies we made several attempts to cross validate the various tools
we used. We found good convergence between linear theory and numerical Vlasov
methods in the small-amplitude regime where linear theory applies. We also found
generally good agreement between the spectral content of the instability as predicted by
high-statistics macroparticle simulations and the Valsov methods (both linear and
nonlinear). However, the latter consistently seem to overestimate somewhat the
magnitude of the instability compared to macroparticle simulations. The various
approximations involved in the LCS impedance model used in the analytical models are
the most likely cause of the discrepancy.
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3. Transverse dynamics

Single-particle transverse dynamics through the linac is not expected to pose any unusual
challenges, although care will have to be taken to estimate possible particle losses and
position the collimators appropriately to protect the machine. A discussion of these
issues however is beyond the scope of the present study. Transverse collective-force
perturbations to the single-particle dynamics are also expected to be mild and certainly
not as important as collective effects in the longitudinal phase space. Potential sources of
collective perturbation to the transverse dynamics include transverse rf wake fields, CSR,
and space charge. Because of the low frequency of the SC rf structures to be adopted in
the BFA transverse wake fields are expected to have a relatively tame effect in
comparison to those originating from normal conducting linacs. We did not include them
in our present study but a closer look is in our plans for the future. Their effect on multi-
bunch dynamics is investigated in some detail in Sec. 5.

As for CSR, the energy variation it induces along the bunches as the beam
traverses a dipole (e.g. in the magnetic chicane) couples to the transverse dynamics
through dispersion and generally results into a growth of the projected horizontal
emittance. The projected emittance growth could be substantially suppressed by
employing a double-chicane magnetic compressor with the two chicanes separated by a 
phase advance in the horizontal betatron motion [Emma et al. 1998]. However, this may
not be necessary (and may also be undesirable because of other considerations) as a
careful design of a single-chicane bunch compressor can be successful at keeping the
effect under control. We will touch again on this effect briefly in Sec. 4.2.

Space charge is critically important in the injector, where it largely determines the
minimum achievable emittance, but it continues to play a role through the low-end
energy of the linac in spite of the relatively high energy (>40MeV) because of the high
particle density. One of the consequences of space charge is to modify the matching
conditions for injection of the beam into the linac. An estimate of the effect can be made
by comparing the space charge and the emittance terms in the equations governing the
evolution of the rms envelope equations. Following Ref. [Sacherer], assume that the
bunch density carries an elliptical symmetry (i.e. the density is a function of

222222 /// czbyax  ) the equation of motion for the rms transverse envelope (say in
the horizontal plane, x) in the relativistic limit 10  can then be written as
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where we also assumed, for simplicity, that the beam is axis-symmetric (x=y) and that
the longitudinal length is much larger that the transverse sizes z>>x). The coefficient
3 depends on the form of the charge density. For a Gaussian density we have

 6/13  and the space-charge term (last monomial on the LHS of Eq. (3.1)) can also
be written in terms of the bunch peak current I as Ax II 3

02/  , where IA is the Alfvén
current. The ratio of this quantity to the emittance term (third monomial in the LHS of
Eq. (3.1)) gives a measure of the relative importance of space-charge forces. With the
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following choice of parameters I=70 A, E=40 MeV, x=1 m and x = 10 m this ratio is
2.3 indicating that space charge is noticeable. Thus, avoiding emittance growth in the
low-energy part of the linac requires careful matching of the electron beam transverse
distribution with the lattice. Even if the beam is properly matched, emittance degradation
can still occur because of the nonlinear nature of the space-charge forces. Macroparticle
simulations are needed to assess this effect. An exhaustive investigation will require
simulations in which the beam dynamics trough the injector is combined with that of the
linac. At this stage of our study we limited ourselves to an investigation of rms emittance
evolution through the first few meters of the linac starting from E=40MeV. Evidence of
emittance growth is apparent from the macroparticle simulation results shown in Fig. 3.1.
Here we compare two lattices encompassing the first portion of the linac, both including
a chicane for the laser heater, which will be discussed in detail in Sec. 4. In both cases
the beam is injected with 40 MeV energy. One lattice is longer by about 20 m as it
includes an additional beamline at 40 MeV beam energy designed to host the longitudinal
collimator discussed in Sec. 4.4.

Figure 3.1: Picture to the left: evolution of the horizontal and vertical rms emittance.
Two lattices are compared. The longer lattice includes an additional 20 m beamline at
constant E=40MeV energy. The lattice functions for the first 32 m of the longer lattice
are shown in the picture to the right.

In both cases the distributions of the injected beam have an initial normalized 0.75
m rms emittance and are somewhat matched to the lattice. However, the matching is
carried out using two different procedures. For the case of the longer lattice, which begins
with two identical FODO cells, first a periodic solution to the rms envelope equation in
the presence of space charge matched to the two FODO cells is found and these
envelopes are used to define the beam distribution to be injected. In the case of the
longer lattice we started with an initial beam distribution matched to the unperturbed
lattice (no space charge) and then modified the setting of some selected quadrupoles to
obtain the target beam envelopes at the end of the lattice.

The shorter beamline shows the emittance approaching 1m in both planes (the
spikes observed in the figure between s=20 and 30 m are a spurious artifact and should
be ignored). Not unexpectedly the emittance growth experienced by the beam through the
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longer lattice is larger (particularly in the horizontal plane). Some portion of this
emittance growth is likely to be due to the imperfect matching and can perhaps be
avoided but it is clear that the growth observed in these simulations is not desirable.

An obvious remedy to the space charge induced emittance growth is to decrease
the transit time of the beam at lower energy. This could be achieved by moving the laser
heater along the linac to higher energy while at the same time accelerating the beam in
the section of the beamline that provides the matching between the module for
longitudinal collimation and the rest of the linac. Fig 3.2 shows that lattices (see Fig. 3.3)
providing this acceleration can indeed reduce the emittance degradation due to space
charge.

Figure 3.2: Evolution of the horizontal and vertical rms emittance for the two lattices
reported in Fig. 3.3. A more rapid acceleration is shown to reduce emittance growth due
to transverse space charge (compared to Fig. 3.1).

Figure 3.3: Variants of lattices for the low-energy end of the linac used in the emittance
study reported in Fig. 3.2. In the lattice to the left, which is slightly shorter, the laser
heater is located at E=122MeV beam energy; in the lattice to the right at E=162MeV.
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A more definite answer to the problem of the transverse space-charge effects on
the beam will have to wait more complete simulations including the injector once the
design of the latter has been finalized.

4. Accelerator design

In this section we describe a complete baseline lattice design for the entire machine,
presenting the overall layout and a discussion of individual machine sections. Fig. 4.1
shows the Twiss functions through the linac, together with an indication of the major
components: the accelerator begins with the laser heater (LH), followed by the first linac
(L1), harmonic linearizer (HL), bunch compressor (BC), second linac (L2), and spreader.

Notice that the layout shown in the picture does not include the module for
collimation of the longitudinal charge density, which will be discussed in Sec. 4.4.

Figure 4.1: Twiss functions along the accelerator.

4.1 Laser heater

The gain of the microbunching instability is very sensitive to the uncorrelated energy
spread in the electron beam. A modest increase in the uncorrelated energy spread can be
sufficient to weaken the instability because of the “Landau damping” effect. Thus, the
concept of a “laser heater” was proposed [Saldin et al. 2003] and adopted [Huang et al.
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2004, Spampinati et al. 2007] in order to have an efficient control over the uncorrelated
energy spread and the capability to increase it manyfold above the typically small value
at the exit of the injector. A detailed description of the laser heater is given in Ref.
[Emma et al. 2009]. For the purpose of this Report it will suffice to assume that the
action of the laser heater is equivalent to contributing a certain amount of energy spread
to be added in quadrature to the existing beam uncorrelated energy spread at the entrance
of the accelerator.

Figure 4.2: Schematic of the laser heater .

Fig. 4.2 shows the schematic of the laser heater section. It includes the laser heater
chicane, two short undulators inside the chicane, a small diagnostics chicane (CH), four
upstream and two downstream quadrupoles, four x-y correctors (C1-C4), optical
transition radiation monitors (S1-S3), four BPMs (not shown), bunch current and bunch
arrival-time monitors (not shown). Normally, four upstream quads will be used to match
the Twiss functions from the injector into the LH. They can also be reconfigured to
provide beam crossover upstream the LH chicane for emittance measurements in the x
and y planes. The laser light will interact with electrons in the first undulator U1. The
second undulator and the small chicane CH are devised for diagnostics employing the
“optical replica” [Saldin et al. 2005] technique.

The laser heater lattice is also used to complete the matching of the Twiss
functions from the injector into the accelerator.

For a calculation of the energy spread we use Eq.(9) of Ref. [Zholents et al. 2006]
yielding the following estimate of the energy gain/loss experienced by an electron co-
propagating along the undulator with the laser wave (focused in the center of the
undulator):
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The various quantities are defined as follows:  is the relativistic factor, 35.2LL PA  is
the laser pulse energy and  is the rms width in intensity of the laser pulse with peak
power LP (a Gaussian shape is assumed), 0/ zLq w , where wL is the length of the
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undulator with N periods,  /2
00 wz  is the Rayleigh length,  is the laser wavelength,

0w is the waist size which is assumed to be in the center of the undulator, 0/  


where cN /0   , c is the speed of light and  /20 cs  is the fundamental frequency of
the electron spontaneous emission in the undulator, 137/1 is the fine structure

constant,  is the Plank constant, and rN  /2 where  2/1
2

22 Ku
r 




 is the so

called FEL resonance energy, u is the undulator period, mceBK u  2/0 , 0B is the
undulator peak magnetic field, me, are the electron charge and mass, and wLzz /ˆ  , z is
the coordinate along the undulator with the beginning in the middle of the undulator,
     2/2/ 10  JJJJ  and )2/( 22 KK  . Eq. (4.1) defines the maximum amplitude of
the energy modulation and according to Ref. [Spampinati et al. 2007] the rms energy
spread induced due to the laser electron beam interaction is equal to half of that
amplitude.

On the basis of these formulas we can now give a sense of the numerical value of
the basic quantities characterizing the laser heater performance. For this purpose we
assume that the laser heater is located after the first accelerating module where the
electron beam energy is of the order of 140 MeV. (We alert the reader that in other parts
of this Report we make the different assumption that the laser heater is located at 40MeV
i.e. before the first accelerating module). We propose the use of a 800 nm laser
wavelength (corresponding to a s0 =1.5 eV photon energy) and a 3 cm undulator
period. Based on these numbers we determine the undulator parameter to be K=2.45
(corresponding to a 0.9T peak magnetic field). Assuming  =19 m for the beta functions
and  =1 mm-mrad for the normalized emittance we calculate  /x = 263 m.
Matching of the laser beam and the electron beam size in the undulator center would
require: xw 20  and 0z = 1.1 m. As in Ref. [Huang et al. 2004] we assume an undulator
with 9 full periods, i.e. wL = 27 cm.

Figure 4.3: Picture to the left: the rms energy spread induced in the laser heater as a
function of the laser pulse energy. Curve 1 is for a beta function  =19 m and curve 2 is

for  =38 m. Picture to the right: the linear gain function for the microbunching

instability for a beam with a small rms uncorrelated energy spread (2 keV, blue curve)
can be greatly reduced by increasing the energy spread using the laser heater (red curve,
corresponding to a 5 keV energy spread).
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The rms energy spread induced by the laser heater as a function of the laser pulse
energy for a Gaussian laser pulse with 40 ps FWHM is plotted in Fig. 4.3 (left picture,
curve 1). For comparison we also report the corresponding quantity for an electron beam
with larger transverse size, specifically, with beta function  =38 m (curve 2).

A demonstration of the effect of the laser heater is shown in the right picture of
Fig. 4.3 where we report the gain function of the microbunching instability through Linac
L1 and the bunch compressor (here we used a lattice with the laser heater located at 40
MeV, before L1; for the purpose of this calculation the exact location is irrelevantl as
long as the relative energy spread remains unchanged). Observe that the larger the energy
spread at the exit of the laser heater the weaker the gain at the high-frequency end of the
spectrum. A further discussion of the implications of controlling the energy spread by the
laser heater is contained in Sec. 6.

4.2 Bunch compressor

A schematic of the bunch compressor is shown in Fig. 4.4. It consists of a chicane built
from four rectangular bending magnets. Due to symmetry, this bunch compressor is a
perfect achromat. To compensate for the possibility of leakage of dispersion after the
last bend due to errors trim quadrupoles (shown in Fig. 4.3 between the first and second
bends and between the third and fourth bends) are added for a fine tuning of the lattice
functions. Dispersion is at its maximum in the middle of the chicane and, therefore, this is
a convenient place for a collimator and energy monitor. Here we plan to use two kind of
diagnostic devices, i.e. BPMs and screens. Since the electron beam typically presents a
significant energy chirp while propagating through the chicane, the collimator can be
used to trim electrons from the head and tail of the bunch, thus providing a way to shape
the bunch profile and reduce the undesired current spikes that often appear at the bunch
edges. Alternatively, the same collimation function could be implemented in a dedicated
non-dispersive module using rf deflecting cavities (see Sec. 4.4). This latter solution may
be preferable as it offers more flexibility for a collimator design if it is designed to
intercept electrons at much lower energy.

Figure 4.4: A schematic of the bunch compressor (not to scale).

An important consideration for a design of the bunch compressor is CSR. CSR
plays a role in the microbunching instability discussed in Section 2.2.5 and may also be
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responsible for emittance degradation. Both these processes can be moderated with the
appropriate design of the compressor lattice.

Although transverse microbunching radiative effects [Derbenev et al. 1996] can
affect emittance directly, this is usually a small effect and emittance degradation via
longitudinal-to-transverse coupling is typically dominant. This coupling is characterized
by the dispersion invariant:
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where xx  , are horizontal Twiss functions and xx DD , are horizontal dispersion
function and its derivative. Here we assume a chicane lying in the horizontal plane. Using
H , we write for the emittance change due to a CSR-induced energy variation:

 2/ EEx  H . (4.4)

Here, EE / is the spread of the energy losses caused by CSR, which is proportional to
the quantity defined in (2.24). It is obvious from Eq. (4.4) that a lattice with small H
will generate a smaller emittance change. Since the strongest CSR effect is expected in
the 4th bending magnet of the chicane where the electron bunch is the shortest, an
optimization strategy that we can pursue is to reduce H in this magnet. A lattice
implementing this strategy with a minimal Twiss function x in the last bend is shown in
Fig. 4.5.

Next, we would like to present an argument showing why we may not want to get
the smallest possibleH . While traveling through the chicane bend magnets, electrons
with different betatron oscillation amplitudes follow different paths with path lengths
described by the following equation:
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Here 00 , xx  are the electron coordinate and angle at the beginning of the chicane and
   zSzC , are cos-like and sin-like trajectory functions. It can be shown [Venturini et al.

2007a] that the rms value of  taken over the electrons in the any given slice of the
electron bunch is related to the electron beam emittance through the function H , i.e.:

xrms  H , (4.6)
where x is the rms value of the electron beam horizontal geometrical emittance. Thus, a
lattice with large H “washes out” the microbunching more effectively than the lattice
with the small H because it spreads apart slice electrons more than the lattice with the
small H , similarly to the Landau damping induced by uncorrelated energy spread. The
smearing of the microbunching by a finite transverse emittance may be important and
further analysis shows that without accounting for this effect the instability could be
significantly overestimated.

On the basis of these considerations we design the BC lattice in such a way that
the magnitude of H in the last bend of the chicane can be tuned by up to a factor of four.



32

This will give us some flexibility to maneuver between the tasks of containing the
emittance excitation due to CSR, which benefits from a smallerH , and that of
containing the energy spread growth due to the microbunching instability, which benefits
from a larger H .

Figure 4.5: Twiss functions in the bunch compressor (highlighted) and in the adjacent
linacs. The location of the 4th bending magnet is indicated by the arrow.

Four quadrupole magnets after the chicane are used for matching the Twiss functions into
the downstream Linac 2. Between these magnets we reserved some space for a deflecting
cavity to be used for emittance measurements and for the option of bending the beam into
a side diagnostic beamline (yet to be designed).

Many accelerator designs for FEL facilities proposed so far employ two bunch
compressors (e.g. [Arthur et al.]). While optimizing our design we also investigated this
option and concluded that a second bunch compressor would greatly increase the gain of
the microbunching instability. This would result into a considerably larger final energy
spread after compression (see Fig. 4.6), even for an optimally tuned LH. On the other
hand if the strong beam compression needed in a single-chicane BC lattice is carried out
at relatively low electron beam energy an excessively large projected emittance growth
can ensue because of CSR. Hence our choice of locating the BC at approximately 250
MeV beam energy. In the design of the BC we also optimized the Twiss functions to
minimize the impact of CSR on the emittance as mentioned above. Results from
macroparticle simulations that we will discuss in Sec. 6 show some growth in the
projected emittance. While this will not compromise lasing it may interfere with some of
the diagnostics. A more accurate assessment of the maximum tolerable projected
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emittance growth is left for future work. If needed, higher quality emittance could be
achieved by moving the BC further to higher beam energy.

Figure 4.6: The rms electron beam energy spread at the end of the linac as a function of
the electron beam energy spread immediately after the laser heater. This example is
derived form the comparative studies of two accelerator configurations for
FERMI@elettra FEL project [Bocchetta et al., Di Mitri]. The calculations were carried
out using a Vlasov solver (see Appendix B).

4.3 Electron beam switch yard (spreader)

The electron beam switch yard also referred here as a “spreader” distributes the
electron beam into ten independent FEL undulator lines, each operating at a repetition
rate of 100 kHz. In the current design we follow a modular approach and build all
spreader beam lines as uniformly as possible. We also adopted a design concept
discussed in Ref. [Venturini et al. 2008] to minimize the impact of the spreader on the
electron beam dynamics.

4.3.1 Design description

Fig. 4.7 shows the lattice functions from the beginning of the spreader to the end
of the longest of the ten spreader beam lines. The remaining nine spreader beam lines
branch off from the long FODO section seen in Fig. 4.7 starting from s=0. A schematic of
the beam take-off sections, identical for all the ten beam lines, are shown in Fig. 4.8. The
take-off sections are repeated after every second focusing quadrupole (two such sections
are seen in the picture).



34

Figure 4.7: The lattice functions in the spreader.

A two meter long stripline kicker is located between focusing (F) and defocusing
(D) quadrupoles. It supplies a 3 mrad kick to the electron bunch. The stripline has a small
gap of 8 mm to maximize the field with assumed ±10 kV voltage on the electrodes. A
pulsed power-supply with repetition rate up to 100 kHz, pulse amplitude up to 15 kV, and
pulse length up to 10 ns is available from FID GmbH [Efanov]. The advertised timing
jitter is less than 200 ps and the amplitude stability is 0.1%. The company stated that
they can not measure stability better than 0.1% and expressed interest to work together to
improve amplitude stability using beam-based measurement techniques.

The downstream defocusing quadrupole adds an additional 0.7 mrad to the
primary kick. Then the orbit passes through the focusing quadrupole with a 15.8 mm off-
set from the quadrupole center. This quadrupole forces the beam to go almost parallel to
the FODO beam line. Next to this quadrupole is a septum magnet. The betatron phase
advance between the kicker and the septum is 0.3 This provision helps to maximize the
orbit off-set at the beginning of the septum. The blown-up area in Fig. 4.8 shows a 15.6
mm distance between the axis of the FODO beamline and the beam orbit at the beginning
of the septum and a 5.3 mm distance from the axis of the FODO beamline to the current
wall of the septum magnet. The defocusing quadrupole of the FODO beamline
downstream of the septum is a large bore quadrupole that is centered on the FODO line
and the branch line has a 50 mm off-set there. This quadrupole supplies additional 17
mrad kick to the beam orbit. Beyond this quadrupole, the two beam lines continue in
separated vacuum chambers. The next downstream focusing quadrupole along the
FODO beamline is a small bore septum quadrupole: the line branching off passes by this
quadrupole at a 150 mm distance from the axis of the FODO beam line.
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Figure 4.8: The schematic of the electron beam take-off section. All dimensions are given
in mm. Scales are different in the vertical and horizontal direction.

Figure 4.9: The cross section of the septum magnet. All dimensions are given in mm. See
text for further detail.

Fig. 4.9 shows the cross section of the septum magnet and magnetic flux lines. The
septum magnet is a C-type magnet with a 8 mm gap and current wall on the right side.
The conductor is a hollow 4 mm × 3 mm rectangular tube with rounded corners and 3
mm × 2 mm rectangular bore. The current density is 55 A/mm2. The insert shows
important dimensions and also the magnitude of the magnetic field in the two locations
indicated by the arrows, i.e. one on the electron beam orbit inside the magnet and the
other on the FODO beamline behind the current wall. One can see that it is practically
zero there. It is also assumed that a thin magnetic shield will be wrapped around the
vacuum chamber in this location.
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Figure 4.10: Lattice function for one of the spreader branch-off lines.

Fig. 4.10 shows the lattice functions of a typical branch beam line. The lattice has
two distinct parts, i.e. the beam take-off section and the FEL fan distribution section.
Each part is built as a triple-bend achromat. In the beam take-off section the kicker,
septum and off-set quadrupoles are functionally equivalent to one bending magnet. An
additional pair of bending magnets completes the achromat supplying 60 mrad orbit
angle. Importantly, these achromats are designed to be isochronous with the design
sufficiently flexible to allow for adjustment of the transfer matrix element R56 controlling
the particle time-off-flight. The achromats are connected by a short matching section. As
mentioned above, the beam take-off section is identical for all the FEL lines, while the
FEL fan distribution section is different for each undulator beamline with gradually
increasing orbit bending angle from 10 mrad to 140 mrad.

An electromagnet can be placed atop the stripline kicker and this will allow for a
single FEL operation with maximum bunch repetition rate of 1 MHz.

4.3.2 Spreader beam dynamic studies

In order to verify the design concept we performed beam dynamics studies through
the spreader. We are mainly concerned about the possible impact of the spreader bending
magnets on the electron beam emittance and microbunching. For this study we selected
the branch line that has the strongest bending magnets, thus focusing on the most
demanding case. The proper location to begin our analysis is immediately downstream
the bunch compressor. This is because some of the effects that we are interested are in
fact seeded before the beam passes through the bending magnets of the spreader. In
particular, of some concern is the energy modulation generated by the longitudinal space
charge in the long linac section between bunch compressor and spreader. An energy
modulation can be turned into an unacceptably large charge density modulation
(microbunching) in the spreader region where R56 is non vanishing. Enforcing
isochronicity as much as possible is a way to reduce the effect. The plot in Fig. 4.11
shows the gain of the microbunching instability calculated using the linear theory of Ref.
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[Heifets et al.]. The amplitude of a sinusoidal density perturbation of wavelength
present in the beam at the exit of the bunch compressor is amplified by a factor equal
to the gain by the time the beam exits the spreader. The left plot shows that the gain is
small when each achromat is isochronous. The gain is much larger on the right plot, i.e.
in the case where we intentionally destroyed the isochronicity of the individual achromats
while at the same time still preserving the overall isochronicity for the entire spreader
beamline (this was achieved by having the two achromats mutually compensating for the
time of flight.). We also found that the gain is substantially larger when the entire
beamline is not isochronous.

Figure 4.11: The linear gain of microbunching instability beginning from the exit of the
bunch compressor through one of the spreader lines. The assumed uncorrelated beam
energy spread is indicated on the graphs. The left plot is for a case when both achromats
are insochronous and the right plot is for the case where the entire spreader is
isochronous but the individual achromats are not.

Following these studies we performed particle tracking of the same part of the
machine for a nominal case using the code IMPACT with one billion macroparticles and
obtained the electron beam distribution in the longitudinal phase space shown in Fig.
4.12. In good agreement with linear theory this plot demonstrates a weak microbunching.
We should emphasize that we have not yet studied the non-isochronous spreaders with
high-statistics macroparticle simulations. While we believe that a non-isochronous
spreader should be avoided, the magnitude of the adverse effects may have to be revised
from estimations based on the linear theory and a simplified 1D model of longitudinal
space charge impedance, which has known limitations.
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Figure 4.12: The electron bunch distribution in the longitudinal phase space. The energy
deviation is in units of the electron rest mass.

Fig. 4.13 shows the plot of the slice emittance along the bunch obtained from IMPACT
simulations through the spreader. The emittance at the exit of the linac (green curve) is
contrasted to the the slice emittance of the beam at the exit of the BC (start of
simulation). Clearly no emittance growth is observed aside from the bunch tails.

Figure 4.13. Slice emittance along the electron bunch at exit of the BC (red curve, start
of simulations) and exit of the spreader (green curve).

4.4 An active “management” system for bunch tails

Macroparticle simulations show that intense beams traveling through the injector and the
linac have a propensity to filament in the longitudinal phase space. Filamentation results
from a combination of collective effects and rf nonlinearities causing particles populating
forward and backward beam tails to gain (or lose) energy compared to the beam core. As
the beam traverses dispersive regions these particles will shift longitudinally relative to
the beam compounding the overall degradation of phase-space quality.
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Figure 4.14:. Examples of longitudinal phase space at the exit of one of the linacs considered
in our studies for x-ray FELs. A 0.8nC bunch with an initial Gaussian charge density in the
longitudinal direction (picture to the right) is shown to develop branch-like structures that are
markedly absent when a beam with a more compact profile (parabolic) is used ( picture to the
left). Notice the difference in the vertical scales.

Generally, the details of this evolution and the final phase-space footprint will
depend on the initial profile of the longitudinal beam density. A beam presenting an
initial longitudinal density with long tails will be more prone to filament than a beam
with a more compact profile. This is exemplified in Fig. 4.14 where the phase space at
the exit of a linac starting from a beam with a parabolic longitudinal density (picture to
the left) is compared to that resulting from a beam with initial Gaussian density (picture
to the right).

Figure 4.15: Another example of beam longitudinal phase space at the exit of a linac. The initial
beam distribution in this example was obtained from a numerical simulation of the injector. The
bifurcations observed in the right picture of Fig. 4.14 are absent but very long tails can still be
noticed. Fortunately, as indicated in the figure, these tails tend to be thinly populated.

Although relatively few electrons will in general populate the filamented regions of
phase space (Fig. 4.15) their presence may be a nuisance. Firstly, there is a concern that
particles in these regions may not be intercepted by ordinary collimators placed along the
machine and thus get lost in an uncontrolled manner possibly causing damage to sensitive
devices (in particular the FEL undulators). Secondly, portions of the beams with the same
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longitudinal coordinate but slightly different energy may degrade lasing in the FEL.
Thirdly, a filamented beam phase space could make the reading of certain diagnostic
signals difficult to interpret.

As suggested by Fig. 4.14 containment of the phase-space at the exit of the linac
could be achieved, at least in principle, by suitable control of the beam tails through the
injector. This is a strategy worth investigating but it remains to be demonstrated that one
can design and injector system allowing for this functionality while at the same time
meeting other requirements on bunch population, transverse emittance, and length.
Instead, to prevent the potential harm deriving from the uncontrolled evolution of the
beam tails once can conceive of ways to intervene along the machine to shape the
longitudinal beam density directly.

A possible system implementing this capability consists of a pair of rf deflecting
cavities and a collimator. The first cavity will induce a longitudinal-transverse correlation
(say in the vertical direction) by applying a z-dependent linear kick along the bunch. The
correlation will develop as the electrons undergo betatron motion. At a suitable point
downstream the cavity where the y/z correlation in the beam density is fully developed a
collimator will remove particles with large transverse offset and thus deplete the particle
population in the longitudinal tails. A second deflecting rf cavity downstream would then
remove the transverse/longitudinal correlation before the beam resumes its trajectory
down the linac. A schematic for the device is shown in Fig. 4.16.

Figure 4.16: Concept for an rf deflecting -cavity based collimator for removing tails from the
beam longitudinal profile. The beam travels from left to right.

The required kick can be realized using an rf structure operating in the TM110 mode
[Zholents et al. 1999, Emma 2000]. A particle with longitudinal coordinate z (z measure
the longitudinal position with respect to the reference particle in the bunch) will receive a
transverse kick of magnitude
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41

where the second equality follows from a linear expansion and the assumption =0. Here
)/(2 0 rfz EeV   , V0 is the cavity transverse voltage, rf the rf cavity wavelength

and E the beam energy. Notice that in this section z>0 denotes a particle in the bunch
head. In the reduced phase-space with particle coordinate ),,( zyyx 

 we write the
transfer matrices for propagation of the beam between the two rf cavities and for the
action by each cavity as
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having assumed that the electrons are ultrarelativistic so that motion in z is effectively
negligible. The condition for the y/z correlation to be removed from the beam by the exit
of the second cavity requires that the entries (1,3) and (2,3) of the matrix product
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z are relative to the leading and trailing cavity respectively. These two conditions are
satisfied, in particular, by choosing the transverse part of the transfer matrix M to satisfy

1M , (i.e. 0  yyyy mm , 1 yyyy mm ), and )2()1(
zz   .

In the considerations to follow we assume negligible vertical beam size, which is a good
approximation as long as the anticipated transverse particle offset in the collimator is
large compared to the transverse beam size (typically sub-mm). Consider an electron
located in the head of the beam blz  . Denoting with N the transfer matrix for the vertical
betatron motion from the first rf structure up to the collimator, the vertical offset
displayed by the electron is given by bz lNy )1(

12 . Using the standard parameterization
[Lee] for the entry 12N in terms of beta functions )1(
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on the further assumption that )()1( c
yy   and 2/  . This choice for the phase

advance maximizes the vertical offset obtainable for a given transverse while at the same
time insuring that the transverse part of the transfer matrix satisfies the condition

1M for removal of longitudinal/transverse correlations. We base the numerical
examples to follow on the lattice shown in Fig. 4.17 consisting of two 5.5 m FODO
cells. The beta functions at the location of the collimator and rf structures are m2.4y
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Figure 4.17. Lattice functions for an 11m long two FODO-cell beamline with collimator. (The
dimensions of the collimator and the rf deflecting cavities are not to scale.)

The rf deflecting cavities are located at the two ends of the beam line. In the
present calculation for the purpose of determining the Twiss functions they are treated as
drifts. Because of the requirements posed by the machine high repetition rate (1 MHz)
superconducting technology is the obvious choice. As suitable models for our discussion
we consider the superconducting 3.9 GHz structures discussed in [Li D.]. Assuming a 50
MeV beam energy, to scrape particles from the beam tails z>|lb| with lb=1.5 mm using a
collimator with 2yc=2 cm aperture will require about V0 ~ 1 MV. With a modest
deflecting gradient of about 5 MV/m the required voltage magnitude can be obtained
using the ~0.5 m long structure investigated in [Li D.].

Power density deposition on the collimator is an important quantity to investigate
in order to determine the practical feasibility of a longitudinal scraper design. Here we
present a simple model aimed at finding an order-of-magnitude estimate and basic scaling
with respect to some relevant parameters. We model the collimator cross section as
consisting of two triangular shapes in the y/s plane as shown in Fig. 4.16. The two basic
parameters determining this geometry is the angle  between the slanted sides of the
collimators and the z axis and the minimum vertical aperture 2yc (the collimator is
assumed to be translational invariant in x). Denote with dN(s) the number of particles
deposited on the collimator wall along a segment of length ds. We are interested in
finding the power deposited per unit length along the collimator wall surface

ds

dN
EP )(cos 1   , (4.8)

where  is the bunch repetition rate. Suppose that the electron bunches have a
longitudinal particle density )(zfNb where bN is the bunch population and )(zf is
normalized to unity. To find  

z

zb

z ds

dz
szfN

ds

dN )( we shall need to determine the

relationship )( zszz  between zs and the longitudinal phase-space coordinate z of an
electron scraping the collimator surface. Notice that we distinguish between the position
along the beamline of an electron with z-coordinate zss z  and s, the location along
the beamline of the reference particle in the bunch (defined as having phase-space
coordinate z=0).
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Figure 4.18: Scraping depth zc for the tail of the longitudinal beam density (z<0) as a function of
the rf deflecting cavity transverse voltage V0 for various choices of the scraper vertical aperture.
Particles with coordinate z<zc are scraped off. A similar picture holds for particles in the beam
head (z>0).

Denote with );( szY the transfer function yielding the vertical coordinate at s of
an electron that has vanishing transverse offset and coordinate z at the beginning of the
beamline and denote with )(sYscrap the function yielding the profile of the scraper cross-
section in the y/s plane (more precisely we have 2 such piece-wise linear functions for the
top and bottom parts of the collimator ). For sake of concreteness let )(sYscrap describe
the top part of the collimator. Also, assume that the beam is tilted as shown in Fig. 4.16
with the tail (head) pointing upward (downward). The desired relationship )( zsz is
defined as an implicit function by the equations );()( szYzsYscrap  and zss z  . If
we define R to be the transfer matrix for the vertical betatron motion from the beginning
of the beamline through the focusing quadrupole (FQ) immediately before the collimator
an approximate solution to the above equation reads:

])([||
tan)(

2212 RssR

ssy
z

FQzz

zcc







 , (4.9)

where sc is the location of the collimator center along the beamline. The above expression
is accurate provided that 1122 /RzR be small (for bunch lengths of the order of a few mm
or less and a FODO cell a few meters long this is always the case). The above
expression also yields an expression for the depth of scraping, upon setting sz=sc

])([|| 2212 RssR

y
z

FQcz

c
c





; (the particles in the beam tail scraped off by the

collimator are those with longitudinal coordinate czz  ). Numerical examples of scraping
depth as function of the transverse voltage for various choices of the collimator vertical
aperture are shown in Fig. 4.18.
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Figure 4.19: Power deposition along the top or bottom side of the collimator; the longitudinal
position s is measured starting from the exit of the last quadrupole before the collimator. The
center of the collimator is at s= sc=1.125 m.

For a given longitudinal density profile, for example of Gaussian form, we can
then use Eq. (4.9) into Eq. (4.8) to determine the power per unit length along the
collimator deposited by the scraped electrons. Assuming 1 nC bunches at E=50 MeV,
and 1 MHz repetition rate (corresponding to 50 kW total beam power), Fig. 4.19 shows
that the peak power deposition per unit length (along either the top or bottom part of the
collimator) is about 75 W/mm for an angle =7.5° , corresponding to a particle loss of
about 2.6%. Assuming a 1m rms emittance beam implying a ~200 m rms horizontal
size the resulting peak power deposition per unit area is in the neighborhood of 300
W/mm2. Removing the heat load from the collimator resulting from this power deposition
may be challenging.

Another important consideration concerning the feasibility of a collimator system
concerns the possible detrimental impact on the beam through wake fields. A first (rough)
assessment of the magnitude of the effect can be carried out using simple analytical
formulas applicable to shallow tapered collimators in the inductive-regime [Yokoya,
Stupakov]. Although this regimes requires 1/ zcy  we can hope to still get a
meaningful order-of –magnitude estimate in spite of the fact that for the short bunches
of interest in our application and reasonable choices for  and yc the above ratio tends to
be close to unity. The transverse kick experienced by particles with coordinate z along a
Gaussian beam and transverse offset y is given by

z
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 , where

re is the electron classical radius,  the relativistic factor, and Z0 the vacuum impedance.
For =10°, z=1 mm, and yc=1 cm the peak value of the kick is of the order of 1 rad if
one assumes scraping particles with |z|>2z This should be compared to the rms angular
spread of a beam with 1m rms emittance, which is about 50 rad (having assumed
x=4 m for the horizontal beta function and a 50 MeV beam energy). Although
seemingly benign these numbers warrant a more careful evaluation using either a more
advanced analytical model or numerical simulations to completely rule out any adverse
effects on the beam.
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5. Long range wake fields and beam break-up instability

An ultra-relativistic charged particle bunch moving through a resonator cavity leaves
behind a wake field that will affect subsequent bunches (if the bunch is not ultra-
relativistic, the wake field will not be exclusively behind it). If the initial bunch enters the
cavity off-axis, it will produce a transverse wake field that can then kick later bunches off
the axis. Thus, even bunches that were initially traveling on-axis could be displaced and,
in turn, produce their own transverse wake fields. The offsets obtained by bunches could
increase along the bunch train, leading to the so-called multi-bunch beam break-up
instability [Chao et al. 1980]. The purpose of our investigation is to see whether such
instability will occur in the accelerator under the following conditions listed in Table 5.1.

Table 5.1: Electron beam and linac parameters used in the beam break-up studies.
Linac type 1.3 GHz, superconducting rf linac
Charge per bunch 0.8 nC
Bunch repetition rate 1 MHz
Beam energy entry/exit linac 0.240/2.180 GeV

When a charged bunch moves through a resonator cavity, it excites various higher-order
modes (HOMs) in the cavity, which contribute to the total long-range wake. A quantity
called the loss factor can be defined for each HOM; it is proportional to the amplitude of
the oscillations of that HOM. Modes with higher loss factors have a greater wake field
and a greater impact on the electron beam. One can usually ignore effects from HOMs
with low loss factors (which HOMs can be ignored must be determined via simulation or
experiment).

Our current working assumption is that the BFA will have the same accelerator
modules as those proposed in the TESLA Design Report [Brinkman, et al.]. Because the
modules are the same, the properties of the HOMs (amplitude, frequency, damping time,
etc.) are also the same, since these depend only upon the properties of the cavity. Table
5.2 taken from [Baboi] shows which modes are expected to dominate the long-range
transverse dipole wake field. We will consider only small deviations from the axis, and so
the dipole wake is a good approximation for the total wake field.

5.1.1 Wake field of a single bunch

We can calculate the transverse wake field left behind a point-like bunch (the so-
called delta wake) using a formula for the wake function from [Baboi]:
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   for ẑ >0 (5.1)

0)ˆ(  zw for ẑ <0.

where kl is the loss factor of the lth mode, Ql is the quality factor of the lth mode, ωl is the
frequency of the lth mode. We sum over the HOMs listed in Table 5.2, since they are
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considered to have the largest impact on the wake field. Defined this way, the wake
function gives the transverse potential seen by a bunch, traveling over a unit length, while
moving through a wake field produced by a bunch of unit charge that had an unit offset.
The behavior of the dipole wake function (using dipole loss factors in the formula above)
is illustrated in Fig. 5.1.

Table 5.2: Dipole modes with the highest loss factors. The two independent polarization
directions (x and y) have slightly different frequencies for the modes. In order to find the
wake field in what we consider the x-direction, one needs to sum over the modes with the
1st polarization. Similarly, summing over the modes with the 2nd polarization will give the
wake field in what we consider as the y-direction. Only data on the frequency, loss factor,
and measured Q was used in this investigation
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Figure 5.1: Long-range transverse dipole wake function for a point-like bunch moving
through a resonant cavity. The wake field for a point-like bunch (represented above) is
known as a delta wake.

5.2 Results of beam break-up studies

In the following analysis we are mostly concerned about stability of the machine
operation at 1 MHz bunch repetition rate. However we should assume that a start up and
initial commissioning of the machine will be performed at a lower repetition rate and
beam-based alignment will be used to establish stable beam trajectory through the linac.
Following terminology borrowed from storage rings we can refer to this as the “golden
orbit”. We assume that the values for dipole wake fields as reported in Table 5.2 can be
applied also to small deviations from the golden orbit (in general different from the
geometric axis of the accelerator)

In this section we investigate the consequences of one or several bunches
deviating from the golden orbit due to some abnormal fluctuations. We are interested in
establishing whether these fluctuations will propagate and grow over the trailing bunches
causing a multi-bunch beam break-up or instead will die out in a short period with no
consequences on beam stability [Kur].

5.2.1 Two-linac section model

We now start with a simplified model, which we use to demonstrate the general behavior
of the beam when bunches move off-axis. We assume two adjacent linacs (with the
HOMs listed in Table 5.2), each of length 30 m. We do not consider acceleration in this
model, but rather assume that the beam has a constant energy of 0.7 GeV. A bunch (we
will call the first bunch) enters the first linac with x-offset σx (the rms transverse beam
size) and no angle, as shown in Fig. 5.2. The rest bunches will enter the first linac on-
axis, also with no angle (Fig. 5.3). For the long-range transverse dipole wake field, a
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bunch offset in the x-direction will leave behind a wake field that deflects only in the x-
direction. We thus limit our observations to the x-direction, since we assume no
deviations in the y-direction.

Figure 5.2. Schematic of the two linac model showing the first bunch entering with an
offset. The green rectangles represent the linacs and the purple oval is the bunch. This
bunch proceeds with its normal betatron oscillation, and so has an angle but no offset in
the middle of the second linac.

Figure 5.3. Schematic of the two linac model showing a bunch entering the first linac
(after the first bunch and any other previous bunches have already left a wake field). This
bunch receives a transverse momentum kick in the middle of the first linac due to the
transverse wake field, and then continues to the second linac where it experiences a
transverse momentum kick from the existing wake field, and also makes its own
contribution to the wake field in the second linac.

After leaving behind a wake field, the first bunch will move to the second linac.
In order to simplify the calculations, we assume a constant βx=30 m in the two linacs, and
a betatron phase advance of μx=π/2 between their centers. This gives a simple transfer

matrix between the first and second linac: 









0/1
0

x

xM



. Since the first bunch went

through the first resonator with offset σx, it will go through the second linac with angle
σx/βx and no offset. Meanwhile, subsequent bunches will experience a transverse
momentum kick in the first linac, knocking them off-axis. This causes them to obtain an
angle in the first linac: dx/ds=p┴/p0, where p0 is the longitudinal momentum of the
beam. p can be defined with the help of the single-bunch wake as:
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where q is magnitude of the charge in the electron bunch at time t′, x(t′) is the transverse
displacement of a bunch at time t′, 0s is some distance along the linac, and L is the length
of a structure (usually a resonant cavity). In general, the wake field could depend upon
the distance along the linac (in case the properties of the cavities changes), but in our
models, the integrand is independent of s, and so the double integral reduces to a single
integral over t′, multiplied by L.

The transverse momentum kick makes all bunches after the off-axis bunch have
angles but not offsets in the first linac. Applying the transfer matrix, the offsets of the
bunches in the second linac will be these angles multiplied by βx. Since the bunches are
no longer moving on-axis in the second linac, they will all leave behind wake fields that
subsequent bunches will encounter. Thus all bunches after the first will have both an
angle and an offset in the second linac.
 From the definition of normalized emittance in the case where αx=0,

22 / xx xxx
  we can define an effective beam size (really the amplitude of

betatron oscillations):  22 xx xxxeff
  . We then define gain as σeff/σx , i.e.

the amplitude of betatron oscillations gained by each individual bunch at the end of the
linac normalized by the amplitude of betatron oscillations at the end of the linac obtained
by the first bunch. The gains for bunches two onward are shown in Fig. 5.4. One can see
that the effects of the wake fields are very small. The second bunch ends up with only
about 4% of the deviation of the first bunch. Additionally, the amplitudes of oscillations
decrease along the bunch train. This shows that the beam is stable when one bunch
deviates from the established orbit.

Figure 5.4 Plotted is the amplitude of betatron oscillations of bunches at the end of the
second linac (in the two linac model) normalized by the amplitude of betatron
oscillations of the first bunch (σx). This plot shows how small the wake field effects are,
since the second bunch is displaced from its path by only 4% of the displacement of the
first bunch. The amplitudes of oscillations decrease along the bunch train, meaning that
there is no beam break-up.

We continued our investigation using the two linac model by simulating a situation in
which the initial offset would be given by a sinusoidal function: )sin( tx jitx  . This
could happen if some element before the first linac has a jitter which kicks the bunches
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with some frequency jit . We assume that such an element has a period that is long
compared to the bunch spacing. The results for a modulation frequency of 10 kHz are
shown in Fig. 5.5. Here one can see the bunches almost exactly following the pattern of
the element causing the offset. This gives further evidence that the effect of the wake
fields is small (the bunches which enter the first linac with an offset of σx end with an
amplitude that is only slightly greater).

Figure 5.5. A plot of how the bunch train responds to an element that causes bunches to
have a sinusoidal variation in initial offsets. Due to the small wake field effects, the
bunches end with an amplitude of oscillation only slightly greater than their initial offset.
Thus having an element in the beamline which kicks the bunches off of their ideal path
(with a period that is long compared to the bunch spacing) does not cause the beam to
break up.

5.2.2 Five-linac sections model

We now look at a more realistic model of the acceleration system in the BFA. We break
up the linac into five units (resonators) accounting for energy gain along the linac and for
variations in Twiss functions from unit to unit but considering constant Twiss functions
along the unit. We look at the bunches starting at a point with a betatron phase π/2 less 
than the phase at the center of the first resonator. We assume that all of the bunches move
on-axis through that point, but that one of them (the “first”) has an angle of σx’ (we also
looked at the y-direction where the angle was assumed to be σy’). This setup is shown in
Fig. 5.6.

We used the general transfer matrix [Lee]:
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to find the offset and angle in the first resonator (assuming that βx,  y = 30m and αx ,αy=0
at the starting point). In the matrix, β1 is the beta-function at the initial point, β2 is the
beta-function at the final point, α1 is the alpha-function at the initial point, α2 is the alpha-
function at the final point, and ψ is the betatron phase difference between the initial and 
final points.

Figure 5.6. Schematic of the five resonator model showing the first bunch having an
angular deviation prior to entering the first resonator. The two purple ovals represent the
same bunch as it goes through a betatron phase advance of 3π/2, entering with an 
angular deviation and leaving with an offset. The Twiss parameters at the starting and
ending points are arbitrarily chosen, whereas the Twiss parameters inside the resonators
correspond to actual Twiss parameters at the center of each resonator.

Figure 5.7: Transverse position of a bunch moving through the five resonators without
encountering any wake fields. This shows that the transfer matrix program works since
the bunch goes from no offset (with an angle) to no angle (but with an offset) during a
phase advance of 3π/2. 

Prior to starting the wake field calculations, we decided to test the program which
applies the transfer matrix to find final offsets and angles from initial offsets and angles.
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We chose an end point that has a 3π/2 phase advance from the starting point. This way 
the transfer matrix program should take an initial angular deviation and turn it into an
offset with no angle at the end. A plot of offset (in the x-direction) versus betatron phase
advance along the linac is shown in Fig. 5.7.

Figure 5.8. Plot of the amplitude of betatron oscillations at the end of the linac
normalized by the amplitude of betatron oscillations of the first bunch (σx at the end)
when the first bunch starts with an angular deviation of σx′. 

Figure 5.9. Plot of the amplitude of betatron oscillations at the end of the linac
normalized by the amplitude of betatron oscillations of the first bunch (σy at the end)
when the first bunch starts with an angular deviation of σy′. 

From there on we calculate the wake left behind by the first bunch, apply it to
subsequent bunches to find the angles they obtain and apply the transfer matrix (using
actual Twiss parameter values and energies for the center of each resonator) to find
offsets and angles in the next resonator. We continue in this manner through the five
resonators. In order to make our results easier to see and understand, we pick our end
point so that the total betatron phase advance from start to end is 3π/2. We assume that 
the end point has the same Twiss parameter values as the starting point. We can then use
the same definition of σeff (amplitude of betatron oscillations) that we had in the two-
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resonator model, and again give our results in terms of the gain: σeff/σend, where σend is the
amplitude of oscillation of the first bunch. Below are the results for the five resonator
model for the cases of only one bunch starting with an angle (Figures 5.8 and 5.9), one
bunch starting with an angle and all subsequent bunches also starting with the same angle
(Figures 5.10 and 5.11), and the starting angle being given by a sinusoidal function with
modulation frequency 10 kHz (Figures 5.12 and 5.13):

Figure 5.10. Plot of the amplitude of betatron oscillations at the end of the linac
normalized by the amplitude of betatron oscillations of the first bunch (σx at the end)
when the all bunches start with an angular deviation of σx′. 

Figure 5.11. Plot of the amplitude of betatron oscillations at the end of the linac
normalized by the amplitude of betatron oscillations of the first bunch (σy at the end)
when the first bunch starts with an angular deviation of σy′. 
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Figure 5.12. Plot of the amplitude of betatron oscillations at the end of the linac
normalized by the rms beam size (σx) at the end, when the first bunch starts with an
angular deviation of σx′. 

Figure 5.13. Plot of the amplitude of betatron oscillations at the end of the linac
normalized by the rms beam size (σy) at the end, when the first bunch starts with an
angular deviation of σy′. 

From the above graphs (of the five resonator model) we can conclude that, although
wake field effects are about ten times greater than in the two linac model, there is no
evidence for multi-bunch beam break-up. Deviations of the first bunch by σ or σ′ (rms 
beam size or rms angular spread) lead to a maximum deviation of 0.4σ (or 0.4 σ′) in 
subsequent bunches. In addition, amplitudes of oscillations decrease along the bunch
train, falling to zero after less than 100 bunches have passed (0.1ms). Even if all bunches
(after some initial bunch) obtain angular deviations of σ′, a steady state is reached over 
the course of 100 bunches. In the steady state, bunches have an amplitude which is nearly
σ, meaning that the initial deviation is not amplified by wake field effects. As in the two 
linac model, the beam is stable with respect to an element that causes bunches to enter the
first resonator with a sinusoidal variation in angular deviation.

The results of the models we used suggest that long-range transverse wake fields
will not lead to multi-bunch beam break-up in the BFA linac.
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6. Start-to-end macroparticle tracking studies

Start-to-end macroparticle single-bunch simulations for the entire linac were carried
out using the IMPACT code [Qiang et al. 2000, 2009] (see also Appendix A). Because at
the time we conducted these studies the design of the electron gun was still evolving we
did not try to make use of realistic macroparticle distributions generated by tracking
through the injector. Instead, as the initial macroparticle distribution at the entrance of the
linac (~40 MeV) we used an idealized distribution with Gaussian densities in all the
phase-space coordinates except for the longitudinal space coordinate. For the beam
longitudinal density we explored various profiles as shown in Fig. 6.1 with the intent to
provide some guidance to the design of the injector. These profiles differ slightly in shape
but all have approximately the same peak current (of the order of 70 A). In all cases we
used the total charge of 0.8 nC and the normalized transverse emittance of 0.75 mm-
mrad. As for the energy spread we considered a range of values as part of our effort to
assess the microbunching instability. The simulations included the linac section with the
laser heater chicane but did not include a realistic model of the beam-laser interaction.
Instead, the effect of the laser heater is captured by an appropriate setting of the beam
rms energy spread. The implied assumption is that the beam energy density resulting
from the interaction with the laser is close to Gaussian.

Figure 6.1: Sample of longitudinal current profiles used in the simulations. They include
a Gaussian (magenta), parabolic (blue), smooth flat-top (red), and ramped profile
(green).

A critical parameter for the simulations is the choice of the number of
macroparticles Nmp Because of the microbunching instability (Sec. 2.2.5) the quality of
the beam phase space at the exit of the linac is generally very sensitive to small current
fluctuations present in the initial beam density. Using a number of macroparticles smaller
than the bunch population Nmp < N causes a random unphysical enhancement of the level
of these initial fluctuations affecting the outcome of the simulation significantly. A
substantial part of our effort has been to enable the IMPACT code with the capability of
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carrying out high-resolution simulations employing a number of macroparticles
comparable to a typical bunch population.

While we can easily estimate the scaling of the spurious effects introduced by a
limited number Nmp of macroparticles used in the simulations (see Sec. 2.2.5) a more
accurate and useful determination of the minimum requirement can be done by studying
empirically the dependence on Nmp of sensitive quantities like the beam uncorrelated
energy spread or the energy fluctuations at the exit of the linac. The result of this study is
summarized in Fig. 6.2. The quantity plotted in the ordinate axis is the rms energy
fluctuation averaged over all the slices along the bunch core. More precisely, this
quantity is defined as  22 EE

iflct  , where E is the average beam energy after

subtraction of long-scale smooth energy variations along the beam (caused e.g. by the
nonlinearities of the rf waveform or the rf structures wake fields) and

i
E is the energy

centroid for the i-slice. The outer average is over the slices in the beam core. The picture
shows two curves obtained from simulations with 2 and 5 keV initial beam uncorrelated
energy spread. All other parameters in the simulations were kept the same. As expected,
the energy fluctuations resulting from the smaller initial energy spread are notably larger
and decrease with the number of macroparticles employed. While the current capabilities
of IMPACT allow for up to 5B macroparticle simulations (equal to the population of a
0.8 nC electron bunch) it is apparent from the picture that there is little variation in the
outcome between simulations with 1B and 5B. As a consequence in most of the
remaining simulations discussed in this section we opted to use 1B macroparticles.

Figure 6.2: Rms energy fluctuation at the end of the spreader as a function of the number
of macroparticles. Two cases with 2 keV (red) and 5 keV (green) initial rms uncorrelated
energy spread are shown.

Fig. 6.3 illustrates the impact of the initial current profile on the slice energy
spread at the end of the spreader obtained with 5 keV initial energy spread. The shape of
these profiles has a noticeable impact on the phase space of the beam at extraction. Initial
current profile with longer tails tend to cause filamentation and the appearance of
‘bifurcations’ as shown in Fig. 6.4 for the case of a beam with an initial Gaussian profile.
By contrast, a parabolic initial current density, thanks to its more compact support,
evolves into a distribution that occupies a relatively smaller area of phase space (See Fig.
6.5 and Fig. 4.14) thus resulting in a significantly smaller slice energy spread along the
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bunch. The other intermediate profiles (i.e. the `ramp’ and `smooth flat-top’ shown in
Fig. 6.1) yield results somewhat in between.

Figure 6.3: The rms uncorrelated energy spread at the end of the spreader corresponding
to the four initial longitudinal distribution profiles of Fig. 6.1: Gaussian longitudinal
distribution (magenta), parabolic distribution (blue), distribution with ramped current
(green) and distribution with a smooth flat-top (red).

Figure 6.4: The longitudinal phase space at the end of the spreader for initial Gaussian
distribution.

The profile of the bunch current impacts the beam evolution in the longitudinal
phase space mostly through the response to the rf structure longitudinal wake fields
excited by the bunch passage, the nonlinearity of the rf waveform and to some extent
CSR. As already mentioned in Sec. 4.4 a beam phase space like the one shown in Fig. 6.4
is not very attractive as it is likely to induce uncontrolled beam losses, compromise the
quality of the x-ray pulse in the FEL and interfere with diagnostics. This study suggests
that an effort should be made in the design of the injector to control the beam current
profile. If this effort does not succeed it may be necessary to develop an active system to
remove the offending beam tails, like the one described in Sec. 4.4, to be located in the
lower energy section of the linac.

The longitudinal phase space picture shown in Fig. 6.5 taken at the exit of the
spreader is an example of a good-quality beam meeting the design requirement for the
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FEL. The initial parabolic profile for the longitudinal density causes the particle in the
bunch ends to remain relatively close to the core of the beam in phase space whereas the
effect of the microbunching instability is evident in the slight modulation seen in the core
of the beam but remains very modest. The apparently effective control of the
microbunching instability is largely due to an adequate choice of the uncorrelated energy
spread of the beam at injection with 5 keV, the value used for this example, close to the
optimum. Decreasing the initial value of the energy spread to 2 keV, as indicated in Fig.
6.6 (red line), will increase the energy spread of the beam at extraction and enhance the
random fluctuations characteristic of the instability. The same pictures also shows how
increasing further the initial energy spread will keep the instability suppressed but will
not help reduce the final energy spread, as a lower bound to the latter is given by the
product between compression factor (about 17 in these examples) and the initial energy
spread. Control of the slice energy spread in the beam injected into the linac is provided
by a suitable tuning of the laser heater (Sec. 4.1).

The right picture in Fig. 6.6 demonstrates the insensitivity of the calculation to the
choice of resolution for the grid used for charge deposition in the PIC algorithm in
IMPACT, provided that the resolution is high enough to capture the small length scale of
the fluctuations induced by the microbunching instability. Evidence of the spectral
characteristics of the microbunching instability is seen in the ~15 m energy modulation
apparent in the beam core in Fig. 6.5. The period of this modulation is consistent with
expectations from the linear analysis [Heifets et al., Huang et al. 2002, Venturini 2007b]
of the microbunching instability. The spectral properties of the instability are determined
by the gain function through the bunch compressor shown in Fig. 6.7. The peak of the
gain corresponds fairly well to the 15 m modulation after accounting for compression
(factor 17). We remind the reader that the gain function is defined by placing a (small)
sinusoidal density modulation on the beam at the beginning of the beamline under
consideration and taking the ratio between the relative amplitudes of the modulation at
exit and entrance of the beamline.

Figure 6.5: The longitudinal phase space at the end of the spreader for initial
longitudinal density profile and Gaussian energy density with 5 keV uncorrelated rms
energy spread.
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Figure 6.6: Picture to the left: rms slice energy spread at the end of the spreader starting
from an initial parabolic distribution with 2 keV (red), 5 keV (green), 7.5 keV (blue), 10
keV (magenta), and 15 keV (light blue) rms energy spread at the beginning of the linac.
The two curves in the picture are results obtained from two IMPACT runs employing a
grid with 2048 (red) and 4096 (green) cells (5 keV initial energy spread in both cases).

Figure 6.7: The spectral gain of the microbunching instability calculated using linear
theory for 5 keV initial uncorrelated energy spread from the entrance of the linac through
the bunch compressor.

Fig. 6.8 shows the current profile (picture to the left) at the end of the spreader
corresponding to the beam of Fig. 6.5 as well the slice emittances along the bunch
(picture to the right). The current profile is satisfyingly smooth. The small fluctuations
seen in the core of the beam, which we believe are the result of the microbunching
instability are clearly very mild. The picture to the right in Fig. 6.8 shows no evidence
of slice emittance growth. However we should point out that a potential source of
projected emittance growth, rf transverse wakes were omitted in these studies. While we
believe their impact should be modest and controllable [Craievich et al. 2009] they will
require a careful evaluation. Also, in these simulations transverse space-charge forces
were purposely turned off in order to preserve the beam matching against the linear
(unperturbed) lattice. We believe that transverse space-charge effects, which are
essentially limited to the low-end energy span of the linac, can be successfully handled. A
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validation of this assumption, will have to wait for more complete simulation studies
integrating the injector section into the linac. Finally, Fig. 6.9 shows the evolution of the
projected transverse emittance along the machine. The growth (about a factor 2.5) in the
horizontal plane is essentially due to CSR in the bends of the bunch compressor. This
projected emittance growth is mostly concentrated in the tail regions of the beam as
indicated by Fig. 6.10 and is produced by relatively large beam centroid offsets in x and
px. The projected transverse emittance for the core of the beam comprising 64% of the
electrons is only 0.94 m (but still larger than the ~0.7 m slice emittance because of
residual x/z and px/z CSR-induced correlations). While the projected emittance observed
at the exit of the linac would not compromise lasing in the FEL [Xiang et al.], further
studies will be needed to determine whether this value would be consistent with the
diagnostics requirements.

Figure 6.8: Current profile along the bunch (picture to the left) and horizontal (red),
vertical (green) slice emittance at the exit of the spreader (picture to the right) starting
from a 0.8nC bunch with parabolic longitudinal density, 5 keV rms uncorrelated energy
spread and 0.75 m( horizontal and vertical) normalized rms emittance.

Figure 6.9: Evolution of the horizontal (red) and vertical (green) rms projected emittance
along the linac and through the spreader.
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Figure 6.10: The projections of the beam phase-space density in the x/z (left picture) and
px/z (right picture) at the exit of the spreader.

7. Jitter studies

The electron beam delivered by the linac is subject to jitter in key properties due to
errors and fluctuations in its component parts. Parameters of particular interest are the
electron beam energy and energy chirp, bunch length, current, arrival timing at the FEL.
The importance of stable beam energy is to maintain the resonance condition in the FEL,
otherwise the gain length and x-ray power output could suffer large fluctuations with
electron energy. X-ray power output also depends on the bunch current. The timing and
bunch length jitter should be controlled to maximize the interval of time over which the
electron beam can be reliably seeded by a laser to produce good output in the FEL.
Energy chirp in the beam can lead to shifts in the wavelength of the output radiation,
although this is more of a concern when narrow bandwidth pulses are desired.

7.1 Simulation technique

To analyze the sensitivity of the electron beam to errors, the entire beamline must
be considered. The beamline is modeled in LiTrack [Bane et al. 2005] from the
photocathode through the spreader, based on a preliminary injector design provided in
Ref. [Lidia] and on the reference linac design. LiTrack tracks particle energy and
longitudinal position, models basic accelerator components, and allows for prescribed
longitudinal wake fields. An additional feature of modeling jitter in chicanes was used as
implemented in [Craievich et al. 2006]. The physics model is most appropriate for highly
relativistic beams. There is no modeling of space charge or CSR, so some physics is left
out that might contribute to sensitivities to linac parameters. Slight perturbations to a few
linac parameters were made in order to reproduce the desired beam profile at the end of
the accelerator. In addition, the initial electron beam leaving the cathode is replaced by a
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mock distribution used by running LiTrack backwards starting from a reasonable
distribution at 40.8 MeV. This was necessary to simulate the entire injector and linac
within the physics model used by LiTrack. We note that the current injector design
targets obtaining the distribution at 40.8 MeV that we use here.

Many sources of jitter are examined in the LiTrack simulations. Two fluctuating
parameters of the initial beam are the charge per bunch and the time of impact of the
photocathode laser on the photocathode. The error in this time of impact, as well as the
final timing of the electron bunch, is measured with respect to a fixed, ideal reference
time that governs the entire system, including RF. The phase-space distribution of the
electrons leaving the cathode is fixed. Shifts in these parameters are particularly
important because they continue to affect beam propagation throughout the injector and
linac, altering wake fields and the RF phases experienced by the beam. All RF cavities
are allowed to fluctuate in both peak accelerating gradient and phase. In addition, the
strength of the chicanes in the bunch compressor and the spreader fluctuate. While low-
energy drift sections are modeled as generalized dispersive sections, their parameters are
fixed by the drift length and do not have jitter.

The elements of the injector are the photocathode, which is inside the cathode RF
cavity at 100 MHz, a drift section, a buncher RF at 650 MHz for velocity compression, a
second drift, and the injector acceleration stage which consists of 6 RF cavities at 1300
MHz and accelerates the beam up to 40.8 MeV. After the injector, the beam passes
through linac 1 which has 18 RF cavities at 1300 MHz and accelerates the beam up to
240 MeV, then the third harmonic RF at 3900 MHz which has 7 cavities, the chicane for
bunch compression, linac 2 which has 162 RF cavities and accelerates the beam to the
final energy of 2.4 GeV, and the spreader which has nonlinear dispersion but R56  0
(see schematics in Fig. 1.1).

Listed beam parameters, such as energy or current, are either given at a nominal
external reference time, which is fixed to be the arrival time for the center of the nominal
beam, or as an average over a 0.5 ps interval centered about this reference time.
Additional parameters are the bunch length (total duration head to tail) and the shift in the
final arrival time for the center of the bunch relative to the external reference time.
Fluctuations in these parameters, as well as for beamline errors, are given in terms of
their rms values.

We first consider errors that are completely uncorrelated, both from shot-to-shot
and among different beamline elements. We then model the time evolution of errors
using a characteristic power spectral density (PSD) function. The error function for each
element is built up out of randomly phased frequency bins spaced 1 Hz apart, ranging
from 1 to 300 Hz. Based on experimental observations of acoustic noise [Portmann et
al.], the power spectral density is assumed to be flat over the range 1 to 20 Hz, and then
to decreas at higher frequencies as 1/ f 4 , where f is the frequency. Excluding frequencies
above 300 Hz has a negligible effect. All sources of jitter are taken to have a similar PSD
function except for the charge per bunch, which is assumed to fluctuate on a shot-to-shot
basis because these errors are not expected to have a mechanical or electrical basis which
would evolve over longer time scales. The effect of variation in the charge thus tends to
stand out over short time scales. A spatial correlation is also considered, where RF
cavities in linac 2 are assumed to be grouped into cryomodules of 9 cavities each, and all
the RF cavities in a single cryomodule are taken to have identical power and phase errors,
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although neighboring cryomodules are still uncorrelated. Similarly, all third harmonic
RF cavities are taken to have identical errors. This increases fluctuations in the final
beam by reducing the number of statistically independent errors.

Finally, a simple model for the effectiveness of a feedback system is used.
Measurements of beam jitter could be taken for the final beam or earlier in the
acceleration stage, such as at the end of the bunch compressor, and could then be
corrected by feedback, for example with dedicated RF cavities. However, rather than
modeling the feedback directly, we consider a generic feedback system and apply the
general rule that a well-designed feedback system should yield similar results as if the
noise inputs were all reduced. We model the system with feedback by taking the PSD at
each frequency f and reducing it by a factor1 ( N /10Tf ) , where T is the time resolution
of the feedback system and N is the number of measured quantities that the feedback
system reacts upon. HereN  3, for example bunch energy, arrival time and bunch length
could be measured. The time resolution T of the feedback system is taken to be either 1
ms or 0.1 ms. The feedback does not act on the errors in the bunch charge, which vary
shot-to-shot.

The nominal charge per bunch is 0.8 nC, and the current in the core of the beam is
approximately 9 A. The local compression factor in the core of the bunch is 7.5 going
from the initial distribution to the end of the injector, and the bunching chicane
compresses the bunch by an additional factor of 12. With no beamline errors, the rms
standard deviation in energy in these simulations is 20 keV. The current at the nominal
center is 0.847 kA, and the rms standard deviation in current is 34 A. To suppress the
effects of short-scale statistical noise in the beam profile, the energy and current profiles
are generated by smoothing the values per bin over the 0.5 ps region through an 8th-order
polynomial fit. The smoothing is particularly important for the current profile, taking the
rms standard deviation down to 25 A, and for derivatives. A low energy spread is used in
these simulations in order to highlight short-wavelength wakefield effects, which tend to
be suppressed by large energy spreads. The rms slice energy spread in the core of the
final beam is about 23 keV. For the ideal configuration, there is approximately 650 fs
over which the beam current, energy, and energy spread are all close to nominal
parameters.

7.2 Global Jitter Studies

Simultaneous, uncorrelated errors in all parameters were simulated in LiTrack.
Results are summarized in Table 7.1, where a linear analysis is used to obtain the
contribution of key beamline sections to electron beam fluctuations for given moderate
errors. The ``null'' row serves as a measure of nonlinear effects. The calculation of jitter
caused by sections with multiple RF cavities includes partial cancellations caused by
uncorrelated errors, and so the total contribution is approximately the square root of the
number of cavities times the jitter caused by a single cavity error. Global errors can be
estimated by scaling fluctuations from individual elements for the expected error, and
adding the results in quadrature.
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Table 7.1: The contributions of various sources of jitter to fluctuations in output average
beam energy, average current, bunch length, and the shift in arrival time. Energy and
current are averaged over a fixed 0.5 ps interval. The sign represents the sign of the
perturbation when the input error is positive.

Quantity Amount Contribution to Jitter in:
Energy Current Bunch length Arrival time
[keV] [A] [fs] [fs]

charge 1% -25.5 -1.9 11.3 6.0
timing 100 fs 8.5 -0.68 1.9 -0.83
cathode voltage 0.01% -33.3 8.1 -8.7 1.1
cathode phase 0.1 degree -2.1 2.2 -0.73 -0.43
buncher voltage 0.01% 4.2 -1.5 1.3 -0.15
buncher phase 0.1 degree -220 50.7 -56.3 5.7
injector accel voltage 0.01% 0.83 1.3 0.14 -3.0
injector accel phase 0.1 degree 1.8 -5.2 5.3 -0.93
linac 1 voltage 0.01% 0.76 -1.1 0.43 -10.0
linac 1 phase 0.1 degree 11.5 26.7 21.0 -51.7
third harmonic voltage 0.01% -1.3 1.1 -0.14 1.7
third harmonic phase 0.1 degree -3.4 7.1 -8.7 0.53
chicane 0.01% 9.7 3.8 -1.1 22.3
linac 2 voltage 0.01% 16.8 0.092 0.0033 -0.037
linac 2 phase 0.1 degree 10.1 1.5 -0.063 0.13
spreader 0.01% -0.43 1.4 -0.016 0.13
null – 0.13 0.13 0.024 0.033

7.3 Time-Dependent Model

Having looked at completely uncorrelated noise errors, we now consider the time-
dependent model. Nominal rms beamline errors used are 2% for the charge per bunch,
300 fs for the time of impact of the photocathode laser pulse, 10-4 for the RF peak
gradient, 0.1 degree for the RF phase, except for the cathode RF which is allowed to jitter
by 2  10-4 in peak gradient and 0.2 degree in phase, and 10-4 for the strength of the
chicane and spreader. In each plot below, the curves represent single shots separated by 1
ms in time. A total of 250 shots, corresponding to 250 ms of beam variation, is shown.
The charge per bunch errors are assumed to be uncorrelated in time. For all other error
terms from a single element, the PSD is normalized so that the the rms of the combined
error from all frequency bins yields the nominal error level. Results are shown in Fig.
7.1.



65

Figure 7.1: Energy (left) and current (right) profiles for simulations of sample electron
bunches over a 250 ms time period, adopting the assumed noise spectrum.

The same simulations are repeated for the feedback model with either 1 ms or 0.1
ms time resolution. The feedback model dramatically improves performance, as shown in
Figs. 7.2 and 7.3. With feedback, the charge per bunch variation becomes much more
significant as a driver of jitter in electron beam parameters. Charge per bunch
fluctuations have a distinctive signature, as they affect longitudinal wake fields (recall
that space-charge effects are not modelled by LiTrack). Therefore, the head of the bunch
is not affected but the tail of the bunch is very sensitive to charge per bunch. With the
faster feedback system, although the head of the bunch is extremely stable, variations in
the tail of the bunch are not much improved.

Figure 7.2: Energy (left) and current (right) profiles for simulations of sample electron
bunches over a 250 ms time period, using the prescribed noise spectrum and including a
generic feedback model with 1 ms time scale.
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Figure 7.3: Energy (left) and current (right) profiles for simulations of sample electron
bunches over a 250 ms time period, using the prescribed noise spectrum and including a
generic feedback model with 0.1 ms time scale.

Qualitatively, the charge per bunch jitter is the main driver of fluctuations in the
energy chirp. For the case without feedback, the timing fluctuations of the head of the
bunch are equal to that of the tail, unlike what would be expected from charge per bunch
contributions. The jitter with no feedback is sufficiently large that linear perturbation
models do not yield accurate results, but with feedback the overall errors are reduced and
the linear model is in fair agreement. For the T = 1 ms feedback model, the bunch length
errors are larger than the arrival time errors, in agreement with the first row of Table 7.1.
For the T = 0.1 ms feedback model, the charge fluctuations are the dominant effect. The
timing variations of the head of the bunch are reduced to 7 fs, and the tail and bunch
length jitter are 25 fs; the arrival time error lies in between these values at 15 fs. The
fluctuations in beam energy, current, bunch length, and arrival time are given in Table
7.2, along with estimates of the contribution of charge fluctuations. Repeating the
simulations without any charge per bunch jitter, fluctuations in the energy could be
reduced to as low as 21 keV, in the current to 6 A, in the bunch length to 6 fs, and in
arrival time to 5 fs.

Table 7.2: Jitter in beam energy and current at the fixed reference time, and in the bunch
length and arrival time. Results are given for the nominal rms errors and PSD function,
for the cases with no feedback, feedback with a 1 ms resolution, and with a 0.1 ms
resolution. Includes estimates for the contribution of charge fluctuations, where possible.

Parameter no feedback T = 1 ms feedback T = 0.1 ms feedback
Energy [keV] 200 75 45

contrib from Ne 58 44 40
Current [A] 47 19 11

contrib from Ne – 9 9
Bunch length [fs] 61 30 25

contrib from Ne 5 23 25
Arrival time [fs] 54 21 15

contrib from Ne 17 15 15
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When considering advanced feedback systems, the issue of whether bunch charge
or other errors have significant shot-to-shot variations becomes more critical to
performance. Reliable estimates of the magnitude and temporal structure of errors will
have to be obtained from hardware studies. Taking the above nominal jitter values for
beamline errors, the rms energy fluctuations range from 200 keV to 45 keV depending on
whether and what type of feedback systems are used. Timing jitter can likewise be
reduced by feedback from 54 fs to 15 fs, and jitter in the central current from 47 A to 11
A. Fluctuations in the energy chirp are dominated by the error in the charge per bunch
and feedback systems may not be able to stabilize this quantity. It remains to determine
the effect of these fluctuations on FEL performance. A more information can be found in
[Penn 2009].

8. Conclusion

In this Report we have analyzed the most critical aspects of the accelerator and
beam dynamics for a proposed soft x-ray free electron laser at the Lawrence Berkeley
National Laboratory. Our study includes the design, optimization, and characterization of
the machine using advanced analytical tools and state-of-the-art high resolution
macroparticle simulations. We demonstrate the feasibility of feeding ten FELs with high
brightness beams of electrons at a 100 kHz bunch repetition rate with up to 0.8 nC charge
per bunch and 1 kA peak current, a normalized transverse slice emittance smaller than 1
m, an uncorrelated energy spread smaller than 100 keV, and a final energy of 2.4 GeV.
Our conclusions are based on an ideal lattice. A study of the sensitivity of the electron
beam parameters to misalignment errors and lattice errors is deffered to a future detailed
design. However, we found that the remarkable stability in the electron bunch peak
current, length, energy, and arrival time at the FEL can be achieved by correcting jitter
errors in the linac using dedicated feedback systems that take advantage of the high
bunch repetition rate. Future design work will also include development of diagnostics
systems taylored to this machine. A closer look at effects that have not been sufficiently
investigated (e.g. transverse space-charge at the low-energy end of the accelerator) is in
our plans as well.
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Appendix A: The parallel tracking-code IMPACT

IMPACT [Qiang et al. 2000] is a suite of parallel particle-in-cell codes, designed for
modeling high intensity, high brightness beams in rf proton linacs, electron linacs and
photoinjectors. It consists of two parallel particle-in-cell tracking codes (one is
longitudinal position-dependent and one is time-dependent), an rf linac lattice design
code, an envelope matching and analysis code, and a number of pre- and post-processing
codes. The present version of IMPACT can treat intense beams propagating through
drifts, magnetic quadrupoles, magnetic solenoids, magnetic dipoles, and rf cavities, using
map integrators and nonlinear Lorentz integrators.

The codes implements a novel treatment of rf cavities [Abell], in which the gap
transfer maps are computed during the simulations by reading in rf fields on axis
calculated using for example the SUPERFISH code [SUPERFISH]. This feature permits
avoiding time-consuming (and unnecessary) fine-scale integration of the orbit of the
individual particles through the highly z-dependent cavity fields. Instead, fine-scale
integration is used to compute the maps (which involve a small number of terms), and the
maps are then applied to advance the particle orbits (this is analogous to techniques used
to simulate beam transport through magnets with fringe fields. Recent additions include
new capabilities for modeling short-range longitudinal and transverse wake fields as well
as 1D CSR wakes (the latter for now do not allow for transient effects through the dipole
magnets ends).

Both parallel particle tracking codes of the IMPACT suite assume a quasi-static
model of the beam and calculate space-charge effects self-consistently at each time step
together with the external acceleration and focusing fields. The 3D Poisson equation is
solved by depositing the charge onto an adaptive 3D Cartesian grid and solving for the
potential on the grid in the beam frame. The resulting electrostatic fields are Lorentz
transformed back into the laboratory frame to obtain the space-charge forces of the beam.
The user can chose among six Poisson solvers, corresponding to transverse open or
closed boundary conditions with round or rectangular shape, and longitudinal open or
periodic boundary conditions. These solvers are based on either a spectral method for
closed transverse boundary conditions, or a convolution-based Green function method for
open transverse boundary conditions. The convolution for the most widely used open
boundary condition Poisson solver is calculated by means of an FFT with doubled
computational domain. The computing time of this solver scales as NN log , where N is
number of grid points. The parallel implementation is based on a two-dimensional
domain decomposition approach for the three-dimensional computational domain.

The IMPACT simulations used for this Report were carried out on the National
Energy Research Scientific Computing Center (NERSC) facilities [NERSC]. The end-to-
end runs employing 1B macroparticles reported in Sec. 6 were typically distributed on
512 processors taking about two hours to complete.

A typical example of a set of benchmarks that we carried out to validate the code is
shown in Fig. A.1. Here we compare the linear gain of the microbunching instability
from the laser heater through the bunch compressor of the BFA linac as detemined by
IMPACT and linear theory [Heifets, Venturini 2007b]. The calculation was done for a
slightly modified version of the lattice considered in this study. The good agreement
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shown by the picture is a validation for both the macroparticle simulations as well the
simplified model of dynamics embodied by linear theory.

Figure A.1: Linear gain for the the microbunching instability through the bunch
compressor. The results from IMPACT calculations (dots) are in good agreement with
analysis based on linear theory (solid line). Electron beam parameters before
compression and electron peak current after compression are shown in the top right
corner.

Appendix B: Vlasov solver

Direct numerical solution of the Vlasov equation represents a complementary approach to
the more prevalent method of simulating beam dynamics by macroparticle traking. In
particular a Vlasov solver offers the advantage of being immune from the statistical
fluctuations stemming from using a limited number of macroparticles, which may
interfere with a correct interpretation of the results when studying the microbunching
instability (see Sec. 2.2.5). Small scale structures are more easily resolved and
instabilities more accurately characterized. Moreover, in contrast to semi-analytical
studies based on the linearized Vlasov equation, numerical solutions of the full equation
can be used to investigate saturation effects, which may be important.

It should be pointed out, however, that the Vlasov solver cannot be expected to
substitute macroparticle simulations as the burden both in terms of developing suitable
numerical algorithms and required computational resources limits the dimensionality of
phase space that can be explored (the computational cost scales quite unfavorably with
the phase-space dimension). At this time only a 2D phase-space solver is fully available
and functional and the physics that can be investigated for now is limited to the short-
scale effects of collective forces causing microbunching. Studies based on numerical
solutions of the Vlasov equation should be seen as occupying a middle ground between
the semi-analytical analysis based on the linearized Vlasov equation and macroparticle
simulations.
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Here we briefly discuss 2D longitudinal phase-space Vlasov solver developed in
[Venturini et al. 2007] that we used in studying the lattice design for the BFA machine
and to generate the data reported in Fig. 4.6. The solver implemented as a Fortran code
finds numerical solutions of the equation:
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is the collective force expressed in terms of an impedance per unit length Z(k) and the
Fourier transform )(ˆ k of the longitudinal bunch density. The existing code allows for
inclusion of models of impedance describing space charge, coherent synchrotron
radiation (CSR), and possibly rf structure wake fields (although the latter have no
consequence on the microbunching instability). In particular CSR is evaluated in free
space on the assumption that the bunch follows a trajectory with uniform radius of
curvature, thus excluding transition effects through the entrance and exit of bending
magnets. Incidentally this is the same model presently implemented in IMPACT [Qiang
et al. 2009]. The numerical solution of (B.1) is found using a variation of the time-
splitting method that was already used to study the longitudinal beam dynamics in
storage rings [Venturini et al. 2005]. A technical complication arising when treating
single pass systems and in particular bunch compressors is the presence of a large
correlation in the beam density in the z-plane. The method implemented in the code
tackles this complication by solving Eq. (B.1) in a new coordinate system where the
correlation is removed. In the new coordinates the density function for the beam is
represented on a rectangular grid with adapting cell sizes to follow the bunch
compression in the longitudinal coordinate (and the corresponding stretching in canonical
momentum). For a detailed description of the method we refer to [Venturini et al. 2007a].

A possible concern regarding the study of a purely longitudinal phase space is the
seeming neglect of the smearing effect to microbunching caused by a finite transverse
emittance. While it is true that a complete accurate assessment of the effect of transverse
emittance should entail the inclusion of the dynamics in the horizontal plane as well, we
argue that it is possible in 2D to account for this smearing in an approximate but
meaningful way by introducing an effective low-pass filter in the evaluation of the
collective force. In particular we contend that (B.2) should be replaced with
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Confidence in the validity of the above model of emittance-induced smearing can
be obtained from comparison with predictions from linear theory [Heifets et al.] in the
regime where linear theory applies [Venturini et al. 2007a].

In the reminder of this section we illustrate the application of the solver to the
study of FERMI@elettra lattice [Bocchetta et al.] which presents many of the problems
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posed by the machine discussed in this paper. Fig. B1 shows the gain curves for a beam
through approximately 36 m of transport line including a section of accelerating linac
(from E=96 to 233 MeV) followed by a chicane for bunch compressor. The beam is a
flattop with gaussian energy density and 10 keV rms energy spread, x=1 m normalized
transverse emittance, and I=191 A peak current The two pictures contrast the case where
the smearing effect of the horizontal emittance is taken into account (left picture) to the
case where it is not (picture to the right; in which case a finite value of the emittance
x=y=1 m is still assumed for the purpose of determining the bunch sizes along the
lattice). Notice how the transverse emittance smearing effect substantially reduces the
gain at small wavelengths. Good agreement is found with linear theory (solid lines).

Figure B.1: Gain curves through for L1+BC1 in the presence of CSR and space charge
(with space charge excluded in BC1) as determined by linear theory (solid line) and from
the numerical solutions of the Vlasov equation (blue dots). eV; smearing effect of
transverse emittance is included in the left but not in the right picture.

The results from simulations through a longer portion of the linac including both the
bunch compressors present in the FERMI lattice design are reported in Fig. B.2. The
pictures show snapshots of the longitudinal phase space detailing the evolution of the
microbunching instability seeded by shot noise for a choice of beam parameters causing
the instability to be particularly strong. The snapshots are taken right after the first bunch
compressor BC1 (top left picture) at the entrance of the second bunch compressor (top
right picture), after the 3rd dipole in BC2 (bottom left picture) and at the exit of BC2
(bottom right picture).

The initial beam density is a flattop in charge density and Gaussian in the
(uncorrelated) energy spread. The shot noise was modeled by perturbing the initial,
smooth density function in phase space with random noise specified as follow. Having
denoted with (q,p) the pair of canonical coordinates (q is a normalized longitudinal
coordinate, p the energy) the density function f = f(qi,pj) is represented on a Cartesian
grid with cells of size q and p. Indicate with fij

(0) = f (0)(qi,pj) he smooth density; we set
the initial density with random noise to fij= fij

(0)(1 + ij) where ij is a stochastic variable
with normal law distribution, vanishing average and variance = Nij

-1/2, where Nij = N
fij

(0)qp is the number of electrons contained in theqp cell of phase space.
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Figure B.2: Longitudinal phase space at selected locations along the linac starting from
a noisy flat top bunch with Gaussian rms energy spread; s=0 corresponds to the start of
the laser-heater section. The top left pictures is taken at the exit of BC1; top right picture
is taken at the entrance of BC2 and the remaining two after the BC2 third and fourth
dipole. Here q is the longitudinal coordinate in mm and p is the remaining energy offset
in MeV after removing the correlated energy variation.


The calculation reported in Fig B.2 indicates that most of the energy modulation

induced by space charge (the dominant collective effect) takes place between BC1 and
BC2. By the time the beam reaches the second bunch compressor these fluctuations are
sufficiently large to cause the instability to reach saturation, as indicated by the two
bottom figures.

Projection of the 2D phase-space density can then be made to determine the linear
charge density profile and energy distribution. Repeating the calculation by varying the
rms energy spread for the initial density and then plotting the beam energy spread at the
exit of the linac vs. the value at entrance yields a useful curve that gives guidance toward
optimization of the tuning of the laser heater. Such curve was reported in Fig. 4.6 of
Sec. 2, where a comparison is shown between the lattices with two and one bunch
compressor. In these simulations the effect of the laser heater was represented as
generating a beam energy density with Gaussian profile and adjustable rms spread. It
should pointed out that this is only an approximation as the laser-beam interaction in the
laser heater generates a more complicated energy density profiles – possibly yielding
different Landau damping for equal rms energy spreads.
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