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ABSTRACT 

A two-dimensional transient model of fault-charged hydrothermal systems 

has been developed. The model can be used to analyze temperature data from 

fault-charged hydrothermal systems, estimate the recharge rate from the fault, 

and determine how long the system has been under natural development. The 

model can also be used for theoretical studies of the development of fault- 

controlled hydrothermal systems. The model has been tentatively applied to 

the low-temperature hydrothermal system at Susanville, California. A reason- 

able match was obtained with the observed temperature data, and a hot water 

recharge rate of 9 x l o e 6  m3/s*m was calculated. 

INTRODUCTION 

One of the most important tasks in geothermal reservoir engineering is 

to predict the useful lifetime of the resource for a given exploitation scheme. 

In order to make these predictions, reliable estimates must be available of 

the amount of hot water in place, the rate at which it can be extracted (trans- 

missivity of the reservoir), and the rate and extent of hot water recharge into 

the system. The first two estimates can often be readily obtained from simple 

volumetric calculations and well-test analysis, respectively; reliable esti- 

mates of the recharge are often harder to get. 

model for calculating the rate of recharge into a fault-charged hydrothermal 

reservoir. 

This paper describes a simple 

A l l  geothermal reservoirs are controlled to some extent by faults and 

fractures; in some, however, a single fault or the intersection of two or more 
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major faults is believed to act as the main conduit for recharge. Examples 

of these include high-temperature systems such as Roosevelt Hot Springs, Utah; 

and East Mesa, California; and low-moderate temperature systems such as the 

Klamath Falls and Vale geothermal fields in Oregon and the Susanville system 

in California. This paper discusses the model developed for evaluating such 

systems and illustrates its applicability by estimating hot water recharge 

into the Susanville, California, geothermal resource--a shallow low-tempera- 

ture hydrothermal system. 

In contrast to the temperature logs from most geothermal wells, those 

from wells in fault-charged geothermal reservoirs often display anomalous 

behavior. One such profile, shown in Figure 1, was obtained from a well in 

the "steamer district" of the Klamath Falls KGRA (Benson and O'Brien, 1980). 

The profile shows the typical linear characteristics associated with conduc- 

tive heat transfer in the top 200 ft, then a typical convective type profile 

down to 250 ft. 

(below that the temperature profile reflects downflow in the well). One pos- 

sible explanation for the behavior shown in Figure 1 is that a fault recharges 

an aquifer located at a depth of 200-250 ft below the ground surface. 

relatively hot water travels up the fault until it intersects the permeable 

aquifer; it is then transported laterally in the aquifer. As the hot water 

moves through the aquifer, heat is lost mainly by conduction to the overlying 

and underlying strata. Variations in the temperature profiles between wells 

at different distances from the recharging fault can be used to estimate the 

recharge rate. 

At a depth of 250 ft the profile displays a definite reversal 

The 

. 
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Figure 1 .  Temperature prof i le  
from a w e l l  a t  
Klamath Fal ls ,  Oregon. 
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Various mathematical models applied to fault-charged hydrothermal systems 

are cited in the literature. Kilty et al. ( 1 9 7 8 )  and Goyal and Kassoy ( 1 9 8 1 )  

developed two-dimensional models (semi-analytic solutions) of the Monroe hydro- 

thermal system, Utah, and the the East Mesa field, respectively. Sorey ( 1 9 7 6 )  

and Riney et al. ( 1 9 7 9 )  applied numerical models to Long Valley Caldera and 

the Fast Mesa system,respectively. 

In contrast to these models, the model presented here does not consider 

vertical temperature variations within the aquifer, but calculates the tran- 

sient heat losses to the caprock and the bedrock. The model may therefore be 

quite useful in analyzing relatively young fault-charged thin hydrothermal 

systems, as well as in theoretical studies of the development of such systems. 

MATHEMATICAL MODEL 

Figure 2 shows the reservoir system on which the mathematical model is 

based. Hot water flows up the fault and feeds a shallow aquifer. The fault 

is shown by broken lines to illustrate that no heat losses are considered when 

the fluid is flowing up the fault. Initially the temperature in the system is 

linear with depth (normal geothermal gradient) as controlled by the constant- 

temperature boundaries at z = D (ground surface) and z = -H. At time t = 0 

hot water starts to flow into the reservoir at a temperature Tf. 

assumptions employed are listed below: 

The primary 

1. The mass flow is steady in the aquifer, horizontal conduction is 

neglected, and temperature is uniform in the vertical direction (thin aquifer). 

Equilibrium between the fluid and the solids is instantaneous. 
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2. The rock matrix above and below the aquifer is impermeable. Hori- 

zontal conduction in the rock matrix is neglected. 

3. The energy resistance at the contact between the aquifer and the 

rock matrix is negligible (infinite heat transfer coefficient). 

4. The thermal properties of the formations above and below the aquifer 

may be different, but all thermal parameters for the liquid and the rocks are 

constant . 
The differential equation governing the temperature in the aquifer at any 

time t can readily be derived by performing an energy balance on a control 

volume in the aquifer: 

a x1 aT aT 
- 0. b ax paca at - z= 0 b aZ z=o b aZ 

z = 0: 

The symbols are defined in the nomenclature. 

the one-dimensional heat-conduction equation controls the temperature: 

In the caprock and the bedrock 

a2T1 aT1 
PICl at ' x1 2 = 

a2 
z > 0: 

a 2T2 a T2 
P2c2 at ' - =  z < 0: 

'2 a22 
( 3  



- . . .  . 

7 

The boundary conditions are: 

Ta(Oft) = Tff t > 0, 

T (x,-~ft) = Tb2 = T + a(H + D)- 
2 bl 

The following dimensionless parameters are introduced: 

lt 

PlClD 
2 f  T =  

b 'ac, e = -  - 
P I C l  

p2c2 

l C 1  
Y = - r  

x2 * = -  
' 

- - Tbl 
TD Tf - Tbl' - 

aD 

Tf - Tblf T =  

H a = -  
D *  

(6b) 

(6f 1 
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aTD2 
-0- an 

l l = O  
an rl = 0: 

Subs t i t u t ion  of Equations ( 6 a ) - ( 6 i )  i n t o  Equations ( 1 ) - ( 3 )  y i e lds  

a aTD a e - -  aTD - 0, - - e  

26 aT 
rl =O 

2 
a TD1 
- -  - -  

aT I 
rl > 0: 

an 

a2TD aT 
-=I- 2 D2 

2 w aT * ll < 0: 
an 

The i n i t i a l  conditions become 

The boundary conditions become 

TD ( 0 , T )  = 1, T 3 0, 
a 

The so lu t ion  of Equations (7 ) - (11 )  can be e a s i l y  obtained i n  the Laplace domain 

as (see Bodvarsson, 1981): 

LI = - 1 [l  - Tg] exp - [ep + 4 + ,2c] LorT + 9 
tanh p tanh q rl = 0: 

P 

T 
sinhfirl - P rl > 0: v = [. - 21 cosh& - (rl - 1) .  (13)  
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In Equations ( 1 2 ) - ( 1 4 ) ,  u, v ,  and w represent  the  temperature i n  the  Laplace 

domain of t he  aqui fe r ,  t h e  rock above the  aqui fe r ,  and the  rock below the  aqui- 

fer,  respect ively.  

As Equations ( 1 2 ) - ( 1 4 )  cannot e a s i l y  be inverted from the  Laplace domain, 

a numerical i nve r t e r  developed by Stehfes t  ( 1 9 7 9 )  was used. The r e s u l t s  ob- 

ta ined  by using the  inve r t e r  a r e  discussed below. 

THEOFIETICAL STUDIES 

The model has been employed t o  study the  evolution of fault-charged hydro- 

thermal systems. 

depth a t  a given loca t ion  f o r  severa l  d i f f e r e n t  values of dimensionless t i m e  T -  

A l l  of t he  dimensionless parameters a r e  defined i n  the  nomenclature. The f ig-  

ure  shows t h a t  i n i t i a l l y  ( T  = 0 )  the system is  i n  equilibrium w i t h  a l i n e a r  

geothermal gradient.  A t  T = 0 t h e  hot  water starts t o  flow i n t o  the  permeable 

aqui fe r ;  i n  t h e  e a r l y  s tages  of development, only the  aqui fe r  i s  being heated. 

Later  on, however, t he  conductive heat  t r a n s f e r  between the  aqui fe r  and the  

adjacent  rocks increases ,  causing the  surrounding rock t o  be heated and the  

temperature i n  the  aqui fe r  t o  s t a b i l i z e .  

Figure 3 shows a p l o t  of dimensionless temperature TD versus 

The temperature i n  the  aqui fe r  and the  caprock reaches steady s t a t e  a t  a 

dimensionless time, T, between 1 and 10. A t  t h i s  t i m e  the  temperature i n  t he  
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rock formation below the aquifer is nowhere near a steady-state condition. 

The high value of = 30 shows that the constant-temperature boundary at the 

ground surface is much closer to the aquifer than the deep boundary and should 

therefore control the thermal response. In the example shown in Figure 3, the 

steady-state temperature of the aquifer at the location in question is approx- 

imately TD = 0.91. 

The temperature distribution along the aquifer is shown in Figure 4 for 

similar parameters as were used in Figure 3. The figure shows that close to 

the fault (small 5) the temperature rises almost immediately to the tempera- 

ture of the recharging water. The figure also shows that a steady-state tem- 

perature distribution is reached at a dimensionless time T between 1 and 10. 

The steady state temperature distribution is independent of 8. The effects of 

other parameters on the development of a fault-charged hydrothermal system are 

given by Bodvarsson ( 1 9 8 1 ) .  

APPLICATIONS 

As a first attempt to verify the usefulness of this model for fault- 

charged hydrothermal systems, it was applied to data from the geothermal system 

at Susanville, California. The more than 20 exploration wells in Susanville 

have located a low-temperature ( <  8OOC) shallow geothermal aquifer of limited 

areal extent (Benson et al., 1980) .  Figure 5 shows the location of the wells 

and the temperature contours at an elevation of 1150 m, which corresponds to 

a depth of 125 m, where the primary aquifer is found. The temperature con- 

tours shown in Figure 5 suggest that the reservoir is charged by a fault with 
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a NTIJ s t r i k e .  The s t eep  temperature gradients  t o  t h e  w e s t  of t h e  proposed f a u l t  

i l l u s t r a t e  t h a t  the f a u l t  i s  recharging t h e  aqui fe r  only t o  the  eas t .  Temper- 

a t u r e  contour m a p s  a t  d i f f e r e n t  depths show fau l t - r e l a t ed  c h a r a c t e r i s t i c s  s i m -  

i l a r  t o  those shown i n  Figure 5. Furthermore, many of the  w e l l s  a t  Susanvi l le  

s h o w  a reversa l  w i t h  depth s i m i l a r  t o  t h a t  shown i n  Figure 1 f o r  t he  Klamath 

F a l l s  w e l l .  

One po ten t i a l  use €or t h e  hydrothermal energy a t  Susanvi l le  i s  space heat- 

ing. However, the  l i m i t e d  areal ex ten t  of the hydrothermal system (Figure 5 )  

i nd ica t e s  t h a t  t h e  m a s s  of ho t  water ( t h e  l imi t ing  temperature taken a s  60°C) 

amounts t o  only 1-3 x lo7  m3 (depending upon the  aqui fe r  thickness  se l ec t ed ) .  

Current p lans  (Department of Energy, 1980) c a l l  f o r  an ex t r ac t ion  rate of 

approximately 0.035 m3/s (550 g p m )  f o r  space heat ing of 14 publ ic  bui ldings.  

I f  recharge is  neglected,  t h i s  corresponds t o  a l i f e t i m e  of 9-27 years.  I f  

t h e  project i s  intended f o r  20 years ,  i t s  success w i l l  depend g rea t ly  upon t h e  

recharge rate. A r e l i a b l e  estimate of t h e  recharge i n t o  t h e  Susanvi l le  hydro- 

thermal system i s  the re fo re  g r e a t l y  needed. Application of our model t o  the  

Susanvi l le  anomaly w i l l  g ive t h e  f i r s t  estimate of t h e  recharge rate. 

Table 1 shows t h e  parameters se l ec t ed  from the  w e l l  data.  The maximum 

temperature measured i n  t h e  f i e l d  is  approximately 8OoC i n  w e l l  S-ga, which i s  

loca ted  very c lose  t o  t h e  proposed f a u l t  (see Figure 5 ) .  The temperature of 

t h e  w a t e r  recharging t h e  aqui fe r  is  the re fo re  f ixed  a t  8OOC. Picking 6OoC as 

t h e  average aqui fe r  temperature, the f l u i d  parameters can be obtained, 

pw = 983 kg/m3, C, = 4179 J/kg OC. It i s  now poss ib le  t o  ca l cu la t e  t h e  appro- 

p r i a t e  value of 0 , 0 = 0.31 (Equation 6c ) .  
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TABLE 1. Parameters used for the Susanville model. 

Parameter Value 

Aquifer thickness, b 

Depth to aquifer, D 

Aquifer porosity, $ 

35 rn 

125 m 

0.2 

Thermal conductivity of roc.-, A 1  1.5 J/m*s* 

Rock heat capacity, c1 

Rock density, p 1  

1 

1000 (J/kg'OC) 

2700 (kg/m3) 

The objective of this exercise is to use the model to match the tempera- 

ture contour data shown in Figure 5 and the temperature profiles from individ- 

ual wells in an attempt to estimate the hot water recharge. After a number of 

computer runs, the match shown in Figures 6 and 7 was obtained. As Figure 6 

shows, the calculated temperature contours compare very well with the observed 

ones in the hottest region of the field, close to the proposed fault. Further 

away, however, there are large differences between the calculated and the 

observed temperatures. There are many possible reasons for the discrepancy. 

First, only limited data are available away from the fault (only wells S-5 and 

S-lo), so that temperature contours are not accurately known. Second, evidence 

shows that there is a high regional flow of ground-water to the southeast and 

that mixing of the colder shallow groundwater with the hot fluids is taking 

place. Third, the subsurface geology is considerably more complex than can be 

accounted for by the simple model we have used here. In any case, the model 

matches the temperature profiles of wells close to the proposed fault very well, 

as shown in Figure 7. 
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The match shown in Figures 6 and 7 was obtained using two different sets 

of parameters. First, if the lower constant temperature boundary is placed 

very deep (H >> D), the parameters obtained indicate that the hydrothermal 

system has been under development approximately 2000 years and that the fault 

charges the system at a rate of 9 x m3/sem. Second, a very similar match 

is obtained if the constant temperature boundary is placed at a depth of about 

400 meters (a = 2.0); in this case the parameters obtained show that steady- 

state temperature conditions are reached (consequently the evolution time 

cannot be determined except that it exceeds 10,000 years) but the calculated 

recharge rate is the same as in the first case ( 9  x 

siders the age of the subsurface formations at Susanville, the second case 

seems more likely. A l s o  it is not unlikely that a deeper permeable aquifer 

with circulation of colder water is present at the site, and this would act as 

a constant temperature boundary. 

m3/s0m). If one con- 

In any case, the accuracy of the calculated recharge rate is of more con- 

cern to the developers of the Susanvillle hydrothermal system than the time of 

evolution. If the heat losses from the aquifer are controlled by heat conduc- 

tion as we have assumed in the present model, the calculated recharge rate 

should be reasonably accurate. However, in the model horizontal conduction is 

neglected, and this may make the actual recharge rate greater than what we 

have calculated. 

If we assume that the calculated flow rate is correct and that the fault 

recharges over a distance of 2500 m, the total rate of recharge is approxi- 

mately 0.0225 m3/s. This recharge rate corresponds to approximately 70% of 
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the proposed extraction rate: consequently a project lifetime of 25-75 years 

could be expected. It should be emphasized, however, that the simplicity of 

the present model does not warrant conclusive interpretations. 

presented here should be considered as rough first estimates. 

The results 

Unfortunately, detailed heat flow data over the Susanville anomaly are 

not available at present; such data would have been useful in confirming the 

accuracy of the model. Figure 8 shows the calculated heat flow values plotted 

against distance from the proposed fault. 

SUMMARY 

A simple two-dimensional model has been developed for fault-charged hydro- 

thermal systems. 

development of such systems. Furthermore, the model has been tentatively 

applied to the hydrothermal system at Susanville, California. A reasonable 

match with temperature data from the field allowed approximate calculations of 

the recharge rate from the fault into the hydrothermal system. 

The model has been used for some theoretical studies on the 
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NOMENCLATURE 

a 

b 

D 

H 

P 

+ 
9 

t 

T 

Tb 1 

T f 

U 

V 

W 

X 

Z 

x 
PC 

geothermal gradient ( OC/m) 

aquifer thickness (m) 

thickness of caprock (m) 

thickness of bedrock (m) 

Laplace parameter 

porosity 

the recharge rate (m3/s*m) 

time (sec) 

temperature ("C) 

temperature at ground surface (OC) 

temperature of recharged water (OC) 

temperature in aquifer in Laplace domain 

temperature in rock matrix above aquifer in Laplace domain 

temperature in rock matrix below aquifer in Laplace domain 

lateral coordinate (m) 

vertical coordinate (m) 

thermal conductivity (J/m*s*OC) 

volumetric heat capacity ( J/m3 OC ) 

Subscripts 

a aquifer 

1 rock matrix above aquifer 

2 rock matrix below aquifer 

W liquid water 
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