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Abstract

For a given symmetric positive definite matdxe R™", we develop a fast and backward
stable algorithm to approximatby a symmetric positive-definite semi-separable matrix, ac
curate to any prescribed tolerance. In addition, this dlgor preserves the produ®Z, for a
given matrixZ € R™4, whered < n. Our algorithm guarantees the positive-definiteness of
the semi-separable matrix by embedding an approximatiaegly inside a Cholesky factor-
ization procedure to ensure that the Schur complementagithie Cholesky factorization all
remain positive definite after approximation. It uses a sblairection-preserving approxima-
tion scheme to ensure the preservatiolddf We present numerical experiments and discuss
potential implications of our work.

1 Introduction

1.1 Motivation and background

Given any symmetric positive definite (SPD) matibxand any tolerance > 0, in this paper we
present a fast backward stable algorithm to construct ans&fi)-separable matrix that approxi-
matesA, while preserving the producfZ, for a given matrixZ € R™ for d < n. The idea of
preserving the actions @ on certain vectors (directions) goes back to the early pasatapproxi-
mate factorization methods by Dupont, Kendall and Rachil;dsustafsson [12], and Notay [20].
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The motivation there was that by imposing certain row-suieigon to the incomplete factoriza-
tion of matrices coming from finite éfierence approximation of second order elliptic equatidns, i
can lead to improving the condition number of the preconded matrix by an order of magnitude
better than the one of the original finitefidirence matrix (i.e., fron®@(h=2) to O(h™)). One of
our motivations here, is that an approximate factorizatba discretization matrix can lead to
Schur complement matrices that can be viewed as coarseiization matrices, if they preserve
the near null-space of the original fine—grid matrix. Ourlg®#&o have a general procedure that
can ensure this property for any given number of directahnBor example, in the application of
2D elasticity equations it is important to preserve the albed rigid body modes in which case
we haved = 3. For other applications, such as the “adaptive algebraiktignid” (cf., e.g., [1])

it is important that the coarse space contains several Bedgeally smooth” directions. Although
in the present paper we do not pursue the application of @actibn preserving approximate fac-
torization method to algebraic multigrid (or AMG), this is@of our main motivations to develop
and study the proposed approximate factorization tecleniqu

In what follows we adopt the so—called semi—separable rstructure which in certain ap-
plications by using high enough rank in the approximatiamlead to virtually exact factorization
of the matrix. Thus, by choosing the rank we have a whole specbf approximate block—
factorization methods that can vary in accuracy from sinppézonditioners (comparable to sym-
metric Gauss—Seidel) to highly accurate (but potentialiyemsive for large rank) and virtually
exact factorizations.

The semi-separable structure is a matrix analog of senarabfe integral kernels as described
by Kailath in [14]. This matrix analog was most likely firstsigibed by Gohberg, Kailath and
Koltracht in [18]. In that paper it is shown that, under fathechnical restrictions, an LDU
factorization is possible with a complexinfN wheren is the complexity of the semi-separable
description andN the dimension of the matrix — infleect an algorithm linear in the size of the ma-
trix, whenn is small. In a number of papers Alpay, Dewilde and Dym intr@ela new formalism
for time-varying systems which provides for a frameworkselly analogous to the classical time
invariant state space description and which allows for taeegalization of many time invariant
methods to the time-varying case [6, 9]. When applied to icesdr this formalism generalizes the
formalism used in [18] and allows for more general typesfb€ient operations (by &cient’ we
mean operations that are linear in the size of the matrixthénbookTime-varying Systems and
Computations'[ 7], Dewilde and van der Veen describe the various operatiatsatie possible on
time-varying systems in great detail, including tiBagent application of orthogonal transforma-
tions. In particular, they show how @RV type transformation on a general, (possibly infinite
dimensional) semi-separable system can be done witlf@reat recursive procedure. This pro-
cedure is based on the ideas by Dewilde and van der Veen irafRby Eidelman and Gohberg
in [11]. In the former paper the connection with Kalman filbgras a special case of the procedures
is also discussed.

In the literature, severakigcient algorithms have been developed [14, 6, 9, 18, 13, 1d@ot7
approximating a symmetric matr& by a symmetric semi-separable matrix, accurate to any given
tolerancer > 0. Fast backward stable algorithms have also been corstrt@tapproximate\
with an SPD semi-separable matrix (see [21]).

This current work was also motivated by such work as well askwa construction of mono-



tonic preconditioners for sparse symmetric positive defimatrices. Recent work on superfast
direct methods for discretized matrices from elliptic @giers uses the semi-separable matrix struc-
ture as a basic tool in solving discretized elliptic PDE peofis (see [3, 2, 5, 19]). In the process
of generalizing these methods to construct robust &fetteve preconditioners, we are led to the
problem of constructing semi-separable SPD matrices tooappate a given dense SPD matrix
A for a very large given toleranee> 0. Additionally, as mentioned earlier (e.g., in the AMG ap-
plication), it is often unnecessary (potentially expeayto maintain high order of approximations
along a small number of known directions defined by a giverrimate R™. Values such as,?

or 3 are typical fod in these cases..

1.2 The paper outline

In this paper, we present affieient and backward stable algorithm for solving such pnobl®r
any given tolerance > 0. This work will form the basis of ourfgcient construction of fective
preconditioners for sparse matrices arising from diszeetiPDEs. As in [21], we embed the
semi-separable matrix construction scheme of [2] insigeGholesky factorization procedure for
A to ensure that each approximate Schur complement durinGtio&esky factorization remains
positive definite. In addition, we ensure that the matriximgroduct AZ remains unchanged
throughout the entire procedure, up to rounding errors.

To be more specific, | be a semi-separabdx N matrix. Then there exist positive integers
My, -+, mywith N = my + - - - + m, to block-partitionA as

Di, if i =],
B= (Bi,j), whereB; ; e R™™ satisfies B j = { UW.1---Wi4V], if j>i, 1)
PR.1---RaQj, if j<i.
The sequencedJi} 1, (VillL,, (W), (P, {Q, (R} and{D;}, are all matrices whose
dimensions are defined in Table 1. While any matrix can beesgmted in this form for large
enoughk's andl;’s, our main focus will be on matrices of this special formtthave relatively
small values for thé’s andl;’s (see Section 3). In the above equation, empty productdefneed
to be the identity matrix. Fan = 4, the matrixB has the form

Di UV UWoVl UsWeWsV]
B = PZQI D, UZV;— U2W3VI
| PsRQ]  P:Q Ds UsV,
PsRsR.Q] PsRsQ;  P4QJ Ds.

Throughout this paper we will assume that iyés are square matrices. It is shown in [7] that this
class of matrices is closed under inversion and includeddzamatrices, semi-separable matrices
as well as their inverses as special cases.

The semi-separable structure of a given maBigepends on the sequenge Different se-
guences will lead to dlierent representations.

If Dy is symmetricPx = Vi, Qk = WJ, andQy = Uy for all possible values df, thenB is a
symmetric matrix. On the other hand,Df is upper triangular an& = 0 for all possible values
of k, thenB is an upper triangular semi-separable matrix.
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Matrix Ui Vi VV, Pi Qi R|
Dimensions|| my x ki | my xki_q | kg x ki | myx i | myx liq | lisa x|

Table 1. Dimensions of matrices in (K.andl; are column dimensions &f; andP;, respectively.

As is well-known, the Cholesky factor of an SPD semi-separatmatrix is upper triangular
semi-separable. Conversely, Rbe a non-singular upper triangular semi-separable mafthgn
R'Ris an SPD semi-separable matrix.

In Sections 2 we present the construction algorithm. Ini8e@&, we discuss numerical exper-
imental results with this construction algorithm. In Senté we discuss potential applications of
this work and draw some conclusions.

2 TheConstruction Algorithm

The main goal of this section is to present our semi-sepanalaltrix construction algorithm. To
this end, we need to establish some notation.

2.1 Notation

Let A € RMN be a symmetric positive definite (SPD) matrix, with blocktjtaming

A1,1 Al,z ce Al,n
Al Ao - A

A= 12 :’ .. :’” ’ (2)
AI,n A’ln An,n

whereAyx € R™™ so thatN = > ; m.. With a slight abuse of notation, we will denote

Ai,s e Ai,t
Ak,s:t = (Aks Akt) and Ai:j,s:t =\ : . P
Aj,S cen Aj,t

For any given matriXH and a given toleranceg we consider an orthogonal decomposition of
the form . o
H=(U U)(V V), (3)

where the matri>(U U) is column-orthonormal, so that™U = 0. Throughout this paper, we
will decompose various matrices in the form of (3) such thatas as few columns as possible
and such thafV|, = O(z). Equation (3) will be our main tool for performing low nunial rank
approximations.



2.2 Direction-Preserving Approximations

We start by considering direction-preserving low-rankragpmations. LetH ¢ R™" F ¢ R™9,
andG € R™d, we seek approximations of the form (3) that further prese¢he matrix-matrix
productsHF andG'H, for d < min(m n). That is, we would like to preserve the following
equalities wher is approximated by V:

HF =UV'F and G'H=G'UV". 4)

To this end, we first QR-factorizé to get
_ Rel _ (At 2\ (RF
F—QF(O)—(QF F)(O), 5)
whereQt € R™ andQZ € R™™9_ |t is immediate that
HF = HQER: 6)

Next, we QR-factorize then x (2d) matrix(G HQ%) to get

1
(© Hat)-as()=a(F ). ™)
whereQg € R™M andR; € R | etR; = (R, RZ), we then have
1
6-aF). ©

whereR}, € R@~d,
Finally, we compute the matrix

H = QLHQ: = (QEHQE QLHQR) £ ((Féé) QgHQ%).

Our goal is to approximatd by approximatingqinstead. Note that = QGﬁQE.

By construction, it is sfiicient to preserve the firstcolumns and rows dfl in order to preserve
HF andG"H. Furthermore, our choices of the QR factorizations resuthe lower left corner of

H being 0, as below: L
' Hll HlZ
A= T 9
o &) ©

with Fl\]_’]_ = F% € R(Zd)Xd.
We now compute an orthogonal decomposition in the style Jofiof3H, »:

_ VT
Ho = (U Uy) (VlT) ,
2
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with columns of(U, Uzlorthonormal andlV,|l, = O(r). This leads to an orthogonal decomposi-
tion of the form (3) forH with

. I 0 (l:l\l,l l:l\l,Z)
=l e) e ) @0
1 2 (O V;')
SinceH = QgHQT, we can define
I — 0
U:QG( Ul)’ U=QG(U2),

and

Hii Hio
V:QF( ’ I
A

which leads to an orthogonal decomposition of the form (8Hawith

;
) ., and V:QF(O VZT)T,

H=(u O)(v V). (11)
We now show that (4) is true under this approximation. Tofydhe first part, we have

T _ I:l\l,l |:I\l,Z TC — |:I\l,l |:I\l,z RF
UV'F ‘QG(O SAYA QF=Qs| g u,v/\ 0

- Qo (Féé) R Y HQLR: 2 HF.

To verify the second part, we have

GTHE(R 0)QLH=(R 0)HQE =R (Au Fo)Ql,

and

GTuvT & (RéT 0) Qs Qs (H(l)’l UI_R/ZIT) L= RéT (Hl,l H1,2) Qr .
Thus, the above two quantities are equal.
It costsO((m+ n)d?) flops to compute both QR factorizations; it co®@nnd) flops to compute
H; and it costO(mnr) flops to compute an orthogonal decompositionlffbﬁ, wherer is the col-
umn dimension o¥/;; and it costs abou®((m+n)(d+r)?) flops to compute the representation (11).
So the total cost of this compression scheme is a@goin(r + d)) flops.

2.3 Construction of Approximate Cholesky Factorization

To begin our procedure, we first recall the following stakidalock Cholesky factorization proce-
dure:



fork=12,---,n:

Cholesky factorize R{kRk,k = Ak,

Compute Reketn := Ref Acketn:
Schur complement Ay := A inketn = Reyi1 - Reketn;

end for

For eachk, the first step in this procedure computes the Cholesky ffiaetiion of thek-th
diagonal block; the second step computes the rdstloblock row; and the last step computes the
Schur complement of thieth block. The output of this procedure is the upper triaagoiatrix

Rii Rz -+ Rup
Ro- --- R
R= . *"| suchthat A=R'R
Ron

In the following, we will modify the above procedure to find approximate Cholesky factor-
ization satisfying
S's=A+0O(VlIAlr) and S'SZ=AZ (12)
where
Z
Z=|"-|,
Zy

and whereS is an upper triangular semi-separable matrix of the form((gh

Dl 81,2 e Sl,n
S = ? . .2’n > (13)
Dn

with the D; s being upper triangular, arfl; = UgW,1 - - W1V
In light of the block Cholesky factorization procedure abowe begin by computing

DID; = A and H;=D7 Ajan.
Our next step is to compute a low-rank approximatiortovithout changingdZ. Note that

A7 = (DI D]_Zl + DIHlZZ:n)

HIGl + A2:n,2:n22:n

whereG; = D,Z;. To preservéAZ, we only need to find a low-rank approximationka while
preserving bottH;Z,,, andGJ]H;. Here we compute an orthogonal decompositiotefin the
style of equation (11) as follows:

H = (U Oh)(@ @)
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where the matri>(U1 Ul) is column orthogonal an|¢t31||2 < 7. It follows that

HIH; = Q] + Q:Q].
According to the block Cholesky factorization procedui®, ( H,) is actually the first block
row of R. Hence the Schur complement of the first block becomes
A1 = Aonzn — HTH1 = Apnon — QiQT — Q1QL.
We now approximateAd; by

ﬁl = Aonzn — QlQI = AL+ ala{ = A+ O(Tz).

SinceA is symmetric positive definite, both the Schur compleni@ptand its approximatiorﬁl
must also be symmetric positive definite. We note that th@pmation amounts to adding a
symmetric positive semi-definite matrix of norm at mo%to the original matrix.

We further approximatel; = Ry o by U1Q] . Since this approximation is done on the Cholesky
factor of A, the amount of perturbation #is only O(||D4|[>7) = O( V||Al27).

After these two approximations, we obtain the first block mwhe Cholesky factor as

(D1 U.Q])

and the Sc_rlur complement is noﬁ/l. We will only store the currenf\,., >, and@, instead of
computingA; explicitly.
To continue, partition
Q =(v§ H).
The Schur complement becomes

— (A= VoV] Agan—VoH:
= (Azan - VIFL)' Asnan— ATHL)’
2,3:n 2 3:n,3:n 1"
For approximations on the second block, we first compute
Aop = Ao — V2V2T and Aoz = Agzn— qul-

We then Cholesky factoriz&;, := D] D,, computeH; := D, Ay 3,0, and define

T
oum( 5Bl ana s )

With this notation and the approximationkl, we can rewrite the matrik as
DID,  DIH, (Hl)
Ax| o i (14)
(H;) 7_{;@2 A3:n,3:n
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—

Hl), we only need
H2

to preserve the product of matrix on the right hand side of éltlZ. But this can be done by

— —

preserving(gl) Zs, andG} (El) whereG; = H DyZ;.5.
2 2
Preserving these directions, we compute an orthogonalnaigasition in the style of (11) as

follows: .
()= (e @) (@ @)

The productAZ was preserved in approximationlty. In approximatin

where the matri)(lez flz) is column orthogonal annﬁzllz < 7. As before, approximatiné{:l)
2

by U,Q; will not change the original matrix-matrix produbZ.
We write the Schur complement 8§, as

Az

T ,—~
= AL\ (A

A3:n,3:n - I:rerl - H-erZ = A3:n,3:n —{,.," !

Hz/ \H:

= Agnan— QZQ-ZI- - azé;r
We now approximateA, by N
A = A3:n,3:n - QZQ;—
and the first two blocks of the Cholesky factor by

D; UV, UWeQ)
D, U )
where we have used the partition
U, = (U)
Again this approximation ensures that the matrix-matrixdorict AZ remains unchanged, and the
Schur complemen#, remains SPD.
To continue this procedure by induction, we assume thatedt-th step fork < n— 1, the first
k blocks of the approximate Cholesky factor has the form

D1 UiV] -+ UWo- Wi V] UiWa- - W@
D, U2W3"'Wk—1VkT U2W3"'WKQI
Dy UkQI

and the approximate Schur complement has the form
ﬁk = Ak+1:n,k+l:n - QKQI

As before, partition _
Q= (V. F)
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so that .
~ Ak+1,k+1 - Vk+1V|-(r+1 Ak+1,k+2:n - Vk+lHk

Ay = kel k|
(Ak+1,k+2;n - Vk+lHk) Aciankizn — |:Fk—Hk
We explicitly compute

. T . 1
Ak+1,k+1 = Ak+1,k+1 - Vk+1Vk+1 and Ak+l,k+2:n = Ak+1,k+2:n - Vk+lHk-

We then Cholesky factorizy, 1 1 := DLle and compute

. -T
Hk+l = Dk+1Ak+l,k+2:n .

Define . .
D, U1V2T e UiWo oo WiV UWG - - WY,
D, --- U2W3---Wk_1VkT U2W3---WkaT+l
Dys1 = )
Di UkViig
Dk+l
and
UWs - - - Wi
U, Ws - - - Wi
7—{k+l:
Uy

We can write the matrix approximation as

0
D! Dwi1 Z)Llﬂm(H K )
A ~ k+1

— \T

Hy T

H 7'{|(+11)k+1 Ak+2:n,k+2:n
k+1

In order to keep the matrix-matrix produdZ unchanged, we only need to prese(r\l_/lg" )Zk+2;n
k+1

—

H
T k
andG, , Hes

the style of equation (11) as follows:

for Gi1 = H,|.; Ds1Z1x:1. As before, we compute an approximatior'(ﬂ'fIk ) in
k+1

(Hﬁjjl) = ((L{k+l (Z\{k+l) (Qk+l é\k+1)T s (15)

where the matri>((L{k+1 (LAIM) is column orthogonal a1l < 7.
It follows that the Schur complement for blokk- 1 is

— —~ T
= A \( H
A1 = Ak+2:n,k+2:n - Hkl:rkr - H|I+1Hk+l = Ak+2:n,k+2:n - (H k )(H k ) .
k+1 k+1

10



Again, this allows us to write
A1 = Acznksan — Qi@ 1 — Q1@ 1,
which is then approximated by
Are1 = Aeznkezn — Que1Qp 1.

Since the diference betweelﬁkﬂ and Ay, IS a symmetric positive semi-definite matriﬁkﬂ
must itself be a symmetric positive definite matrix.
After these computational steps, the approximate Choltsitgr becomes

D, U1V2T U1W2---W|(_1VkT U1W2---WkaT+1 U1W2---Wkﬁk
D, --- U2W3---W|(_1VkT U2W3---WkaT+1 U,Ws - - - Wi H
Dy UiVi1 quk
Dk+l Hk+l
Partitioning
_ Wk+1
7/Ik+:|. - (Uk+1) ’

in the numerical low rank approximation éf(_"‘ ) (see (15)) leading thk > Wk+1QI+1 andH,; ~
k+1

Uw:1QL, ;, thus ending up with a new approximate Cholesky factor ofdhe

Di UV] -+ UWo - WeaVT UiWoo - WVT L UsWa - - WiWieea@F,
D, -+ UW;--- Wk_leT UoWs - - -WkaTJrl UWs--- Wka+1QI+1
Dy UkVis1 U Wi 1QL,
Dk+l Uk+la-||(—+1

Throughout the steps, the matrix-matrix prodAgthave always been kept unchanged.

This completes the induction fer< n—1. Fork = n—1, the new approximate Cholesky factor
still has the form similar to above, without the last coluntihis is exactly the form of the matrix
S defined in (13). This ends the proof. o

It can easily be seen from the algorithm description thatyeapproximate Schur complement
during the Cholesky factorization is obtained by adding syatric positive semi-definite matrices
of norm at most? to the true one. We also perform an approximation of the o@fey|Al,7) for
low-rank approximation at every step of the algorithm. Hetie total truncation errd ( \/||A||zr)
in equation (12) could b&(n) times larger thany||A||,7.

Assume that each diagonal block Anhas roughly the same number of columns. pdbe
the maximum dimension in all the diagonal blocks, and assimaigp is bigger than the column
dimension of every matri¥,. Then the cost for each step@N p?) flops, leading to a total cost
of O(n?p?) = O(N?p) flops for the whole construction algorithm.
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As is shown in [2], the column dimensions Of in S turns out to be precisely the rank of
Sikkirn, fOrk = 1,--- . n— 1. If Ajxki1n has small numerical rank for the given tolerance for
k=1,---,n-1, the matrixS constructed above will also have small rank in each of itseupp
off-diagonal blocks. Otherwise sorg’s would need to have large number of columns.

We have presented our construction algorithm using SVDsveier, any rank-reveal decom-
position satisfying equation (3) will also work. Good exdespare rank-revealin@R factoriza-
tions and rank-revealing modified Gram-Schmidt procedutéss likely that this will lead to
considerable speed-up for a small loss in compression.

For the purpose of computing a preconditioner, we can funtbquire that the number of
columns inUg not to exceed a certain pre-set number, MaxRank. This is equivalent to re-
stricting the number of columns ld in equation (3) never to exceed a certain pre-set number, lik
MaxRank. In our numerical experiments, we simply set the submateix = 0 in equation (9).
This simple strategy has still led to verffective preconditioners, see Section 3.

3 Numerical Results

We have written a C code implementing our construction aigar. In the following we report
some numerical experimental results with this code. Hereoveeentrate on demonstrating the
effectiveness of our semi-separable matrix approximatiopsexonditioners.

First, we consider finite-element discretizations on umifdriangular mesh of sizé, with
piecewise linear functions of the following model probleefided on the unit squage = [0, 1] x
[0,1]:

—div (k(x, y)Vu) = f(x,y), (16)
where the cofficientk(x, y) is a two—by—two matrix of the fornal + bb" for a givene > 0 and
cosa(1 - xcosa) . In the test we chose= 0.01 ande = Z. We
sina(1-ysina) 3
assume a mixture of Dirichlet and Neumann boundary conwitio

We use standard lexicographic ordering of the unknowns éshapoints). The block—structure
of the matrix is obtained by putting together evgrgonsecutive nodes in a block. In the test we
varied the block sizg, the number of direction vectord, between zero and three, and the maxi-
mum rankr. Note that, our algorithm requires> 2d and the block siz@ to be not smaller than the
rankr. We present results of two settings of block size and max, rdrgksmaller one witlp = 8
andr = 2d + 2, and the larger one with = 20 andr = 2d + 10. The direction vectors correspond
to the constant vector far = 1, andd = 2 andd = 3 correspond additionally to the vectors coming
from the linear functions andy evaluated at the nodes of the mesh. We use the thus condtructe
block—factorization matrix as a preconditioner in the praditioned conjugate gradient (or PCG)
method. We list in Table 2 the number of iteratiandor which the respective residuals satisfy

variable direction vectop =

Arirm <106, /rgro. We do not use the preconditioned residual norm since we w@atampare
the diferent preconditioners corresponding téfelientd (the number of directions) using fixed
norm. We also include the time to construct the approximeteof preconditioner. The tests were
run on an 1.9 GHz IBM Power5 machine at the National EnergyeBes Scientific Computing
Center.

12



The results in Table 2 show some (non-linear) improvemetitehumber of iterations for in-
creased number of directions used. It is clear that the pditsoner for larged is more expensive
to construct and apply. Also as expected, larger rank ie8ultetter approximate factorization. It
is good that the extra construction cost is acceptable—mwile than doubling the block size and

rank, the construction time is not more than doubled, andrtiease is smaller as the problem
size increases.

p=8 r=2d+2 p=20, r=2d+10
hl|ld=0 time|[d=1|[d=2|d=3 time|d=0 tme|d=1|d=2|d=3 time
12 28 0.00| 24 21 20 0.01| 7 0.00 1 1 1 0.00

241 61 0.05| 55 51 51 0.07| 28 0.05| 24 23 20 0.13
48 | 115 0.57| 113 | 121 | 110 091 77 1.00f 65 65 53 1.14
96 | 233 852 221 | 216 | 210 13.74] 158 1548 139 | 185 | 118 18.49

Table 2: Number of PCG iterations for anisotropifaion equatione = 0.01,a = 5. The times
(in seconds) for constructing the preconditioner are shiowd = 0 andd = 3.

The purpose of the second test that we performed is to achiglig¢olerance in the approxima-
tion, when we factor a dense s.p.d. matrix. We consider theeremisotropic dtusion problem
(16), for a set of dtusion direction vectorb. The dense matrix under consideration is obtained as
follows. We order the nodes using the nested-dissectiogriongl[10, 15]. In this ordering, the last
nx n(n = 1/h) dimensional Schur complemes, is a dense symmetric positive definite matrix,
costing traditional direct solve®(n®) operations to factorize. We approximate this matrixd,
whereR is an upper-triangular semi-separable matrix with maxinafirdiagonal rank at most 2.
We require that a single directiah= (1,---,1)" be preserved under our compression schefne.
in this case is a well-known rigid-body mode of our model pealbunder our discretization. This
implies that we must séﬂzz = 0in equation (11) at every step of compression, even thaugh t
matrix S in consideration can be very ill-conditioned. I8t= R TSR Obviously,R"R is a
good preconditioner i&(S), the condition number o8, is much smaller thar(S), the condition
number ofS. Table 3 summarizes our results for this problem. We obsthat(S) always hov-
ers around 1, indicating highhyfffectiveness oR"R as a preconditioner fd8. In other words, the
lastn x n dimensional dense Schur complement in the traditional €yl factorization can be
well-represented by a semi-separable representatioroftiithagonal rank 2.

Finally, we considered the two dimensional linear elastiequation

~(uati+aviel) = T in Q=(0.1)x(0.1), (17)
T = 0 on Q. (18)

hereU e R? is the displacement vector field,andu are the Lamé constants. This PDE is very
ill-conditioned when the ratid/u is very large; this limit is known as the incompressible tiamd

is associated with the mechanical behavior of elastomegierials and plastic flow in metals, for
example. Iterative methods including standard geomettiltignid converge very slowly or even
diverge for very largel/u. However, such situations are important as they are ulbgsiin nature;
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n = 200,b is unit random n = 400,b is unit random
€ 1 104 1078 1012 1 104 1078 1012
k(S) || 47x107 [ 51x10° | 1.3x10° | 56x10° | 49x10° | 29x 107 | 6.4x 10° | 47 x 107
«(S) 2.9 1.3 15 1.9 32 1.7 2.4 % 10t 2.0
n=200,b = (1,0)7 n=400,b = (1,0)7

€ 1 10 1078 1012 1 104 1078 1012
k(S) || 28x107 [ 20x10° | 20x 10° | 20x 10 | 57x 107 | 40x 10 | 4.0x 10° | 4.2x 1013
«(S) 2.8 1.6 15 1.0 32 2.2 1.0 1.0

Table 3: Approximation on the Schur complements for modebjam (16)

one of our chosen example problems in fact possess this ioelavts linearized form. The two
direction vectors correspond to the two well-known rigimdlp modes. Let = (u; u,). One of
the rigid-body modes is such that all the discretingdodes are 1 and all the discretiaegdhodes
are 0; and the other is such that all the discretizedodes are 0 and all the discretizednodes
are 1. Table 4 shows the PCG convergence history and thetmyndumber ofA = RTAR?,
whereR is the approximate semi-separable Cholesky factor. ltgardhat with higher ratia/pu,
the system is much more ill-conditioned, and requires muahyrmmore PCG iterations. When
A/u = 1, preserving directions and increasing bloakk size are beneficial. Whelju = 10¢,
preserving directions is generally beneficial, but lardeckrank size is not helpful.

(A, ) h-1 p=8 r=2d+2 p=20, r=2d+10

d=0 k(A) | d=2 k(A) [d=0 k(A) | d=2 k(A)

(L0,1.0) | 8 32 15x10'| 25 97x10'| 16 29x10'| 11 19x1Ct
16 | 62 64x107| 48 47x107| 64 86x10°| 31 20x1C?

32| 123 25x10°| 92 17x10°| 83 30x10°| 62 12x10°

(1.0,10% | 8 | 243 31x10°| 236 35x10°P| 12 13x10'| 9 13x10"
16 | 549 11x10° | 440 97x10°| 1230 17x10° | 1203 20x 1CP

32 | 1216 45x10° | 1258 43x10° | 1867 70x1CP | 1996 86x 10°

Table 4: Number of PCG iterations and the condition numiar= RTAR?) for the elasticity
equations.

For the elasticity problem, we also examined the last Scharptement matrix arising from
direct Cholesky factorization with nested dissection dardge This time, we allow the maximum
off-diagonal rank to be at most 4 in the semi-separable repiassm and still require our com-
pression scheme to preserve the two rigid-body modes. Thdtseare shown in Table 5. This
time,;<(§) hovers around 1, even whénis ill-conditioned.

To summarize, our results show that for botlulion and elasticity problems, our direction-
preserving factorization method is verffieient and achieves very good approximation for the
Schur complement matrices corresponding to the top leysragor. Our future main goal is
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n= 200 n =400
Au 1 10 10° 1012 1 10 10° 1012
k(S) || L7x107 [ 22x10° [ 22x10° | 1.5x 10 | 33x 107 | 45x 1P | 45x10° | 1.8x 1013
«(S) 1.6 2.1 2.1 2.0 2.0 2.4 2.4 2.2

Table 5: Preconditionerkectiveness on the Schur complements for the elasticitytemsa

to use this factorization algorithm to construct reducech(8 complement) matrices that have
prescribed actions on certain direction vectors and notusshmas stand-alone preconditioners (as
explained in the beginning of the introduction of this paper

4 Conclusions

We presented anfigcient and backward stable algorithm for constructing SPDiseparable
matrices that approximate a given dense SPD matmith a guaranteed a priori given tolerance
7 > 0. In the literature, there are severafteient classes of semi-separable matrices that have
similar low-rank structures [5, 4, 13, 16, 17]. Work has betuextend our algorithm to such low-
rank structures. Ultimately, such algorithms will be usedarm the basis offéicient algorithms
to construct &ective preconditioners for sparse matrices arising frasoreitized PDES.
Alternatively, giving-up on the guaranteed tolerance prop the proposed algorithm provides
a SPD factorized matrix that has the same actions as thenali§PD matrix on a given set of
direction vectors. More generally, the proposed algoritia®s the property that it provides approx-
imate Schur complement (reduced) matrices that have the aations as the corresponding exact
Schur complements on a given set of direction vectors. Titerlproperty ders the potential to
construct coarse matrices for algebraic multigrid methweldieh is a topic of future research.
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