
Direction-preserving and Schur-monotonic
Semi-separable Approximations of Symmetric Positive

Definite Matrices

Ming Gu∗ Xiaoye S. Li† Panayot S. Vassilevski‡

October 28, 2009

Abstract

For a given symmetric positive definite matrixA ∈ Rn×n, we develop a fast and backward
stable algorithm to approximateA by a symmetric positive-definite semi-separable matrix, ac-
curate to any prescribed tolerance. In addition, this algorithm preserves the product,AZ, for a
given matrixZ ∈ Rn×d, whered ≪ n. Our algorithm guarantees the positive-definiteness of
the semi-separable matrix by embedding an approximation strategy inside a Cholesky factor-
ization procedure to ensure that the Schur complements during the Cholesky factorization all
remain positive definite after approximation. It uses a robust direction-preserving approxima-
tion scheme to ensure the preservation ofAZ. We present numerical experiments and discuss
potential implications of our work.

1 Introduction

1.1 Motivation and background

Given any symmetric positive definite (SPD) matrixA and any toleranceτ > 0, in this paper we
present a fast backward stable algorithm to construct an SPDsemi-separable matrix that approxi-
matesA, while preserving the product,AZ, for a given matrixZ ∈ Rn×d for d ≪ n. The idea of
preserving the actions ofA on certain vectors (directions) goes back to the early pointwise approxi-
mate factorization methods by Dupont, Kendall and Rachford[8], Gustafsson [12], and Notay [20].

∗861 Evans Hall, Department of Mathematics, University of California, Berkeley, California 94720, U.S.A.
mgu@math.berkeley.edu. The work was supported in part by the NSF Career Award CCR-9702866.
†Computational Research Division, Lawrence Berkeley National Laboratory, MS 50F-1650, One Cyclotron Road,

Berkeley, CA 94720, U.S.A. xsli@lbl.gov. The work was supported in part by the Director, Office of Science, Of-
fice of Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.
‡Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-560, Liv-

ermore, CA 94551, U.S.A. panayot@llnl.gov The work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

1



The motivation there was that by imposing certain row-sum criterion to the incomplete factoriza-
tion of matrices coming from finite difference approximation of second order elliptic equations, it
can lead to improving the condition number of the preconditioned matrix by an order of magnitude
better than the one of the original finite difference matrix (i.e., fromO(h−2) to O(h−1)). One of
our motivations here, is that an approximate factorizationof a discretization matrix can lead to
Schur complement matrices that can be viewed as coarse discretization matrices, if they preserve
the near null–space of the original fine–grid matrix. Our goal is to have a general procedure that
can ensure this property for any given number of directionsd. For example, in the application of
2D elasticity equations it is important to preserve the so-called rigid body modes in which case
we haved = 3. For other applications, such as the “adaptive algebraic multigrid” (cf., e.g., [1])
it is important that the coarse space contains several “algebraically smooth” directions. Although
in the present paper we do not pursue the application of our direction preserving approximate fac-
torization method to algebraic multigrid (or AMG), this is one of our main motivations to develop
and study the proposed approximate factorization technique.

In what follows we adopt the so–called semi–separable matrix structure which in certain ap-
plications by using high enough rank in the approximation can lead to virtually exact factorization
of the matrix. Thus, by choosing the rank we have a whole spectrum of approximate block–
factorization methods that can vary in accuracy from simplepreconditioners (comparable to sym-
metric Gauss–Seidel) to highly accurate (but potentially expensive for large rank) and virtually
exact factorizations.

The semi-separable structure is a matrix analog of semi-separable integral kernels as described
by Kailath in [14]. This matrix analog was most likely first described by Gohberg, Kailath and
Koltracht in [18]. In that paper it is shown that, under further technical restrictions, an LDU
factorization is possible with a complexityn2N wheren is the complexity of the semi-separable
description andN the dimension of the matrix — in effect an algorithm linear in the size of the ma-
trix, whenn is small. In a number of papers Alpay, Dewilde and Dym introduce a new formalism
for time-varying systems which provides for a framework closely analogous to the classical time
invariant state space description and which allows for the generalization of many time invariant
methods to the time-varying case [6, 9]. When applied to matrices, this formalism generalizes the
formalism used in [18] and allows for more general types of efficient operations (by ’efficient’ we
mean operations that are linear in the size of the matrix). Inthe bookTime-varying Systems and
Computations‘[7], Dewilde and van der Veen describe the various operations that are possible on
time-varying systems in great detail, including the efficient application of orthogonal transforma-
tions. In particular, they show how aURV type transformation on a general, (possibly infinite
dimensional) semi-separable system can be done with an efficient recursive procedure. This pro-
cedure is based on the ideas by Dewilde and van der Veen in [22]and by Eidelman and Gohberg
in [11]. In the former paper the connection with Kalman filtering as a special case of the procedures
is also discussed.

In the literature, several efficient algorithms have been developed [14, 6, 9, 18, 13, 16, 17] for
approximating a symmetric matrixA by a symmetric semi-separable matrix, accurate to any given
toleranceτ > 0. Fast backward stable algorithms have also been constructed to approximateA
with an SPD semi-separable matrix (see [21]).

This current work was also motivated by such work as well as work on construction of mono-

2



tonic preconditioners for sparse symmetric positive definite matrices. Recent work on superfast
direct methods for discretized matrices from elliptic operators uses the semi-separable matrix struc-
ture as a basic tool in solving discretized elliptic PDE problems (see [3, 2, 5, 19]). In the process
of generalizing these methods to construct robust and effective preconditioners, we are led to the
problem of constructing semi-separable SPD matrices to approximate a given dense SPD matrix
A for a very large given toleranceτ > 0. Additionally, as mentioned earlier (e.g., in the AMG ap-
plication), it is often unnecessary (potentially expensive) to maintain high order of approximations
along a small number of known directions defined by a given matrix Z ∈ Rn×d. Values such as 1, 2
or 3 are typical ford in these cases..

1.2 The paper outline

In this paper, we present an efficient and backward stable algorithm for solving such problem, for
any given toleranceτ > 0. This work will form the basis of our efficient construction of effective
preconditioners for sparse matrices arising from discretized PDEs. As in [21], we embed the
semi-separable matrix construction scheme of [2] inside the Cholesky factorization procedure for
A to ensure that each approximate Schur complement during theCholesky factorization remains
positive definite. In addition, we ensure that the matrix-matrix product AZ remains unchanged
throughout the entire procedure, up to rounding errors.

To be more specific, letB be a semi-separableN×N matrix. Then there existn positive integers
m1, · · · ,mn with N = m1 + · · · + mn to block-partitionA as

B =
(
Bi, j

)
, whereBi, j ∈ Rmi×m j satisfies Bi, j =



Di, if i = j,
UiWi+1 · · ·W j−1VT

j , if j > i,
PiRi−1 · · ·R j+1QT

j , if j < i.
(1)

The sequences{Ui}n−1
i=1 , {Vi}ni=2, {Wi}n−1

i=2 , {Pi}ni=2, {Qi}n−1
i=1 , {Ri}n−1

i=2 and{Di}ni=1 are all matrices whose
dimensions are defined in Table 1. While any matrix can be represented in this form for large
enoughki’s and li’s, our main focus will be on matrices of this special form that have relatively
small values for theki’s andli’s (see Section 3). In the above equation, empty products aredefined
to be the identity matrix. Forn = 4, the matrixB has the form

B =



D1 U1VT
2 U1W2VT

3 U1W2W3VT
4

P2QT
1 D2 U2VT

3 U2W3VT
4

P3R2QT
1 P3QT

2 D3 U3VT
4

P4R3R2QT
1 P4R3QT

2 P4QT
3 D4.



Throughout this paper we will assume that theDi’s are square matrices. It is shown in [7] that this
class of matrices is closed under inversion and includes banded matrices, semi-separable matrices
as well as their inverses as special cases.

The semi-separable structure of a given matrixB depends on the sequencemi. Different se-
quences will lead to different representations.

If Dk is symmetric,Pk = Vk, Qk = WT
k , andQk = Uk for all possible values ofk, thenB is a

symmetric matrix. On the other hand, ifDk is upper triangular andPk = 0 for all possible values
of k, thenB is an upper triangular semi-separable matrix.

3



Matrix Ui Vi Wi Pi Qi Ri

Dimensions mi × ki mi × ki−1 ki−1 × ki mi × li mi × li+1 li+1 × li

Table 1: Dimensions of matrices in (1).ki andli are column dimensions ofUi andPi, respectively.

As is well-known, the Cholesky factor of an SPD semi-separable matrix is upper triangular
semi-separable. Conversely, letR be a non-singular upper triangular semi-separable matrix.Then
RT R is an SPD semi-separable matrix.

In Sections 2 we present the construction algorithm. In Section 3, we discuss numerical exper-
imental results with this construction algorithm. In Section 4 we discuss potential applications of
this work and draw some conclusions.

2 The Construction Algorithm

The main goal of this section is to present our semi-separable matrix construction algorithm. To
this end, we need to establish some notation.

2.1 Notation

Let A ∈ RN×N be a symmetric positive definite (SPD) matrix, with block partitioning

A =



A1,1 A1,2 · · · A1,n

AT
1,2 A2,2 · · · A2,n
...

...
. . .

...

AT
1,n AT

2,n · · · An,n


, (2)

whereAk,k ∈ Rmk×mk so thatN =
∑n

k=1 mk. With a slight abuse of notation, we will denote

Ak,s:t =
(
Ak,s · · · Ak,t

)
and Ai: j,s:t =



Ai,s · · · Ai,t
...
. . .

...

A j,s · · · A j,t

 .

For any given matrixH and a given toleranceτ, we consider an orthogonal decomposition of
the form

H =
(
U Û

) (
V V̂

)T
, (3)

where the matrix
(
U Û

)
is column-orthonormal, so thatUT Û = 0. Throughout this paper, we

will decompose various matrices in the form of (3) such thatU has as few columns as possible
and such that‖V̂‖2 = O(τ). Equation (3) will be our main tool for performing low numerical rank
approximations.

4



2.2 Direction-Preserving Approximations

We start by considering direction-preserving low-rank approximations. LetH ∈ Rm×n, F ∈ Rn×d,
andG ∈ Rm×d, we seek approximations of the form (3) that further preserve the matrix-matrix
productsHF andGT H, for d ≪ min(m, n). That is, we would like to preserve the following
equalities whenH is approximated byUVT :

HF = UVT F and GT H = GT UVT . (4)

To this end, we first QR-factorizeF to get

F = QF

(
RF

0

)
=

(
Q1

F Q2
F

) (RF

0

)
, (5)

whereQ1
F ∈ Rn×d andQ2

F ∈ Rn×(n−d). It is immediate that

HF = HQ1
FRF (6)

Next, we QR-factorize them × (2d) matrix
(
G HQ1

F

)
to get

(
G HQ1

F

)
= QG

(
RG

0

)
≡ QG

(
R1

G R2
G

0 0

)
, (7)

whereQG ∈ Rm×m andRG ∈ R(2d)×(2d). Let RG ≡ (R1
G R2

G), we then have

G = QG

(
R1

G
0

)
, (8)

whereR1
G ∈ R(2d)×d.

Finally, we compute the matrix

Ĥ = QT
GHQF ≡

(
QT

GHQ1
F QT

GHQ2
F

) (7)≡
((

R2
G
0

)
QT

GHQ2
F

)
.

Our goal is to approximateH by approximatinĝH instead. Note thatH = QGĤQT
F .

By construction, it is sufficient to preserve the firstd columns and rows of̂H in order to preserve
HF andGT H. Furthermore, our choices of the QR factorizations result in the lower left corner of
Ĥ being 0, as below:

Ĥ =

(
Ĥ1,1 Ĥ1,2

0 Ĥ2,2

)
(9)

with Ĥ1,1 ≡ R2
G ∈ R(2d)×d.

We now compute an orthogonal decomposition in the style of (3) for Ĥ2,2:

Ĥ2,2 = (U1 U2)

(
VT

1
VT

2

)
,

5



with columns of(U1 U2) orthonormal and‖V2‖2 = O(τ). This leads to an orthogonal decomposi-
tion of the form (3) forĤ with

Ĥ =

[(
I

U1

) (
0

U2

)] 

(
Ĥ1,1 Ĥ1,2

0 VT
1

)

(
0 VT

2

)

 , (10)

SinceH = QGĤQT
F , we can define

U = QG

(
I

U1

)
, Û = QG

(
0

U2

)
,

and

V = QF

(
Ĥ1,1 Ĥ1,2

0 VT
1

)T

, and V̂ = QF

(
0 VT

2

)T
,

which leads to an orthogonal decomposition of the form (3) for H with

H =
(
U Û

) (
V V̂

)T
. (11)

We now show that (4) is true under this approximation. To verify the first part, we have

UVT F = QG

(
Ĥ1,1 Ĥ1,2

0 U1VT
1

)
QT

F F = QG

(
Ĥ1,1 Ĥ1,2

0 U1VT
1

) (
RF

0

)

= QG

(
R2

G
0

)
RF

(7)
= HQ1

FRF
(6)
= HF.

To verify the second part, we have

GT H
(8)
=

(
R1

G
T

0
)

QT
G H =

(
R1

G
T

0
)

ĤQT
F = R1

G
T (

Ĥ1,1 Ĥ1,2

)
QT

F ,

and

GT UVT (8)
=

(
R1

G
T 0

)
QT

G QG

(
Ĥ1,1 Ĥ1,2

0 U1VT
1

)
QT

F = R1
G

T (
Ĥ1,1 Ĥ1,2

)
QT

F .

Thus, the above two quantities are equal.
It costsO((m+n)d2) flops to compute both QR factorizations; it costsO(mnd) flops to compute

Ĥ; and it costsO(mnr) flops to compute an orthogonal decomposition forĤ2,2, wherer is the col-
umn dimension ofV1; and it costs aboutO((m+n)(d+r)2) flops to compute the representation (11).
So the total cost of this compression scheme is aboutO(mn(r + d)) flops.

2.3 Construction of Approximate Cholesky Factorization

To begin our procedure, we first recall the following standard block Cholesky factorization proce-
dure:

6



for k = 1, 2, · · · , n :

Cholesky factorize RT
k,kRk,k := Ak,k;

Compute Rk,k+1:n := R−T
k,k Ak,k+1:n;

Schur complementAk := Ak+1:n,k+1:n − RT
k,k+1:n · Rk,k+1:n;

end for
For eachk, the first step in this procedure computes the Cholesky factorization of thek-th

diagonal block; the second step computes the rest ofk-th block row; and the last step computes the
Schur complement of thek-th block. The output of this procedure is the upper triangular matrix

R =



R1,1 R1,2 · · · R1,n

R2,2 · · · R2,n
. . .

...

Rn,n


such that A = RT R.

In the following, we will modify the above procedure to find anapproximate Cholesky factor-
ization satisfying

S T S = A + O
(√
‖A‖2τ

)
and S T S Z = AZ, (12)

where

Z =



Z1
. . .

Zn

 ,

and whereS is an upper triangular semi-separable matrix of the form (cf. (1))

S =



D1 S 1,2 · · · S 1,n

D2 · · · S 2,n
. . .

...

Dn


, (13)

with theD′k s being upper triangular, andS k,t = UkWk+1 · · ·Wt−1VT
t .

In light of the block Cholesky factorization procedure above, we begin by computing

DT
1 D1 = A11 and H1 = D−T

1 A1,2:n.

Our next step is to compute a low-rank approximation toH1 without changingAZ. Note that

AZ =

(
DT

1 D1Z1 + DT
1 H1Z2:n

HT
1 G1 + A2:n,2:nZ2:n

)
,

whereG1 = D1Z1. To preserveAZ, we only need to find a low-rank approximation toH1 while
preserving bothH1Z2:n andGT

1 H1. Here we compute an orthogonal decomposition ofH1 in the
style of equation (11) as follows:

H1 =
(
U1 Û1

) (
Q1 Q̂1

)T
,

7



where the matrix
(
U1 Û1

)
is column orthogonal and‖Q̂1‖2 ≤ τ. It follows that

HT
1 H1 = Q1QT

1 + Q̂1Q̂T
1 .

According to the block Cholesky factorization procedure, (D1 H1) is actually the first block
row of R. Hence the Schur complement of the first block becomes

A1 = A2:n,2:n − HT
1 H1 = A2:n,2:n − Q1QT

1 − Q̂1Q̂T
1 .

We now approximateA1 by

Ã1 = A2:n,2:n − Q1QT
1 = A1 + Q̂1Q̂T

1 = A1 + O
(
τ2

)
.

SinceA is symmetric positive definite, both the Schur complementA1 and its approximatioñA1

must also be symmetric positive definite. We note that this approximation amounts to adding a
symmetric positive semi-definite matrix of norm at mostτ2 to the original matrix.

We further approximateH1 = R1,2:n by U1QT
1 . Since this approximation is done on the Cholesky

factor ofA, the amount of perturbation toA is onlyO(‖D1‖2τ) = O(
√
‖A‖2τ).

After these two approximations, we obtain the first block rowin the Cholesky factor as
(
D1 U1QT

1

)

and the Schur complement is now̃A1. We will only store the currentA2:n,2:n andQ1 instead of
computingÃ1 explicitly.

To continue, partition
QT

1 =
(
VT

2 Ĥ1

)
.

The Schur complement becomes

Ã1 =


A2,2 − V2VT

2 A2,3:n − V2Ĥ1(
A2,3:n − VT

2 Ĥ1

)T
A3:n,3:n − ĤT

1 Ĥ1

 .

For approximations on the second block, we first compute

A2,2 := A2,2 − V2VT
2 and A2,3:n := A2,3:n − V2Ĥ1.

We then Cholesky factorizeA2,2 := DT
2 D2, computeH2 := D−T

2 A2,3:n, and define

D2 =

(
D1 U1VT

2
D2

)
and H2 =

(
U1

I

)
.

With this notation and the approximation toH1, we can rewrite the matrixA as

A ≈



DT
2D2 DT

2H2

(
Ĥ1

H2

)

(
Ĥ1

H2

)T

HT
2D2 A3:n,3:n


. (14)

8



The productAZ was preserved in approximation toH1. In approximating

(
Ĥ1

H2

)
, we only need

to preserve the product of matrix on the right hand side of (14) andZ. But this can be done by

preserving

(
Ĥ1

H2

)
Z3:n andGT

2

(
Ĥ1

H2

)
, whereG2 = HT

2D2Z1:2.

Preserving these directions, we compute an orthogonal decomposition in the style of (11) as
follows: (

Ĥ1

H2

)
=

(
U2 Û2

) (
Q2 Q̂2

)T
,

where the matrix
(
U2 Û2

)
is column orthogonal and‖Q̂2‖2 ≤ τ. As before, approximating

(
Ĥ1

H2

)

byU2QT
2 will not change the original matrix-matrix productAZ.

We write the Schur complement ofA2,2 as

A2 = A3:n,3:n − ĤT
1 Ĥ1 − HT

2 H2 = A3:n,3:n −
(
Ĥ1

H2

)T (
Ĥ1

H2

)

= A3:n,3:n − Q2QT
2 − Q̂2Q̂T

2 .

We now approximateA2 by
Ã2 = A3:n,3:n − Q2QT

2

and the first two blocks of the Cholesky factor by
(
D1 U1VT

2 U1W2QT
2

D2 U2QT
2

)
,

where we have used the partition

U2 =

(
W2

U2

)
.

Again this approximation ensures that the matrix-matrix productAZ remains unchanged, and the
Schur complement̃A2 remains SPD.

To continue this procedure by induction, we assume that at the k-th step fork < n − 1, the first
k blocks of the approximate Cholesky factor has the form



D1 U1VT
2 · · · U1W2 · · ·Wk−1VT

k U1W2 · · ·WkQT
k

D2 · · · U2W3 · · ·Wk−1VT
k U2W3 · · ·WkQT

k
. . .

...
...

Dk UkQT
k


,

and the approximate Schur complement has the form

Ãk = Ak+1:n,k+1:n − QkQT
k .

As before, partition
QT

k =
(
VT

k+1 Ĥk

)

9



so that

Ãk =


Ak+1,k+1 − Vk+1VT

k+1 Ak+1,k+2:n − Vk+1Ĥk(
Ak+1,k+2:n − Vk+1Ĥk

)T
Ak+2:n,k+2:n − ĤT

k Ĥk

 .

We explicitly compute

Ak+1,k+1 := Ak+1,k+1 − Vk+1VT
k+1 and Ak+1,k+2:n := Ak+1,k+2:n − Vk+1Ĥk.

We then Cholesky factorizeAk+1,k+1 := DT
k+1Dk+1 and compute

Hk+1 := D−T
k+1Ak+1,k+2:n.

Define

Dk+1 =



D1 U1VT
2 · · · U1W2 · · ·Wk−1VT

k U1W2 · · ·WkVT
k+1

D2 · · · U2W3 · · ·Wk−1VT
k U2W3 · · ·WkVT

k+1
. . .

...
...

Dk UkVT
k+1

Dk+1



and

Hk+1 =



U1W2 · · ·Wk

U2W3 · · ·Wk
...

Uk

I



.

We can write the matrix approximation as

A ≈



DT
k+1Dk+1 DT

k+1Hk+1

(
Ĥk

Hk+1

)

(
Ĥk

Hk+1

)T

HT
k+1Dk+1 Ak+2:n,k+2:n


.

In order to keep the matrix-matrix productAZ unchanged, we only need to preserve

(
Ĥk

Hk+1

)
Zk+2:n

andGT
k+1

(
Ĥk

Hk+1

)
for Gk+1 = HT

k+1Dk+1Z1:k+1. As before, we compute an approximation of

(
Ĥk

Hk+1

)
in

the style of equation (11) as follows:
(

Ĥk

Hk+1

)
=

(
Uk+1 Ûk+1

) (
Qk+1 Q̂k+1

)T
, (15)

where the matrix
(
Uk+1 Ûk+1

)
is column orthogonal and‖Q̂k+1‖2 ≤ τ.

It follows that the Schur complement for blockk + 1 is

Ak+1 = Ak+2:n,k+2:n − ĤkĤT
k − HT

k+1Hk+1 = Ak+2:n,k+2:n −
(

Ĥk

Hk+1

) (
Ĥk

Hk+1

)T

.

10



Again, this allows us to write

Ak+1 = Ak+2:n,k+2:n − Qk+1QT
k+1 − Q̂k+1Q̂T

k+1,

which is then approximated by

Ãk+1 = Ak+2:n,k+2:n − Qk+1QT
k+1.

Since the difference betweeñAk+1 andAk+1 is a symmetric positive semi-definite matrix,̃Ak+1

must itself be a symmetric positive definite matrix.
After these computational steps, the approximate Choleskyfactor becomes



D1 U1VT
2 · · · U1W2 · · ·Wk−1VT

k U1W2 · · ·WkVT
k+1 U1W2 · · ·WkĤk

D2 · · · U2W3 · · ·Wk−1VT
k U2W3 · · ·WkVT

k+1 U2W3 · · ·WkĤk
. . .

...
...

...

Dk UkVk+1 UkĤk

Dk+1 Hk+1



.

Partitioning

Uk+1 =

(
Wk+1

Uk+1

)
,

in the numerical low rank approximation of

(
Ĥk

Hk+1

)
(see (15)) leading tôHk ≈ Wk+1QT

k+1 andHk+1 ≈

Uk+1QT
k+1, thus ending up with a new approximate Cholesky factor of theform



D1 U1VT
2 · · · U1W2 · · ·Wk−1VT

k U1W2 · · ·WkVT
k+1 U1W2 · · ·WkWk+1QT

k+1
D2 · · · U2W3 · · ·Wk−1VT

k U2W3 · · ·WkVT
k+1 U2W3 · · ·WkWk+1QT

k+1
. . .

...
...

...

Dk UkVk+1 UkWk+1QT
k+1

Dk+1 Uk+1QT
k+1



.

Throughout the steps, the matrix-matrix productAZ have always been kept unchanged.
This completes the induction fork < n−1. Fork = n−1, the new approximate Cholesky factor

still has the form similar to above, without the last column.This is exactly the form of the matrix
S defined in (13). This ends the proof. ⋄

It can easily be seen from the algorithm description that every approximate Schur complement
during the Cholesky factorization is obtained by adding symmetric positive semi-definite matrices
of norm at mostτ2 to the true one. We also perform an approximation of the orderO(

√
‖A‖2τ) for

low-rank approximation at every step of the algorithm. Hence the total truncation errorO
(√
‖A‖2τ

)

in equation (12) could beO(n) times larger than
√
‖A‖2τ.

Assume that each diagonal block inA has roughly the same number of columns. Letp be
the maximum dimension in all the diagonal blocks, and assumethat p is bigger than the column
dimension of every matrixUk. Then the cost for each step isO(N p2) flops, leading to a total cost
of O(n2p3) = O(N2p) flops for the whole construction algorithm.

11



As is shown in [2], the column dimensions ofUk in S turns out to be precisely the rank of
S 1:k,k+1:n, for k = 1, · · · , n − 1. If A1:k,k+1:n has small numerical rank for the given tolerance for
k = 1, · · · , n − 1, the matrixS constructed above will also have small rank in each of its upper
off-diagonal blocks. Otherwise someUk’s would need to have large number of columns.

We have presented our construction algorithm using SVDs. However, any rank-reveal decom-
position satisfying equation (3) will also work. Good examples are rank-revealingQR factoriza-
tions and rank-revealing modified Gram-Schmidt procedures. It is likely that this will lead to
considerable speed-up for a small loss in compression.

For the purpose of computing a preconditioner, we can further require that the number of
columns inUk not to exceed a certain pre-set number, likeMaxRank. This is equivalent to re-
stricting the number of columns inU in equation (3) never to exceed a certain pre-set number, like
MaxRank. In our numerical experiments, we simply set the submatrixĤ2,2 = 0 in equation (9).
This simple strategy has still led to very effective preconditioners, see Section 3.

3 Numerical Results

We have written a C code implementing our construction algorithm. In the following we report
some numerical experimental results with this code. Here weconcentrate on demonstrating the
effectiveness of our semi-separable matrix approximations aspreconditioners.

First, we consider finite-element discretizations on uniform triangular mesh of sizeh, with
piecewise linear functions of the following model problem defined on the unit squareΩ = [0, 1] ×
[0, 1]:

−div (k(x, y)∇u) = f (x, y), (16)

where the coefficient k(x, y) is a two–by–two matrix of the formǫI + bbT for a givenǫ > 0 and

variable direction vectorb =
[

cosα(1− x cosα)
sinα(1− y sinα)

]
. In the test we choseǫ = 0.01 andα = π3. We

assume a mixture of Dirichlet and Neumann boundary conditions.
We use standard lexicographic ordering of the unknowns (or mesh-points). The block–structure

of the matrix is obtained by putting together everyp consecutive nodes in a block. In the test we
varied the block sizep, the number of direction vectors,d, between zero and three, and the maxi-
mum rankr. Note that, our algorithm requiresr ≥ 2d and the block sizep to be not smaller than the
rankr. We present results of two settings of block size and max rank, the smaller one withp = 8
andr = 2d + 2, and the larger one withp = 20 andr = 2d + 10. The direction vectors correspond
to the constant vector ford = 1, andd = 2 andd = 3 correspond additionally to the vectors coming
from the linear functionsx andy evaluated at the nodes of the mesh. We use the thus constructed
block–factorization matrix as a preconditioner in the preconditioned conjugate gradient (or PCG)
method. We list in Table 2 the number of iterationsm for which the respective residuals satisfy√

rT
mrm ≤ 10−6

√
rT

0 r0. We do not use the preconditioned residual norm since we wantto compare
the different preconditioners corresponding to differentd (the number of directions) using fixed
norm. We also include the time to construct the approximate factor preconditioner. The tests were
run on an 1.9 GHz IBM Power5 machine at the National Energy Research Scientific Computing
Center.

12



The results in Table 2 show some (non–linear) improvement ofthe number of iterations for in-
creased number of directions used. It is clear that the preconditioner for largerd is more expensive
to construct and apply. Also as expected, larger rank results in better approximate factorization. It
is good that the extra construction cost is acceptable—withmore than doubling the block size and
rank, the construction time is not more than doubled, and theincrease is smaller as the problem
size increases.

p = 8, r = 2d + 2 p = 20, r = 2d + 10
h−1 d = 0 time d = 1 d = 2 d = 3 time d = 0 time d = 1 d = 2 d = 3 time
12 28 0.00 24 21 20 0.01 7 0.00 1 1 1 0.00
24 61 0.05 55 51 51 0.07 28 0.05 24 23 20 0.13
48 115 0.57 113 121 110 0.91 77 1.00 65 65 53 1.14
96 233 8.52 221 216 210 13.74 158 15.48 139 185 118 18.49

Table 2: Number of PCG iterations for anisotropic diffusion equation:ǫ = 0.01,α = π3. The times
(in seconds) for constructing the preconditioner are shownfor d = 0 andd = 3.

The purpose of the second test that we performed is to achievehigh tolerance in the approxima-
tion, when we factor a dense s.p.d. matrix. We consider the model anisotropic diffusion problem
(16), for a set of diffusion direction vectorsb. The dense matrix under consideration is obtained as
follows. We order the nodes using the nested-dissection ordering [10, 15]. In this ordering, the last
n × n (n = 1/h) dimensional Schur complement,S , is a dense symmetric positive definite matrix,
costing traditional direct solversO(n3) operations to factorize. We approximate this matrix byRT R,
whereR is an upper-triangular semi-separable matrix with maximumoff-diagonal rank at most 2.
We require that a single directionZ = (1, · · · , 1)T be preserved under our compression scheme.Z
in this case is a well-known rigid-body mode of our model problem under our discretization. This
implies that we must set̂H2,2 = 0 in equation (11) at every step of compression, even though the
matrix S in consideration can be very ill-conditioned. LetŜ = R−T S R−1. Obviously,RT R is a
good preconditioner ifκ(Ŝ ), the condition number of̂S , is much smaller thanκ(S ), the condition
number ofS . Table 3 summarizes our results for this problem. We observethatκ(Ŝ ) always hov-
ers around 1, indicating highly effectiveness ofRT R as a preconditioner forS . In other words, the
last n × n dimensional dense Schur complement in the traditional Cholesky factorization can be
well-represented by a semi-separable representation withoff-diagonal rank 2.

Finally, we considered the two dimensional linear elasticity equation

−
(
µ
−→△u + λ ▽ −−−−→▽ • u

)
=
−→
f in Ω = (0, 1)× (0, 1), (17)

−→u =
−→
0 on ∂Ω, (18)

here−→u ∈ R2 is the displacement vector field,λ andµ are the Lamé constants. This PDE is very
ill-conditioned when the ratioλ/µ is very large; this limit is known as the incompressible limit and
is associated with the mechanical behavior of elastomeric materials and plastic flow in metals, for
example. Iterative methods including standard geometric multigrid converge very slowly or even
diverge for very largeλ/µ. However, such situations are important as they are ubiquitous in nature;

13



n = 200,b is unit random n = 400,b is unit random
ǫ 1 10−4 10−8 10−12 1 10−4 10−8 10−12

κ (S ) 4.7× 102 5.1× 103 1.3× 102 5.6× 102 4.9× 102 2.9× 102 6.4× 105 4.7× 102

κ(Ŝ ) 2.9 1.3 1.5 1.9 3.2 1.7 2.4× 101 2.0

n = 200,b = (1, 0)T n = 400,b = (1, 0)T

ǫ 1 10−4 10−8 10−12 1 10−4 10−8 10−12

κ (S ) 2.8× 102 2.0× 105 2.0× 109 2.0× 1013 5.7× 102 4.0× 105 4.0× 109 4.2× 1013

κ(Ŝ ) 2.8 1.6 1.5 1.0 3.2 2.2 1.0 1.0

Table 3: Approximation on the Schur complements for model problem (16)

one of our chosen example problems in fact possess this behavior in its linearized form. The two
direction vectors correspond to the two well-known rigid-body modes. Letu = (u1 u2). One of
the rigid-body modes is such that all the discretizedu1 nodes are 1 and all the discretizedu2 nodes
are 0; and the other is such that all the discretizedu1 nodes are 0 and all the discretizedu2 nodes
are 1. Table 4 shows the PCG convergence history and the condition number ofÂ = R−T AR−1,
whereR is the approximate semi-separable Cholesky factor. It is clear that with higher ratioλ/µ,
the system is much more ill-conditioned, and requires much many more PCG iterations. When
λ/µ = 1, preserving directions and increasing block/rank size are beneficial. Whenλ/µ = 104,
preserving directions is generally beneficial, but larger block/rank size is not helpful.

(λ, µ) h−1 p = 8, r = 2d + 2 p = 20, r = 2d + 10
d = 0 κ(Â) d = 2 κ(Â) d = 0 κ(Â) d = 2 κ(Â)

(1.0, 1.0) 8 32 1.5× 101 25 9.7× 101 16 2.9× 101 11 1.9× 101

16 62 6.4× 102 48 4.7× 102 64 8.6× 102 31 2.0× 102

32 123 2.5× 103 92 1.7× 103 83 3.0× 103 62 1.2× 103

(1.0, 10−4) 8 243 3.1× 105 236 3.5× 105 12 1.3× 101 9 1.3× 101

16 549 1.1× 106 440 9.7× 105 1230 1.7× 106 1203 2.0× 106

32 1216 4.5× 106 1258 4.3× 106 1867 7.0× 106 1996 8.6× 106

Table 4: Number of PCG iterations and the condition numberκ(Â = R−T AR−1) for the elasticity
equations.

For the elasticity problem, we also examined the last Schur complement matrix arising from
direct Cholesky factorization with nested dissection ordering. This time, we allow the maximum
off-diagonal rank to be at most 4 in the semi-separable representation, and still require our com-
pression scheme to preserve the two rigid-body modes. The results are shown in Table 5. This
time,κ(Ŝ ) hovers around 1, even whenS is ill-conditioned.

To summarize, our results show that for both diffusion and elasticity problems, our direction-
preserving factorization method is very efficient and achieves very good approximation for the
Schur complement matrices corresponding to the top level separator. Our future main goal is

14



n = 200 n = 400
λ/µ 1 104 108 1012 1 104 108 1012

κ (S ) 1.7× 102 2.2× 105 2.2× 109 1.5× 1013 3.3× 102 4.5× 105 4.5× 109 1.8× 1013

κ(Ŝ ) 1.6 2.1 2.1 2.0 2.0 2.4 2.4 2.2

Table 5: Preconditioner effectiveness on the Schur complements for the elasticity equations.

to use this factorization algorithm to construct reduced (Schur complement) matrices that have
prescribed actions on certain direction vectors and not as much as stand-alone preconditioners (as
explained in the beginning of the introduction of this paper).

4 Conclusions

We presented an efficient and backward stable algorithm for constructing SPD semi-separable
matrices that approximate a given dense SPD matrixA with a guaranteed a priori given tolerance
τ > 0. In the literature, there are several different classes of semi-separable matrices that have
similar low-rank structures [5, 4, 13, 16, 17]. Work has begun to extend our algorithm to such low-
rank structures. Ultimately, such algorithms will be used to form the basis of efficient algorithms
to construct effective preconditioners for sparse matrices arising from discretized PDEs.

Alternatively, giving-up on the guaranteed tolerance property, the proposed algorithm provides
a SPD factorized matrix that has the same actions as the original SPD matrix on a given set of
direction vectors. More generally, the proposed algorithmhas the property that it provides approx-
imate Schur complement (reduced) matrices that have the same actions as the corresponding exact
Schur complements on a given set of direction vectors. The latter property offers the potential to
construct coarse matrices for algebraic multigrid methodswhich is a topic of future research.

References

[1] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge. Adaptive
algebraic multigrid.SIAM J. Sci. Comput., 27:1261–1286, 2006.

[2] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and D. White.
Some fast algorithms for sequentially semi-separable representations.SIAM J. Mat. Anal.
Appl., 27(2):341–364, 2005.

[3] S. Chandrasekaran and M. Gu. A fast and stable solver for recursively semi-separable systems
of equations. In Vadim Oslshevsky, editor,Structured matrices in mathematics, computer
science and engineering II, Contemporary Mathematics. AMS, 2001.

[4] S. Chandrasekaran, M. Gu, and W. Lyons. A fast and stable adaptive solver for hierarchically
semi-separable representations. To appear inCalcolo, 2006.

15



[5] S. Chandrasekaran, M. Gu, and T. Pals. A fastULV decomposition solver for hierarchically
semi-separable representations.SIAM J. Mat. Anal. Appl., 28:603–622, 2006.

[6] P. Dewilde and D. Alpay. Time-varying signal approximation and estimation. InProc. Int.
Symposium MTNS-89, Vol. III, pages 1–22. Birkhäuser Verlag, 1990.

[7] P. Dewilde and A. van der Veen.Time-varying systems and computations. Kluwer Academic
Publishers, New York, 1998.

[8] T. Dupont, R. P. Kendall, and Jr. H. H. Rachford. An approximate factorization procedure
for solving self-adjoint elliptic difference equations.SIAM Journal on Numerical Analysis,
5:559–573, 1968.

[9] H. Dym, D. Alpay, and P. Dewilde. Lossless inverse scattering and reproducing kernels for
upper triangular matrices. InOperator Theory Advances and Applications, pages 61–135.
Birkhäuser Verlag, 1990.

[10] A. George. Nested dissection of a regular finite elementmesh.SIAM J. Num. Anal., 10:345–
363, 1973.

[11] I. Gohberg and Y. Eidelman. A modification of the Dewildevan der Veen method for inver-
sion of finite structured matrices.Linear Algebra and its Applications, 343:419–450, 2001.

[12] I. Gustaffson. A class of first order factorization methods.BIT, 18:142–156, 1978.

[13] W. Hackbusch. A sparse arithmetic based on〈-matrices. part-I: Introduction to〈-matrices.
Computing, 62:89–108, 1999.

[14] T. Kailath. Fredholm resolvents, wiener-hopf equations, and riccati differential equations.
IEEE Trans. on Information Theory, IT-15(6), 1969.

[15] M. S. Khaira, G. L. Miller, and T. J. Sheffler. Nested dissection: a survey and comparison
of various nested dissection algorithms. Technical ReportTechnical Report CMU-CS-106R,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1992.

[16] B. N. Khoromskij and W. Hackbusch. A sparse arithmetic based on〈-matrices. part-II: ap-
plication to multi-dimensional problems.Computing, 64:21–47, 2000.

[17] B. N. Khoromskij and W. Hackbusch. A sparse〈-matrix arithmetic: general complexity
estimates.Journal of Computational and Applied Mathematics, 125:79–501, 2000.

[18] I. Koltracht, I. Gohberg, and T. Kailath. Linear complexity algorithms for semiseparable
matrices.Integral Equations and Operator Theory, 8:780–804, 1985.

[19] W. Lyons, H. D. Cecineros, S. Chandrasekaran, and M. Gu.Fast algorithms for spec-
tral collocation with non-periodic boundary conditions.Journal of Computational Physics,
207(1):173–191, 2005.

16



[20] Y. Notay. DRIC: a dynamic version of the RIC method.Numerical Linear Algebra with
Applications, 1(6):511–532, 1994.

[21] A.J. van der Veen. Approximate inversion of a large semiseparable positive matrix. InProc.
17th Int. Symp. on Mathematical Theory of Networks and Systems (MTNS-04), Brussels (BE),
July 2004.

[22] A.J. van der Veen and P. Dewilde. Inner-outer factorization and the inversion of locally finite
systems of equations.Linear Algebra and its Applications, 313:53–100, 2000.

17


