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SUMMARY

An asymptotic method, valid in the presence of smoothly-varying heterogeneity, is used to de-
rive a semi-analytic solution to the equations for f uid and solid displacements in a poroelastic
medium. The solution is def ned along trajectories through the porous medium model, in the
manner of ray theory. The lowest order expression in the asymptotic expansion provides an
eikonal equation for the phase. There are three modes of propagation, two modes of longitu-
dinal displacement and a single mode of transverse displacement. The two longitudinal modes
def ne the Biot fast and slow waves which have very different propagation characteristics. In
the limit of low frequency, the Biot slow wave propagates as a diffusive disturbance, in essence
a transient pressure pulse. Conversely, at low frequencies the Biot fast wave and the transverse
mode are modif ed elastic waves. At intermediate frequencies the wave characteristics of the
longitudinal modes are mixed. A comparison of the asymptotic solution with analytic and nu-
merical solutions shows reasonably good agreement for both homogeneous and heterogeneous
Earth models.
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1 INTRODUCTION

Due to advances in subsurface monitoring, there is an increased
recognition of the importance of coupled f uid f ow and deforma-
tion within the Earth. For example, recent studies highlight the
role of pressure changes and associated deformation in observed
time-lapse seismic anomalies below, within, and above a produc-
ing reservoir (Guilbot & Smith, 2002; Landro & Stammeijer, 2004;
Hatchell & Bourne, 2005; Hawkins et al., 2007; Hodgson et al.,
2007; Rickett et al., 2007; Roste et al., 2007; Schutjens et al., 2007;
Staples et al., 2007; Tura et al., 2005). These studies document both
changes in layer position and thickness as well as seismic velocity
changes due to stress variations. Such observations support con-
ventional geodetic measurements of overburden deformation due
to injection and production (Castle et al., 1969; Colazas & Strehle,
1994) as well as newer satellite-based data (Stancliffe & van der
Kooij, 2001; Fielding et al., 1998) and also downhole tiltmeter data
(Du et al., 2005; Maxwell et al., 2008). Furthermore, deformation
of the overburden has been used to infer pressure changes and f ow
properties within producing reservoirs. For example, Vasco and
Ferretti (2005) and Vasco et al. (2008) used satellite-based Interfer-
ometric Synthetic Aperture Radar (InSAR) measurements to image
pressure changes, and ultimately permeability variations. Using a
similar technique Hodgeson et al. (2007) used time-lapse 3D seis-
mic data to image pressure changes in a deep-water reservoir in the
Gulf of Mexico.

The growing emphasis on geophysical monitoring and the

continuing development of time-lapse seismic and geodetic tech-
nology create a need for eff cient techniques for modeling coupled
f uid f ow and deformation. At present, the literature on coupled
modeling of f uid f ow and geomechanics is vast but lacking in
some respects. One diff culty follows from the complexity of mod-
eling fully general coupled deformation and f ow. Simply model-
ing f uid f ow is a signif cant undertaking with a large number of
processes to consider, such as multi-phase f ow, chemical trans-
port, and pressure-dependent f ow properties (Bear, 1972; Peace-
man, 1977; de Marsily, 1986; Wu & Pruess, 2000). And the mod-
eling of deformation can involve elastic deformation, plastic f ow,
faulting and fracturing, as well as pressure and stress dependent
moduli (Coussy, 2004; Showalter & Stefanelli, 2004; Jaeger et al.,
2007). In this paper I will narrow the focus to coupled elastic de-
formation and single phase f ow. Furthermore, the elastic moduli
will be assumed to be time invariant. Even with these restrictions,
the problem is a diff cult one (Wang, 2000; Showalter, 2000), and
there is a need for general, yet eff cient, methods for poroelastic
modeling.

Typically, there has been a trade-off between generality and
eff ciency in the modeling of coupled poroelastic processes. Much
of the prior analytic work on both quasi-static and dynamic poroe-
lastic modeling has been concerned with homogeneous media
(Rice & Cleary, 1976; Segall, 1985; Rudnicki, 1986; Booker &
Carter, 1986; Booker & Carter, 1987; Lo et al., 2006; Pride, 2005).
The next level of complexity involves analytic models for poroe-
lastic modeling in layered (Wang & Kumpel, 2003) and one-
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dimensional (Simon et al., 1984; Gajo & Mongiovi, 1995) me-
dia. Though the resulting one-dimensional solutions are complete,
they involve special functions and/or numerical integration and
are thus diff cult to interpret. The majority of work on full three-
dimensional heterogeneous media is based upon purely numerical
techniques, such as f nite elements, f nite difference, and boundary-
elements (Noorishad et al., 1984; Chang et al., 1991; Lewis &
Sukirman, 1993; Lewis & Ghafouri, 1997; Gutierrez & Lewis,
2002; Rutqvist et al., 2002; Minkoff et al., 2003; Minkoff et al.,
2004; Masson et al., 2006; Dean et al., 2006), which, while gen-
eral, do not scale well with problem size and do not provide great
insight into the nature of poroelastic propagation. Furthermore, the
signif cantly different velocities, and hence time-scales, associated
with diffusive and elastic propagation, makes it diff cult to model
the coupled processes accurately and eff ciently using numerical
methods.

This paper occupies the middle-ground between the analytic
and the numerical work of previous studies. Here I develop a semi-
analytic solution which is valid in a medium with smoothly-varying
heterogeneity of arbitrarily large magnitude. The approach, based
upon an asymptotic solution to the equations governing deforma-
tion and f ow in a poroelastic medium, is related to ray-based tech-
niques for modeling wave propagation (Friedlander & Keller, 1955;
Kline & Kay, 1979; Jeffrey & Kawahara, 1982; Kravtsov & Orlov,
1990; Anile et al., 1993; Bouche et al., 1997; Korsunsky, 1997;
Chapman, 2004; Vasco, 2007). The asymptotic expansion follows
from the application of the method of multiple scales and is ap-
propriate for modeling propagation in a medium with regions of
smoothly-varying properties separated by sharp boundaries (Jeffrey
& Taniuti, 1964; Anile et al., 1993). The technique differs from
a straight-forward expansion in powers of frequency (Friedlander
& Keller, 1955; Keller & Lewis, 1995; Chapman, 2004) and from
an expansion in the scale parameter of the poroelastic convolution
operator (Hanyga & Seredyńska, 1999a; Hanyga & Seredyńska,
1999a). One advantage of this methodology is its ability to model
propagation over a broad range of frequencies and to represent be-
havior from diffusive to hyperbolic propagation (Vasco, 2007). Fur-
thermore, this technique is very general and applicable to the mod-
eling of non-linear behavior (Anile et al., 1993; Jeffrey & Kawa-
hara, 1982), such as that due to multiphase f ow (Vasco, 2004) and
pressure-dependent moduli (Vasco, 2009).

2 METHODOLOGY

2.1 The Governing Equations

I begin with the equations governing the evolution of the displace-
ment f elds of the solid grains us and a f uid uf which are func-
tions of the spatial coordinates x and time t that follow from Biot’s
fundamental work (Biot, 1956; Biot, 1962). These equations are
the consequence of a long history of work on deformation in a
f uid saturated solid (de Boer, 2000). There is some advantage in
considering alternative coordinates: the solid grain displacement
u = us and the differential f uid displacement w = uf − us.
Using these variables one can write the Biot equations for a f uid-
saturated porous medium as

∇ · τ −∇pc = ρ
∂2u

∂t2
+ ρf

∂2w

∂t2
(1)

−∇pf = ρf
∂2u

∂t2
+ η

∂

∂t

(

w

k

)

(2)

where τ is the deviatoric stress tensor, related to the displacement
of the solid grains by the equation (Pride, 2005)

τ = G
(

∇u + ∇u
T − 2

3
∇ · uI

)

(3)

where G is the shear modulus of the porous framework and I is
the identity matrix with ones along the diagonal and zeros else-
where. In the expression for the deviatoric stress tensor (3) I have
employed the dyadic notation in which ∇u is given by the outer
product of the two vectors

∇u =





∂
∂x

i
∂

∂y
j

∂
∂z

k





(

uxi uyj uzk
)

which can be thought of as a matrix (Spiegel, 1959) and (∇u)T

is the transpose of this matrix. The density of the solid matrix and
the pore f uid are given by ρ and ρf , respectively, while the f uid
viscosity and permeability are denoted by η and k(x). The aver-
age total pressure, the ’conf ning pressure’, pc(x, t), is given by
the sum of the divergence of the solid displacements and the f uid
displacements

pc = − (Ku∇ · u + C∇ · w) , (4)

similarly for the f uid pressure, pf ,

pf = − (C∇ · u + M∇ · w) , (5)

where Ku(x) is the undrained bulk modulus, C(x) and M(x) are
spatially-varying moduli def ned by Biot (1962). The modulus M is
known as the f uid-storage coeff cient (Pride 2005) and represents
the amount of f uid which can assimulate in a sample at constant
volume. It is the poroelastic modulus most directly involved in f uid
pressure diffusion. The modulus C is associated with the coupling
between the f uid pressure and the elastic deformation of the solid
matrix, referred to as Biot’s coupling modulus.

There are numerous ways of expressing the various moduli
characterizing a poroelastic medium (Wang, 2000). I shall merely
quote Pride’s (2005) expressions for Ku, C, and M in terms of the
medium porosity φ, the drained bulk modulus Kd, the bulk modu-
lus of the solid grains composing the porous medium Ks, and the
bulk modulus of the f uid Kf ,

Ku =
Kd + [1 − (1 − φ)Kd/Ks]Kf/φ

1 + ∆
, (6)

C =
(1 − Kd/Ks)Kf

(1 + ∆)φ
, (7)

and

M =
Kf

(1 + ∆)φ
(8)

where ∆ is a dimensionless parameter

∆ =
1 − φ

φ

Kf

Ks

(

1 − Kd

(1 − φ)Ks

)

(9)

which is always small. The above relationships follow from the
work of Biot and Willis (Biot & Willis, 1957) and Gassmann
(Gassmann, 1951), and are thus known as the ”Biot-Gassmann”
relations (Pride 2005). The relationships (6), (7), (8), and (9) en-
able one to express the parameters Ku, C, and M in terms of more
commonly measured quantities. Note that the parameter C, which
couples the f uid pressure and the elastic displacements [equation
(5)], vanishes when the drained bulk modulus Kd equals the bulk
modulus of the solid grains Ks.



Modeling broadband poroelastic propagation using an asymptotic approach 3

There is another useful way to express the moduli in terms of
two other parameters, Skempton’s coeff cient B and the Biot-Willis
constant α. The Biot-Willis constant is related to the ratio of the
compressibility of the mineral grains to the compressibility of the
rock sample and is always of order 1 (Zimmerman, 2000). Skemp-
tons coeff cient is approximately the ratio of the compressibility of
the pores to the compressibility of the pore f uid and generally lies
between 0 and 1. One can express both C and M in terms of Ku,
B, and α,

C = BKu (10)

and

M =
BKu

α
. (11)

The product αB is a poroelastic coupling parameter which indi-
cates if one may neglect geomechanical effects when computing
f uid pressure (Zimmerman, 2000)

αB = 1 − Kd

Ku
. (12)

If αB is small one may generally neglect the coupling between
the deformation of the solid matrix when modeling f uid pressure
propagation (Zimmerman, 2000).

In equation (2) I have assumed that the permeability, k(x) is
only a function of spatial position, independent of time. In more
general formulations k also varies with time and the term on the
right-hand-side of equation (2) is actual a convolution between
1/k and w (Hanyga & Seredyńska, 1999a; Hanyga & Seredyńska,
1999b; Pride, 2005). The approach outlined here will work for such
a general formulation, though the low frequency approximation
given later must be modif ed to account for the frequency behav-
ior of K. This more general formulation is easier to represent by
transforming the governing equations into the frequency domain
by taking the Fourier or Laplace transform (Bracewell, 1978) of
equations (1) and (2),

∇ · T −∇Pc + ω2ρU + ω2ρfW = 0 (13)

−∇Pf + ω2ρfU + iω
η

K
W = 0 (14)

where the capitial letters denote the Fourier transforms of the re-
spective quantities and K may now be a function of the frequency
ω. Thus, U(x, ω) is the Fourier transform of u(x, t), a func-
tion of frequency, and similarly for W(x, ω), T(x, ω), Pc(x, ω),
Pf (x, ω), and K(x, ω). Applying the Fourier transform to equa-
tions (3), (4), and (5) I can write the governing equations (13) and
(14) solely in terms of U and W

∇ ·
[

G
(

∇U + ∇U
T − 2

3
∇ · UI

)]

(15)

+∇ (Ku∇ · U + C∇ · W) + ω2ρU + ω2ρfW = 0

∇ (C∇ · U + M∇ · W) + ω2ρfU + iω
η

K
W = 0. (16)

2.2 An Asymptotic Solution for Deformation and Flow

Due to the presence of spatially-varying coeff cients in equations
(15) and (16) it is not possible to derive an analytic solution. How-
ever, using an asymptotic approach I can derive a semi-analytic
solution which is valid in the presence of smoothly-varying hetero-
geneity of arbitrarily large magnitude. The approach, known as the
method of multiple scales, relies on a separation of scales (Anile

et al., 1993; Kevorkian & Cole, 1996). In this case I assume that
the heterogeneity varies at a scale-length, denoted by L, which is
much larger than the scale-length over which the solid displacement
and f uid pressure jump from their initial or background values to
the new values after a poroelastic disturbance passes, denoted by
l. Thus, l ≪ L and the ratio ε = l/L is much smaller than 1. In
the method of multiple scales one considers the problem on a spa-
tial scale comparable to ε, transforming the problem to new spatial
variables X, where

X = εx (17)

are referred to as the ’slow’ coordinates’ Also, the solutions to
equations (15) and (16) are represented as power series in ε

U(X, ω, θ) = eiθ

∞
∑

l=0

εl
Ul(X, ω) (18)

W(X, ω, θ) = eiθ

∞
∑

l=0

εl
Wl(X, ω) (19)

where θ(x, ω) is a function, referred to as the phase, related to
the kinematics of the propagating disturbance. Because ε is small,
less then 1, only the f rst few terms of these power series are sig-
nif cant. The series (18) and (19) are in the form of generalized
plane wave expansions of U(X, ω, θ) and W(X, ω, θ), similar to
that used in modeling electromagnetic and elastic waves (Luneb-
urg, 1966; Kline & Kay, 1979; Aki & Richards, 1980; Kravtsov &
Orlov, 1990). The variable θ(X, ω) is known as the phase and is
associated with the travel time of the disturbance.

I consider U and W to be functions of the slow coordinates
X and as a consequence the derivatives contained in the differential
operators need to be written in terms of X and not in terms of x.
Using the chain rule, the derivatives may be re-written as

∂U

∂xi
=

∂Xi

∂xi

∂U

∂Xi
+

∂θ

∂xi

∂U

∂θ
(20)

and hence, making use of equation (17),

∂U

∂xi
= ε

∂U

∂Xi
+

∂θ

∂xi

∂U

∂θ
. (21)

Thus, the differential operators, which are def ned in terms of the
partial derivatives with respect to the spatial coordinates, are like-
wise re-written as

∇U = ε∇XU + ∇θ
∂U

∂θ
(22)

∇ · U = ε∇X · U + ∇θ · ∂U

∂θ
(23)

where ∇X denotes the gradient with respect to the components of
the slow variable X.

The asymptotic solution of equations (15) and (16) is obtained
by writing the differential operators in terms of X and θ and sub-
stituting the power series (18) and (19) for U and W, respectively.
The two equations that result contain inf nite sequences of terms,
each containing ε to a particular power. Because ε is assumed to be
small, only the terms of lowest order in ε are retained. In the next
two sub-sections, I shall consider expressions containing terms of
order ε0 ∼ 1 and ε1. In the discussion that follows I shall suppress
the subscripts on the gradient operators, that is I shall write ∇ in
place of ∇X in order to streamline the equations. It should be un-
derstood that all operators applied to U and W are with respect to
the slow coordinates X.
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2.2.1 Terms of Order ε0 ∼ 1: An Expression for the Phase

The full complement of terms up to order ε is given in Appendix A,
equations (A8) and (A12). If I only consider terms or order ε0 ∼ 1,
I obtain

G∇θ · ∇θ
∂2U0

∂θ2
+ G∇θ∇θ · ∂2U0

∂θ2
− 2

3
G∇θ ·

(

∇θ · ∂2U0

∂θ2

)

+Ku∇θ∇θ · ∂
2U0

∂θ2
+ω2ρU0+C∇θ∇θ · ∂

2W0

∂θ2
+ω2ρfW0 = 0

(24)

and

C∇θ∇θ · ∂2U0

∂θ2
+ ω2ρfU0 + M∇θ∇θ · ∂2W0

∂θ2
+ ω2ρ̃W0 = 0

(25)

where

ρ̃ =
iη

ωK
. (26)

In these equations I have substituted in the power series expansions
(18) and (19). Due to the specif c form of the dependence of U0

and W0 on the phase, the derivatives with respect to θ are given by

∂U0

∂θ
= iU0 (27)

∂W0

∂θ
= iW0 (28)

and similarly for higher-order derivatives. Also, let the vector p

denote the gradient of θ

p = ∇θ, (29)

the gradient vector of the phase function. Substituting for the
derivatives with respect to θ and for ∇θ in equations (24) and (25),
I obtain equations for U0 and W0

βpp · U0 − αU0 + Cpp · W0 − ω2ρfW0 = 0 (30)

and

Cpp · U0 − ω2ρfU0 + Mpp · W0 − ω2ρ̃W0 = 0 (31)

where

β = Ku +
1

3
G (32)

and

α = ω2ρ − Gp2 (33)

[See Appendix A, equations (A14) and (A15)]. I can write equa-
tions (30) and (31) in matrix form
(

αI− βpp · I ω2ρf I− Cpp · I
ω2ρfI− Cpp · I ω2ρ̃I− Mpp · I

)(

U0

W0

)

=

(

0

0

)

.

(34)

From linear algebra it is known that the system of equations (34)
has a non-trivial solution if and only if the determinant of the coeff -
cient matrix vanishes (Noble & Daniel, 1977). The vanishing of the
determinant def nes a polynomial equation in the components of the
vector p with coeff cients which are functions of the medium pa-
rameters. From the def nition of p, equation (29), one f nds that the
vanishing of the determinant also def nes a non-linear partial differ-
ential equation for θ(X, ω), the eikonal equation associated with

propagation in a poroelastic medium (Kravtsov & Orlov, 1990).
While it is possible to form the polynomial equation directly from
the determinant of the coeff cient matrix of equation (34), I follow
a less direct route, avoiding some rather tedious algebra.

The approach I take works with the eigenvalues and eigenvec-
tors associated with the coeff cient matrix in equation (34). There is
a connection between the eigenvalues of the coeff cient matrix and
the determinant of the coeff cient matrix. Specif cally, the product
of the eigenvalues, an invariant of the coeff cient matrix, equals the
determinant (Noble & Daniel, 1977). In this approach, I f rst ob-
serve that the vectors

e =

(

y1p

y2p

)

, (35)

and

e
⊥ =

(

y1p
⊥

y2p
⊥

)

, (36)

where y1 and y2 are scalar coeff cients and p⊥ denotes a vector
perpendicular to p, look like candidate eigenvectors of the system
of equations (34). That is, vectors which satisfy the equation

Γe = λe (37)

where Γ is the coeff cient matrix in (34) and λ is a scalar to be deter-
mined. A similar equation holds for for e⊥ with a different scalar,
which I will denote by λ⊥. From equation (29) one observes that
the vector p is perpendicular to the phase front, the iso-surface of
constant phase while p⊥ lies within the plane tangent to the iso-
surface. These vectors denote longitudinal and transverse modes
of propagation and, as I shall show, propagate with differing ve-
locities. As such, I consider each mode separately, f rst examining
deformation in the direction of p, the longitudinal displacement
vector.

Longitudinal Displacements
If I substitute the vector e, def ned in (35) into the eigenvalue

equation (37), where the matrix Γ is given by the matrix in (34), I
f nd that
[

(α − βp2)y1 + (ω2ρf − Cp2)y2

]

p = λy1p (38)
[

(ω2ρf − Cp2)y1 + (ω2ρ̃ − Mp2)y2

]

p = λy2p, (39)

where p2 = p · p is the square of the magnitude of the vector p. I
may write equations (38) and (39) as a single matrix equation

(

α − βp2 − λ ω2ρf − Cp2

ω2ρf − Cp2 ω2ρ̃ − Mp2 − λ

)(

y1

y2

)

=

(

0
0

)

(40)

for y1 and y2. As noted above, this equation has a non-trivial solu-
tion if and only if the determinant of the coeff cient matrix vanishes.
This is a polynomial equation containing the medium parameters,
p, and λ. Now, the medium parameters are assumed to be f xed but
p and λ may both be considered as unknowns in the polynomial.
Thus, there is some freedom in specifying the values of λ and p. I
take advantage of this f exibility and set λ equal to zero in order to
simplify the expression for the determinant and obtain an equation
solely in terms of p

det

(

α − βp2 ω2ρf − Cp2

ω2ρf − Cp2 ω2ρ̃ − Mp2

)

(41)

= (α − βp2)(ω2ρ̃ − Mp2) − (ω2ρf − Cp2)2 = 0.



Modeling broadband poroelastic propagation using an asymptotic approach 5

Equation (41) is a quadratic equation for p2

(p2)2 − ω2(ρM + ρ̃H − 2ρfC)

(HM − C2)
p2 +

ω4(ρρ̃ − ρf
2)

(HM − C2)
= 0

(42)

where H is given by

H = Ku +
4

3
G. (43)

The quadratic equation (42) has the solution

p2 =
ω2

2

[

γ ±
√

γ2 − 4(ρρ̃ − ρf
2)

HM − C2

]

(44)

where γ is the auxiliary parameter given by

γ =
ρM + ρ̃H − 2ρfC

HM − C2
. (45)

This expression for the squared ’slowness’ is similar to that given
by Pride (2005) for a plane wave in a homogeneous medium. How-
ever, equation (44) is valid for a medium with smoothly varying
heterogeneity of arbitrary magnitude. Factoring γ out from under
the radical I can write equation (44) as

p2 =
γω2

2

[

1 ±
√

1 − 4

γ2

(ρρ̃ − ρf
2)

HM − C2

]

(46)

or

p2 =
γω2

2

[

1 ±
√

1 − ζ
]

(47)

where

ζ =
4(ρρ̃ − ρf

2)(HM − C2)

(ρ̃H + ρM − 2ρfC)2
. (48)

Expression (46) for the slowness provides a means for tracing
rays and calculating the propagation path for a transient disturbance
(Aki & Richards, 1980; Kravtsov & Orlov, 1990). Making use of
the def nition of p I can write equation (47) as a differential equa-
tion for θ(x, ω)

∇θ · ∇θ =
γω2

2

[

1 ±
√

1 − ζ
]

, (49)

an eikonal equation for the longitudinal mode of displacement in
a poroelastic medium. This scalar partial differential equation is
equivalent to a system of ordinary differential equations for a tra-
jectory X(r) and the vector p(r) (Courant & Hilbert, 1962)

dX

dr
=

p

χ
(50)

dp

dr
= ∇χ (51)

where χ(X, ω) is the slowness, def ned as

χ(X, ω) = ω

√

γ

2

[

1 ±
√

1 − ζ
]

(52)

and r is the distance along the trajectory X(r). One can inte-
grate the system of equations using a numerical technique such
as a shooting method coupled to a globally convergent Newton-
Raphson algorithm (Press et al., 1992). In addition, one may derive
an integral expression for the phase θ(r, ω) by writing the eikonal
equation (49) in ray coordinates, taking the square root, and inte-
grating

θ(r, ω) =

∫

X(r)

χ(X(r′)dr′ (53)

or, more compactly,

θ(r, ω) = ωτ (r) (54)

where

τ (r) =

∫

X(r)

√

γ

2

[

1 ±
√

1 − ζ
]

dr′. (55)

The coupled differential equations (50) and (51) are used to con-
struct trajectories or rays between a source and an observation
point. The trajectories form the basis for eff cient forward mod-
eling of poroelastic propagation. Furthermore, they allow for semi-
analytic expressions for model parameter sensitivities and the so-
lution of the inverse problem (Menke, 1984). For example, the
rays form the basis for travel time tomographic imaging which has
proven highly successful in seismology (Nolet, 1987; Iyer & Hi-
rahara, 1993) among other f elds. Note that, in the most general
setting the slowness can be complex and one must resort to com-
plex ray tracing (Kravtsov et al., 1999; Amodei et al., 2006). Com-
plex eikonals appear when the propagation behavior can vary from
hyperbolic wave propagation to diffusive decay, as in broadband
electromagnetic modeling (Vasco, 2007).

An alternative to ray tracing involves solving the eikonal equa-
tion, the non-linear partial differential equation (49), numerically.
This approach is now well established and has been applied to
a number of practical problems and seems quite stable (Sethian,
1999). It was introduced to seismology by Vidale (1988) and has
been generalized in various ways. Note that, to date, the method
has not yet been extended to complex eikonal equations. Thus, cur-
rently, it can only be applied to certain regimes of poroelastic prop-
agation.

Transverse Displacements
Following a similar procedure, I consider the potential eigen-

vector e⊥, given by equation (36), and the resulting equation

Γe
⊥ = λ⊥

e
⊥ (56)

where Γ is the coeff cient matrix in (34) and λ⊥ is a scalar to be
determined. Taking into account the coeff cient matrix (34) and car-
rying out the matrix-vector multiplications by p⊥ I arrive at the
following linear system of equations
[

αy1 + ω2ρfy2

]

p
⊥ = λ⊥y1p

⊥ (57)
[

ω2ρfy1 + ω2ρ̃y2

]

p
⊥ = λ⊥y2p

⊥, (58)

which may be written as a matrix equation for y1 and y2,
(

α − λ⊥ ω2ρf

ω2ρf ω2ρ̃ − λ⊥

)(

y1

y2

)

=

(

0
0

)

.

(59)

The linear system of equations has a non-trivial solution if

det

(

α − λ⊥ ω2ρf

ω2ρf ω2ρ̃ − λ⊥

)

= 0 (60)

which, after noting that α = ω2ρ − Gp2, and setting λ⊥ equal to
zero, produces a quadratic equation for p

ω2ρ̃
(

ω2ρ − Gp2
)

=
(

ω2ρf

)2
. (61)

Thus, I have produced an equation for p



6 D. W. Vasco

p2 = ω2

[

ρ −
( ρf

ρ̃

)

ρf

]

G
(62)

which leads to the eikonal equation for transverse displacements in
a poroelastic medium

∇θ · ∇θ = ω2

[

ρ −
( ρf

ρ̃

)

ρf

]

G
, (63)

a simple modif cation of the eikonal equation for an elastic medium

∇θ · ∇θ = ω2 ρ

G
(64)

(Aki & Richards, 1980). As for the longitudinal displacements, I
can def ne a slowness, χ(X, ω) for the transverse motion,

χ(X, ω) = ω

√

[

ρ −
( ρf

ρ̃

)

ρf

]

G
. (65)

As expected, the transverse displacement depends upon the mod-
uli ρ and G. In addition, the transverse displacement also depends
upon the properties of the f uid and the permeability through the
presence of ρf and ρ̃ in (62).

Note that, while the longitudinal component is uniquely de-
termined as the normal to the surface of constant phase, via its
def nition (29), the transverse component can lie within the two-
dimensional plane tangent to this surface. Thus, there is some de-
gree of freedom for the transverse component to change orientation.
Partitioning the transverse mode of propagation into components
leads to the study of the vertical and horizontal shear waves.

2.2.2 Terms of Order ε: An Expression for the Amplitude

Next, I consider terms of order ε, which gives two sets of equations
containing phase and amplitude terms. My starting point is the set
of equations (A16) and (A17) in Appendix A. As noted in the pre-
vious sub-section, there are two modes of propagation: longitudi-
nal motion and transverse motion, each with a distinct propagation
speed. To make progress I need to consider the longitudinal and
transverse modes of propagation in greater detail.

Longitudinal Displacements
For longitudinal displacements U is a vector in the same di-

rection as p. For simplicity, I assume that all the contributions in the
series (18) and (19) are proportional to p. Further, assume that U1

and W1 are vectors which satisfy equation (34). Thus, the terms
containing U1 and W1 cancel and I obtain two sets of equations for
U0 and W0, given that the phase θ is found by solving the eikonal
equation (49),

2p (p · ∇G)U0 − 2

3
∇Gp2U0 + ∇Kup2U0 + ∇Cp2W0 (66)

+G [(∇ · p)pU0 + 2p · ∇ (pU0)]

+G
[

∇ · (pU0)p + U0p · ∇p + p · {∇(pU0)}T
]

−2

3
G

[

∇
(

p2U0

)

+ p∇ · (pU0)
]

+Ku

[

∇
(

p2U0

)

+ p∇ · (pU0)
]

+C
[

∇
(

p2W0

)

+ p∇ · (pW0)
]

= 0

and

∇Cp2U0 + ∇M
(

p2W0

)

(67)

+C
[

∇
(

p2U0

)

+ p∇ · (pU0)
]

+M
[

∇
(

p2W0

)

+ p∇ · (pW0)
]

= 0.

Note that equations (66) and (67) comprise six equations for the
two unknowns U0 and W0. The system can be reduced to two equa-
tions for two unknowns by projecting onto the vector p̂, a unit vec-
tor in the direction of the vector p. After projecting onto p̂, expand-
ing the dyadic and differential operators, and grouping like terms, I
arrive at the equations

2pHp̂ · ∇U0 + (H∇ · p + 2Hp̂ · ∇p + pp̂ · ∇H)U0

+2pCp̂ · ∇W0 + (C∇ · p + 2Cp̂ · ∇p + pp̂ · ∇C) W0 = 0

(68)

and

2pCp̂ · ∇U0 + (C∇ · p + 2Cp̂ · ∇p + pp̂ · ∇C) U0

+2pM p̂ · ∇W0 + (M∇ · p + 2M p̂ · ∇p + pp̂ · ∇M) W0

(69)

where, as def ned in (43), H = Ku +4/3G. Because the gradients
of U0 and W0 are projected onto the trajectory X(r) in equations
(68) and (69), they represent the changes along the ray path. Thus,
I may consider equations (68) and (69) to be a system of differen-
tial equations for U0 and W0 and write all projected gradients as
derivatives with respect to r the position along the trajectory X(r).
Also, because of the eikonal equation (47) or (49), I can replace p
by the slowness χ(X, ω), as def ned in equation (52). I can write
these equations more compactly if I def ne the coeff cients

Υ11 = 2χH, (70)

Ω11 = H

[

∇ · p + 2
dχ

dr
+ χ

d(lnH)

dr

]

, (71)

Υ12 = 2χC, (72)

Ω12 = C

[

∇ · p + 2
dχ

dr
+ χ

d(lnC)

dr

]

, (73)

Υ21 = 2χC, (74)

Ω21 = C

[

∇ · p + 2
dχ

dr
+ χ

d(lnC)

dr

]

, (75)

Υ22 = 2χM, (76)

and

Ω22 = M

[

∇ · p + 2
dχ

dr
+ χ

d(lnM)

dr

]

. (77)

Then, equations (68) and (69) can be written as

Υ
dV

dr
+ ΩV = 0 (78)

where

V =

(

U0

W0

)

(79)

and Υ and Ω are matrices with the coeff cients given above. Note,
both the matrices Υ and Ω are symmetric and the matrix Υ

Υ = 2χ

(

H C
C M

)

(80)
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has the explicit inverse

Υ
−1 =

1

2χ(HM − C2)

(

M −C
−C H

)

(81)

which is def ned as long as χ and HM −C2 do not vanish. Multi-
plying the terms of equation (78) by Υ−1 results in the equation

dV

dr
= −ΓV (82)

where

Γ = Υ
−1

Ω. (83)

Note that for a homogeneous medium

Γ = Υ
−1

Ω =
∇ · p
2χ

Υ
−1

Υ =
∇ · p
2χ

I (84)

and equation (82) decouples to produce two equations which may
be solved exactly for U0 and W0

U0(X) = AU
0 exp

[

−
∫

X(r)

∇ · p
2χ

dr

]

(85)

W0(X) = AW
0 exp

[

−
∫

X(r)

∇ · p
2χ

dr

]

(86)

where AU
0 and AW

0 are the initial amplitudes of the solid and
relative f uid displacements and X(r) denotes the trajectory which
provides the path of integration. This is simply the amplitude de-
cay due to the geometrical spreading of the wavef eld as it propa-
gates away from the source (Kline & Kay, 1979; Kravtsov & Orlov,
1990).

For a heterogeneous medium the f rst-order system of equa-
tions (82) can be solved in its present form using a numerical tech-
nique or, as shown in Appendix B, the system can be written as
two uncoupled, second-order differential equations for U0 and W0.
The governing equation for the amplitude of the solid displacement
vector is given by

d2U0

dr2
+ Ψ1

dU0

dr
+ Ψ2U0 = 0, (87)

a linear, second-order differential equation for U0 with variable co-
eff cients given in terms of the elements of the matrix Γ:

Ψ1(r) = Γ12
d

dr

(

1

Γ12

)

+ Γ11 + Γ22 (88)

Ψ2(r) = Γ12
d

dr

(

Γ11

Γ12

)

− Γ12Γ21 + Γ11Γ22 (89)

Similarly, I can derive a governing equation for W0

d2W0

dr2
+ Φ1

dW0

dr
+ Φ2W0 = 0, (90)

where

Φ1(r) = Γ21
d

dr

(

1

Γ21

)

+ Γ11 + Γ22 (91)

Φ2(r) = Γ21
d

dr

(

Γ22

Γ21

)

− Γ12Γ21 + Γ11Γ22. (92)

Such decoupling in the frequency domain was noted by (Berry-
man, 1983). These two scalar, ordinary differential equations may
be solved eff ciently using widely available numerical techniques
(Press et al., 1992). Alternatively, an asymptotic technique may be
used to derive semi-analytic solutions (Keller & Lewis, 1995).

Transverse Displacements

For transverse displacements U is a vector lying in the plane
perpendicular to p, which I shall denote by p⊥. As noted earlier,
there is some freedom in the orientation of p⊥ as it may lie within
a two-dimensional plane. Under the same assumptions invoked for
the longitudinal displacements, I consider the terms of order ε1,
as given in equations (A16) and (A17) for the case in which U0,
U1, W0 and W1 are oriented in the direction p⊥. The resulting
equations are

p(∇G · p⊥)U0 + p
⊥(∇G · p)U0

+G
[

p
⊥(∇ · p)U0 + 2p · ∇(U0p

⊥)
]

+G
[

p∇ · (U0p
⊥) + (p⊥ · ∇p)U0 + p · ∇(U0p

⊥)T
]

(93)

−2

3
Gp∇ · (U0p

⊥) + Kup∇ · (U0p
⊥) + Cp∇ · (W0p

⊥) = 0

and

Cp∇ ·
(

U0p
⊥)

+ Mp∇ ·
(

W0p
⊥)

= 0. (94)

Equations (93) and (94) represent six equations for the two un-
knowns U0 and W0. I can reduce the number of equations by pro-
jecting the displacement vectors onto a unit vector in the direction
of motion p̂⊥. In doing so, the terms containing W0 in equation
(93) and all the terms in equation (94) vanish, resulting in a single
equation for the amplitude function U0.

p3(p̂ · ∇G)U0 + G
[

p2(∇ · p)U0 + 2p⊥ · p · ∇
(

U0p
⊥)]

+G
[

p
⊥ · p⊥ · ∇pU0 + p

⊥ · p · ∇(U0p
⊥)

]

= 0. (95)

Thus, the transverse solid displacement is completely uncoupled
from the f uid displacement vector W. Expanding the dyadic ex-
pressions and combining terms produces a scalar equation for U0

3Gpp̂ · ∇U0 + pp̂ · ∇GU0 + G
[

∇ · p + 2p̂ · ∇(p2)
]

U0 = 0.

(96)

Noting again that the projection of the gradient operator onto the
unit vector p̂ signif es the rate of change of the quantity with respect
to distance r along the trajectory X, I can write equation (96) as

3Gp
dU0

dr
+ G

[

∇ · p + 2
dp

dr
+ p

d(lnG)

dr

]

U0 = 0. (97)

Noting that the eikonal equation allows one to write the magnitude
of the vector p in terms of the slowness χ(X, ω) [see equation
(65)] and def ning

Π = 3χG (98)

and

Σ = G

[

∇ · p + 2
dχ

dr
+ χ

d(lnG)

dr

]

, (99)

I can write equation (97) as a f rst-order ordinary differential equa-
tion for U0

Π
dU0

dr
+ ΣU0 = 0 (100)

which may be written

dU0

dr
= −Σ

Π
U0. (101)

Equation (101) has the explicit solution

U0(X) = AU
0e−ς(X) (102)
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where

ς(X) =

∫

X(r)

Σ

Π
dr (103)

and AU
0 is the initial displacement amplitude. Thus, it is possible

to derive an analytic expression for the amplitude of the transverse
displacement. From the coeff cients (98) and (99) it is clear the the
transverse displacement only depends upon the shear modulus G,
the slowness χ, and the geometrical spreading of the trajectories as
measured by ∇ · p.

2.3 The Nature of the Longitudinal Biot Slow and Fast
Waves in the Limit of Low Frequency

It is diff cult to make def nitive statements regarding the nature
of the two solutions in equation (47) due to the coupling of the
f uid f ow and the elastic deformation in the matrix. However, if
I consider a low-frequency solution it is possible to make further
progress. I should point out that in considering lower frequencies
the scale length of the disturbance will lengthen. Hence, I am lim-
iting the solution to a medium with heterogeneity of a suff ciently
long scale length. At lower frequencies the Biot equations decou-
ple, as noted by Pride (2005) and Lo et al. (2006), and the numera-
tor and denominator of ζ are dominated by ρ̃ [see equation (48)]. As
indicated by the def nition (26), if K is not a function of frequency
then ρ̃ is proportional to 1/ω, becoming large as ω approaches zero.
Thus, as ω approaches zero ζ approaches

ζ = −i
4ρ(HM − C2)K

ηH2
ω.

When K is a function of frequency ω, the behavior of ζ depends
upon the relationship of K to the frequency. For low frequencies, ζ
smaller than 1, I can use the binomial expansion to write the square
root term in equation (47) as a power series in ζ. Retaining only the
f rst two terms of the expansion I obtain

p2 =
γω2

2

[

1 ± (1 − 1

2
ζ)

]

. (104)

The magnitude of the phase gradient vector p is related to the
inverse of the velocity of the propagating disturbance (Aki &
Richards, 1980), so that larger values of p correspond to slower
moving features. Because ζ is taken to be smaller than 1 the f rst
root

p2 =
γω2

2

[

2 − 1

2
ζ
]

(105)

is known as the ’Biot slow wave’, corresponding to a propagating,
diffusive wave, related to a f uid pressure transient (Vasco et al.,
2000; Vasco, 2008a). The second root results in an expression for
the ’Biot fast wave’

p2 =
γζω2

4
(106)

which is the porous medium equivalent of an elastic wave and
propagates with much less attenuation and a much higher velocity
(Pride, 2005). Accounting for the exact expressions for γ, equation
(45), and ζ, equation (48), I can write the equation (106) for the fast
wave as

p2 = ω2 ρρ̃ − ρf
2

ρ̃H + ρM − 2ρfC
(107)

or as

p2 = ω2
ρ − ρf

ρ̃
ρf

H + ρ
ρ̃
M − 2

ρf

ρ̃
C

. (108)

Comparing the expression for a porous medium (108) to that for a
purely elastic medium

p2 = ω2 ρ

H
, (109)

the modif cations required to account for poroelastic processes are
apparent. Note that, while the frequency dependence of an elas-
tic disturbance (109) is straight-forward and represents hyperbolic
wave propagation, the frequency dependence of a disturbance in
a poroelastic medium (108) is rather more complicated due to the
presence of the parameter ρ̃, which is def ned in (26). This is par-
ticularly true if K is also a function of frequency, leading to more
complex propagation, including dispersion and dissipation. In the
next two sub-sections I consider these two modes of longitudinal
displacement in somewhat more detail. Specif cally, I derive the
form of the zeroth-order asymptotic solutions U0 and W0 in both
the frequency and time domains in the limit of low frequency. As
noted by (Pride, 2005), the boundary of the low frequency regime
lies in the kilo-Hertz to mega-Hertz range and covers the vast ma-
jority of seismic and hydrologic f eld experiments.

2.3.1 The Biot Slow Wave

First, consider the Biot slow wave whose slowness is given by equa-
tion (105), which may written as

p2 = γω2 − γζω2

4
(110)

in the low frequency limit. In the limit as ω approaches zero I f nd
that

lim
ω→0

γ =
ρ̃H

HM − C2
=

iη

ωK

H

(HM − C2)
(111)

and

lim
ω→0

ζ = 4ρ
ωK

iη

(HM − C2)

H2
(112)

and equation (110) takes the form

p2 =
iωη

K

H

(HM − C2)
− 4

ρω2

H
(113)

which, for ω near zero, is dominated by the f rst term on the right

p2 =
iωη

K

H

(HM − C2)
. (114)

Drawing upon equation (114) I can write the low frequency approx-
imation to the eikonal equation for the Biot slow wave as

∇θ · ∇θ =
iωη

K

H

(HM − C2)
. (115)

As stated previously in the discussion associated with equations
(49) through (55), I can def ne the slowness as the square root of
the right-hand-side of equation (115),

χ(X, ω) =

√

iωη

K

H

(HM − C2)
. (116)

Expressing the eikonal equation in ray coordinates, along the tra-
jectory X(r) I arrive at an integral expression for the phase θ(r, ω)

θ(r, ω) =

∫

X(r)

χ(X(r′))dr′ (117)
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or, moving iω outside the integral and def ning

τ (r) =

∫

X(r)

√

η

K

H

(HM − C2)
dr′, (118)

the phase may be written in the form

θ(r, ω) =
√

iωτ (r). (119)

Now consider the zeroth-order term in the power series repre-
sentation of U(X, ω, θ) and W(X, ω, θ) [equations (18) and (19)]

U(X, ω, θ) = eiθ
U0(X, ω) (120)

W(X, ω, θ) = eiθ
W0(X, ω) (121)

which provides a suitable approximation to the solid and f uid dis-
placements if ε is small. Substituting the expression for the phase,
θ(r, ω), and the fact that U0 = U0p and W0 = W0p the above
expressions take the form

U(X, ω, θ) = e
√

−iωτ(X)U0(X, ω)p (122)

W(X, ω, θ) = e
√

−iωτ(X)W0(X, ω)p (123)

where X(r) a point on the trajectory a distance r from the source
of the disturbance. Inverse Fourier transforming equations (122)
and (123) back into the time domain, using the fact that the in-
verse Fourier transform of a product is the convolution of the in-
verse Fourier transforms and the inverse transform of e

√
−iω is a

Gaussian (Spiegel, 1990; Virieux et al., 1994)

u(X, t, θ) =
τ

2
√

πt3
e−τ2/4tH(t) ∗ u0(X, t)p (124)

w(X, t, θ) =
τ

2
√

πt3
e−τ2/4tH(t) ∗ w0(X, t)p (125)

where ∗ signif es a temporal convolution and u0(X, t), w0(X, t)
are the inverse transforms of U0(X, ω) and W0(X, ω), and H(t)
is the Heaviside or step-function which jumps in value from zero to
one at t = 0.

The phase behavior in (124) and (125) contains a Gaussian
impulse response which is the solution to the diffusion equation
(Carslaw & Jaeger, 1959). This form of the solution agrees with
previous studies in homogeneous media where it was found that
the low frequency Biot slow wave satisf es a diffusion-type equa-
tion [see (Pride, 2005) and (Lo et al., 2006)]. Such a solution is also
in agreement with solutions for quasi-static pressure and displace-
ment in a poroelastic medium (Rudnicki, 1986; Wang & Kumpel,
2003; Vasco, 2008a). The solutions (124) and (125) decay rapidly
with propagation distance and do not behave like elastic waves.
However, it is still possible to consider the propagating transient
disturbance as a type of wave and to def ne an ’arrival time’ and
to use such arrival times to perform something akin to travel time
tomography (Virieux et al., 1994; Vasco et al., 2000; Shapiro et al.,
2002; Vasco et al., 2008). In order to gain some insight, consider
the solution in the time domain, equation (124), when the ampli-
tude function u0(X, t) does not depend upon time. The peak of the
displacement occurs when the temporal derivative vanishes, that is
when

∂u(X, t, θ)

∂t
=

τ

2
√

π
e−τ2/4t

[

− 3

2
√

t5
+

τ 2

4
√

t7

]

u0(X)p (126)

is equal to zero. This condition is satisf ed when the quantity inside
the square brackets vanishes, that is when

t =
τ 2

6
(127)

or

τ =
√

6Tpeak (128)

where Tpeak is the time at which the displacement attains a max-
imum value. Thus the ’phase’, τ (X) is proportional to the square
root of the time at which the peak deformation occurs. One can
use this quantity to def ne an ’arrival time’ for the diffusive tran-
sient displacement (Virieux et al., 1994). For more a complicated
source-time function u0(X, t) it is necessary to remove it from
the recorded displacement before computing the arrival time. If the
source-time function is known, it may be removed by deconvolu-
tion in the time or frequency domain (Bracewell, 1978).

The expressions for the matrix and f uid displacements (124)
and (125) correspond to a delta function source in time. That is,
to an impulsive source in which the displacement is non-zero at a
single point in time. Due to the diffusive nature of the propagation
of the Biot slow wave such an initial pulse will not propagate very
far from the source. Rather, it is more common to have a step func-
tion source in which f uid is introduced at a point for a long period
of time. That is, initially the f ow rate is zero and then steps up to
some non-zero value very quickly and is maintained at that rate for
a long period of time. In that way the constant f ux of mass or en-
ergy propagates some distance from the source. I can obtain this
type of source by integrating the delta function in time. The inte-
gral of a delta function is a step function (Bracewell, 1978), and the
integral of the impulse response is given by

u(X, t, θ) =

∫ t

0

τ

2
√

πy3
e−τ2/4ydy ∗ u0(X, t)p (129)

w(X, t, θ) =

∫ t

0

τ

2
√

πy3
e−τ2/4ydy ∗ w0(X, t)p. (130)

The integral is related to the complementary error function (Press
et al., 1992) and so I can write equations (129) and (130) as

u(X, t, θ) = erfc

(

τ

2
√

t

)

∗ u0(X, t)p (131)

w(X, t, θ) = erfc

(

τ

2
√

t

)

∗ w0(X, t)p (132)

which is similar to the solution for f uid diffusion due to constant
f uid injection of withdrawal (Theis, 1935).

2.3.2 The Biot Fast Wave

Now I consider the second possible value for p2 in equation (104),
associated with the minus sign, which results in

p2 =
γζω2

4
(133)

or, considering the limits of equations (111) and (112),

p2 = ω2 ρ

H
(134)

which is identical to the slowness for an elastic medium [equation
(109)]. The associated eikonal equation, obtained by substituting
∇θ for p [see the def nition of p, equation (29)], is

∇θ · ∇θ = ω2 ρ

H
. (135)

As was done previously for the Biot slow wave, I can def ne the
slowness
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χ(X, ω) = ω

√

ρ

H
. (136)

Consideration of the eikonal equation in ray coordinates allows one
to write the phase as the integral

θ(r, ω) = ω

∫

X(r)

√

ρ

H
dr′, (137)

or as

θ(r, ω) = ωτ (r) (138)

where

τ (r) =

∫

X(r)

√

ρ

H
dr′. (139)

Now consider the zeroth-order approximation to the solid and
f uid displacements given by

U(X, ω, θ) = eiθ
U0(X, ω) (140)

W(X, ω, θ) = eiθ
W0(X, ω). (141)

Substituting in the expression (138) for the phase θ and accounting
for the fact that U0 and W0 are longitudinal displacements (in the
p direction), I arrive at the frequency domain representation

U(X, ω, θ) = eiωτ(X)U0(X, ω)p (142)

W(X, ω, θ) = eiωτ(X)W0(X, ω)p. (143)

Applying the inverse Fourier transform to equations (142) and
(143) produces the time domain expressions

u(X, t) = δ(t − τ ) ∗ u0(X, t)p (144)

w(X, t) = δ(t − τ ) ∗ w0(X, t)p (145)

where δ(t) is the delta function. The convolution with the delta
function may be evaluated exactly (Bracewell, 1978), resulting in

u(X, t) = u0(X, t − τ )p (146)

w(X, t) = w0(X, t − τ )p. (147)

Thus, the waveforms are just shifted versions of the source wave-
form combined with changes due to propagation described by the
amplitude equations (87) and (90). This is in keeping with previ-
ous studies which indicate that the Biot fast wave is in essence an
elastic wave propagating in the poroelastic medium (Pride, 2005;
Lo et al., 2006).

2.4 Nature of the Transverse Displacement in the Limit of
Low Frequency

The squared slowness associated with the transverse displacement
is given by equation (62)

p2 = ω2

[

ρ −
( ρf

ρ̃

)

ρf

]

G
. (148)

In order to obtain the exact dependence on the f ow properties η
and K and frequency ω, I substitute the expression for ρ̃, equation
(26)

p2 =
ω2ρ

G
+

iω3K(ρf )2

Gη
(149)

which, for low frequency, is dominated by the f rst term on the
right-hand-side. Thus, at low frequencies

p2 =
ω2ρ

G
(150)

and

χ(X, ω) = ω

√

ρ

G
. (151)

Consideration of the eikonal equation in ray coordinates enables
me to write the phase as

θ(r, ω) = ωτ (r) (152)

where

τ (r) =

∫

X(r)

√

ρ

G
dr′. (153)

The zeroth-order approximation to the solid displacement is given
by

U(X, ω, θ) = eiωτ(X)U0(X, ω)p⊥ (154)

Applying the inverse Fourier transform to equations (154) produces
the time domain expression

u(X, t) = δ(t − τ ) ∗ u0(X, t)p⊥ (155)

where δ(t) is the delta function. The convolution with the delta
function may be evaluated exactly (Bracewell, 1978), resulting in

u(X, t) = u0(X, t − τ )p⊥ (156)

where τ is the time delay corresponding to the transverse displace-
ment, equation (153).

2.5 Propagation across an Interface

As with ray theoretical approaches for modeling elastic wave prop-
agation, one can include a discontinuous change in material prop-
erties as a boundary and subject the wavef elds to the appropri-
ate boundary conditions (Aki & Richards, 1980; Chapman, 2004).
Hence, one can use the asymptotic expressions given above in mod-
els containing layering, faults, and other structural and stratigraphic
features. Due to the presence of the Biot slow wave and the f uid
displacement f eld, the interaction of the wavef eld with an inter-
face in a poroelastic medium will be a somewhat richer topic, with
four possible ref ected and transmitted waves [fast longitudinal,
fast in-plane transverse (SV), fast out-of-plane transverse (SH), and
slow longitudinal] for each incident wave. The longitudinal mode
of propagation will have two associated displacement f elds, one
associated with the solid displacement U and the other associated
with the relative f uid displacement W. The transverse mode of
propagation will only include solid displacements, as indicated by
the equation governing the amplitude (95). A discussion of ref ec-
tion and transmission coeff cients warrants an entire paper, and will
be the subject of future work. Such a treatment involves a direct ex-
tension of the results for an elastic medium (Aki & Richards, 1980;
Chapman, 2004).

2.6 Computation of the Complete Displacement Response

Given that there are two modes of longitudinal propagation, the
Biot slow and fast waves, with very different propagation character-
istics, some thought must be given to the computation of the com-
plete response at a given point. In particular, the fact that the Biot
fast waves decays slowly, essentially as an elastic wave, means that
a particular station may receive contributions from many different
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locations. Stated another way, a large pressure change can gener-
ate a continuous contribution of Biot fast waves as it propagates
(Vasco 2008a). Because the Biot fast waves can travel signif cant
distances without much decay, one must account for these contri-
butions in computing the displacement response at a given location.
Conversely, a Biot fast wave can generate a Biot slow wave near the
receiver and contribute to the local pressure response. This process
may be responsible to the dynamic triggering of micro-seismicity
by large, remote earthquakes.

In this sub-section I will touch upon the summation of Biot
fast wave contributions from a pressure source, as generated by
the injection or withdrawal of f uid from a well. This is a partic-
ularly common situation, encountered in groundwater, geothermal,
petroleum, and waste disposal activities. I consider an impulsive
pressure source, which will generate both Biot slow and fast waves.
The Biot slow wave will propagate from the source point Xs to an
intermediate location Xi and the disturbance is given by equation
(124),

u(Xi,Xs; t) =
τ (Xi, Xs)

2
√

πt3
exp

[

−τ (Xi,Xs)
2/4t

]

(157)

×u0(Xs,Xi)ps(Xi)

where u0(Xi,Xx) represents the amplitude decay of the slow
wave due to propagation from Xs to Xi. Similarly, τ (Xi,Xs) rep-
resents the accumulated phase change as the diffusive slow wave
propagates from the source to Xi. As the Biot slow wave propa-
gates from the source location Xs to the intermediate point in the
medium it will generate, or shed, Biot fast waves. Once the fast
waves are generated, say at the point Xi, they will propagate to the
receiver point Xr according to equation (146). I shall denote the ac-
cumulated phase due to the propagation of the Biot fast wave from
Xi to the receiver point Xr by τ (Xr,Xi) and similarly for the
amplitude decay u0(Xr,Xi). One consideration in the generation
of the longitudinal displacement for the Biot fast wave is that the
trajectories of the outgoing fast wave may differ from that of the
incoming Biot slow wave. Thus, I include a term accounting for
the projection of the displacement associated with the Biot slow
wave onto the displacement direction of the outgoing fast wave.
The contribution to the displacement at the receiver located at Xr

for a wave that traveled as a slow wave to from Xs to Xi and then
as a fast wave from Xi to Xr is

u(Xr,Xs; t) =
τ (Xi,Xs)

2
√

π [t − τ (Xr,Xi)]
3

(158)

exp
[

−τ (Xi,Xs)
2/4(t − τ (Xr,Xi))

]

×u0(Xr,Xi)u0(Xi,Xs)pf (Xi) · ps(Xi)pf (Xr).

The total displacement at Xr, u(Xr, t), is obtained by summing or
integrating over all intermediate points Xi

u(Xr, t) =

∫

V

u(Xr,Xs; t)dXi. (159)

One can evaluate this integral directly using numerical methods or
approximate it using an asymptotic technique (Dingle, 1973). The
procedure is similar to the quasi-static calculation for the solid dis-
placement due to a pressure source presented in Wang (2000, p.
110).

3 APPLICATIONS

In this section I implement the methodology described above and
use it to model f uid pressure changes and solid matrix displace-
ments due to f uid injection into a borehole. Two particular cases
are considered: homogeneous and heterogeneous media, and the
results are compared with predictions from a f nite difference code
and an analytic solution for a homogeneous medium. I shall only
be concerned with the computation of the direct longitudinal slow
and fast arrivals. That is, I will not compute conversions between
slow and fast arrivals, as indicated in equations (158) and (159). An
example of such a calculation, in the case of quasi-static poroelastic
propagation, was given in Vasco (2008a).

3.1 Propagation in a Homogeneous Medium

Here, I am interested in modeling the evolution of f uid pressure
and solid displacement in a homogeneous medium induced by a
rapid pressure pulse (Figure 1). The half-width of the pulse is less
than 0.1 s and the pressure source is activated at 0.2 s. The medium
is a homogeneous porous whole space with a solid bulk modulus
of 30.5 GPa, an undrained bulk modulus of 20.5 GPa, a f uid bulk
modulus of 2.2 GPa, a shear modulus of 8.4 GPa, a solid density
of 2.5 gm/cc, a f uid density of 1.0 gm/cc, a porosity of 0.1, and a
hydraulic conductivity of 3.0 ×10−12. In order to reduce the com-
putation I shall consider a two dimensional problem, modeling the
propagation within a vertical slice of the Earth. A numerically sta-
ble f nite difference code (Masson et al., 2006) is used to calculate
the pressure and displacements due to the injection. In Figure 2
three snap-shots of the pressure variation in the two-dimensional
whole space are shown. Note that by 1000 s the pressure variation
has reached the boundaries of the model and the predictions of the
f nite difference code will be inf uenced by this interaction.

For a homogeneous medium I can use the expression given
in (Wang & Kumpel, 2003) for the quasi-static pressure variation.
The inertial terms are probably not signif cant in the governing
equation for pressure if the frequency is low. This conjecture is
verif ed through a comparison of pressure predictions made using
the f nite-difference approach of (Masson et al., 2006), the analytic
predictions of (Wang & Kumpel, 2003), and the asymptotic expres-
sion given by equation (125) of this paper (Figure 3). In general,
the agreement between the three methods is fairly good though the
agreement with the numerical results deteriorate somewhat after
the peak pressure is obtained. The differences after the peak pres-
sure may be due to the interaction of the pressure with the bound-
ary in the numerical modeling (Figure 2). The differences between
the asymptotic pressure estimates and the analytic and the f nite-
difference estimates are shown in greater detail in Figure 4 where I
plot the absolute error as a function of time. In general, the error is
less then 2 % of the peak pressure value plotted in Figure 3.

The inertial terms cannot be neglected when calculating the
elastic displacement of the solid matrix. Doing so will give the cor-
rect elastic quasi-static response to the pressure changes near the
injection point, that is the response modeled using equations (158)
and (159). However, the quasi-static solution does not contain the
Biot fast wave which is generated by the rapid pressure change due
to injection. For an analytic model of the Biot fast wave I use the
expressions provided by (Gajo & Mongiovi, 1995). In addition, I
generate a numerical solution using the f nite-difference code of
(Masson et al., 2006). Three snap-shots, generated within the f rst
0.3 s after the start of injection, are shown in Figure 5. Note the in-
teraction of the Biot fast wave, which is essentially an elastic wave,
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with the boundaries of the mesh by 0.28 s. The boundaries gener-
ate ref ections which impact the predictions made after that time.
This points to some of the limitations of numerical approaches for
modeling poroelastic processes. The time scale of the pressure vari-
ation (Figure 2) is signif cantly different from that for the elastic
wave (Figure 5). Thus, the elastic wave traverses the entire numer-
ical modeling grid by 300 iterations of the f nite difference code.
About 1,000,000 iterations are necessary to model the propagation
of the pressure disturbance from the source to the edge of the mod-
eling grid, taking roughly 2 hours of CPU time. If I had doubled
the size of the grid to avoid spurious ref ections then the amount
of computation increases by four times, requiring 8 hours of CPU
times.

In Figure 6 I compare the predictions of the numerical code
with those of the analytic solution of (Gajo & Mongiovi, 1995) and
the asymptotic solution given for the Biot fast wave, equation (146).
When the phase term is real, the analytic and asymptotic solutions
are shifted versions of the source function, after we account for the
mapping of pressure into displacement which occurs at the source.
The predictions of the three methods are fairly close until the dis-
placement peak. Following the peak displacement, the numerical
predictions deviate from the analytic and asymptotic predictions.
As with the pressure, this may be due to the interaction of the f nite-
difference results with the boundary of the modeling grid. In addi-
tion, one must be careful when including the source-time function
as noted by (Chapman, 1985). For example, for an elastic wave
one must consider the analytic time series which contains both the
source-time function as well as its Hilbert transform. The disagree-
ment is shown in more detail is Figure 7, where one f nds exact
agreement between the analytic and asymptotic displacements and
increasing discrepancies between the numerical solution and the
analytic and asymptotic solutions.

3.2 Propagation in a Heterogeneous Medium

In an effort to examine propagation in a heterogeneous medium
I perturbed the uniform model given above, using linear and
quadratic functions to generate a two-dimensional velocity model
(Figure 8). The resulting model constrains a high velocity zone
bounded above and below by low velocity regions. The source is
located at (0.5 km, 0.5 km), within the high velocity zone, while
the receiver lies at the upper edge of the high velocity zone. From
the results of the f nite difference pressure calculations, one ob-
serves that the pressure propagation is very much inf uenced by
the heterogeneities (Figure 9). The rather asymmetric pressure dis-
tribution contrasts sharply with that of the homogeneous medium
(Figure 2). Solving the eikonal equation (49) numerically using the
fast marching method of (Sethian, 1999), which was introduced in
seismology by (Vidale, 1988) one can compute the travel time con-
tours (Figure 10). The trajectories for asymptotic modeling can be
generated by marching down the gradient of the travel time f eld
(Sethian, 1999). Such a trajectory connecting the source and re-
ceiver is shown in Figure 10. The calculation of the phase f eld
and the generation of the trajectory took around 5 CPU seconds
on a workstation. In Figure 11 I compare the numerical solution
produced by the f nite-difference code with the asymptotic solution
given above. Note that the analytic solution is no longer valid, due
to the presence of heterogeneity. Overall, there is relatively good
agreement between the two predictions. The discrepancy between
the two solutions is shown in more detail in Figure 12. Generally,
the two solutions lie within 2-4 percent of each other.

In Figure 13 I compare the displacement of the solid matrix

associated with the Biot fast wave. As before, the solution was trun-
cated due to interference from boundary ref ections in the numer-
ical modeling. There is general agreement between the two solu-
tions and most of the differences occur after the peak of the pulse.
As noted above, the numerical solution is inf uenced by the pres-
ence of the boundary in this time interval. The agreement between
the asymptotic solution and the numerical predictions could be im-
proved by expanding the modeling grid and accounting for the ex-
act position of the source and receiver within the modeling grid.
Furthermore, using the full frequency response, given in equation
(49), rather than the low frequency response (146), and the analytic
source function (Chapman, 1985), should improve the agreement.

4 CONCLUSIONS

An asymptotic approach provides a useful technique for model-
ing the propagation of a disturbance in a poroelastic medium with
smoothly-varying elastic and f ow properties. Because the expan-
sion is in terms of a scale parameter def ned by the ratio of the
width of the disturbance to the scale-length of the heterogeneity,
the solution should be valid across a range of frequencies as long
as the heterogeneity is suff ciently smooth. The expressions for the
phase and amplitudes of the longitudinal Biot fast and slow dis-
placements and the transverse displacements are simple extensions
of expressions for displacements in an elastic medium. In the limit
of low frequency, the expressions capture the diffusive nature of the
Biot slow wave and the hyperbolic wave-like nature of the longi-
tudinal Biot fast wave and the transverse displacement. At higher
frequencies the propagation can contain elements of diffusive and
hyperbolic propagation and the slowness, as given in equation (47),
can be complex and require complex ray tracing (Kravtsov et al.,
1999; Amodei et al., 2006; Vasco, 2007). As noted above, it is pos-
sible to account for interfaces in the methodology, by treating a dis-
continuity as a boundary condition. An example of the refraction at
a boundary for quasi-static propagation in a poroelastic medium
was given in Vasco (2008).

The trajectory-based solution derived in the paper provides
additional insight into the manner in which the properties of the
medium inf uence the propagation of disturbances within a poroe-
lastic Earth model. For example, the three modes of propagation,
the fast and slow longitudinal displacements and the fast transverse
displacement, are given by the three sets of eigenvalues and eigen-
vectors of the matrix (34). The three additional solutions required
of the 6 by 6 matrix are provided by disturbances propagating in
the reverse direction. The exact combination of the medium pa-
rameters and frequency contributing to the phase velocity of each
mode of propagation follows from equations (47) and (62). The
variation of amplitude with propagation distance for each mode of
propagation is given by the transport equations (87) and (90) for the
longitudinal displacements, and the expression (102) for the trans-
verse displacement. These expressions are particularly useful when
solving the inverse problem, in which observations are used to infer
properties within the Earth (Iyer & Hirahara, 1993). For example,
the expressions allow the inverse problem to be partitioned into a
travel time inverse problem (Aki et al., 1976) and an amplitude
inverse problem (Thomson, 1983). The travel time inverse prob-
lem is quasi-linear in nature and has better convergence properties
to a solution than the amplitude inverse problem (Nolet, 1987). It
is also possible to formulate an eff cient, low-order waveform in-
version algorithm based upon the asymptotic solution (Vasco et al.,
2003). The asymptotic formalism used here also unif es two classes
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of inverse problems: the inversion of displacement and seismic data
(Vasco et al., 2003) and the inversion of f uid f ow data (Vasco et al.,
2000; Vasco, 2008b).

There a number of avenues by which to extend this work. First,
one could generalize the governing equations such that the moduli
depend on the stress f eld and/or the f uid pressure. Second, one
could consider multi-phase f uid f ow and the attendant complica-
tions. Third, more complicated rheologies, such as plasticity, could
be invoked for the solid matrix. The method of multiple scales may
be used for such generalizations because it is applicable to non-
linear (Jeffrey & Kawahara, 1982; Anile et al., 1993) and coupled
(Korsunsky, 1997) processes. There are also a number of possible
applications of the methodology including the study of deformation
accompanying reservoir production mentioned in the Introduction.
In addition, it would be of interest to explore the consequences of
the conversion of longitudinal displacements between the Biot fast
and slow waves. As noted by Pride (2005) and illustrated in Vasco
(2008a), in a heterogeneous poroelastic medium, fast waves can
generate slow waves and vice-versa. Given the differences in the
nature of propagation of these two modes, this leads to some inter-
esting effects, such as the rapid appearance of elastic deformation
as compared to the appearance the gradual appearance of pressure
change (Vasco 2008a). Such conversions may be a factor in the re-
mote triggering of micro-earthquakes by dynamic strains generated
during a major earthquake (Hill et al., 1993).
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5 APPENDIX A: THE METHOD OF MULTIPLE SCALES

In this Appendix I apply the method of multiple scales (Anile et al.,
1993; Kevorkian & Cole, 1996) to the equations governing the evo-
lution of a transient disturbance in a poroelastic medium, equations
(15) and (16). These coupled linear partial differential equations
depend on the spatially-varying parameters G(x), Ku(x), C(x),
M(x), and K(x) as well as on the frequency ω. One approach to
solving this system of equations makes use of a series representa-
tion of the solution in powers of 1/ω and assumes that ω is large.
Because I am interested in modeling disturbances across a wide
range of frequencies I shall not adopt this approach. Rather, I will
assume that the heterogeneity is smoothly-varying in comparison
to scale of the disturbance in displacement and pressure. Specif -
cally, if I denote the scale length of the heterogeneity by L and the
scale length over which the pressure and displacement varies by l.
Then, by assumption, L ≫ l and the ratio ε = l/L is much smaller
then 1. In order to bring out the scale separation I can re-write the
governing equations in terms of a slow variable X which is given
by

X = εx. (A1)

Furthermore, I can represent the Fourier transform of solid matrix
displacement and the pore f uid displacement as power series in ε

U(X, ω, θ) = eiθ

∞
∑

l=0

εl
Ul(X, ω) (A2)

W(X, ω, θ) = eiθ

∞
∑

l=0

εl
Wl(X, ω). (A3)

Note that, because ε ≪ 1, only the f rst few terms of the power
series are signif cant. The form of the solutions (A2) and (A3) is
a variation of the generalized plane wave expansion used in the
study of elastic and electromagnetic waves (Luneburg 1966, Kline
and Kay 1979, Aki and Richards 1980, Kravtsov and Orlov 1990)
where θ(x, ω) is the phase of the disturbance, a quantity related to
the propagation time. The phase is a rapidly varying quantity which
scales as 1/ε (Anile et al., 1993). After Fourier transforming, the
frequency only enters as part of the coeff cients of the governing
equations and I shall treat ω as a parameter. The differential opera-
tors in the governing equations may be written in terms of the slow
variable X by noting that

∂U

∂xi
= ε

∂U

∂Xi
+

∂θ

∂xi

∂U

∂θ
. (A4)

Hence, making use of equation (A1) I can write the gradient oper-
ators as

∇U = ε∇XU + ∇θ
∂U

∂θ
(A5)

∇ · U = ε∇X · U + ∇θ · ∂U

∂θ
(A6)

where ∇X denotes the gradient with respect to the components of
the slow variable X. In the derivation that follows I shall suppress
the X subscript on the differential operator ∇.

The f rst step involves re-writing the governing equations in
terms of the slow variables. Consider a version of the f rst equation
(15) in which I expand the derivative terms

∇G · ∇U

+∇G · (∇U)T

−2

3
∇G · [(∇ · U) I]

+G∇ · ∇U

+G∇ · (∇U)T

−2

3
G∇ · [(∇ · U) I]

+∇Ku∇ · U

+Ku∇ (∇ · U)

+∇C∇ · W

+C∇ (∇ · W)

+ω2ρU + ω2ρfW = 0. (A7)

Now I substitute the differential operators as indicated in (A5) and
(A6), only retaining terms containing ε0 ∼ 1 and ε1,

ε∇G ·
(

∇θ
∂U

∂θ

)

+ε∇G ·
(

∇θ
∂U

∂θ

)T

−ε
2

3
∇G ·

[(

∇θ · ∂U

∂θ

)

I

]

+εG∇ ·
(

∇θ
∂U

∂θ

)

+ εG∇θ · ∇
(

∂U

∂θ

)

+ G∇θ ·
(

∇θ
∂2U

∂θ2

)

+εG∇·
(

∇θ
∂U

∂θ

)T

+εG∇θ ·∇
(

∂U

∂θ

)T

+G∇θ ·
(

∇θ
∂2U

∂θ2

)T

−ε
2

3
G∇·

(

∇θ · ∂U

∂θ

)

I−ε
2

3
G∇θ·

(

∇ · ∂U

∂θ

)

I−2

3
G∇θ·

(

∇θ · ∂2U

∂θ2

)

I

+ε∇Ku

(

∇θ · ∂U

∂θ

)

+εKu∇
(

∇θ · ∂U

∂θ

)

+εKu∇θ
(

∇ · ∂U

∂θ

)

+Ku∇θ

(

∇θ · ∂2U

∂θ2

)

+ε∇C
(

∇θ · ∂W

∂θ

)

+εC∇
(

∇θ · ∂W

∂θ

)

+εC∇θ
(

∇ · ∂W

∂θ

)

+C∇θ

(

∇θ · ∂2W

∂θ2

)

+ω2ρU + ω2ρfW = 0. (A8)

I can write equation (A8) more compactly if I use the def nition of
p = ∇θ and the fact that

∂U

∂θ
= iU
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and
∂W

∂θ
= iW

which follows from the form of the solutions (A2) and (A3). Mak-
ing these substitutions, I can write equation (A8) as

ε∇G · (ipU)

+ε∇G · (ipU)T

−ε
2

3
∇G · [(ip · U) I]

+εG∇ · (ipU) + εGp · ∇ (iU) − Gp · (pU)

+εG∇ · (ipU)T + εGp · (∇iU)T − Gp · (pU)T

−ε
2

3
G∇ · (ip · U) I − ε

2

3
Gp · (∇ · iU) I +

2

3
Gp · (p · U) I

+ε∇Ku (ip · U)

+εKu∇ (ip · U) + εKup (∇ · iU) − Kup (p · U)

+ε∇C (ip · W)

+εC∇ (ip · W) + εCp (∇ · iW) − Cp (p · W)

+ω2ρU + ω2ρfW = 0. (A9)

Some of the terms in equation (A9) can be expanded to arrive at

iεp (∇G · U)

+iε (∇G · p)U

−iε
2

3
∇G (p · U)

+iεG [(∇ · p)U + 2p · (∇U)] − Gp (p · U)

+iεG
[

(∇ · U)p + U · ∇p + p · (∇U)T
]

− Gp2
U

−iε
2

3
G [∇ (p · U) + (∇ · U)p] +

2

3
Gp (p · U)

+iε∇Ku (p · U)

+iεKu [∇ (p · U) + p (∇ · U)] − Kup (p · U)

+iε∇C (p · W)

+iεC [∇ (p · W) + p (∇ · W)] − Cp (p · W)

+ω2ρU + ω2ρfW = 0. (A10)

Considering the second governing equation (16), expanding
the derivatives I arrive at

∇C∇ · U

C∇∇ · U

∇M∇ · W

+M∇∇ · W

ω2ρfU + ω2ρ̃W = 0. (A11)

Substituting the differential operators and retaining terms of order
ε0 and ε1,

ε∇C
(

∇θ · ∂U

∂θ

)

+εC∇
(

∇θ · ∂U

∂θ

)

+ εC∇θ
(

∇ · ∂U

∂θ

)

+ C∇θ

(

∇θ · ∂2U

∂θ2

)

ε∇M
(

∇θ · ∂W

∂θ

)

+εM∇
(

∇θ · ∂W

∂θ

)

+εM∇θ
(

∇ · ∂W

∂θ

)

+M∇θ

(

∇θ · ∂2W

∂θ2

)

ω2ρfU + ω2ρ̃W = 0. (A12)

Using the def nition of p and the property of the partial derivatives
I can write equation (A12) as

iε∇C (p · U)

+iεC [∇ (p · U) + p (∇ · U)] − Cp (p · U)

iε∇M (p · W)

+iεM [∇ (p · W) + p (∇ · W)] − Mp (p · W)

ω2ρfU + ω2ρ̃W = 0. (A13)

5.1 Terms of Order ε0 ∼ 1

As noted above, because ε is assumed to be small, the terms of
lowest order are the most signif cant. To f nd these terms I substi-
tute the power series expressions for U and W, given by (A2) and
(A3), into equations (A10) and (A12). Two equations result, each
containing an inf nite progression of terms of various orders in ε. If
I consider terms of the lowest order in ε, ε0 ∼ 1, I arrive at the two
equations

Gp2
U0 +

1

3
Gpp · U0 + Kupp · U0 − ω2ρU0

+Cpp · W0 − ω2ρfW0 = 0 (A14)

and

Cpp · U0 − ω2ρfU0 + Mpp · W0 − ω2ρ̃W0 = 0. (A15)

5.2 Terms of Order ε1

Now consider terms of the next lowest order in ε, those of f rst
order. For the f rst equation (A10), I have

ip (∇G · U0)

+i (∇G · p)U0
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−i
2

3
∇G (p · U0)

+iG [(∇ · p)U0 + 2p · (∇U0)] − Gp (p · U1)

+iG
[

(∇ · U0)p + U0 · ∇p + p · (∇U0)
T
]

− Gp2
U1

−i
2

3
G [∇ (p · U0) + (∇ · U0)p] +

2

3
Gp (p · U1)

+i∇Ku (p · U0)

+iKu [∇ (p · U0) + p (∇ · U0)] − Kup (p · U1)

+i∇C (p · W0)

+iC [∇ (p · W0) + p (∇ · W0)] − Cp (p · W1)

+ω2ρU1 + ω2ρfW1 = 0 (A16)

where I have substituted in the f rst two terms U0, U1, W0, and
W1 of the power series (A2) and (A3). Similarly, for equation
(A13) I have

i∇C (p · U0)

+iC [∇ (p · U0) + p (∇ · U0)] − Cp (p · U1)

i∇M (p · W0)

+iM [∇ (p · W0) + p (∇ · W0)] − Mp (p · W1)

ω2ρfU1 + ω2ρ̃W1 = 0. (A17)

6 APPENDIX B: DIFFERENTIAL EQUATIONS FOR U0

AND W0

In this Appendix I discuss how to transform the coupled system
of linear, f rst-order differential equations (82) into two uncoupled
second-order equations. First, consider two equations in (82)

dU0

dr
= −Γ11U0 − Γ12W0 (B1)

dW0

dr
= −Γ21U0 − Γ22W0. (B2)

I can solve equation (B1) for W0 in terms of U0 and its derivative

W0 = − 1

Γ12

[

dU0

dr
+ Γ11U0

]

. (B3)

Substituting this expression into equation (B2) for W0, carrying out
the differentiations, and grouping terms gives

1

Γ12

d2U0

dr2
+

[

d

dr

(

1

Γ12

)

+
Γ11

Γ12
+

Γ22

Γ12

]

dU0

dr

+
[

d

dr

(

Γ11

Γ12
− Γ21 +

Γ11Γ22

Γ12

)]

U0 = 0. (B4)

Multiplying equation (B4) by Γ12 and def ning the coeff cients

Ψ1(r) = Γ12
d

dr

(

1

Γ12

)

+ Γ11 + Γ22 (B5)

Ψ2(r) = Γ12
d

dr

(

Γ11

Γ12

)

− Γ12Γ21 + Γ11Γ22 (B6)

I can write equation (B4) as

d2U0

dr2
+ Ψ1

dU0

dr
+ Ψ2U0 = 0, (B7)

a second-order differential equation for U0 with variable coeff -
cients. Following a similar procedure I can derive a governing equa-
tion for W0

d2W0

dr2
+ Φ1

dW0

dr
+ Φ2W0 = 0, (B8)

where

Φ1(r) = Γ21
d

dr

(

1

Γ21

)

+ Γ11 + Γ22 (B9)

Φ2(r) = Γ21
d

dr

(

Γ22

Γ21

)

− Γ12Γ21 + Γ11Γ22. (B10)

Rather than solving equation (B7) and (B8) it might be more eff -
cient to solve equation (B7) for U0 and then use equation (B3) to
f nd W0.
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Figure 1. Source function used to generate the pressure pulse for the nu-
merical f nite-difference modeling. It was also used in the convolution with
the point source response to generate the analytic and asymptotic solutions.

Figure 2. Three snapshots from the f nite-difference modeling of Biot’s
poroelastic equations. The snapshots display the pressure variation due to
the source pulse, shown in Figure 1, applied at the center of the simula-
tion grid. The observation point, the location at which the time variation of
pressure is calculated, is indicated by an open triangle.

Figure 3. A comparison of the numerical calculation of pressure (Numeric),
an analytic solution for pressure (Analytic), and the asymptotic solution
(Asymptotic) given by equation (125). Each pressure curve has been nor-
malized such that its peak value is unity.

Figure 4. The difference between the asymptotic solution and the numeric
and analytic solutions. The error is given in terms of the percentage of the
normalized peak value. Thus, in this case, the error never exceeds roughly
2 percent of the peak value.

Figure 5. Three snapshots from the f nite-difference modeling of Biot’s
poroelastic equations. The snapshots show the radial displacement of the
solid matrix due to the pressure pulse shown in Figure 1.

Figure 6. A comparison of the numerical calculation of the radial displace-
ment of the solid matrix, an analytic solution for the displacement, and the
asymptotic solution given by equation (146). Each curve has been normal-
ized the peak value of displacement.

Figure 7. The difference between the asymptotic solution and the numeric
and analytic solutions. The differences are given in terms of their percentage
of the peak value of the displacement curves, in this case 1.

Figure 8. The velocity variation of the Biot slow wave for the calculation of
pressure and displacement in a heterogeneous medium. The model contains
a high velocity layer bounded above and below by low velocity zones. The
velocity of the layer also increases linearly to the right.

Figure 9. A snapshot of the pressure 1000s after the beginning of injection
into the heterogeneous model. The source time function, given in Figure 1,
is identical to that used in the modeling for the homogeneous medium.

Figure 10. The variation of phase associated with the Biot slow wave, due
to the heterogeneous velocity structure. The phase was calculated by nu-
merically solving the eikonal equation for the velocity variation shown in
Figure 8 (Vidale 1988, Sethian 1999). The star denotes the location of the
source and the open triangle denotes the location of the observation point.
The trajectory which represents the propagation path of the slow wave is
indicated by the solid curve.

Figure 11. A comparison of the numerical calculation of pressure and the
asymptotic solution given by equation (125). Both pressure curves have
been normalized such that their peak values are unity.

Figure 12. The difference between the asymptotic solution and the numeric
solution. The error is given in terms of the percentage of the normalized
peak value.

Figure 13. A comparison of the numerical calculation of the radial dis-
placement of the solid matrix and the asymptotic solution given by equation
(146). Each curve has been normalized the peak value of displacement.

Figure 14. The difference between the asymptotic solution for radial dis-
placement and the numeric solution.
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