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Abstract

An exact solution exists for the advection-dispersion equation when the wind profile is modeled
with a power-law dependence on height. This analytical solution is compared here to a numerical
simulation of the coupled air-ground system for a leaking underground CO2 storage. The two
methods produced similar results far from the boundaries, but the boundary conditions had a
strong effect; the simulation imposed boundary conditions at the edge of a finite domain while the
analytic solution imposes them at infinity. The reverse seepage from air to ground was shown in
the simulation to be very small, and the sharp contrast between time scales suggests that air and
ground can be modeled separately, with gas emissions from the ground model used as inputs to
the air model.

1 Introduction

Predicting the dispersion of air pollutants from sources on the ground requires modeling
of turbulent transport. A full description of turbulence is beyond either theory or
simulation, but approximate results can be derived from an analytical model that is
relatively simple, while still accounting for the variation with height of wind speed and
diffusivity.

Even in the simplified model discussed here, few analytical solutions are known. Many
well-established models used for regulatory purposes use Gaussian plumes, which are
computationally simple, but assume that wind speed and diffusivity are uniform (New
Zealand Ministry for the Environment, 2004). As a result, the plume height and decrease
of ground-level concentration are underestimated. If the wind speed and diffusivity are
instead assumed to follow a power-law dependence on height, there is a more general
analytical solution which is just as easy to compute and potentially more accurate. The
wind profile depends strongly on the temperature gradient, which varies during
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the diurnal cycle of heating and cooling, and power laws with a range of powers
can be used to approximate the wind profile over the range of stable and unstable
temperature gradients.

This report compares two approaches to modeling leakage of a gas from
an underground reservoir into the surface layer of the atmosphere:

1. Using a known source distribution at the surface as a boundary condition
on the differential equation describing admixture transport (Barenblatt,
2003b); and

2. Simulating both air and ground transport together in a finite-volume code,
with a logarithmic wind velocity profile (Oldenburg & Unger, 2004).

The analytical solution applies to a simplified model that assumes homo-
geneous flat ground and no change of wind conditions with time. More realistic
descriptions would require numerical simulation of turbulence; the approaches
discussed here do not actually model turbulence, but rather specify the amount
of mixing that results from it. The purpose of comparing the analytical solution
with the coupled simulation is in particular to investigate

e How sensitive is the solution to the velocity profile, and to the exponent
in the power law?

e How is the simulation affected by a closed-top boundary condition imposed
in the numerical model?

This report describes the simple model of turbulent diffusion used here,
and compares the two approaches.

2 A simple theoretical picture of turbulent diffusion

Trace gases are passive additives to the air, i.e., they do not affect the already
existing flow field, if they are sufficiently dilute. The concentration of a passive
additive is governed by the advection-dispersion equation,

Oc+V-(uc)=-V-F (2.1)

where c is the concentration, u is the wind velocity field, and F is the diffusive
flux due to turbulent mixing; ¢, u, and F are functions of the space coordinates r
and time ¢. Emission from a source can be represented by a boundary condition
or source term.

In reality all these functions experience rapid turbulent fluctuations on
time scales typically from about 0.1 second to 103 seconds, but we are only
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concerned with the averages. Theoretically they should be ensemble averages,
taken over different flow realizations with the same boundary conditions. In
practice with observations of weather, and ergodicity is assumed so that time
averages can be used instead (Monin & Yaglom, 1971, sec. 3), typically over
intervals of 30 minutes or 1 hour.

The following sections will discuss the forms of wind velocity and diffusive
flux that will be used in equation (2.1).

2.1 Velocity profile in the surface layer

The earth’s surface exchanges momentum, heat, and mass with the atmosphere
through the planetary boundary layer, which has a thickness of the order of 0.5—
1 km and responds to changes in the surface over time scales of a few hours. The
planetary boundary layer is almost always turbulent. For engineering applica-
tions on the ground, we are concerned with the surface layer, which is defined as
the layer next to the ground where there are strong vertical gradients of velocity,
temperature, and concentration. The surface layer is generally said to consist of
about the lowest 10% of the planetary boundary layer, but there is no precise
definition. In the surface layer the flow is dominated by surface friction and
temperature gradient, and the Coriolis force can be neglected.

We would like to describe the wind velocity profile and the turbulent
mixing in the surface layer with a minimum of measurable parameters. Our
simple theoretical model assumes:

e The ground is flat and homogeneous over an area large enough that edge
effects can be ignored, and therefore the flow field does not depend on the
horizontal coordinates.

e The air is incompressible (V -u = 0), a good approximation in the surface
layer. Together with the first assumption, this implies that the average
vertical component of wind is zero.

e In the conventional coordinate system, z is height above ground and the x
axis is chosen along the direction of the average wind. The velocity along
this axis is the wind profile u(z).

Turbulence generated by surface friction

To describe turbulent flow near a rough surface when there is no heat flux, von
Kéarman’s “law of the wall” is widely used (Arya, 1999, section 4.7.1):
u(z) 1. =z

= —Iln— 2.2
Us knzo (2.2)
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where

e u, is called the friction velocity, and is defined from the shear stress at the
surface, 7, and the air density, p, by u, = /7/p. This shear results from
the covariance of turbulent fluctuations of velocity:

T = —pu'w'; so uxy = V —u'w’

where v’ and w’ are the fluctuating components of horizontal and vertical
velocity. Through this covariance a net downward flux of momentum is
delivered from the wind to the ground. From this definition it can be seen
that u, is of the same order of magnitude as the fluctuations of velocity.

e k is von Kdrmén’s constant, which has a value of about 0.4.

e 2 is a parameter called the roughness length, which depends on the details
of the surface, and can be interpreted as the size of eddies at the surface;
for example, 2 is of the order of 1072 m over grass and 1 m over forests or
cities (Panofsky & Dutton, 1984, sec. 6.2). The logarithmic profile would
reach u(z) = 0 at z = z if extrapolated downward, but the profile is valid
only above the so-called roughness sublayer, extending to about two to five
times the height of the surface irregularities, where the flow is dynamically
influenced by the irregularities.

The parameters u, and zp can be determined by measuring u(z) at different
heights and fitting a straight line to w vs. In 2.1 The length 2 is a characteristic
of the surface, so after zy is determined at a particular site, u, can be found in
other wind conditions from a measurement of u(z) at a single height.

von Kérman’s law is derived from the assumption that the velocity profile
becomes independent of Reynolds number in the limit of large Re; Barenblatt
(1996, 2003a) argues that this assumption is not valid and the profile does depend

on Re with the form:
u(z) V3 B\ fusz\@
= —+= 2.
Us <2a+2>(y>’ (2:3)

where v is kinematic viscosity, and o = 3/(21n Re). This equation was deduced
from the assumption of incomplete similarity in the nondimensionalized height

" w’ can be measured directly with a fast-responding, three-dimensional sonic anemometer,
but this is much more expensive than just measuring the mean velocity. Alternately, surface
stress can be measured directly with a drag plate, but results are often unreliable (Kaimal &
Wyngaard, 1990; Kaimal & Finnigan, 1994, section 6.3).
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uxz/v and the requirement for the velocity profile to have a well-defined limit as
the viscosity vanishes; the numbers ?, % and % were derived from experimental
data on pipe flow at various Re up to 35 x 108, For flow across an infinite plane,
Re is not uniquely defined, and a must be determined by fitting data to the
curve. Barenblatt does not consider surface roughness, which is significant for
any terrain rougher than very smooth ice (Sutton, 1953, sec. 3.8, 7.2; Panofsky
& Dutton, 1984, sec. 6.2); therefore we do not expect (2.3) to hold exactly over
natural terrain, but it does suggest that wind speed should depend on height

through a power law.

Turbulence generated by heat flux

There is usually a significant temperature gradient in the surface layer. During
the day, as the sun heats the ground, air near the ground is warmer and less
dense than air above, so it is unstable to vertical displacements. In this case
buoyant forces promote turbulence and convert gravitational potential energy
to turbulent kinetic energy. At night, the temperature gradient is reversed,
and turbulence is suppressed. Neutral stability is rare, and is only approached
when the sky is heavily overcast, so the ground is not gaining or losing energy
by radiation, and in addition there is moderate or high wind so the air is well
mixed in temperature.

The velocity profile in thermally stratified turbulent flows is observed
to deviate from the logarithmic law. Stratified turbulence are described by the
Monin-Obukhov similarity theory (Monin & Yaglom, 1971, chap. 7), in which
the governing parameters are

buoyancy parameter g/Tp, g = gravity
Ty = absolute temperature at surface
heat flux q/cpp, ¢ = upward heat flux at surface
¢p = specific heat capacity of air

as well as z,uy, p as defined previously. By dimensional analysis, the velocity
gradient has the form

kz Ou _ = _u—*3
= = Pm (C) , where ¢ = L and L = k(g/To)(Q/CpP)

u, 0z
It can be shown that { represents a ratio of buoyant generation of turbulence to
mechanical shear generation. Thus, at large heights buoyant forces are relatively
more important than at small heights, because near the ground the larger eddies
are suppressed.

(2.4)



6 June 3, 2008

The dimensionless function ¢,,(¢) must be determined empirically, and
must have ¢,,(0) = 1 so that (2.4) reduces to (2.2) for zero heat flux. Observed
wind profiles have been fit to various forms for ¢,,({), such as the Businger-Dyer
formula (Arya, 1999, sec. 4.7.2):

dm(C) = (1 +16]¢)) "4, —5 < ¢ < 0 (unstable)
om(¢) =1+ 5¢, 0 < ¢ <1 (stable)

The wind profile u(z) is obtained by integrating (2.4) with the boundary condi-
tion u(zp) = 0; as before, the profile is only valid above the roughness sublayer.

Since a direct measurement of heat flux requires expensive instruments?,
formulas have been worked out to estimate u, and L from the mean wind speed
and temperature measured at two heights (Arya, 1999, sec. 4.8.1; Arya, 1988,
sec. 11.5.6).

Power-law profile as approximate description

If the Monin-Obukhov profile is impractical (for example if it is too complex,
or if temperature or other parameters are not available), meteorologists and
engineers have often resorted to a simple form for the wind profile (Panofsky &
Dutton (1984, sec. 6.3); Sutton (1953, sec. 7.2)),

L () (2.5)

where u; and z; are a reference velocity and reference height, and « is found by
fitting the equation to measurements of u at two or more heights. Although the
form (2.5) lacked theoretical justification until the work of Barenblatt (2003a), it
provides a reasonable fit to wind profiles in the surface layer over a wide range of
surface roughness and stability conditions, and is frequently used in air pollution
modeling (Arya, 1999, sec. 4.8.3).

For neutrally stratified boundary layers, the value a = % is often cited in
engineering texts, and was suggested by Prandtl based on experiments on pipe
flow at moderate Reynolds number (Schlichting, 1968). Observed values of «
in the atmosphere range from nearly 0 in very unstable conditions, representing
perfect mixing and a uniform velocity profile, to nearly 1 in very stable con-
ditions, approaching the Couette linear profile of laminar motion over a plane
surface. The value of a also depends on surface roughness: rougher surfaces

2The turbulent heat flux is w'T”, where T” is the fluctuating component of temperature; it
can be measured directly by a sonic anemometer. The heat flux can also be determined from
the energy budget if the radiation input and heat flux into the soil are measured.
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have larger «, corresponding to more mechanically-driven turbulence relative to
buoyancy-driven turbulence.

2.2 Turbulent diffusion

The gradient transport assumption

To solve (2.1) we need to know F, the diffusive flux due to turbulent mixing,
which requires further assumptions. The simplest model is an analogy to molec-
ular diffusion: it is assumed that the flux is linearly proportional to the density
gradient with some proportionality constant K:

F=—-KVc¢(r,t)

K is called a turbulent exchange coefficient, or turbulent diffusivity. In the ide-
alized conditions described above, with all quantities depending only on height,
the flux is in the vertical direction:
dc
F,=-K— 2.6
? 0z (26)
Similarly, the shear stress due to turbulence (defined with the opposite sign
convention) is

ou
T = me% (2.7)

These K'’s represent mixing by turbulent eddies, and are usually several orders
of magnitude larger than the corresponding molecular viscosity or diffusivity.

Unlike their molecular counterparts, turbulent exchange coefficients de-
pend on the particular flow field—rather than molecular properties—and also
vary from one region to another of the same flow (Arya, 1999, sec. 4.6.1). Ex-
periments show that they are definitely not uniform in space: if K were spatially
uniform and the wind speed were also independent of height, mass injected at a
steady rate from a point source at the ground would produce a Gaussian plume,
in which plume height grows with the square root of downstream distance x, and
ground-level concentration decreases as 1/x. However, the plume height is ob-
served to grow as a larger power of distance, 0.75 to 1 instead of 0.5 (Panofsky
& Dutton, 1984, sec. 10.3), and the ground-level concentration also decreases
faster than 1/x (Sutton, 1953, p. 277). Therefore the exchange coefficient can-
not be constant, but increases with height; this is because in the atmosphere,
there are eddies of a wide range of sizes, and at greater heights, larger eddies
contribute to mixing. A constant K would imply that there is only one length
scale of mixing, a molecular length scale, which is not true in turbulence.
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It is sometimes assumed (e.g., Barenblatt (2003b)) that the ratio of the
K’s for momentum and concentration is independent of height:

K (z) = (constant) K, (2). (2.8)

This assumption implies that the mechanisms of turbulent transfer for the pas-
sive admixture are the same as for momentum. However, observations suggest
that this ratio does depend slightly on z/L in unstable conditions, though not
in stable conditions. The ratio at neutral stability is generally taken to be 1,
although there is disagreement over this value in the literature (Kaimal & Finni-
gan (1994, sec. 1.3.5); Brown et al. (1993, sec. 3c); Panofsky & Dutton (1984,
sec. 6.9)).

Implications of constant flux

Fluxes and concentration gradients are expensive to measure directly, and so
various assumptions are used to estimate K (z). The fluxes of momentum, heat,
and mass are generally considered to be independent of height within the surface
layer. If the assumption of constant flux is valid, then u, = \/% is independent
of height. Then (2.7) can be written as

Us2

- oyu

Km(2) (2.9)

and using the Monin-Obukhov expression (2.4) for velocity gradient gives (Arya
(1999, sec. 4.7.2); Panofsky & Dutton (1984, sec. 6.8)):

kuyz

Kn(z) = 2.10
B = 5.0 210
If instead the velocity profile follows the power law (2.5), then (2.9) becomes
Wl wlz [ 2\°
Kn(z)= = — 2.11
(2) o,u UL <z1) ( )

Equations (2.5) and (2.11) are known in meteorology as “Schmidt’s conjugate
power laws.”

The turbulent diffusivity K could be derived from (2.11) combined with
(2.8); however, since both these equations are only approximations, K is often
modeled instead with a separate power law,

z

K(z) = K, <>m (2.12)

<1
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where m is not necessarily equal to 1 — a. The parameters K; and m could
be determined by fitting (2.12) to the more accurate expression (2.10), which
tends to result in m slightly greater than 1 — « (Arya, 1999, sec. 4.8.5). The
power m describes how the size of the turbulent eddies increases with height:
in very unstable conditions, with convective mixing, m approaches 1 and their
size increases linearly with height; in very stable conditions, where turbulence
is suppressed, m approaches 0 and their size becomes constant with height.

Limitations

The gradient-transport assumptions (2.7, 2.6) state that the flux at a point
depends only on the local gradient. This assumption fails if the eddies are large
compared to the scale of curvature of the profile. If there are eddies large enough
to carry air between regions of significantly different gradient, the actual flux
can be non-local and even opposite the local gradient (Arya, 1999, sec. 4.6.1;
Panofsky & Dutton, 1984, sec. 4.7.2; Pasquill & Smith, 1983, sec. 3.1). Such large
eddies occur most often in very unstable conditions, such as on a clear sunny day
with light winds, where buoyancy-generated convection is the dominant source
of turbulence. Under these conditions “looping” plumes are seen, as the large
eddies move the plume as a whole back and forth, instead of the spreading or
“coning” plumes predicted by gradient-transport theory (Arya, 1999, sec. 6.8).
Thus gradient-transport theory is most valid when mechanical shear is dominant,
with slightly unstable, neutral or stable temperature profiles and strong winds.

Slender plume approximation

Turbulent diffusion in the z direction may be neglected when advection dom-
inates dispersion in the far downwind limit, i.e., = large compared to K/u.
(Typically K is of the order of 1-10 m?/s and u of the order of 1-10 m/s, so =
should be large compared to 1 meter.) It is also possible, but more cumbersome,
to solve the advection-dispersion equation (2.1) including diffusion in the x di-
rection and then take the limit for x > K /u, which leads to the same result; see,
for example, Sutton (1953, sec. 4.6), or Huang (1979). Neglecting such diffusion
is called the slender plume approximation (Arya, 1999, sec. 6.3.6). With this
approximation, the concentration will be zero everywhere upwind of the source.
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3 Analytical and numerical solutions of the advection-
dispersion equation

Both solutions of equation (2.1) discussed here make two further simplifying
assumptions:

e The flow is stationary and the source remains constant in time for long
enough to establish a steady-state concentration field. For the numerical
simulation, this assumption was not actually necessary, but was used to
provide a simple test case.

e The source is independent of the crosswind direction, y, so the concen-
tration depends only on x and z; that is, the problem is two-dimensional.
This assumption is equivalent to considering only the cross-wind integrated
concentration,

oo

Cy = / c(x,t) dy.

—0oQ
Meteorologists sometimes use this simplification and then assume a Gaus-
sian distribution in the lateral direction. The lateral diffusivity depends
on distance from the source and atmospheric stability, and is often es-
timated using the empirically derived Pasquill-Gifford diagrams (Arya
(1999, sec. 6.6.4); Pasquill & Smith (1983, sec. 3.2)).

With these assumptions, the advection-dispersion equation (2.1) has
been reduced to

u(2)0zc(x, z) = 0, (K (2)0:c(x, 2)) . (3.1)

3.1 Analytical solution and interpretation
Steady Propagation from Line Source

(3.1) has an analytical solution when the velocity and diffusivity are given by
power laws as discussed above, and the additive is injected at a constant rate
from an infinite straight line on the ground perpendicular to the wind. In other
words, end effects are neglected; hence the solution will overestimate the con-
centration from any finite source. The problem is now

u(2)0gc(x, 2) = 0, (K (2)0.¢(x, 2)), for x > 0 and z > 0, with (3.2)
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Solutions are known for boundary conditions specifying concentration at the
ground, flux at the ground, or a linear combination of the two (Philip, 1959). The
flux-type boundary condition will be discussed here. Two boundary conditions
are implied by the physical model. First, no flux crosses the ground for z > 0:

K.(z)0,c—0asz—0 (3.3)

(If the admixture is absorbed or interacts with the ground, this is not valid.)
Second, there is a known constant source. Integrating (3.2) from z = 0 to oo
gives

o
ax/ u(2)e(x, z)dz = Kc(z)azc‘go =0, so
0
/ u(2)e(x, z)dz = @, a constant independent of x. (3.4)
0

@ is the rate of injection by the source at the origin. Since there is no absorption,
in the steady state the total flux of admixture across any vertical line at = > 0
is equal to the rate of injection.

Solution and interpretation

Equation (3.2) with its boundary conditions (3.3) and (3.4) can be solved by
the method of similarity, which applies when a function of two variables has a
symmetry so that it depends only on a single, dimensionless combination of the
two variables.

The solution for the concentration can be presented as the product of a
ground-level concentration cg () and a plume height function cpp(z, 2):

c(x, z) = cq(x)cpn(x, 2) (3.5)

where

(o) = 5 (;’1)5

(z/z1)"
z/xy |’
1+« u 212
= 2 —_ = =
r m+a, f | 2K,
I'(f) is the Gamma function (Abramowitz & Stegun, 1964)

cpn (T, 2) = exp {—
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Figure 3.1: Contours of plume (3.5) for two values of a, representing different amounts
of mixing: larger « means less mixing. The dashed line shows the height where c(z, 2)
is 1/e of its value at the ground: z, = 2 (z/x1)"/".

Equation (3.5) is well known in the literature (Deacon, 1949; Calder, 1949; Sut-
ton, 1953; Monin & Yaglom, 1971; Huang, 1979; Pasquill & Smith, 1983; Panof-
sky & Dutton, 1984; Arya, 1999). Barenblatt (2003b) explains how the solution
is obtained.

Figure 3.1 shows contours of ¢(x, z). The first plot has a = %, Prandtl’s
approximation for neutral stability. The second has a = 0.3149 chosen to fit the
velocity profile in the simulation, as seen below in Figure 4.1. In both cases the
conjugate power law, m = 1 — «, was used for the diffusivity. In the second plot,
the larger o and smaller m produce less mixing and less upward transport.

According to (3.5), the plume height grows as z'/", and the ground-level
concentration decreases as . The concentration is inversely proportional to
the wind speed u1, as usual for advection. Some important limiting cases are:

e For uniform wind (o = 0) and uniform diffusivity (m = 0), (3.5) reduces
to a Gaussian vertical profile:

(. z) = M o <__2>
’ VT Kz /ug 4K 2 /uy

However, this equation is not a good fit to observed profiles in field and
wind tunnel experiments (Brown et al., 1993).

e If the conjugate power laws (2.5, 2.11) hold, then m =1 — «a, r = 1 + 2au.
If @ = 1 for neutral stability, this gives 3 = 5; Sutton (1953, p. 281)
cites observations of the propagation of smoke from a line source over level
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downland in neutral conditions, where the ground-level concentration was

observed to decrease as 2709, corresponding to 5 = 0.9.

This solution is the response of the system to mass injected at the line
(z,z) = (0,0). If instead the source is spread over the ground with a density of
S(x), the solution is the convolution

c(z,z) = /_x S(x) cline(x — 2, 2) da’ (3.6)

where ¢jipe(, 2) is the solution for a unit line source:

=0, x=<0.

3.2 Coupled simulation of air and subsurface transport

Oldenburg & Unger (2004) used the integral finite difference code TOUGH2
(Pruess et al., 1999; Pruess, 2004) to simulate the transport of CO2 leaking from
a geologic sequestration site. The COy mixes with soil gas and also dissolves
in groundwater, eventually seeping out of the ground. The authors evaluated
whether it would reach hazardous concentrations above ground. Neutral stabil-
ity was assumed, so the logarithmic wind profile (2.2) was used:

u=—In— (3.7)

with wu, chosen to give a desired value of w at a reference height of z = 10
m, v = 1 m/s or v = 5 m/s representing typical slow and fast wind speeds;
k = 0.4; and 2y = 0.10 m. TOUGH2 cannot specify the wind velocity profile
directly; instead, a horizontal pressure gradient was imposed, and an artificial
height-dependent “permeability” was specified in the cells above ground such
that Darcy’s law would yield the desired horizontal flow speed. The resulting
horizontal wind speed was not quite independent of z, and the vertical wind
speed of gas above ground was not exactly zero, perhaps due to discretization
and round-off errors.

The vertical diffusivity above ground was derived from the constant flux
assumption (2.10), at neutral stability where ¢, = 1, together with the assump-
tion that the turbulent exchange coefficients for momentum and mass are equal
(2.8), giving

K(z) = kuyz. (3.8)
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The integral finite difference method produces numerical dispersion in the hor-
izontal direction on the order of one-half the grid spacing multiplied by the
horizontal wind velocity. This dispersion could make the plume spread upwind
unrealistically; as a countermeasure, the vertical diffusivity K was set to zero
upwind of the source.

Figure 3.2 shows the computed mass fraction of CO3 in air at a quasi-
steady state (6 months after injection begins in the simulation). Figure 3.3
shows the same data zoomed in on an area above the ground and directly above
the area where COsy was injected. These figures show selected contour lines
interpolated from the grid. For clarity of comparison, the background fraction
of CO4 in the atmosphere was set to zero, instead of its real value of about 380
ppmv, or about 5.7 x 10™% mass fraction. Also, all other sources of CO5 besides
the reservoir leak were omitted; in reality there can be a significant concentration
(thousands of ppmv) in the top 1 m of soil due to respiration by soil bacteria.

A very small fraction of COg has diffused from the air back into the
ground downwind of the plume, and is slowly diffusing deeper; it also dissolves
in groundwater which is moving downward.
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wind speed 1 m/s at z = 10 m above ground mass fraction 002

100 200 300 400 500 600 700 800 900
distance, m

wind speed 5 m/s at z = 10 m above ground mass fraction CO,

100 200 300 400 500 600 700 800 900
distance, m

Figure 3.2: Mass fraction CO4 in gas for slow and fast wind speeds. Similar to
Figure 9ab in Oldenburg & Unger (2004); redrawn from data kindly provided by the
authors. COs is driven upward by high pressure at the source, displacing soil gas in
the subsurface plume. In the second figure it can be seen that the concentration in the
subsurface, where the time scale of propagation is slower, has not yet reached equilibrium
with the air downwind of the source: see the 10~° contour.
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Figure 3.3: Mass fraction CO2 in gas for slow and fast wind speeds. Same data as
previous figure, showing a smaller region with different contour levels. As usual for
advection, the concentration is inversely proportional to wind speed (5 times smaller
for the 5 times faster wind speed). Note that contour lines are perpendicular to the top
surface, which is an artifact of using a closed top boundary condition. Also, the spike
at = 450 m is caused by the artificial suppression of vertical dispersion upwind of the
source.
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4 Comparison and conclusions

4.1 Comparison of two solutions

To compare this simulation with the analytic solution, the logarithmic profile was
approximated by a power law. Figure 4.1 shows the velocity at the grid points
of the simulation, with fits to u = u12“ by Matlab’s curve fitting tool; one fit
is unweighted and the other is weighted by the difference between successive
values of u. There is no unique criterion to choose the most appropriate fit.
The unweighted fit was used for the velocity profile. The diffusivity was given
by (3.8), rather than the conjugate power law (2.11), in order to match the
diffusivity in the simulation.

In the simulation, CO2 passes from the ground to the air over an ex-
tended area. Therefore, it should be compared with the analytical solution
using the convolution (3.6). Since the flux of CO3 across the ground surface was

5 -
4 -
o
g 3r /
=3 ’ o simulation u (fast wind speed)
4 x successive differences of u
5 - power law: 257273149 |
- ; . H:3791
power law, weighted: 2.344
1 .
I
X
X
X
0 I |x xlx xlx X X X X X, X %X, X X, X X
0 1 2 3 4 5 6 7 8 9 10

height, m

Figure 4.1: Horizontal wind speed in the simulation, and power-law fits.
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Figure 4.2: Source density of COs from ground to air calculated from simula-
tion result. The circles indicate total horizontal flux at gridpoints x; calculated by
fi = Ezj>0 XCO0: (@i, 2j)Fya(xi, 2j) Az. The source density is then calculated from
the successive differences, S;10.5 = (f(zit+1) — f(x;))/Az. A linear interpolation of this
source density is used in the convolution (3.6). The horizontal flux declines very slightly
downwind of its maximum, due to reverse seepage of COs back into the ground; the
loss is about 10~ of the maximum flux, too small to see on the graph.

not directly available, the source density was inferred by

S(z) = % /O X0 (4, 2) Fyo (i, 2) d,

X 02 — mass fraction CO, in gas, Fy; = horizontal flux of gas

which is shown in Figure 4.2. The reverse seepage flux of COg back into the
ground can also be calculated, since the horizontal flux declines very slightly
downwind of its maximum at about = 600 m; the loss is about 107> of the
maximum flux. The source density for the other data set (wind speed 1 m/s)
was indistinguishable, because the seepage of CO2 was driven by a high pressure
at 30 m below the surface, and did not depend on the wind speed above the
ground.
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Figure 4.3 shows the result of the convolution and compares it with the
simulation. It is qualitatively similar to the TOUGH2 plume, but does not show
the artifacts of the closed top boundary condition and the suppression of upwind
diffusion. Figure 4.4 shows how the concentrations depend on downwind distance
at z = 0.75, near the ground, and at z = 9.75, the top of the simulation. The
results are close near the source but differ at the top and side, because different
boundary conditions were imposed there.

The aboveground domain has much shorter inherent time scales than the
underground domain. In the simulation, the permeability changes abruptly from
1 darcy just below the ground to 2 x 102 darcy just above, and from horizontal
gas speeds of the order of 10~7 m/s below to 1 m/s above. It is difficult for the
code to maintain accurate calculations at such a boundary. Figure 4.5 illustrates
how the smooth distribution of vertical gas velocities under the surface suddenly
becomes irregular and noisy in the air.
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Figure 4.3: Convolution of line-source kernel for fast wind speeds with source distri-
bution from Figure 4.2 (top). Compare to coupled simulation (bottom). Contours near
the source and far from the side and top boundaries are similar in the two solutions.
The analytical solution does not have the closed top boundary condition and the arti-
ficial barrier to upwind diffusion. The results for the slower wind speed are not shown
because they are the same except for a factor of 5, because of the factor of 1/u; in
equation (3.5).
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Figure 4.4: The two solution methods compared at heights of z = 0.75 m and

z = 9.75 m. The concentration in the simulation decays more slowly with down-

wind distance, probably because a zero-gradient side boundary condition was used (i.e.,
Oc/0x = 0 at x = 1000), which causes the concentration to reach a constant value at
relatively small downwind distances, instead of decaying to zero only asymptotically as
x — oo. Near the top, the concentration in the simulation is more than twice as large,
likely because of the closed top boundary condition. Both these boundary conditions
would lead to accumulating CO; in the simulation, rather than letting it escape to
infinity in the vertical and horizontal.
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Figure 4.5: Vertical gas velocity in the simulation at the top layer of the subsurface
and the bottom layer of air.
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4.2 Conclusions

Both approaches described here are limited by the highly idealized model of tur-
bulent diffusion: the gradient-transport model assumes that turbulent transport
of momentum and mass is local, just like diffusion with a different constant of
diffusivity, as described in section 2. The velocity profiles described in section 2
apply only to heights above any surface obstacles and large compared to zgp; they
assume flat ground with short, homogeneous vegetation. Modeling the rough-
ness sublayer, where there can be significant turbulent transport in cities and
forests, would be far more complex.

The concentrations computed from the analytic solution, using a power-
law profile fit to the logarithmic velocity profile over a limited range of heights,
are close to the numerical simulation result in the part of the domain far from the
boundaries. Near the side and top boundaries, the two solutions are significantly
different. The simulation has no vertical flux at the top (z = 10 m) and d¢/0z =
0 at the side (x = 1000 m). The analytic solution obeys these same conditions
at z — oo and x — oo respectively, instead of finite values. This result suggests
that the simulation would be more realistic with a larger domain size, but then
the computational cost would be greater.

The TOUGH2 coupled simulation can model barometric pumping and
reverse seepage of air contaminants back into the ground when these phenomena
could be significant, such as with large soil permeability. But the underground
and aboveground domains operate on vastly different time and space scales,
which suggests separating the domains whenever they are not strongly coupled.
We expect on physical grounds that the air above ground is not usually coupled
to the subsurface, because the capillary entry pressure for gas into the ground
is high enough that the ground can be treated as a reflecting boundary. In fact,
this was a good approximation in the case used for the simulation, as shown by
getting the same emission rate out of the ground for both wind speeds. If the
main goal is to predict concentrations in the air, the small reverse seepage (only
1075 as great as the total flux of COs into the air) could be neglected.

Each approach has advantages and disadvantages. Some advantages of
the analytical solution, as opposed to the coupled simulation, are:

e It is computationally simple and needs no programming, while still allow-
ing variation of K with height.

e It does not suffer from the closed-top boundary condition imposed by
TOUGH2 (although TOUGH2 could work around this limitation by adding
a very large grid block above the layer of interest to receive the upward
flux). The solution is independent of where the boundaries of the domain
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are placed.

e It does not have the artificial horizontal dispersion which accompanies
advection in the numerical solution.

e There is no minimum grid cell size. TOUGH2 cannot make the grid cell
smaller than the roughness length, zg, while using the logarithmic velocity
profile.

e There are no problems of finite precision.
Disadvantages of the analytical solution:

e The solution is known only for power-law profiles. It is questionable how
accurately a logarithmic or Monin-Obukhov profile can be approximated
by a power law. In particular, the diffusivity will always grow more slowly
at large heights for power laws than for the logarithmic profile.

e It cannot describe a time-dependent source profile, which could easily be
handled in TOUGH2.

e It assumes homogeneous flat terrain, which is invalid for most natural
areas.

e The slender plume approximation fails for wind speeds approaching zero,
which is also the worst condition for building up high local concentrations
of contaminants.

The analytic solution can be used as a simple prediction of pollutant
plumes when the wind and diffusivity profiles are known and the problem in-
volves only steady-state conditions. It cannot be generalized to non-uniform or
non-flat terrain, or three-dimensional or time-dependent problems; such condi-
tions would require numerical simulation of the air, which can be performed at
various levels of complexity by off-the-shelf products (New Zealand Ministry for
the Environment, 2004).
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