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Single transverse-spin asymmetry in high energy hadronic reaction has been greatly

investigated from both experiment and theory sides in the last few years. In this talk,

I will summarize some recent theoretical developments, which, in my opinion, help to

unvail the mysterious of the single spin asymmetry.
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1. Introduction

There have been strong experimental interests on transverse spin physics around

the world, from the deep inelastic scattering experiments such as the HERMES

collaboration at DESY, SMC at CERN, and Hall A and CLAS at JLab, the

proton-proton collider experiment from RHIC at Brookhaven, and the very rele-

vant e+e− annihilation experiment from BELLE at KEK. One of the major goals

in transverse spin physics is to study the quark transversity distribution, the last

unknown leading-twist quark distribution in nucleon. Besides the quark transver-

sity distribution, the transverse spin physics also opens a new window to explore

the partonic structure of nucleon, the so-called transverse momentum dependent

(TMD) parton distributions. TMD parton distribution is an extension to the usual

Feynman parton distributions. They allow us to study the three-dimension picture

of partons inside the nucleon, and they are also closely related to the general-

ized parton distributions and the parton orbital angular momenta. Especially, the

single transverse spin asymmetry (SSA) phenomena in high energy hadronic pro-

cesses have attracted many theoretical and experimental investigations. The SSA

is defined as the asymmetry when one of the hadrons’ transverse spin is flipped,

AN ∼ (dσ(S⊥) − dσ(−S⊥))/(dσ(S⊥) − dσ(−S⊥)). It has been a great theoretical

challenge in the understanding of these phenomena.

It was the pioneer works by Efremov-Teryaev 1 and Qiu-Sterman 2, among oth-

ers, to investigate this phenomena in the QCD framework beyond the naive parton

picture, since the latter predicts very small single spin asymmetry in hard partonic

scattering processes 3. Recent theoretical developments have made great progress

in the exploration of these physics. They have demonstrated a promise to unvail the
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mysterious for the single spin asymmetry. In this talk, I will try to summarize the

current theory status. Of course, it is impossible to cover all the exciting achieve-

ments in recent years in this short presentation. Rather, I would like to focus on

one important subject, i.e., the nontrivial QCD dynamics associated with transverse

spin physics: the QCD factorization, the universality of the parton distributions and

fragmentation functions, and their scale evolutions. These developments have laid

solid theoretical foundation to apply QCD theory for the description of the single

spin asymmetry phenomena. Fortunately, in this conference, there have been excel-

lent talks on other developments in the transverse spin physics 4, which compensate

my omission of other important works.

2. Universality and Factorization for the Transverse Momentum

Dependent Functions

Among those TMD parton distributions and fragmentation functions, two func-

tions have been mostly discussed: the Sivers quark distribution 5 and the Collins

fragmentation function 6. The Sivers quark distribution represents a distribution of

unpolarized quarks in a transversely polarized nucleon, through a correlation be-

tween the quark’s transverse momentum and the nucleon polarization vector. The

Collins function represents a correlation between the transverse spin of the frag-

menting quark and the transverse momentum of the hadron relative to the “jet

axis” in the fragmentation process. Although they both belong to the so-called

“naive-time-reversal-odd” functions, they do have different universality properties.

For the quark Sivers function, because of the initial/final state interaction differ-

ence, they differ by signs for the SIDIS and Drell-Yan processes 7,8,9,10. On the

other hand, there have been several studies 11,12,13,14,15 showing that the Collins

function is universal between different processes, primarily in the SIDIS and e+e−

annihilation and recently in pp collisions. In the following, I will take the example

of the Collins contribution to the azimuthal asymmetric distribution of hadrons in-

side a high energy jet in the transversely polarized pp collision to demonstrate this

universality property 14,

p(PA, S⊥) + p(PB) → jet(PJ) +X → H(Ph) +X , (1)

where a transversely polarized proton with momentum PA scatters on another pro-

ton with momentum PB , and produces a jet with momentum PJ . The three mo-

menta of PA, PB and PJ form the so-called reaction plane. Inside the produced jet,

the hadrons are distributed around the jet axis, where we define transverse momen-

tum PhT relative to the jet axis. The correlation between PhT and the polarization

vector S⊥ introduces the Collins contribution to the single spin asymmetry in this

process.

We need to generate a phase from the scattering amplitudes to have a non-

vanishing SSA. If the phase comes from the vertex associated with the fragment-

ing quark and the final state hadron, or from the dressed quark propagator, it is
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Fig. 1. Gluon exchange diagrams contributions to the Collins asymmetry in pp collisions. The
short bars indicate the pole contributions to the phase needed for a non-vanishing SSA. The
additional two cuts in (d) cancel out each other.

easy to argue the universality of the Collins function between this process and the

SIDIS/e+e− process, because they are the same. The main issue of the universality

discussion concerns the extra gluon exchange contribution between the spectator of

the fragmentation process and hard partonic part. In Fig. 2, we have shown all these

interactions for a particular partonic channel qq′ → qq′ contribution, including the

gluon attachments to the incident quarks (a,c), and final state balancing quark (d)

and the internal gluon propagator (b). The contributing phases of the diagrams in

Fig. 2 come from the cuts through the internal propagators in the partonic scatter-

ing amplitudes. In Fig. 2, we labeled these cut-poles by short bars in the diagrams.

From the calculations, we will find that all these poles come from a cut through the

exchanged gluon and the fragmenting quark in each diagram, and all other contri-

butions either vanish or cancel out each other. For example, in Fig. 2(d), we show

two additional cuts, which contribute however opposite to each other and cancel out

completely. Therefore, by using the Ward identity at this particular order, the final

results for all these diagrams will sum up together into a factorized form, where

the cross section is written as the hard partonic cross section for q(S⊥)q′ → q(s⊥)q′

subprocess multiplied by a Collins fragmentation function. The exchanged gluon in

Fig. 2 is now attaching to a gauge link from the fragmentation function definition.

Similar calculations can be performed for the other two processes SIDIS and e+e−

annihilation, and the same Collins function will be observed. This argument can

also be extended to two-gluon exchange diagrams 14.

The key steps in the above derivation are the eikonal approximation and the

Ward identity. The eikonal approximation is valid when we calculate the leading

power contributions in the limit of PhT ≪ PJ . The Ward identity ensure that when

we sum up the diagrams with all possible gluon attachments we shall get the eikonal

propagator from the gauge link in the definition of the fragmentation function. The
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most important point to apply the Ward identity in the above analysis is that the

eikonal propagator does not contribute to the phase needed to generate a nonzero

SSA.

This observation is very different from the SSAs associated with the parton dis-

tributions, where the eikonal propagators from the gauge link in the parton distribu-

tion definition play very important role 7,8,9,10. It is the pole of these eikonal prop-

agators that contribute to the phase needed for a nonzero SSA associated with the

naive-time-reversal-odd parton distributions, which also predicts a sign difference

for the quark Sivers function between the SIDIS and Drell-Yan processes. More com-

plicated results have been found for the SSAs in the hadronic dijet-correlation 16,17,

where a normal TMD factorization breaks down 18. The reason is that the eikonal

propagators from the initial and final state interactions in dijet-correlation process

do contribute poles in the cross section 17,18. Because of this, the Ward identity

is not applicable, and the standard TMD factorization breaks down, although a

modified factorization may be valid if we modify the definition of the TMD parton

distributions to take into account all the initial and final state interaction effects 16.

In particular, there is a sign change between the SSAs in SIDIS and Drell-Yan

processes 7,8,

Sivers SSA|DY = −Sivers SSA|DIS . (2)

This nontrivial result of the opposite signs between the above two processes will

still hold when gluon radiation contributions are taken into account, where the large

transverse momentum Sivers function is generated from the twist-three quark-gluon

correlation function 19. It is of crucial to test this nontrivial QCD predictions by

comparing the SSAs in these two processes. The Sivers single spin asymmetry in

SIDIS process has been observed by the HERMES collaboration, and the planned

Drell-Yan measurement at RHIC and other facility will test this prediction.

3. Unifying the Two Mechanisms for SSA

There are mainly two approaches to explore the single spin asymmetry phenomena

in the QCD framework: the transverse momentum dependent approach discussed

in the previous section and the collinear twist-three quark-gluon correlation ap-

proach pioneered by Efremov-Teryaev and Qiu-Sterman mentioned in the Intro-

duction. Both approaches have been used to describe the experimental data on

single spin asymmetry. One of the important developments in the last few years is

that it has been shown that these two mechanisms are unified to describe the same

physics 19,20,21,22,23,24, in particular, in the semi-inclusive hadron production in

Deep Inelastic Scattering (SIDIS) and Drell-Yan lepton pair production in hadronic

collisions. For example, in SIDIS, at large Ph⊥ ∼ Q, the quark-gluon correlation

approach applies. At small Ph⊥ ≪ Q, a factorization in terms of TMD parton

distribution applies 25, involving in case of the SSA the Sivers functions. If Ph⊥

is much larger than ΛQCD, the dependence of these functions on transverse mo-

mentum can be computed using QCD perturbation theory. At the same time, the
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Fig. 2. Generic diagram interpretations for the twist expansions in the high energy scattering
amplitudes up to twist-three level: (a) corresponds to a leading twist matrix element 〈ψ̄ψ〉; (b)-(d)
for twist-three contributions, (b) for 〈ψ̄∂⊥ψ〉, (c) for 〈ψ̄A⊥ψ〉, and (d) for 〈ψ̄∂⊥A

+ψ〉. Addi-
tional A+ gluon connection between hard partonic part and the non-perturbative nucleon structure
part can be added to these diagrams. This is because they do not change the power counting in
these diagrams. The contributions from these diagrams (b-d) are not gauge invariant individually.
However, they will combine into the gauge invariant results in terms of the correlation functions
introduced in Sec.II.

result obtained within the twist-three formalism can also be extrapolated into the

regime ΛQCD ≪ Ph⊥ ≪ Q, and it has been demonstrated that the result of this

extrapolation is identical to that obtained using the TMD approach.

The key step to demonstrate this consistency is the relation between the TMD

quark distributions and the collinear leading twist and higher-twist distribution

and fragmentation functions. In particular, the transverse momentum dependence

can be calculated within the perturbative QCD and related to the collinear matrix

elements as long as the k⊥ is much larger than ΛQCD. In general, we will have the

following expression for the quark distributions at large transverse momentum 25,

q(x, k⊥)|k⊥≫ΛQCD
=

1

(k2
⊥)n

∫

dx′

x′
fi(x

′) ×Hq/i(x;x
′) , (3)

where q(x, k⊥) represents the TMD quark distribution we are interested, fi rep-

resents the integrated quark distribution for the k⊥-even TMDs, and higher twist

quark-gluon correlation function for the k⊥-odd TMDs. For the latter case, x′ should

be understood as two variables for the twist-three quark-gluon correlation functions

as we discussed in the last section. The overall power behavior 1/(k2
⊥)n can be ana-

lyzed by the power counting rule. The hard coefficient Hq/i(x;x
′) is calculated from

perturbative QCD.

To calculate the k⊥-odd quark distribution, we make use of the twist expansion.

In the twist expansion, a set of non-perturbative matrix elements of the hadron state

will be analyzed according to the power counting of the associated contributions.
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At the twist-three order, from a generic power counting we have contributions from

the following matrix elements,

〈ψ̄∂⊥ψ〉, 〈ψ̄A⊥ψ〉, 〈ψ̄∂⊥A+ψ〉 . (4)

We illustrate the typical diagrams for the associated contributions from the above

matrix elements in Fig. 1. For comparison, we have also shown the diagram corre-

sponding to the leading-twist contribution from the matrix element 〈ψ̄ψ〉 in Fig. 1a.

Figs. 1b-d represent the contributions up to twist-three quark-gluon correlation ma-

trix elements. Fig. 1b corresponds to the contributions from the matrix element

〈ψ̄∂⊥ψ〉, Fig. 1c from 〈ψ̄A⊥ψ〉, and Fig. 1d from 〈ψ̄∂⊥A+ψ〉. Because of additional

gluon component in the matrix elements for Fig. 1c and d, there will be gluon at-

tachment from the nonperturbative part to the perturbative part as shown in these

diagrams. To calculate the contributions from Fig. 1b and d, we have to do collinear

expansion of the partonic scattering amplitudes in terms of pα
⊥ and kα

g⊥ = pα
2⊥−pα

1⊥,

respectively. These expansions, combining with the quark field and gluon field, will

lead to the contributions in terms of the matrix elements: 〈ψ̄∂⊥ψ〉, and 〈ψ̄∂⊥A+ψ〉.
The calculation of Fig. 1b is straightforward, without expansion in terms of the

transverse momenta of the quarks and gluon. Furthermore, all these calculations

have to be combined into the gauge invariant matrix elements, such as GD, G̃D,

HD, ED, TF , T̃F , T
(σ)
F , T̃

(σ)
F , g̃, and h̃, which are constructed from the gauge in-

variant operators ψ̄D⊥ψ and ψ̄F+⊥ψ 23.

With the large transverse momentum quark distributions calculated following

the above procedure, one will be able to show that the differential cross section

in the TMD factorization approach will be the same as the collinear factorization

approach in the intermediate transverse momentum region. This consistency has

been shown for the the SSA contributions coming from the polarized distributions of

the incoming nucleon 19,20. For the contribution from the twist-three fragmentation

function, it has been difficult to show this consistency. However, recent studies on

the universality property for the Collins fragmentation function in various processes

have paved way to demonstrate this consistency between the TMD and collinear

factorization approaches. This was finished in a recent publication 24. In particular,

the TMD quark fragmentation function are defined through the following matrix,

Mαβ
h (z, p⊥) =

n+

z

∫

dξ−

2π

d2ξ⊥
(2π)2

e−i(k+ξ−−~k⊥·~ξ⊥)
∑

X

1

3

∑

a

〈0|L0ψβa(0)|PhX〉

×〈PhX |(ψαa(ξ−, ~ξ⊥)L†
ξ|0〉 , (5)

where a = 1, 2, 3 is a color index, α and β are Dirac indices, and p⊥ is the transverse

momentum of the final state hadron with momentum Ph relative to the fragmenting

quark k. The quark momentum k is dominated by its plus component k+ = (k0 +

kz)/
√

2, and we have P+
h = zk+ and ~k⊥ = −~p⊥/z. For convenience, we have chosen

a vector n = (1+, 0−, 0⊥) which is along the plus momentum direction. The leading

order expansion of the above matrix leads to two fragmentation functions for a
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scalar meson,

Mh=
1

2

[

D(z, p⊥) 6n+
1

M
H⊥

1 (z, p⊥)σµνpµ⊥nν

]

, (6)

where M is a mass scale chosen for convenience, and the second term defines the

Collins function H⊥
1 . From the above equation, we can further define the transverse-

momentum moment of the Collins function: Ĥ(z) =
∫

d2p⊥
p2
⊥

2MH⊥
1 (z, p⊥). By inte-

grating out the transverse momentum, the fragmentation function will only depend

on the longitudinal momentum fraction z of the quark carried by the final state

hadron. It is straightforward to show that this function can be written as a twist-

three matrix element of the fragmentation function,

Ĥ(z) = n+z2

∫

dξ−

2π
eik+ξ− 1

2

{

Trσα+〈0|
[

iDα
⊥ +

∫ +∞

ξ−

dζ−gFα+(ζ−)

]

ψ(ξ)|PhX〉

× 〈PhX |ψ̄(0)|0〉 + h.c.
}

, (7)

where Fµν is the gluon field strength tensor and we have suppressed the gauge links

between different fields and other indices for simplicity. From the above definition,

we can see that Ĥ(z) involves derivative on the quark field and the field strength

tensor explicitly, and it belongs to more general twist-three fragmentation functions.

For example, extending the above definition, we can define a two-variable dependent

twist-three fragmentation function as,

ĤD(z1, z2)=n
+z1z2

∫

dξ−dζ−

(2π)2
eik+

2 ξ−

eik+
g

ζ− 1

2

{

Trσα+〈0|iDα
⊥(ζ−)ψ(ξ−)|PhX〉

× 〈PhX |ψ̄(0)|0〉 + h.c.
}

, (8)

where k+
i = P+/zi and k+

g = k+
1 − k+

2 . These functions are our starting point to

formulate the Collins mechanism in the collinear factorization approach. First, we

can calculate the transverse momentum dependence of the Collins function in the

perturbative region from the twist-three fragmentation functions ĤD and Ĥ. To

do this, we will have to not only calculate the perturbative diagrams with gluon

radiation, but also to perform the twist expansion and take into account full con-

tributions from the ∂⊥ and A⊥ operators in the definitions of ĤD and Ĥ at this

order. An important check of the above result is its universality property. Indeed,

we find that our calculations are independent of the gauge link direction used in

Eq. (6). Because of this, this calculation shall apply to all the processes the Collins

function involved. This clearly demonstrates its universality property. Furthermore,

we can also calculate the Collins contribution to the SSA in semi-inclusive DIS,

ep↑ → e′πX , and show that the TMD and collinear factorization approaches are

consistent in the intermediate transverse momentum region ΛQCD ≪ Ph⊥ ≪ Q,

This clearly demonstrates that in the intermediate transverse momentum region,

the twist-three collinear factorization approach and the TMD factorization approach

provide a unique picture for the Collins contribution to the SSA in the semi-inclusive

DIS 24.
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4. QCD Evolution and NLO Calculation for SSA Observable

Most recently, there has been very exciting progress in studying the scale evolu-

tion equations for the quark-gluon and three-gluon correlation functions and their

implications to the energy dependence of the relevant SSA observables 26,27,28,29.

General structure of the evolution equations for the twist-three quark-gluon corre-

lation functions has been known in the literature 30. In a very recent publication 29,

some interesting results are found (see the discussions below) in applying the known

results from Ref. 30 to the evolution equations derived in Refs. 26,27,28. On the other

hand, from the large transverse momentum quark Sivers function calculated in 19,

we would already obtain the evolution equation for TF (x) (which is the transverse

momentum moment of the quark Sivers function), since the collinear divergence in

that calculation will lead to the splitting function of TF (x). This splitting function

was confirmed by a complete calculation of next-to-leading order QCD correction

to the transverse-momentum weighted spin asymmetry in Drell-Yan lepton pair

production 26 and the derivations of the scale evolution equations directly 27,28.

In particular, the scale evolution for the quark-gluon correlation function TF (x) is

found to be (quark-quark splitting kernel),

∂

∂lnµ2
TF (xB , µ

2) =
αs

2π

∫

dx

x

[

CF

{

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

}

TF (x, x) (9)

+
CA

2

{

1 + z

1 − z
TF (xz, x) − 1 + z2

1 − z
TF (x, x) + T̃F (xz, x)

}]

,

where z = xB/x. In Ref. 29, it has been found two additional contributions for this

splitting contribution. One term comes from the so-called New-Hard-Pole contribu-

tion 31. After taking this contribution, the calculations in 26 will be able to reproduce

this term. Another terms is associated with a Delta function in the splitting kernel

and a color-factor CA, which has not yet been identified in the calculation approach

in Refs. 26,27,28. It is highly important to have an independent calculation to check

this term from the general evolution equations for the twist-three operators.

Furthermore, the NLO perturbative-QCD correction to the transverse mo-

mentum weighted single spin asymmetry in Drell-Yan lepton pair production in

hadronic collisions has engaged the transverse spin physics to a more solid theoret-

ical ground 26. It has been shown that the collinear divergences can be absorbed

into the NLO twist-three quark-gluon correlation function of the transversely po-

larized nucleon and the unpolarized quark distribution of the unpolarized nucleon.

This calculation suggests that a general factorization formula exists for the trans-

verse momentum weighted spin-dependent cross section in the Drell-Yan process,

in extension of the general factorization arguments given in 32.

One important feature of this result is its behavior near “partonic threshold”,

that is in the large-z limit of the integrand, corresponding to ŝ ∼ Q2, when the

initial partons have “just enough” energy to produce the virtual photon. Setting
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the scale µ = Q, we have the following structure of the NLO correction in this case:

d〈q⊥∆σ(S⊥)〉
dQ2

= σ0
αs

2π

∫

dx

x

dx′

x′
TF (x, x;µ2)q̄(x′;µ2)

×
[

4CF (1 + z2)

(

ln(1 − z)

1 − z

)

+

]

,

(10)

where we only keep the “double-logarithmic” term which dominates near threshold

in the MS scheme. The structure of this expression is identical to that for the spin-

averaged q⊥-integrated NLO cross section near threshold,

dσ

dQ2
= σ0

αs

2π

∫

dx

x

dx′

x′
q(x;µ2)q̄(x′;µ2)

[

4CF (1 + z2)

(

ln(1 − z)

1 − z

)

+

]

. (11)

This means that the soft gluon contribution is spin-independent. It contributes in

the same way to the spin-averaged and single-spin-dependent cross sections, and will

lead to the same soft-gluon threshold resummation effects to these cross sections, at

least at the leading double logarithmic level. This observation is very similar to that

made for the transverse momentum resummation in the Drell-Yan process 33. This

will likely have the phenomenological consequence that the single-spin asymmetry

for the Drell-Yan process will be quite stable under NLO corrections, in particular

when τ = Q2/s is large.

In summary, there have been great progresses in transverse spin physics in the

last few years. Unfortunately, I could not cover all these important developments,

and rather I emphasized a few examples, including the universality of the parton

distribution and fragmentation functions, and QCD evolution and next-to-leading

order corrections to the relevant observables. On the other hand, there are many

excellent talks on transverse spin physics in this conference, and I believe that they

will present more comprehensive reviews on these exciting developments in this

physics.
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