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Abstract 

Characterizing net ecosystem exchanges of CO2 (NEE) and sensible and latent heat fluxes in 

heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. 

We report here a measurement and modeling study designed to improve our understanding of 

surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly 

agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy-

covariance measurements in several of the dominant land-cover types with regional-scale climate 

data from the distributed Mesonet sampling stations and NEXRAD precipitation measurements 

to calibrate a land-surface model of trace-gas and energy exchanges (ISOLSM). Yearly 

variations in vegetation cover distributions were estimated from MODIS NDVI and compared to 

regional and sub-regional vegetation cover type estimates from the USDA census. We first 

applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area 

variations that occur on hundred meter scales. Because of computational constraints, we 

developed a sub-sampling scheme within 10 km ‘macrocells’ to perform these high-resolution 

simulations. We estimate that the Atmospheric Radiation Measurement Climate Research 

Facility (ACRF) SGP region net CO2 exchange with the local atmosphere was -240, -340, and 

-270 gC m-2 y-1 (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with 

large seasonal variations. We also performed simulations using two scaling approaches at 

resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land-surface 

models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, 

respectively. An important factor in causing these biases was the complex LAI distribution 
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within cover types. Biases in predicted weekly-average regional latent heat fluxes were smaller 

than for NEE, but larger than for either ecosystem respiration or assimilation alone.  However, 

spatial and diurnal variations of hundreds of W m-2 in LH fluxes were common. We conclud that, 

in this heterogeneous system, characterizing vegetation cover type and LAI at the scale of spatial 

variation are necessary for accurate estimates of bottom-up, regional NEE and surface energy 

fluxes. 

Introduction 

Accurately quantifying terrestrial carbon (C) exchange with the atmosphere is critical for 

estimates of anthropogenic impacts on climate [IPCC, 2007], terrestrial C sequestration potential 

[Bachelet et al., 2001], and dynamic vegetation changes under climate change [Lenihan et al., 

2003]. Gross terrestrial C exchanges (i.e., assimilation and respiration) with the atmosphere are 

more than ten times larger than current anthropogenic fossil fuel CO2 emissions [Raupach et al., 

2007], implying that small errors in terrestrial exchange estimates can result in relatively large 

errors in predicted atmospheric CO2 levels.  

There are a number of approaches to estimating terrestrial C exchanges: (1) ‘bottom-up’ 

approaches using spatial scaling with distributed surface flux measurements [Desai et al., 2008] 

or forest and agricultural inventories; (2) bottom-up approaches that attempt to mechanistically 

model the various processes producing and consuming CO2; (3) ‘top-down’, or inverse, 

approaches that use atmospheric concentration measurements, atmospheric transport fields, and 

(in some cases) a priori surface exchange estimates; and (4) estimates based on remotely-sensed 

properties of the land surface. The many examples of these approaches span a large range of 

mechanistic detail, temporal and spatial resolution, and extent of testing and comparison with 

independent measurements.  

Many “bottom-up” models have been developed to integrate the processes responsible for 

gross and net terrestrial C exchanges and their relationships with climate (e.g., [Bonan, 1996; 

Bonan et al., 2002; Dickinson et al., 1986; Gu et al., 2002; Parton et al., 1988; Potter et al., 

1993; Running and Hunt, 1993; Sellers et al., 1986]). These models span a large range of 

integration of mechanistic understanding, from simple regression models based on local climate 

to complex representations of molecular-level exchanges. Model testing has typically been 

performed using field-scale observations from, for example, soil respiration chamber and eddy 
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covariance measurements. There have also been models developed specifically for cropped 

systems, including DSSAT [Jones et al., 2003] and Agro-IBIS [Kucharik and Twine, 2007]. 

Some of these land-surface models have been integrated in regional (e.g., [Kueppers et al., 2007; 

Riley et al., 2005; Wang et al., 2007]) and global [Collins et al., 2006] climate models. However, 

there remains a substantial gap between the scales at which these models are applied and the 

scales at which they were developed and tested. An important concern in bottom-up model 

applications is how surface heterogeneity in land cover type and status is taken into account, 

since in many systems these parameters vary on smaller spatial scales than can be accounted for 

with the model [Jarvis, 1995]. A number of studies have addressed spatial scaling issues, 

primarily in natural or forested systems [Chen et al., 2007; Kimball et al., 1999; Li et al., 2008; 

Turner et al., 2000]. However, to our knowledge, no comparable spatial scaling analysis has 

been performed for a predominantly agricultural landscape. 

Inverse, or top-down, approaches infer surface C exchanges from atmospheric 

measurements and tend to focus on large spatial scales, from regional [Bakwin et al., 2004; 

Helliker et al., 2004; Lin et al., 2004; Wang et al., 2007; Williams et al., 2005] to global 

[Chevallier et al., 2005; Deng et al., 2007; Gurney et al., 2003; Lokupitiya et al., 2008; Peters et 

al., 2007; Rodenbeck et al., 2003; Stephens et al., 2007]. A common thread in these models is the 

need for land-surface models with readily adjustable parameters that can be optimized based on 

comparison of predicted and measured atmospheric mixing ratios. Because many inverse 

approaches include consideration of multiple sources of uncertainty [Gerbig et al., 2003], 

identifying likely uncertainties in the land surface parameterizations for ecosystem fluxes is of 

significant interest and importance. 

Remotely-sensed estimates of terrestrial gross primary production (GPP) have been 

developed, for example, using MODIS satellite optical and near-infrared spectral wavelengths 

[Field et al., 1998; Goetz et al., 1999; Nemani et al., 2003; Prince and Goward, 1995; Zhao et 

al., 2005]. A number of studies have compared MODIS-based GPP estimates with GPP inferred 

from eddy covariance measurements, primarily in forested systems and secondarily in grasslands 

[Coops et al., 2007; Heinsch et al., 2006; Turner et al., 2004; Turner et al., 2006; Zhang et al., 

2007]. 

Currently, the methods described above all have shortcomings when applied to estimating C 

budgets of complex, spatially heterogeneous regions. In fact, even determining whether a 

  3



particular modeling approach is accurate in such a system is difficult, since one cannot directly 

monitor the C exchanges across a large region with varying cover types and vegetation status. On 

the other hand, accurately estimating these C exchanges is critical to improve climate prediction, 

for climate change attribution, and to account for the costs of fossil fuel CO2 emissions [Stern, 

2006].  

In this study we developed and applied a bottom-up, distributed, land-surface modeling 

approach in a very heterogeneous region (Atmospheric Radiation Measurement (ARM) Climate 

Research Facility (ACRF)) in the U.S. Southern Great Plains to estimate terrestrial C exchanges 

at spatial scales consistent with the scale of vegetation heterogeneity. The ACRF comprises 

about 300400 km in Oklahoma and Kansas, and is very well instrumented for the study of 

atmospheric radiation, clouds, land-surface exchanges, and their interactions. The area is largely 

agricultural and is spatially and temporally heterogeneous in vegetation cover type and status 

(Figure 1). Measurements distributed in the facility include a 60 m tower instrumented with eddy 

covariance systems measuring CO2, latent heat (LH), and sensible heat (SH) fluxes at 4, 25, and 

60 m; two portable eddy covariance systems; atmospheric and cloud sensing systems; and 

regular balloon sonde and aircraft measurements. Meteorological forcing data are available from 

the Kansas and Oklahoma Mesonet sites [Brock et al., 1995]. For this analysis, we tested and 

used a previously described method [Doran et al., 1998] to estimate climate forcing from the OK 

and KS Mesonet datasets. Surface cover type was estimated at 250 m resolution from satellite 

NDVI data and archetypal annual NDVI profiles and compared to county-level statistics. We 

then calibrated and tested a land-surface model (ISOLSM [Riley et al., 2002]) using eddy 

covariance data from three of the dominant land use types.  

We applied these measurements and modeling tools to characterize the region’s net surface 

C (NEE) and energy exchanges with the local atmosphere for three years (2003 – 2005). We note 

that NEE estimates in agricultural systems do not represent a ‘true’ atmospheric sink, since much 

of the agricultural product is shipped out of the region, where it may be returned to the 

atmosphere relatively quickly. Our objectives were to understand how spatial and temporal 

variability in cover type and status affect regional exchanges and to quantify uncertainty in NEE 

and latent heat flux estimates resulting from spatial resolution in surface characterization and 

forcing variable estimates. These three years spanned large variations in the amount and spatial 

distribution of precipitation, and we therefore expected substantial inter-annual variability in 
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regional NEE and surface energy exchanges. We also expected that the spatial resolution at 

which vegetation cover type and status are specified would affect regional NEE and surface 

energy exchange estimates.  

Methods 

Meteorological Forcing  

We created a spatially and temporally distributed meteorological forcing dataset from the 

Oklahoma and Kansas Mesonet datasets [Brock et al., 1995]. The Oklahoma and Kansas 

Mesonet consists of ~139 platforms distributed throughout the two states. Stations in and 

immediately surrounding the ACRF are shown in Figure 2. Each station measures relative 

humidity, wind speed, air temperature and pressure, and downward solar radiation, and reports 

these data as five, thirty, or sixty-minute averages. The ARM archive (www.arm.gov, [Ackerman 

et al., 2004]) makes these data available a few days after the measurements are collected. We 

estimated downward infrared radiation using Boltzman’s law, observed air temperature, and 

estimates of surface and atmospheric emissivity. 

We distributed the atmospheric forcing data required by ISOLSM to a user-defined 

resolution using the approach of Doran et al. [1998]. For the results presented below, we use 

several grid resolutions (i.e., 10, 30, 60, and 90 km) for the interpolated atmospheric forcing. 

Because of the spacing between Mesonet sites (~15 km), resolutions finer than about 10 km do 

not add more information to the interpolated field. 

We calculated the weighting factors, αi, using: 
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Here, H(x) is the interpolated meteorological field, Q(x-xi) is a radial basis function, and xi is the 

distance to a particular observation point. The basis function is calculated as: 

Q x  xi  x  xi 2

c 2
1, 

(2) 

where c is a smoothing parameter (taken as 0.05). Finally, the interpolated meteorological field, 

Hip, is calculated as: 

gip QH  , (3) 
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where Qg and α are matrices formed from Q and αi. After interpolation, we performed checks on 

the interpolated fields to ensure that all values at all times and spatial points were within 

reasonable ranges. 

Hourly precipitation estimates at 4 km resolution were generated using NEXRAD radar 

precipitation [Fulton et al., 1998] and rain gauge reports over the Arkansas Red river basin. This 

dataset is available on the ARM archive; we spatially regridded the hourly data to the user-

defined spatial resolution. 

Estimating Surface Cover Type and LAI from MODIS NDVI 

To estimate surface cover type and LAI (L, m2 m-2) across the ACRF we used the 250 m 

NDVI (N (-)) product (http://lpdaac.usgs.gov/modis/dataproducts.asp#mod13). Because cover 

type and LAI vary across the ACRF on 100 m scales, a continuous finer resolution product 

would be preferable; however, such temporally- and spatially-resolved observations are currently 

unavailable. The NDVI product is produced every sixteen days from daily 250 m MODIS red 

and near infrared surface reflectance data. The composites are based on the maximum NDVI for 

the compositing period, and the data are provided as an Alber's Conic Equal Area projection.  

We determine the surface cover type by convolving an archetypal normalized NDVI history, 

Ni, for each vegetation type with the satellite-derived estimate of NDVI (N): 
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Here, v is the vegetation type (-); Z is the ranking index for each vegetation type (-); and t is time 

(y). Note that we have normalized the archetypal NDVI histories to ensure that variations and 

uncertainties in the peak magnitudes of N do not affect the ranking index. The archetypal 

histories were derived from LAI observations in the ACRF using the method described in Sellers 

et al. [1996]. The vegetation type for each 250 m pixel is determined by the highest value of Z 

calculated for the full year. This approach did not adequately separate summer C4 crops from 

pastures, which are a mixture of C3 and C4 grasses. Therefore, at the end of the process, C4 crop 

cells with high N in April were set to be pasture because C4 crops do not typically have 

appreciable LAI in April. Although crude, this method broadly captured the vegetation 
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distributions seen in the 2002 USDA Census data [USDA, 2002], as described below. Estimation 

of LAI from NDVI data can be problematic, particularly for high LAI and clumped vegetation. 

For this study, we mapped the five dominant vegetation types in the ACRF onto those described 

in Sellers et al. [1996], and used their approach to infer LAI. 

Estimating Surface Cover Type from County-Level Data 

For comparison to the vegetation type distributions estimated from MODIS NDVI, we 

estimated fractional cover for each vegetation type from county-level data contained in the 2002 

Census of Agriculture [USDA, 2002]. This census is taken on a 5-year cycle, with farm data 

collected in years ending in 2 and 7. The census definition of a farm is any place from which 

$1,000 or more of agricultural products were produced and sold, or normally would have been 

sold, during the census year. The crop production data contained in the Census are collected for 

many cover types, so we consolidated the data to facilitate comparisons to the cover types 

simulated by ISOLSM (Table 1). Because the crop production data are for 2002, and planting of 

various crop types depends strongly on climatic and economic conditions and can have 

substantial interannual variability, we do not expect perfect agreement between the NDVI- and 

Census-derived fractions of land occupied by each cover type. However, agreement between the 

two methods for relative proportion of each land cover type within the region gave us some 

confidence that vegetation type is appropriately accounted for in the simulation results. 

Eddy Covariance Flux Measurements 

Eddy covariance fluxes were calculated using methods described in Billesbach et al. [2004] 

and Fischer et al. [2007]; we summarize them briefly here. The flux measurements have been 

made continuously since 2002 in one winter wheat field and for growing seasons up to the 

present in several additional fields (5 pastures, 4 winter wheat, and 3 sorghum) in the ACRF, 

with most of the measurements taking place near the Central Facility [Fischer et al., 2007] 

(Figure 2). Each system is comprised of a sonic anemometer and an open-path infrared gas 

analyzer (IRGA; Li-COR Li-7500), a set of meteorological instruments that monitor net and 

photosynthetically active radiation, air temperature and relative humidity, precipitation, soil heat 

flux, and soil moisture and temperature (for more details, see Billesbach et al. [2004]). The 

IRGAs are calibrated before and after each deployment. 
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Fluxes were calculated on half-hour averages using standard algorithms comprising spike 

removal, coordinate rotation to zero mean vertical wind, and block averaging of scalar quantities. 

Density corrections [Webb et al., 1980] were applied to the covariances of vertical wind with 

measured CO2 and H2O densities obtained with the IRGA. Fluxes were calculated by lagging the 

wind fluctuations in time to maximize the covariance (typical lag < 0.5 s).  Multiplicative 

spectral corrections, caused by sensor separation and other factors [Moore, 1986], were 

calculated after confirming that the measured co-spectra were consistent with similarity theory. 

In general, the corrections were small (~10%), did not introduce systematic biases, were 

consistent across the different field sites, and hence were not applied to the data. 

The eddy covariance fluxes were corrected for changes in CO2 stored below the 4 m 

measurement height using measured CO2 concentrations.  An examination of subsets of the data 

showed that the storage corrections are small compared with turbulent fluxes except when 

friction velocity, u*, is small. 

From a total of 1732 site-days of deployment in 2002 - 2004, data passed quality control 

approximately 80% of daytime hours. Losses were mainly due to occasional photovoltaic power 

systems losses and bad IRGA signals during rain events. Nighttime data were subjected to a 

quality control on turbulence intensity as judged by friction velocity. Examination of selected 

datasets showed that nighttime NEE either did not vary significantly with u* or increased to 

asymptotic values for u* between 0.1 and 0.3 m s-1. We subjected nighttime data to the constraint 

that u* > 0.1 m s-1, which passed 69% of nighttime data. 

Land-Surface Model (ISOLSM) 

For simulations presented here we used the land-surface model ISOLSM [Aranibar et al., 

2006; Riley et al., 2002; Riley et al., 2003], which is based on LSM1 [Bonan, 1996]. ISOLSM is 

a “big-leaf” (e.g., [Dickinson et al., 1986; Sellers, Randall et al., 1996]) land-surface model that 

simulates CO2, H2O, and energy fluxes between ecosystems and the atmosphere. ISOLSM 

simulates aboveground fluxes of radiation, momentum, sensible heat, and latent heat (L); 

vertically explicit energy and water fluxes below ground, and coupled CO2 and H2O exchange 

between soil, plants, and the atmosphere. Soil hydraulic characteristics are determined from soil 

sand, silt, and clay content and used in a Richard’s equation approach to estimate soil moisutre. 

Soil C effluxes are estimated as the sum of autotrophic and heterotrophic respiration, with the 
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latter predicted using soil temperature (i.e., Q10 approach), moisture, and organic C content. The 

primary enhancements in ISOLSM (as compared to LSM1) relevant to this study include (1) 

modules that simulate the ecosystem isotopic stocks and exchanges of H2
18O, HDO, C18OO, and 

13CO2; (2) modification of the gross photosynthesis calculations, as described below; and (3) 

estimation of LAI and land cover type from satellite data. ISOLSM and LSM1 have been tested 

in a range of ecosystems at the site level (e.g., [Bonan et al., 1995; Bonan et al., 1997; Riley et 

al., 2003]).  

The version of ISOLSM applied here differs from that described in Riley et al. [2002] by 

several changes made to the plant physiology submodel. First, low and high temperature 

inhibition factors on the maximum catalytic capacity of Rubisco (Vm) from Sellers et al. [1996] 

have been included. Second, we implemented the method of Sellers et al. [1996] to smooth 

transitions between the three limiting assimilation rates (i.e., Rubisco, light, and export limited). 

Finally, iterations to estimate Cc and Ci, the leaf chloroplast and internal CO2 concentrations, 

respectively, are now performed using net photosynthesis (i.e., accounting for leaf respiration 

occurring inside the leaf), as opposed to gross photosynthesis, as done in the original version of 

LSM1. Of these changes, the last had the largest impact, resulting in values for Vm and Ci that are 

much closer to measured values. We note, however, that we obtained similar GPP and NEE 

estimates with the two approaches. Although excluding leaf respiration from the photosynthesis 

iteration (in our old approach) did not degrade NEE estimates, the unrealistic Ci values obtained 

could be problematic when estimating isotopic fluxes (e.g., 13CO2, C
18OO). 

We added or modified five new land-surface types to ISOLSM corresponding to the 

dominant vegetation in the ACRF: summer C3 crop, winter C3 crop, summer C4 crop, pasture (C3 

and C4 grasses), and broadleaf deciduous forest. We estimated ecosystem parameters for these 

systems using the Mesonet meteorological forcing data and the eddy covariance measurements 

described above. ISOLSM was calibrated to the data for these land-surface types using an 

iterative least-squares fit for soil carbon content, Cs (kg C m-2), and the maximum rate of 

carboxylation, Vm (μmol m-2 s-1). The approach minimized differences between predicted and 

observed NEE during two periods: nighttime (9 PM – 4 AM) and daytime (10 AM – 2 PM). We 

first estimated Cs using nighttime data, since soil heterotrophic respiration continues during the 

day and must be subtracted from NEE in order to estimate Vm. The data available for the 

parameter generation and test of the resulting simulations are described in Table 2.  
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We modeled the pasture as a combination of C3 and C4 grasses, with leaf area indices for 

each type varying differently over the year. We applied the results of Still et al. [2003] to 

partition the NDVI-derived LAI into C3 and C4 components for each grid cell. They estimated 

that the C4 percentage in April, June, July, and September is 38, 47, 50, and 85%, respectively. 

We used linear interpolation to estimate the C4 percentage for the remaining months. Several 

features of cropped systems are not explicitly simulated in ISOLSM, including fertilizer and 

water application, planting and harvesting, and residue removal. We note that most of the ACRF 

is rainfed, so that water management should not be a large source of error, and that the observed 

LAI profiles should give relatively accurate estimates of when crops are planted and harvested. 

Forcing the model with observed LAI profiles should also somewhat mitigate inaccuracies 

resulting from the model’s inability to predict the effects of fertilizer application on LAI and 

photosynthesis. Measuring fertilizer application rates, and accurately modeling their effects, at 

fine spatial scales across the ACRF would be difficult; however, such an effort should be 

considered in future work. 

Simulations 

The ACRF covers about 12,000 km2. Therefore simulations at a spatial resolution of 250 m 

require about 2,000,000 cells to span the region. Simulating multiple years at this resolution 

across the ACRF was intractable given our computational resources. We devised the following 

sampling strategy to address this issue for the fine-resolution (i.e., 250 m) simulations. First, a 

uniform coarse grid (composed of ‘macrocells’) was superimposed across the region. For 

example, about 1200 macrocells measuring 1010 km span the ACRF. Within each macrocell, 

we simulated up to ten randomly chosen 250 m grid cells (microcells) for each of the six possible 

vegetation covers present in region. Fewer than ten microcells may be present in a macrocell if a 

particular vegetation cover type is sparse in that macrocell. Macrocell land-surface fluxes for 

each vegetation cover type were calculated as a mean and standard deviation (SD) of the 

modeled microcell fluxes. This sampling approach substantially reduced the required simulation 

time while still providing land-surface flux mean and variability estimates from each vegetation 

cover type. 
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Spatial Scaling Simulations 

We tested two methods, which have been applied in previous spatial scaling studies, for 

estimating regional CO2 and LH fluxes at model resolutions greater than 250 m. The first, and 

simplest, approach was to perform the simulation with the dominant surface cover (i.e., 

corresponding to the largest fractional cover) and an average LAI computed from the cell. The 

second approach used the mean LAI for each surface cover type in the cell and weighted the 

results by the fractional cover of each cover type. This second method is applied, for example, in 

the NCAR GCM land-surface model CLM [Dai et al., 2003]. We tested the accuracy of these 

approaches in estimating regional NEE and LH fluxes by consolidating climate forcing, LAI, and 

soil characterization at 10, 30, 60, and 90 km scales. For the climate forcing, the interpolation 

approach described above was performed at the user-specified resolution. The predicted regional 

NEE and LH fluxes using these methods was compared to those calculated at 250 m resolution. 

Results and Discussion 

Meteorological Forcing 

We compared interpolated meteorological fields to measurements from the Mesonet sites 

(which were used in the interpolation) as well as to several sources not used in the interpolation: 

ARM Extended Facilities (EF, [Ackerman et al., 2004]) observations and eddy covariance tower 

observations. An example of the climate forcing data calculated using the Mesonet and Extended 

Facilities data is shown in Figure 2 (surface relative humidity on March 22 2003 at 00:00).  The 

interpolation method accurately reproduced the Mesonet measurements used in the interpolation; 

independent (not used in the interpolation) eddy covariance measurements over two continuous 

years in winter wheat and over the growing season in two pastures, three other winter wheat 

fields, and two sorghum fields (e.g., Figure 3); and independent observations from Extended 

Facilities stations (Table 4). 

Typically, annual cumulative precipitation increases from East to West across the ACRF. 

Annual precipitation differed substantially among the three years (754, 950, and 797 mm in 

2003, 2004, and 2005, respectively), with 2004 being the wettest year. Substantial inter-annual 

differences also occurred in the seasonality of precipitation.  
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In heterogeneous systems such as the ACRF, spatial variability in surface energy fluxes can 

cause heterogeneous near-surface winds, temperature, and humidity. There is a negative 

feedback on this climate forcing field heterogeneity, since the resulting increase in mixing will 

tend to homogenize these fields. This mixing can, to some extent, ameliorate this problem for 

modeling approaches that do not fully characterize the spatial variability of climate forcing 

within a computational domain. For this study, because the climate observations we used are 

spatially dense, our derived climate forcing likely captures the spatial variability actually 

experienced by individual points on the land-surface.  

Surface Cover Type and LAI 

We compared our surface cover type predictions to USDA county-level agricultural census 

statistics at three scales: (1) county, (2) the four quadrants of the ACRF, and (3) the entire 

ACRF. In this comparison we included counties with more than 80% agricultural land, 

corresponding to 70% of the counties. At the ACRF scale, predicted and 2002 Census mean 

vegetation cover matched well for all the cover types (Figure 4). Specifically, the low fractional 

cover of summer C4 crop, intermediate fractions of summer and winter C3 vegetation and forest, 

and large fraction of pastures were accurately predicted.  

Large-scale spatial patterns in the county-aggregated predictions of 2002 land cover inferred 

using MODIS NDVI accurately matched those from the 2002 Census data (Figure 5). In both, 

there was a substantial difference in fractional coverage between the SE and the other three 

quadrants. Winter C3 crop coverage is about 20% in the NW, NE, and SW quadrants, and about 

55% in the SE quadrant. In contrast, pasture coverage is about 50-60% in the W, NE, and SW 

quadrants and about 30% in the SE quadrant. 

We note two caveats relevant to this comparison. First, the 2002 Census data only included 

agricultural land, so a comparison of percent cover of each vegetation type was reasonable only 

if most of the land in a particular county was agricultural. Second, the comparison is only 

applicable in 2002, since there was substantial inter-annual variability in the types of crops 

planted, although the broad spatial patterns of vegetation cover were relatively stable. For 

example, 2003 had a relatively higher prevalence of winter C3 crops and relatively lower 

prevalence of pasture. We discuss below the relationship between precipitation anomalies and 

fractional cover of the various crops. 
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Parameter Calibration 

We calibrated Vm and Cs using the eddy covariance measurements; best-fit parameters are 

shown in Table 3 and simulations using these best-fit parameters are shown in Figure 6. These 

values are within the range of expected values for the various vegetation types [Sellers, Randall 

et al., 1996]. We note that improvements to these parameter estimations could be made if more 

eddy covariance measurements were available. Overall, ISOLSM accurately simulated net 

ecosystem C exchange in these systems where observations were available for testing. 

Soil Moisture 

Soil moisture exerts a strong control on heterotrophic respiration, plant drought stress, 

surface evaporative fluxes, and other surface processes. On weekly to monthly time scales, inter-

annual differences in near-surface (0-30 cm) soil moisture were temporally complex and not 

obviously related to annual precipitation. Soils in summer 2004 were consistently wetter than in 

summer 2003 in all vegetation cover types. However, soils were wetter in 2003 and 2005 

(compared to 2004) in September in all vegetation cover types. There were no substantial early 

September rains in 2004, but there were October and November rains that caused soil moisture to 

be wetter than in either 2003 or 2005.  

Regional NEE Estimates 

We first present predictions from the 250 m simulations in the US Southern Great Plains, 

which were computed as vegetation-cover-weighted averages of ten 250 m cells per 10 km 

macro cell. We then compare these results to those obtained with simulations at coarser spatial 

scales and two scaling methods. 

We calculated that the ACRF-SGP region was a net C sink, relative to the local atmospheric, 

for the three years simulated (Figure 7). Cumulative annual NEE was predicted to be -240, -340, 

and -270 g C m-2 y-1 for 2003, 2004, and 2005, respectively (implying an average annual net 

atmospheric C sink of about 2.8 t C ha-1). Again, these estimates do not represent a ‘true’ sink, 

since some of the agricultural product is shipped out of the region, where it may be returned to 

the atmosphere relatively quickly. 

Predicted spatial variability in midday NEE was large (e.g., Figure 8(a) shows midday NEE 

on April 15, 2003). At this time, C uptake was larger in the North-to-South band in the center of 
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the ACRF, consistent with Winter Wheat being near its peak LAI in this area. Further, cloud 

cover resulted in relatively larger solar radiation over the winter wheat belt, further enhancing 

the large-scale NEE spatial pattern.  

Midday NEE spatial heterogeneity within each 10 km macrocell (indicated by the fractional-

cover-weighted standard deviation of the 250 m simulations) was often as large as 75% of the 

mean and larger than the mean in about one-quarter of the macrocells (Figure 8(b)). This fine-

scale variability resulted from large differences in LAI among the ten (for each vegetation cover 

type) 250 m gridcells in each 10 km macrocell. Spatial heterogeneity in nighttime NEE, which is 

comprised solely of ecosystem respiration, was much smaller than that of daytime NEE. 

Inter-annual variability in regional-average NEE was substantial and resulted from several 

factors, including inter-annual variability in climate, fractional cover of vegetation types, and 

LAI for each cover type. For example, comparing 2003 and 2004, the difference in cumulative-

annual NEE was partially caused by larger C uptake between March and May in 2004. This 

larger C uptake was driven by larger LAI in C3 winter crop (~1 m2 m-2 larger in 2004 than in 

2003) and pasture (~0.5 m2 m-2 larger) during this period. We note that 2004 was also the year 

with the highest cumulative precipitation, which may be responsible for the larger LAI. Also, air 

temperatures were higher during this period in 2003 than in 2004, leading to larger predicted soil 

respiration and therefore lower net ecosystem C uptake. Finally, there was also a large change in 

vegetation cover between 2003 and 2004 in which fractional cover of pasture increased from 

about 40 to 65% and C3 winter crops decreased from about 31 to 20%. 

Regional net C uptake was smaller in 2005 than 2004, with uptake by both C3 winter crops 

and pasture contributing to this difference. The fractional cover of each vegetation type was 

relatively constant between 2004 and 2005. However, the LAI of C3 winter crops was lower 

during the peak uptake period of March – May in 2005 than in 2004, as was LAI for pasture 

between April and June. Regional-mean pasture LAI in July and August 2005 was larger than it 

was in 2004; however, warmer temperatures during July and August in 2005 drove increased soil 

respiration C fluxes during this period.  

Our calculations of NEE take into account the influence of a number of biophysical 

variables, such as cover type, LAI, precipitation, and temperature. We did not consider some 

other factors that can influence NEE, as described above, such as fertilizer type and application 

rate [Fischer et al., 2007]. In addition, we did not predict land use or land cover, but rather 
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simulated NEE given land cover patterns. Predictions of future ecosystem fluxes in managed 

landscapes will have to use some method of predicting land cover and land management, which 

are functions of many factors, including farmers’ decisions of what and when to plant and of 

economic forces (e.g., labor and fertilizer costs, crop subsidies). For example, recent demand and 

government incentives for biofuel crops (i.e., corn) are driving increases in corn production in 

many of the Great Plains states [Barrionuevo, 2006].  

Regional Latent Heat Fluxes and Water Use Efficiency 

Spatial heterogeneity in LH fluxes was smaller than it was in NEE, although broad spatial 

patterns in the two fluxes were consistent (compare Figure 8(a) and  Figure 8(c), which show 

NEE and LH for noon on April 15, 2003). As described above for NEE, the pattern at this point 

in time is consistent with the active Winter Wheat and solar radiation distributions. Spatial 

heterogeneity in midday LH (calculated as for NEE above) was usually less than 10% of the 

mean in each 10 km macro-cell. Inter-annual differences in predicted weekly LH fluxes were 

smaller than for NEE. Variation in weekly LH fluxes was smallest in 2004, the year with the 

most precipitation.  

Consistent with stomatal control of CO2 assimilation and transpiration (e.g., [Collatz et al., 

1991]), daytime, weekly, regional latent-heat flux (L) predicted at the 250 m scale was correlated 

with GPP (Figure 9; R2 = 0.72; note that only weeks with L > 50 W m-2 are included). The slope 

of the line for predicted cumulative GPP versus cumulative L, a measure of water use efficiency 

(WUE, g C kg-1 H2O), was relatively consistent among years; the average annual WUE for all 

three years for the region was 3.4 g C kg-1 H2O. This value is consistent with those found by Law 

et al. [2002] in their analysis of FLUXNET data, who reported slopes of 3.4, 3.2, and 3.1 g C 

kg-1 H2O for grasslands, deciduous broadleaf forests, and crops, respectively. Law et al. [2002] 

also tested whether a vapor pressure deficit weighted WUE (WUE-VPD; calculated as g C 

assimilated per kg H2O lost multiplied by vapor pressure deficit) correlated with GPP, and found 

poorer correlation, although this metric has been applied to estimate large-scale C exchanges 

[Beer et al., 2007]. Consistent with the FLUXNET analysis [Law et al., 2002], we found a poorer 

correlation (R2 = 0.5) between WUE-VPD and GPP.  
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Effect of Spatial Resolution on Regional Predictions 

To determine how the spatial resolution of simulations affected predictions of surface fluxes 

in a region with fine-scale spatial heterogeneity, we performed two series of model runs at 10, 

30, 60, and 90 km resolutions. First, we applied a single dominant vegetation cover type and 

average LAI in each grid cell to calculate the NEE and LH values for each cell. Second, we 

applied the mean LAI of each cover type in each grid cell to estimate each cover type’s surface 

exchanges, and then weighted these estimates by the fractional cover within the cell to calculate 

NEE and LH for each grid cell. The resulting regional fluxes were then compared to predictions 

at 250 m resolution.  

Predicted annual cumulative regional NEE in 2003 using the dominant cover approach was 

-280, -370, -400, and -340 g C m-2 y-1 at 10, 30, 60, and 90 km, respectively, and in 2004 was -

390, -410, -410, and -410 g C m-2 y-1 for the same set of spatial resolutions (Figure 10(a, c)). 

Maximum biases compared to the cumulative annual regional NEE calculated at the 250 m scale 

were 70% and 20% in 2003 and 2004, respectively. Biases of over 100% occurred in both years 

for weekly integrated NEE; the fractional bias was largest in winter when NEE is typically small. 

In both years, the regional average assimilation was higher when predicted at the coarser scales 

than at the 250 m scale. This bias resulted from a combination of the increasing dominance of 

pasture over C3 winter crop as scale increased and the larger C assimilation by pasture. The 

effect was stronger in 2004 because more than 90% of the surface was characterized as pasture at 

the 90 km scale.  

The second approach (which is used in many current land-surface models) led to regional 

annual estimates of up to 25% more net C uptake than the 250 m simulations in 2003 (Figure 

10(b)) and 2004 (Figure 10(d)). Weekly biases, between 10 and 50% during the growing season, 

were also smaller than for the dominant cover scaling. At all scales, weekly biases in predicted 

assimilation and ecosystem respiration were smaller (~10%) than for NEE, but when combined 

to predict NEE led to larger fractional biases than for either flux alone. 

Simulations at coarser resolutions consistently predicted more C uptake than those at the 250 

m scale. This bias resulted primarily from using the mean of the 250 m LAI values, even though 

the LAI had a distribution that was consistently more lognormal than symmetric, for each cover 

type across the larger grid cell (Figure 11). We note also that, even for a symmetric LAI 

distribution, a single NEE calculated using the mean LAI may differ from a mean NEE 
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calculated across the LAI distribution. Such a discrepancy can occur because canopy 

assimilation is, in general, non-linearly related to LAI due to the changing proportion of leaves in 

shaded and sunlit conditions, leaf clumping, and other factors [Chen et al., 2008]. Thus, 

achieving accurate NEE estimates with simulation resolutions that are much coarser than the 

spatial heterogeneity in cover type and LAI requires a more sophisticated sampling approach 

than simply using the mean LAI for each cover type in the grid cell. An example approach would 

be to characterize the LAI probability density function (pdf) of each grid cell by a geometric 

mean and geometric standard deviation, and then evenly distribute a subset of 250 m grid cell 

simulations across the LAI range. The grid cell NEE for each cover type would be calculated 

using the pdf to weight the predictions across the grid cell. Finally, the overall NEE across the 

grid cell would be calculated by weighting the NEE from each cover type by its fractional cover 

within the grid cell. 

The effect of spatial resolution on regional weekly average LH fluxes was smaller than it 

was for NEE (Figure 12), but somewhat larger than for either assimilation or respiration. The 

largest summer and winter biases were ~30 and 20%, respectively. Similar to NEE, the second 

approach to scaling LH (i.e., weighting by fractional cover predictions in each gridcell that used 

the mean LAI of each cover type) had lower biases than using the dominant vegetation cover 

(not shown).  

There were substantial spatial gradients in weekly LH fluxes across the ACRF that were 

missed by the coarse-scale simulation. During midday, for example, LH spatial gradients across 

the region of hundreds of W m-2 are common (Figure 8(c)). Similarly, temporal averaging 

obscured important diurnal variations. These variations are caused by both slowly (e.g., LAI) and 

rapidly (e.g., clouds) varying system characteristics. Therefore, for applications that require 

accurate characterization of the surface energy budget at diurnal or sub-diurnal time scales or 10-

100 km spatial scales (e.g., cloud models), including details of variability in climate forcing, 

cover type, and LAI is required. 

A number of studies have examined the impacts of spatial heterogeneity on predicted 

surface fluxes in non-agricultural systems. Li et al. [2008] studied the effect of spatial 

heterogeneity on surface LH and SH fluxes in southern Arizona using Landsat images and a 

model based on measured radiometric surface temperature and vegetation cover fraction. They 

concluded that LH and SH were well estimated using 30 m and 120 m estimates (which were at 
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or below the scale of local vegetation heterogeneity), but the accuracy deteriorated for lower 

resolution, particularly for LH fluxes. Kimball et al. [1999] studied spatial scaling issues (with 

land-cover characteristics specified from 30 m to 50 km) within the boreal forest of the 

BOREAS project [Sellers et al., 1997]. Compared to the high-resolution results, they concluded 

that predictions at the coarser scales resulted in large monthly NPP biases (28 to 48%), but that 

annual NPP biases were lower  (2 to 14%), primarily because of offsetting errors. They also 

reported lower monthly LH bias (<5%) as compared to NPP biases, again due to partial 

compensation of model errors. Our results showed similar patterns: i.e., predicted annual NEE 

biases were smaller than many of the weekly average biases, and predicted weekly biases in LH 

were smaller than for NEE. 

Chen et al. [2007] showed, with a land-surface model applied across Canada, that 

differences of up to 25% in surface fluxes were predicted with a dominant cover and a 

fractionally distributed vegetation cover, indicating that different methods of treating subgrid 

heterogeneities could lead to biases in surface fluxes. For comparison, our simulations had 

annual cumulative NEE differences between the dominant and fractionally distributed cases as 

large as 40%, with an average difference of 10%. Turner et al. [2000], in a Pacific Northwest 

forest, used Landsat 25 m data to study land cover classification and predicted C exchanges 

across scales up to 1 km. At resolutions coarser than 250 m the pattern of clear-cuts was lost and 

the land-cover classification agreement at the coarsest scale was relatively pool. Predicted NPP 

and tree biomass decreased and increased, respectively, with increasing scale. Our estimates of 

bias associated with the spatial resolution at which agricultural land cover type and status are 

specified are comparable to those found in these forest studies, as is our observation that LH 

estimates were somewhat less sensitive to resolution than NEE estimates.  

We also note that biases in predicted surface fluxes depend on the extent to which the flux of 

interest depends on land-cover type and its status. Other trace gases of agricultural interest, such 

as N2O and CH4, also depend strongly on these system properties, and therefore we also expect 

them to vary strongly across spatial scales of system characterization. 

As mentioned above, inverse methods are being used to estimate regional C and energy 

exchanges. The first phase of the ongoing NACP Mid-Continent Intensive (MCI) study 

(http://nacp.ornl.gov/mast-dc/int_synth_mci.shtml) (‘interim synthesis’) includes compilation 

and comparison of top-down and bottom-up estimates for a region in the Central U.S. For 
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comparison to our results, we extracted results at 11 resolution from three inversion models 

(CarbonTracker [Peters et al., 2007], UT [Deng et al., 2007], and LSCE [Chevallier et al., 

2005], CSU [Schuh et al., 2009] that spanned at least one year of the three-year period of our 

study. We note that other groups are preparing results for the interim synthesis, but those results 

were unavailable at the time this paper was finalized. For comparison to the bottom-up 

predictions, we averaged the inversions predictions to a 33 region centered on the ACRF 

(Figure 13). The inversions are global in scale, with different spatial resolutions, constraining 

observations, inversion approaches, and downscaling methods; these differences are reflected in 

the relatively large range of NEE estimates.  

Given uncertainties in both the inversion and our bottom-up estimates, it is currently 

impossible to rank one NEE estimate as superior to the other. However, comparisons between 

the approaches can highlight periods, system properties, or regions for further study and model 

improvement. For this study, we note that the late spring peak NEE drawdowns were comparable 

between the bottom-up and LSCE inversion predictions, and that net C release during the winter 

was comparable between the bottom-up and CarbonTracker predictions. For 2004, the CSU 

model and bottom-up approach predicted similar seasonal cycles, but somewhat different peak 

values in summer. Both the UT and LSCE inversions predicted a large net ecosystem C efflux 

during summer, which was not predicted in either the CarbonTracker or our bottom-up approach. 

Further analyses could focus on these differences to improve both the bottom-up and top-down 

regional C exchange estimates of the region. 

Conclusions 

We presented bottom-up C and latent heat exchange predictions in a spatially heterogeneous 

agricultural region in the Southern Great Plains (ACRF-SGP). The region was predicted to be a 

net C sink, with respect to the local atmosphere, of -240, -340, and -270 g C m-2 y-1 for 2003, 

2004, and 2005, respectively. We note that, in contrast to many forested systems, much of the 

accumulated biomass represented in this sink may be transported horizontally where it can be 

rapidly returned to the atmosphere. Both NEE and latent heat fluxes were spatially and 

temporally heterogeneous, arguing that accurate representation of surface exchanges in this 

system must account for observed heterogeneity in cover type and vegetation status. 
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Conducting simulations at coarser resolution led to biases in the predicted net ecosystem 

fluxes, with the magnitude of bias depending on the scaling approach. We predicted differences 

up to 25% in annual C exchange estimates between the 250 m approach and those based on 

fractional cover and means of LAI (in 10, 30, 60, and 90 km gridcells) for each cover type. This 

scaling approach, used in current land-surface models, resulted in errors this large (and larger for 

weekly averages) because of the heterogeneous LAI distribution within land cover types. 

However, even a symmetric LAI distribution does not guarantee that a single NEE calculated 

using the mean LAI will be the same as the cumulative NEE calculated across the LAI 

distribution. Predicted latent heat flux biases across scales were smaller than those for C 

exchanges, but somewhat larger than biases for gross primary production and ecosystem 

respiration. Not surprisingly, using a single dominant vegetation cover for each gridcell resulted 

in even larger biases in surface exchanges. Coarse spatial and temporal resolution simulations 

also obscured important variations across the region. 

Our results suggest several steps to improve regional-scale, bottom-up, ecosystem C 

exchange predictions. First, although using observed LAI had the advantage of capturing year-to-

year variation in cover type and management effects, variations in fertilizer application rate and 

type, irrigation practices, and planting methods also affect C exchanges [Fischer et al., 2007] and 

need to be included in a robust modeling framework. Using observed LAI also precludes 

predictions of future system behavior. Second, our approach to characterizing vegetation type 

could be improved with more observations of cover type and LAI in the region. These 

measurements need to be made at the scale at which cover type varies, i.e., on the order of a 

hundred meters. Finally, independent methods of estimating regional-scale fluxes need to be 

made and compared with bottom-up estimates. For example, the top-down approaches described 

above, as well as boundary layer budgeting approaches [Bakwin et al., 2004; Helliker et al., 

2004; Lai et al., 2006; Wang et al., 2007; Williams et al., 2005], show promise in this regard. A 

combination of approaches will likely be required to establish confidence in regional NEE 

estimates in heterogeneous landscapes such as the one studied here. 
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Tables 

LSM1 Surface Cover Type USDA Agriculture Census Cover Types for ACRF-SGP 

Summer C3 crop Sunflower, cotton, soy, dry beans, forage, peanuts, orchard, 

vegetables, potatoes, beets, irrigated crop, other crop 

Winter C3 crop Winter wheat, barley, oat, rye, grazed crop 

Summer C4 crop Corn, sorghum 

Pasture Range 

Forest Wood 

Table 1. Mapping of cover types contained in the USDA Agricultural Census of Oklahoma and 

Kansas to the seven cover types simulated in ISOLSM. 

 

Surface 

Cover Type 

2002 2003 2004 

Wheat Jan – Jun Jan – Dec Jan – Dec 

 Apr – Jun Apr – June Apr – Jun 

 Apr – Jun   

Pasture Jun – Aug Apr – Aug Apr – Nov 

 Jun – Aug   

Sorghum  Jun – Aug Jun – Nov 

Table 2. Data available from the eddy correlation towers for parameter determination (2002, 

2003) and testing (2004) of the calibrated model. 

 

Parameter Winter C3 

Crop 

(Wheat) 

Pasture 

C3 Grass 

Pasture 

C4 Grass 

Summer 

C4 Crop 

(Sorghum) 
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Sc (kg C m-2) 20 14 14 12 

Vm  (μmol m-2 s-1) 99 70 20 21 

Table 3. Best-fit parameters used in the simulations.  

 

Specific Humidity (g g-1)  Pressure (kPa)  Temperature (ºC) Extended 
Facility 
Name 

Error RMSE R  Error RMSE R  Error RMSE R 

E13 -1.0e-4 1.2e-5 0.94  -0.01 3.9e-4 1.00  0.24 7.0e-3 1.00 
E15 1.3e-4 5.8e-6 0.99  -0.27 3.5e-4 1.00  0.02 7.9e-3 1.00 
E21 -2.7e-4 5.4e-6 0.99  -0.11 3.3e-4 1.00  0.24 1.0e-2 0.99 
E24 5.9e-5 4.0e-6 0.99  0.22 3.4e-4 1.00  0.01 6.5e-3 1.00 

Table 4. Comparison between interpolated and measured atmospheric specific humidity, 

pressure, and temperature at four Oklahoma ARM extended facilities sites not used in the 

interpolation. Extended Facilities locations used in the comparison: E13 (97.485W, 36.605N); 

E15 (98.284W, 36.431N); E21 (96.065W, 35.615N); E24 (98.205W, 34.883N). 

Figures 

 

Figure 1. July 2001 Los Alamos National Laboratory multispectral thermal imager view of the 

fields surrounding the ACRF-SGP Central Facility. The mosaic of harvested crops, growing 

crops, and pasture emphasizes the heterogeneity of land-cover in the Southern Great Plains. 
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Figure 2. Oklahoma and Kansas Mesonet platforms (solid circles), portable eddy covariance sites 

(triangles), Extended Facility eddy covariance towers (+), and Central Facility 60 m tower 

(square). The contours show surface relative humidity over the ARM-SGP domain on March 22 

2003 at 00:00.  
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Figure 3. Example of interpolated and measured (a) air temperature, (b) wind speed, and (c) 

relative humidity at the Central Facility wheat site. 
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Figure 4. ACRF regional average (error bars show SD) percent vegetation cover determined 

from the MODIS NDVI and 2002 Census data. Counties with more than 80% land area covered 

by agriculture are included. The vegetation type characterization using the 2002 MODIS NDVI 

data closely matched the results of the 2002 USDA Census. 

 

Figure 5. Average (error bars show SD) percent vegetation cover for four quadrants (NW, NE, 

SW, and SE) in the ACRF determined from the MODIS NDVI and the 2002 USDA Census. 

Counties with more than 80% land area covered by agriculture are included. The vegetation type 

characterization using MODIS NDVI data closely matched the results from the 2002 USDA 

  25



Census, and captured the large-scale spatial variability in C3 winter crop versus pasture fractional 

cover. 

 

 

Figure 6. NEE estimates from portable eddy covariance measurements and ISOLSM used for 

model calibrations for (a) wheat, (b) pasture, and (c) sorghum. The corresponding best-fit 

parameters are given in Table 3. 
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Figure 7. Predicted NEE for the ACRF region. Annual cumulative NEE is shown for each of the 

three years. Regional NEE seasonality and inter-annual variability depends strongly on 

vegetation cover type fractional cover and status. 

 

   

(a) (b) (c) 

Figure 8. For noon, April 15, 2003: (a) NEE (b) Fractional-cover-weighted standard deviation of 

NEE; and (c) LH flux. NEE spatial variation (SD) within the 10 km gridcells at a particular time 

can be larger than the mean in the gridcell, while LH fluxes are typically much less 

heterogeneous than NEE.  
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Figure 9. Weekly regional cumulative GPP versus weekly regional cumulative daytime latent 

heat flux (for weeks with L > 50 W m-2). 

 

  

Figure 10. Weekly ACRF-SGP NEE estimates for two scaling methods and five spatial scales: 

250 m, 10 km, 30 km, 60 km, and 90 km for 2003 (a, c) and 2004 (b, d). For both methods, the 

region was predicted to become a stronger C sink at the larger resolutions than at the 250 m 

resolution. For the ‘fractional vegetation method’, annual NEE differed by ~5 and 20% between 

the 250 m and larger scale estimates in 2003 and 2004, respectively. 
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Figure 11. LAI probability density for winter wheat in the 250 m gridcells across the ACRF 

domain in mid-June, 2004. This distribution is common in the ACRF, and demonstrates one 

reason why the mean LAI does not accurately represent the vegetation when estimating NEE.  
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Figure 12. Weekly LH flux estimates, using the dominant vegetation cover type in each cell, for 

five spatial scales: 250 m, 10 km, 30 km, 60 km, and 90 km for (a) 2003 and (b) 2004. 

Differences between scales were much smaller than those for NEE (Figure 10(a, b)).  
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Figure 13. Comparison between the bottom-up regional NEE predictions and four top-down 

inversion predictions (averaged over a 33 region centered over the ACRF) prepared for the 

NACP MCI study.  
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