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Leading and subleading twist transverse momentum dependent parton distribution functions
(TMDs) are studied in a quark model framework provided by the bag model. A complete set of
relations among different TMDs is derived, and the question is discussed how model-(in)dependent
such relations are. A connection of the pretzelosity distribution and quark orbital angular momen-
tum is derived. Numerical results are presented, and applications for phenomenology discussed. In
particular, it is shown that in the valence-x region the bag model supports a Gaussian Ansatz for
the transverse momentum dependence of TMDs.
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I. INTRODUCTION

TMDs are a generalization [1–4] of parton distribution functions (PDFs) promising to extend our knowledge of the
nucleon structure far beyond what we have learned from PDFs about the longitudinal momentum distributions of
partons in the nucleon. In addition to the latter, TMDs carry also information on transverse parton momenta and
spin-orbit correlations [5–35]. Here longitudinal and transverse refers to the hard momentum flow in the process, for
example, in deeply inelastic lepton nucleon scattering (DIS) the momentum of the virtual photon.
TMDs (and/or transverse momentum dependent fragmentation functions) enter the description of leading-twist

observables in deeply inelastic reactions [5–7] on which data are available like: semi-inclusive DIS (SIDIS) [36–50],
Drell-Yan process [51–53], or hadron production in e+e− annihilations [54–57].
The interpretation of these data is not straight-forward though. In SIDIS one deals with convolutions of a priori

unknown transverse momentum distributions in nucleon and fragmentation process, and in practice is forced to assume

models for transverse parton momenta such as the Gaussian Ansatz [58–67]. In the case of subleading twist observables,
one moreover faces the problem that several twist-3 TMDs and fragmentation functions enter the description of one
observable [68–77] (we recall that presently factorization is not proven for subleading-twist observables [78]).
In this situation information from models [74–94] is valuable for several reasons. Models can be used for direct

estimates of observables, though it is difficult to reliably apply the results, typically obtained at low hadronic scales,
to experimentally relevant energies [86]. Another aspect concerns relations among TMDs observed in models [79–83].
Such relations, especially when supported by several models, could be helpful — at least for qualitative interpretations
of first data. Furthermore, model results allow to test assumptions made in literature, such as the Gaussian Ansatz
for transverse momentum distributions or certain approximations [95–101].
In addition to such practical applications model studies are of interest also because they provide important insights

into non-perturbative properties of TMDs. In this context the probably most interesting recent observation in models
concerns the pretzelosity distribution function, which in some quark models is related to the difference of the helicity
and transversity distributions [80] and, so far, in one model to quark orbital momentum [84] which is, to best of our
knowledge, the first ’rigorous’ connection of a TMD and quark orbital angular momentum in a model.
The purpose of this work is to study TMDs in the framework of the MIT bag model. We compute in this model

all leading- and subleading-twist, time-reversal (T-) even TMDs in Sec. II, and address then in Sec. III questions like:
how do relations among TMDs arise in a quark model? How many such relations are there in a model? To which
extent may one expect such relations to be realized in nature? In Sec. IV we establish a connection of pretzelosity
and quark orbital angular momentum in the bag model. In Sec. V we present and discuss the numerical results, using
them, among others, for ’testing’ the Gaussian Ansatz or Wandzura-Wilczek-type approximations [98–101]. Finally,
in Sec. VI we present our conclusions. Some of the results presented here were shown in the proceeding [87].
For convenience and in order to make this work self-contained, in the remainder of this Introduction we include

general definitions of TMDs, and introduce relevant notation.

http://arxiv.org/abs/1001.5467v1
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A. General definitions of TMDs

Hard processes sensitive to parton transverse momenta like SIDIS are described in terms of light-front correlators

φ(x, ~pT )ij =

∫
dz−d2~zT
(2π)3

eipz 〈N(P, S)|ψ̄j(0)W(0, z; path)ψi(z)|N(P, S)〉
∣∣∣∣
z+=0, p+=xP+

. (1)

We use light-cone coordinates a± = (a0 ± a3)/
√
2. In SIDIS the singled-out 3-direction is along the momentum

of the hard virtual photon, and transverse vectors like ~pT are perpendicular to it. The path of the symbolically
indicated Wilson-link depends on the process [23–25]. In the nucleon rest frame the polarization vector is given by

S = (0, ~ST , SL) with ~S2
T + S2

L = 1.
The information content of the correlator (1) is summarized by eight leading-twist TMDs [18], that can be projected

out from the correlator (1) as follows (color online: red: T-odd, blue: T-even)

1

2
tr

[
γ+ φ(x, ~pT )

]
= f1 −

εjkpjTS
k
T

MN
f⊥
1T (2)

1

2
tr

[
γ+γ5 φ(x, ~pT )

]
= SL g1 +

~pT · ~ST

MN
g⊥1T (3)

1

2
tr

[
iσj+γ5 φ(x, ~pT )

]
= Sj

T h1 + SL
pjT
MN

h⊥1L +
(pjT p

k
T − 1

2 ~p
2
T δ

jk)Sk
T

M2
N

h⊥1T +
εjkpkT
MN

h⊥1 , (4)

and by the subleading twist TMDs [29]

1

2
tr

[
1 φ(x, ~pT )

]
=

MN

P+

[
e− εjkpjTS

k
T

MN
e⊥T

]
(5)

1

2
tr

[
iγ5 φ(x, ~pT )

]
=

MN

P+

[
SLeL +

~pT ~ST

MN
eT

]
(6)

1

2
tr

[
γα φ(x, ~pT )

]
=

MN

P+

[
pjT
MN

f⊥ + εjkSk
T fT + SLε

jkSk
T f

⊥
L +

(pjT p
k
T − 1

2 ~p
2
T δ

jk)εklSl
T

M2
N

f⊥
T

]
(7)

1

2
tr

[
γjγ5 φ(x, ~pT )

]
=

MN

P+

[
Sj
T gT + SL

pjT
MN

g⊥L +
(pjT p

k
T − 1

2 ~p
2
T δ

jk)Sk
T

M2
N

g⊥T +
εjkpkT
MN

g⊥ ,

]
(8)

1

2
tr

[
i σjkγ5 φ(x, ~pT )

]
=

MN

P+

[
Sj
T p

k
T − Sk

T p
j
T

MN
h⊥T − εjk h

]
, (9)

1

2
tr

[
i σ+−γ5 φ(x, ~pT )

]
=

MN

P+

[
SL hL +

~pT · ~ST

MN
hT

]
, (10)

where the space-indices j, k refer to the plane transverse with respect to the light-cone and ε12 = −ε21 = 1 and zero
else. Integrating out transverse momenta in the correlator (1) leads to the ’usual’ parton distributions known from
collinear kinematics ja(x) =

∫
d2~pT j

a(x, ~p 2
T ) with j = f1, g1, h1, e, , gT , hL [102, 103]. Dirac-structures other than

that in Eqs. (2–10) lead to subsubleading-twist terms [28].
For convenience we introduce for a generic TMD jq(x, k⊥) the ’(unintegrated) transverse (1)-moments’ defined as

j(1)q(x, k⊥) =
k2⊥

2M2
N

jq(x, k⊥) , j(1)q(x) =

∫
d2k⊥

k2⊥
2M2

N

jq(x, k⊥) . (11)

Moreover, we shall also make use of the ’(1/2)-moments’ defined for a generic TMD as

f
(1/2)q
1 (x) =

∫
d2k⊥

k⊥
2MN

f q
1 (x, k⊥) . (12)



3

II. TMDS IN THE BAG MODEL

In the MIT bag model, the quark field has the following general form [104–106],

Ψα(~x, t) =
∑

n>0,κ=±1,m=±1/2

N(nκ){bα(nκm)ψnκjm(~x, t) + d†α(nκm)ψ−n−κjm(~x, t)} , (13)

where b†α and d†α create quark and anti-quark excitations in the bag with the wave functions

ψn,−1, 1
2
m(~x, t) =

1√
4π

(
ij0(

ωn,−1|~x|
R0

)χm

−~σ · x̂ j1(ωn,−1|~x|
R0

)χm

)
e−iωn,−1t/R0 . (14)

For the lowest mode, we have n = 1, κ = −1, and ω1,−1 ≈ 2.04 denoted as ω ≡ ω1,−1 in the following. In the above
equation, ~σ is the 2× 2 Pauli matrix, χm the Pauli spinor, R0 the bag radius, x̂ = ~x/|~x|, and ji, are spherical Bessel
functions. Taking the Fourier transformation, we have the momentum space wave function for the lowest mode,

ϕm(~k) = i
√
4πNR3

0

(
t0(k)χm

~σ · k̂ t1(k)χm

)
, (15)

where k̂ = ~k/k with k = |~k| and the normalization factor N is,

N =

(
ω3

2R3
0(ω − 1) sin2 ω

)1/2

. (16)

The two functions ti, i = 0, 1 are defined as

ti(k) =

1∫

0

u2duji(ukR0)ji(uω) . (17)

From the above equations, we see that the bag model wave function Eq. (15) contains both S and P wave components.
Especially, t0 represents the S-wave component, whereas t1 represents the P -wave component of the proton wave
functions.
With the above wave functions, we can calculate all quark TMDs. For convenience we define the constant A, which

will be common to all TMDs, and the momenta kz and k as

A =
16ω4

π2(ω − 1)j20(ω)M
2
N

, k =
√
k2z + k2⊥ , kz = xMN − ω/R0 , k̂z =

kz
k
, M̂N =

MN

k
, (18)

where MN is the proton mass, and the bag radius is fixed such that R0MN = 4ω. Moreover, we assume SU(6)
spin-flavor symmetry of the proton wave function, such that spin-independent TMDs of definite flavor are given in
terms of respective ’flavor-less’ expressions multiplied by a ’flavor factor’ Nq, and spin-dependent TMDs of definite
flavor follow from multiplying the respective ’flavor-less’ expressions by a ’spin-flavor factor’ Pq with

Nu = 2 , Nd = 1 , Pu =
4

3
, Pd = −1

3
. (19)

We recall that in the quark model formulated for a general (odd) number of colors Nc, these flavor factors are given
by Nu = (Nc + 1)/2 and Nd = (Nc − 1)/2 while Pu = (Nc + 5)/6 and Pd = (−Nc + 1)/6 [107].
We mention that the MIT bag model gives rise also to antiquark distributions, but to unphysical ones, since

f q̄
1 (x) < 0, which violates positivity. The TMDs receive non-vanishing support also from the regions |x| ≥ 1. Though
non-physical these contributions must be included when evaluating sum rules like

∫
dx f q

1 (x) = Nq or the momentum
sum rule

∑
q

∫
dxxf q

1 (x) = 1, i.e. sum rules are satisfied only when integrating over the whole x-axis.

In literature it was discussed how to deal with these caveats, see for example [108]. In this work, we limit ourselves
to the discussion of quark TMDs at 0 ≤ x ≤ 1, which should not be confused with ’valence distributions’, for example
f q
1 val(x) = f q

1 (x) − f q̄
1 (x). When discussing sum rules, however, integration over the whole x-axis is implied.

Since there are no explicit gluon degrees of freedom, T-odd TMDs vanish in this model [91]. In principle, one can
simulate the effect of the gauge link, which is crucial in QCD for T-odd effects [22–24], for example by introducing
’one-gluon-exchange’ [91, 92] or invoking instanton effects [93]. In this work we shall not consider such extensions of
the bag model, and restrict ourselves to the description of T-even distributions.
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A. Results for TMDs in the bag model

In the notation introduced above, the results for the T-even leading twist TMDs are given by

f q
1 (x, k⊥) = NqA

[
t20 + 2k̂z t0t1 + t21

]
(20)

gq1(x, k⊥) = Pq A

[
t20 + 2k̂z t0t1 + (2k̂2z − 1) t21

]
(21)

hq1(x, k⊥) = Pq A

[
t20 + 2k̂z t0t1 + k̂2z t

2
1

]
(22)

g⊥q
1T (x, k⊥) = Pq A

[
2M̂N(t0t1 + k̂z t

2
1)

]
(23)

h⊥q
1L(x, k⊥) = Pq A

[
−2M̂N(t0t1 + k̂z t

2
1)

]
(24)

h⊥q
1T (x, k⊥) = Pq A

[
−2M̂ 2

N t21

]
(25)

and for the subleading twist TMDs we obtain

eq(x, k⊥) = NqA

[
t20 − t21

]
(26)

f⊥q(x, k⊥) = NqA

[
2M̂N t0t1

]
(27)

gqT (x, k⊥) = Pq A

[
t20 − k̂2z t

2
1

]
(28)

g⊥q
L (x, k⊥) = Pq A

[
2M̂N k̂z t

2
1

]
(29)

g⊥q
T (x, k⊥) = Pq A

[
2M̂2

N t21

]
(30)

hqL(x, k⊥) = Pq A

[
t20 + (1− 2k̂2z)t

2
1

]
(31)

h⊥q
T (x, k⊥) = Pq A

[
2M̂N t0t1

]
(32)

hqT (x, k⊥) = Pq A

[
−2M̂N k̂z t

2
1

]
(33)

In the following Sections we shall discuss these results in detail.
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III. EQUALITIES AND INEQUALITIES AMONG TMDS

In QCD all TMDs are independent functions. But in quark models, due to absence of gauge field degrees of freedom,
certain relations among different TMDs appear which must be satisfied in any consistent relativistic quark model.
We discuss these “model-independent” quark-model relations in Sec. III A. Of course, depending on a quark model
further relations may appear, and the bag model results (20-33) provide a nice illustration why this happens which is
demonstrated in Secs. III B and III C in detail. In Sec. III D we compare to results from other models. This comparison
helps to establish to which extent which relations might be expected to be useful in nature. Sec. III E is devoted to
the discussion of one particular relation.

A. Relations valid in all quark models

Certain relations among TMDs must be valid in any quark model of the nucleon lacking gluon degrees of freedom
[100]. In such “no-gluon models” the absence of the Wilson-link implies that in the general Lorentz-decomposition of
the unintegrated quark-correlator certain amplitudes do not appear, namely the Bi-amplitudes (i = 1, 2, . . . 20) in
the notation of [28]. This gives rise to the following relations [17, 100]

gT (x)
LIR
= g1(x) +

d

dx
g
⊥(1)
1T (x) , (34)

hL(x)
LIR
= h1(x)−

d

dx
h
⊥(1)
1L (x) , (35)

hT (x)
LIR
= − d

dx
h
⊥(1)
1T (x) , (36)

g⊥L (x) +
d

dx
g
⊥(1)
T (x)

LIR
= 0 , (37)

hT (x, pT )− h⊥T (x, pT )
LIR
= h⊥1L(x, pT ) , (38)

which must hold in any consistent relativistic quark model. These so-called “Lorentz-invariance relations” (LIRs)
are not valid in models with gauge field degrees of freedom [95] and in QCD [96]. The applications of LIRs in
phenomenology were discussed in [99, 100]. There it was also shown, by exploring QCD equations of motion, that
some LIRs hold in an approximation consisting of the neglect of quark-gluon-quark-correlator and current quark mass
terms. Whether such an approximation is is justified in nature is, of course, a different question. For discussions of
specific cases see [98–101, 109–113]. For quark model calculations, the practical application of the relations (34–38)
is immediate: they provide a valuable cross check for the numerical results.
In App. A we provide analytical proofs that the LIRs (34–38) are satisfied in the bag model. We also checked that

the numerical results satisfy the LIRs, which provides a welcome cross-check for the numerical calculation.
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B. Linear relations in bag model

In the bag model, there are 9 linear relations among the 14 (twist-2 and 3) T-even TMDs, which can be written as
follows

Dq f q
1 (x, k⊥) + gq1(x, k⊥) = 2hq1(x, k⊥) (39)

Dq eq(x, k⊥) + hqL(x, k⊥) = 2gqT (x, k⊥) (40)

Dq f⊥q(x, k⊥) = h⊥q
T (x, k⊥) (41)

g⊥q
1T (x, k⊥) = − h⊥q

1L(x, k⊥) (42)

g⊥q
T (x, k⊥) = − h⊥q

1T (x, k⊥) (43)

g⊥q
L (x, k⊥) = − hqT (x, k⊥) (44)

gq1(x, k⊥)− hq1(x, k⊥) = h
⊥(1)q
1T (x, k⊥) (45)

gqT (x, k⊥)− hqL(x, k⊥) = h
⊥(1)q
1T (x, k⊥) (46)

hqT (x, k⊥)− h⊥q
T (x, k⊥) = h⊥q

1L (x, k⊥) (47)

where the ’dilution factor’ is defined as

Dq =
Pq

Nq
. (48)

In the relations (45, 46) some TMDs need to be multiplied by the model-independent factor k2⊥/(2M
2
N), which is

a ‘legitimate linear operation’ in our context (the meaning of that will be explained shortly). The ’(unintegrated)
transverse moments’ are defined in Eq. (11).
Why are there 9 linear relations? In fact, naively, one could have expected even more relations, since all TMDs are

expressed in terms of only two functions, t0 and t1 representing the contributions from the S and P-wave components
of the proton wave function, Eqs. (15, 17). However, having linear relations in mind, the combinations t20, t0t1, t

2
1

are to be considered as independent structures. But there are more independent structures than that. By inspecting
Eqs. (20-33) we see that the actual number of linearly independent structures in the TMDs is 5, namely

I. t20

II. k̂z t0t1

III. t21, k̂
2
z t

2
1





↔
{
f q
1 , g

q
1, h

q
1, h

⊥q
1T (twist 2)

eq, gqT , h
q
L, g

⊥q
T (twist 3)

⇒ relations (39, 40, 43, 45, 46)

IV. t0t1

V. k̂z t
2
1



↔

{
g⊥q
1T , h

⊥q
1L (twist 2)

f⊥q, g⊥q
L , h⊥q

T , hqT (twist 3)
⇒ relations (41, 42, 44, 47)

(49)

where we show respectively to which TMDs the different structures contribute. We observe that in some sense there
are two ’disconnected subspaces’: one is due to the structures I, II, III, and the other due to the structures IV, V.

The structures II and IV, k̂zt0t1 and t0t1, are linearly independent, as there is no way of relating one with the other
in a model-independent way. Indeed, in order to do this, one should multiply a TMD by a factor including kz which
explicitly depends on parameters of the bag model, as is evident from Eq. (18), and we discard such a manipulation
as a model-dependent operation. For the same reason the structures in III and V are linearly independent.

But k̂2zt
2
1 and t

2
1 in point III are linearly dependent: if we multiply t21 (actually in relevant expressions M̂2

N t
2
1 appears)

by the model-independent factor k2⊥/M
2
N and add k̂2z t

2
1 we obtain just t21 which happens in Eqs. (45, 46). Clearly, the

multiplication of TMDs by k2⊥/(2M
2
N) is a model-independent manipulation leading to transverse moments in (11).

To summarize, there are 5 linearly independent structures in the bag model and 14 T-even TMDs. This implies
9 linear relations, and Eqs. (39–47) represent one way of writing these relations. These findings mean that one can
choose, in the bag model, a basis of 5 linearly independent TMDs, and construct the other TMDs from this basis.
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C. Non-linear relations in the bag model

In Eq. (49) we found that the TMDs in the bag model form two independent ’subspaces.’ Let us summarize:

subspace A (I, II, III): f q
1 g

q
1 h

q
1 h

⊥q
1T︸ ︷︷ ︸

twist 2

eq gqT hqL g
⊥q
T︸ ︷︷ ︸

twist 3

⇒ relations (39, 40, 43, 45, 46), (50)

subspace B (IV, V): g⊥q
1T h⊥q

1L︸ ︷︷ ︸
twist 2

f⊥q g⊥q
L h⊥q

T hqT︸ ︷︷ ︸
twist 3

⇒ relations (41, 42, 44, 47).

In other words, there is no linear relation which would transform TMDs from subspace A into TMDs in subspace B.
However, there are non-linear relations which can do that, for example,

hq1(x, k⊥)h
⊥q
1T (x, k⊥) = −1

2

[
h⊥q
1L(x, k⊥)

]2
, (51)

gqT (x, k⊥) g
⊥q
T (x, k⊥) =

1

2

[
g⊥q
1T (x, k⊥)

]2
− g⊥q

1T (x, k⊥) g
⊥q
L (x, k⊥) . (52)

The results are presented such that on the left-(right-)hand-sides (L(R)HS) only TMDs from subspace A (B) appear.
The Eqs. (51, 52) are independent in the sense that it is impossible to convert one into the other upon use of the

linear relations (39–47). In order to convince oneself of that, notice that on RHS of (51) h⊥q
1L ∈ subspace B appears

from which alone one cannot construct the TMDs ∈ subspace B on RHS of (52): from h⊥q
1L one obtains g⊥q

1T via (42)

but not g⊥q
L . However, for example, g⊥q

1T and g⊥q
L span a basis which allows to construct all TMDs ∈ subspace B.

Similarly one finds that from the over-complete set of TMDs on LHS of (51, 52) all TMDs ∈ subspace A follow. To
summarize, the non-linear relations (51, 52) are independent, and these are the only independent non-linear relations.
Of course, upon the use of the linear relations (39–47) one could generate further non-linear relations. One advantage

of the presentation (51, 52) is that they connect only chirally even, or only chirally odd TMDs.
With the 9 linear relations (39–47) and the 2 non-linear relations (51, 52) we find altogether 11 relations among

14 TMDs in the bag model. This may reflect that eventually all TMDs can be traced back to the free structures
proportional to t20, t0t1, t

2
1.

It should be noticed that in Secs. III B and III C we permitted only manipulations of the kind: adding TMDs,
multiplying them, and forming (1)-moments. If one includes differentiation of TMDs one obtains additional relations,
see Sec. III A and App. A.
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D. How general are quark model relations among TMDs?

The deeper reason, why in the bag model relations among TMDs appear, is ultimately related to Melosh rotations
which connect longitudinal and transverse nucleon and quark polarization states in a Lorentz-invariant way [114].
An important issue, when observing relations among TMDs in a model, concerns their presumed validity beyond

that particular model framework. For that it is instructive to compare first to other models. In fact, some of the
relations (39–47) were discussed previously in literature in various models. Let us review briefly.

• Eq. (39): its k⊥-integrated version was discussed in bag model in [103] and [115, 116] and in light-cone constituent
models in [117]. The unintegrated version was discussed in bag and light-cone constituent models [80, 81].

• Eq. (40): its integrated version was observed in the bag model previously in [115].

• Eq. (42): was first observed in the spectator model of [79] and later also in light-cone constituent models [81]
and the covariant parton model of Ref. [82].

• Eq. (44): was found in the spectator model of Ref. [79].

• Eq. (45): was first observed in the bag [80]. It is valid also in the spectator [79], light-cone constituent [81], and
covariant parton [82] models.

• Eqs. (41, 43, 46, 47): are new in the sense of not having been mentioned previously in literature. But the latter
3 are satisfied by the spectator model results from [79].

• The non-linear relation (51), which connects all T-even, chirally-odd leading-twist TMDs was observed in the
covariant parton model approach [82]. Eq. (52) was not discussed so far in literature.

The detailed comparison, in which models these relations hold and in which they are violated, gives some insight into
the question to which extent these relations are model-dependent.
Let us discuss first Eqs. (39–41), which include the ’dilution factor’ (48) and connect polarized and unpolarized

TMDs. For these relations SU(6)-spin-flavor symmetry is necessary, but not sufficient. In fact, this type of relations
holds only in ‘simplest models’ such as the bag model version used here or light-cone constituent models [80, 81].
What these models have in common is that the nucleon wave-function is constructed from ’flavor-blind’ quark wave-
functions multiplied by appropriate spin-flavor factors in Eq. (19). The SU(6) symmetry, however, does not need to
be realized in a model that simply. For example, the spectator model of [79] is SU(6) symmetric. But it does not
support (39–41) which are spoiled by the different masses of the (scalar and axial-vector) spectator diquark systems.
Interestingly, it is possible to recover these relations in [79] in the limiting case of the scalar and axial-vector diquark
masses becoming equal (justified in large-Nc limit). We mention that (39, 40) also are not supported in the covariant
parton model approach of [82]. However, also in that approach it is possible to ’restore’ these relations by introducing
additional, restrictive assumptions, see [82] for a detailed discussion. We conclude that the relations (39–41) require
strong model assumptions. It is difficult to estimate to which extent such relations could be useful approximations in
nature, though they could hold in the valence-x region with an accuracy of (20–30)%, see the comparison of similar
SU(6) predictions and data for the polarized neutron and proton structure functions in [86].
From the point of view of model dependence, it is ’safer’ [80] to compare relations which include only polarized or

only unpolarized TMDs. We know no example for the latter, however, the relations (42–47) are of the former type.
It is gratifying to observe that these relations are satisfied not only in the bag model, this work and [80], but also
in the spectator model version of Ref. [79]. The relations among the leading twist TMDs, Eqs. (42, 45), hold also in
light-cone constituent [81], and covariant parton [82] models. They are also valid in the non-relativistic model [82].
Though they do not prove anything, these observations indicate that such relations could be valid in a wider class of
quark models.
Of course, quark model relations among TMDs have limitations, even in quark models. In [85] various versions

of spectator models were used, and in some versions the relations were not supported (42, 45). It is instructive to
observe that also the quark-target model [89] not supported the relations (42, 45). In fact, the inclusion of gauge
fields brings us a step closer to QCD as compared to quark models, at least in what concerns the involved degrees of
freedom. Finally, in QCD none of such relations is valid, and all TMDs are independent structures.
It would be interesting to ‘test’ such quark model relations in other models, lattice QCD, and in experiment. The

latter, in fact, provide a test for the usefulness of quark models themselves — or, more precisely, their application to
TMDs.
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E. A special linear relation among collinear functions

By taking linear combinations of (39–47) one can obtain many more linear relations. It is worth to discuss in some
more detail one particularly interesting relation, which can be obtained in this way. By eliminating the transverse
moment of the pretzelosity distribution from Eqs. (45, 46), and integrating over transverse momenta, we obtain

gq1(x) − hq1(x) = gqT (x) − hqL(x) . (53)

This relation holds also in its unintegrated form. There are several reasons, why this relation is interesting.
First, it involves only collinear parton distribution functions, which is the only relation of such type in bag model.

(Actually (39, 40) are also of such type, but they include the ’dilution factor’ and are supported only in models with
simplest spin-flavor structures, see Sec. III D.) The QCD evolution equation for all these functions are known, and
they are different, which shows the limitation of this relation: even if for some reason (53) was valid in QCD at a
certain renormalization scale µ0, it would break down at any other scale µ 6= µ0. This is by no means surprising, and
we expect such limitations for all model relations.
Second, for the first Mellin moment this relation is valid model-independently. Hereby we strictly speaking presume

the validity of the Burkardt-Cottingham sum rule, which is equivalent to the statement
∫
dx gqT (x) =

∫
dx gq1(x), and

an analog sum rule for hqL(x) and h
q
1(x). In QCD there are doubts especially concerning the validity of the Burkardt-

Cottingham sum rule. However, it is valid in many models such as bag [103] or chiral quark soliton model [118].
Third, though it certainly is not exact in QCD, it would be interesting to learn whether (53) is satisfied in nature

approximately. Also this relation can be tested on the lattice, especially for low Mellin moments and in the flavour
non-singlet case. Lattice QCD calculations for Mellin moments of gqT (x) were reported in [112].
Forth, the relation (53) can be tested in models where collinear parton distribution functions were studied. Some

results can be found in literature. For example, calculations of parton distribution functions in bag models [103, 115]
support this relation (the bag model version of [103] coincides with the one used here). Moreover, the spectator
model [79] supports this relation: it is equivalent to gq2(x) =

1
2h

q
2(x) in the notation of [79], and also the unintegrated

version of (53) is valid there. One counter-example is known though: the chiral quark-soliton model does not support
this relation [118, 126]. This observation could provide a hint in which models (53) is valid. The models where
(53) holds include only the components in the nucleon wave-function with the quark orbital angular momenta up to
L = 0, 1, 2 at most. The chiral quark soliton model, which does not support (53), contains all quark angular momenta
L = 0, 1, 2, 3, 4, . . . but this point deserves further investigation.
Fifth, an important aspect of model relations is that they inspire interpretations. The relation (53) means that the

difference between gqT and hqL is to the same extent a ’measure of relativistic effects in the nucleon’ as the difference
between helicity and transversity [103]. Both these differences are related to the transverse moment of pretzelosity,
see Eqs. (45, 46) and [80].

F. Inequalities

Finally, we discuss inequalities among leading twist TMDs, which are valid in QCD and all models [21]

f q
1 (x, k⊥) ≥ 0 , |gq1(x, k⊥)| ≤ f q

1 (x, k⊥) , |hq1(x, k⊥)| ≤ f q
1 (x, k⊥) , (54)

|hq1(x, k⊥)| ≤
1

2

(
f q
1 (x, k⊥) + gq1(x, k⊥)

)
, (55)

|h⊥q
1T (x, k⊥)| ≤

1

2

(
f q
1 (x, k⊥)− gq1(x, k⊥)

)
, (56)

g
⊥(1)q
1T (x, k⊥)

2 + f
⊥(1)q
1T (x, k⊥)

2 ≤ k2⊥
4M2

N

(
f q
1 (x, k⊥)

2 − gq1(x, k⊥)
2

)
, (57)

h
⊥(1)q
1L (x, k⊥)

2 + h
⊥(1)q
1 (x, k⊥)

2 ≤ k2⊥
4M2

N

(
f q
1 (x, k⊥)

2 − gq1(x, k⊥)
2

)
, (58)

where we have to keep in mind that in the present quark model framework the inequalities simplify, due the absence

of the T-odd TMDs f⊥q
1T and h⊥q

1 . In App. B we demonstrate explicitly that the bag model expressions for the
quark TMDs satisfy (54–58). It is interesting to remark that for the nucleon, except for f q

1 (x, k⊥) ≥ 0, all the other
inequalities in (54–58) are ’true’ (i.e. never saturated) inequalities, see App. B for a detailed discussion.
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IV. PRETZELOSITY AND QUARK ORBITAL ANGULAR MOMENTUM

In quark models, in contrast to gauge theories, one may unambiguously define the quark orbital angular momentum
operator as L̂i

q = ψ̄qε
iklr̂k p̂lψq where for clarity the ’hat’ indicates a quantum operator. This definition follows (in the

absence of gauge fields) uniquely, for instance, from identifying that part of the generator of rotations not associated
with the intrinsic quark spin. For the following it will be convenient to introduce a ’non-local version’ of this operator,
by defining (keep in mind that we work in non-gauge theory)

L̂i
q(0, z) = ψ̄q(0)ε

iklr̂k p̂lψq(z) . (59)

In the bag model it is convenient to work in momentum space where r̂k = i ∂
∂pk and p̂l = pl. Next let us define, in

analogy to Eq. (1) the following quantity

Lj
q(x, pT ) =

∫
dz−d2~zT
(2π)3

eipz 〈N(P, S3)|L̂i
q(0, z)|N(P, S3)〉

∣∣∣∣
z+=0, p+=xP+

. (60)

In order to find a connection to TMDs we must consider a longitudinally polarized nucleon, choosing the polarization
vector as S = (0, 0, 1) for definiteness, and we must focus on the j = 3 component in (60), i.e. on the component of
the angular momentum operator along the light-cone space-direction. This is because the transverse momenta ~pT of
the quarks generate orbital angular momentum which is oriented perpendicular to ~pT (and to the transverse position
of quarks inside the nucleon, which can be quantified rigorously in the impact parameter space in terms of generalized
parton distribution functions, but we do not need this notion here).
In a quark model, where the ambiguities of gauge field theories are absent, the partonic interpretation of (60) is

the following. For example, in a longitudinally polarized nucleon L3
q(x, pT )d

2~pTdx tells how much the orbital angular
momentum of a quark of flavour q, which carries the longitudinal momentum fraction x and the transverse momentum
pT = |~pT |, contributes to the nucleon spin. (In QCD such an interpretation for the light-cone plus-component L+

q

would also be possible, in an appropriately fixed gauge.)
Evaluating the expression (60) in the bag model we obtain

L3
q(x, pT ) = (− 1)h

⊥(1)q
1T (x, pT ) . (61)

In order to demonstrate the consistency of this result we compute the contribution to the total angular momentum
of the nucleon J3

q due to flavour q. J3
q is composed of contributions from intrinsic quark spin, S3

q = 1
2

∫
dxgq1(x), and

quark orbital angular momentum L3
q =

∫
dx
∫
d2~pTL

3
q(x, pT ). We obtain

2J3
q =

∫
dx

∫
d2k⊥

[
gq1(x, k⊥)− 2 h

⊥(1)q
1T (x, k⊥)

]

= Pq
A

MN

∫
d3k

[
t20 + 2k̂z t0t1 + (2k̂2z − 1 + 2

k2⊥
k2

) t21

]

= Pq
A

MN

∫
d3k
[
t20 + t21

]

= Pq (62)

where we first substituted x → kz ≡ xMN − ω/R (recalling that x-integration is carried over entire x-axis, Sec. II),

then used that under the integral over d3k for symmetry reasons k̂z = kz/k drops out while k2z → 1
3 k

2 and k2⊥ → 2
3 k

2,
and finally observed the same integral which appears in the normalization of the unpolarized distribution.
Eq. (62) is the correct SU(6) quark model result for the contributions of various flavours to the total nucleon spin.

Notice that J3
u + J3

d = 1
2 . This confirms that the connection of pretzelosity and the quark orbital angular momentum

content of the nucleon is consistent. Thus, our results, supported by the light-cone SU(6) quark-diquark model [84],
suggest that

L3
q = (− 1)

∫
dx h

⊥(1)q
1T (x) . (63)

It is important to observe that the relation of pretzelosity and orbital angular momentum, Eqs. (61) and (63), is at the
level of matrix elements of operators, and there is no a priori operator identity which would make such a connection.
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V. NUMERICAL RESULTS

In this Section we discuss the numerical results for the TMDs. In Sec. VA we present the results for the integrated
TMDs as functions of x. In Sec. VB we focus on their k⊥-behaviour. Finally, in Sec. VC we investigate the question
whether the bag model results support the so-called Wandzura-Wilczek(-type) approximations.

A. Results for the integrated TMDs

As the flavour dependence governed by the spin-flavour SU(6) symmetry is trivial, we will show only results for the
u-flavor. For unpolarized TMDs the d-quark distributions are factor 2 smaller than the u-quark distributions. In the
case of the polarized TMDs, the d-quark distributions are factor 4 smaller and have opposite sign compared to the
u-quark distributions, according to Eq. (19). All results discussed below refer to the low scale of the bag model.
Let us start the discussion of the numerical results with unpolarized TMDs. Fig. 1a shows the twist-2 unpolarized

distribution function fu
1 (x), and the subleading twist functions f⊥u(x), eu(x). Only f⊥q(x) =

∫
d2k⊥f

⊥q(x, k⊥) is

new in this figure. The remarkable observation is that f⊥q(x) is rather large, even larger than f q
1 (x) for x . 0.7.

However, one has to keep in mind that there are no positivity bounds for twist-3 TMDs. Moreover, it is k⊥

M f⊥q(x, k⊥)
which enters in cross sections, and typically 〈k⊥〉 ≪MN , which eventually guarantees positivity of cross sections. We
remark that QCD equations of motion [114] imply a δ(x)-contribution in eq(x), which is found in some [119, 120] but
not all effective approaches [79, 121], including the bag model, see [103, 115] and Fig. 1a.
Fig. 1b shows the polarized functions g⊥u

T (x), g⊥u
1T (x), hu1 (x), g

u
1 (x). The TMDs h⊥a

1T (x) and h⊥a
1L (x) are simply

related to the shown TMDs according to h⊥a
1T (x) = −g⊥a

T (x) and h⊥a
1L (x) = −g⊥a

1T (x), such that the results for these
TMDs do not need to be shown. Also the results for d-quark distributions are not shown, as explained above. The
results for the TMDs g⊥a

T (x), g⊥a
1T (x), h⊥a

1L (x), h
⊥a
1T (x) are new, and it is interesting to observe that they are rather

sizable, but again there are no positivity constraints on these objects.
Fig. 1c shows the polarized functions g⊥u

L (x), g⊥u
T (x), huL(x), g

u
T (x). The TMD huT (x) is not shown, being related

to g⊥u
L (x) as huT (x) = −g⊥u

L (x). We see that h⊥u
T is rather sizable, it is even bigger than fu

1 (x) (the same scale is used
in Figs. 1a–c). Again there is no positivity constraint for this TMD, which would object this.
The large size of the integrated twist-2 TMDs g⊥a

1T (x), h⊥a
1L (x), h

⊥a
1T (x) can be understood qualitatively in the non-

relativistic limit which was formulated for an arbitrary number of colours Nc in [82], and can eventually be traced
back the convention of using the nucleon mass MN in order to compensate the dimension of the k⊥ factor(s) in the
decomposition of the correlators in Eq. (2–10).

It is interesting to notice that g⊥q
L (x) = −hqT (x) are the only TMDs in the bag model which have a zero in the

valence-x region. This observation is actually not surprising but a consequence of the fact that the LIRs (36, 37) hold,

and g
⊥(1)q
T (x) = −h⊥(1)q

1T (x) have extrema in the valence-x region.
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FIG. 1: (a) The unpolarized functions f⊥u(x), fu
1 (x), e

u(x) vs. x from the bag model at the low scale. The d-quark distributions
are factor two smaller compared to the unpolarized u-quark distributions according to the SU(6)-flavour factors in Eqs. (19, 27).
(b) The polarized functions g⊥u

T (x) = −h⊥u
1T (x), g⊥u

1T (x) = −h⊥u
1L (x), hu

1 (x), g
u
1 (x) vs. x. The d-quark distributions are factor

four smaller and have opposite sign compared to the u-quark distributions according to the SU(6)-flavour factors in Eqs. (19, 27).
(c) The polarized functions h⊥u

T (x), g⊥u
L (x) = −hu

T (x), g
u
T (x), h

u
L(x) vs. x. The d-quark functions are as in (b).
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B. Transverse momentum dependence

In the context of TMDs the most interesting aspect is, of course, their transverse momentum dependence. In
principle, all information is contained in the two-dimensional functions j(x, k⊥) for a generic TMD, but here we shall
content ourselves to discuss ’one- or zero-dimensional’ projections of that information.
The first point we address is: what are the typical transverse momenta of unpolarized quarks in the bag TMDs?

For that we define for a generic TMD jq(x, k⊥) the following quantities

〈pT 〉 =
∫
dx
∫
d2k⊥ k⊥ j

q(x, k⊥)∫
dx
∫
d2k⊥ j(x, k⊥)

, 〈p2T 〉 =
∫
dx
∫
d2k⊥ k2⊥ j

q(x, k⊥)∫
dx
∫
d2k⊥ j(x, k⊥)

. (64)

Due to the simple spin flavor structure of the MIT bag model the 〈pT 〉 and 〈p2T 〉 are flavor-independent for all TMDs.
The first observation is that depending on the TMD 〈pT 〉 and 〈p2T 〉 in Eq. (64) may not exist in the bag model,

because the momentum-space wave-function components ti(k), Eq. (17), do not vanish sufficiently fast at large k.
This is the case especially for f q

1 (x, k⊥).

For the same reason also the (1)-moment f
(1)q
1 (x) does not exist. However, the (1/2)-moment f

(1/2)q
1 (x) defined

according to (12) exists, and can be used to introduce an x-dependent average transverse momentum 〈pT (x)〉 as

〈pT (x)〉 = 2MN
f
(1/2)q
1 (x)

f q
1 (x)

. (65)

Fig. 2a shows the result for f
(1/2)q
1 (x). (The divergence of 〈pT 〉 from (64) emerges when one tries to integrate f

(1/2)q
1 (x)

over x, recalling that this integration extends to the entire x-axis, see Sec. II.)

Now the (1)-moment f
(1)q
1 (x) is divergent, but its derivative with respect to x exists, see the dotted line in Fig. 2b.

Hereby it is understood that the (1)-moment is computed with a finite cutoff Λcut ≫ MN , then the derivative is
taken, and only then the limit Λcut → ∞ is performed.

By integrating the well-defined d
dxf

(1)q
1 (x) we can compute a regularized (1)-moment f

(1)q
1 (x)reg . The result depends

on some arbitrary integration constant, which we fix such that the (1)-moment vanishes at x = 1. This choice is
reasonable but not unique, if we recall that in the MIT bag model TMDs in general have a non-zero (though small)
support for |x| ≥ 1, see Sec. II. Our main conclusions in this respect, to be presented below in this Section, depend
weakly on the chosen value of the integration constant, provided reasonable choices are made (such as, for example,

f
(1)q
1 (x)reg = f

(1/2)q
1 (x) at x = 1). The result for f

(1)q
1 (1)reg defined in this way is shown as solid line in Fig. 2b.

With f
(1)q
1 (x)reg we are in the position to define an x-dependent average transverse momentum square 〈p2T (x)〉 as

〈p2T (x)〉 = 2M2
N

f
(1)q
1 (x)reg
f q
1 (x)

. (66)
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FIG. 2: For the unpolarized TMD fq
1 (x, k⊥) (a) the (1/2)-moment defined in Eq. (65), (b) the derivative of the (1)-moment

and the regularized (1)-moment as discussed in the text, and (c) 〈pT (x)〉 in comparison to (π〈p2T (x)〉/4)
1/2. In the Gauss-model

the two quantities would be equal. (The dotted marks the value 〈pT (x)〉 = 0.25GeV.)
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Fig. 2c shows 〈pT (x)〉 as solid line. We observe that in the valence-x region at the low hadronic scale 〈pT (x)〉 very
weakly depends on x. Numerically we find

〈pT (x)〉 ≈ 0.25GeV for 0.2 . x . 0.5. (67)

(The 〈pT (x)〉 = 0.25GeV is marked as dotted line in Fig. 2c.) This is similar to results from the light-cone constituent
model [81] which also refer to a very low hadronic scale. In fact, keeping in mind the pT -broadening effects due to
gluon radiation with increasing normalization scale [11], this is a reasonable result at a low scale. (We remark that
in parton model approaches one finds comparably low values for 〈pT (x)〉 (albeit there the results refer to high scales)
[122, 123] models.)
In phenomenology at high scales, however, larger values are required [58–60]. For example, the interpretations of

SIDIS data from EMC [36] or HERMES [39] require

〈pT (x)〉Gauss =

{
0.64GeV from EMC data in [59],
0.56GeV from HERMES data in [60],

(68)

where the index “Gauss” indicates that the Gaussian model has been assumed in these studies. The Gaussian model
means that f q

1 (x, pT ) = f q
1 (x) exp(−p2T /〈p2T (x)〉Gauss)/(π〈p2T (x)〉Gauss). The width 〈p2T (x)〉Gauss could be a function

of x, but in practice it is often assumed to be a constant. Such an Ansatz works with sufficient precision for many
practical applications in phenomenological studies [58–60]. In the Gaussian model the relation holds

〈pT (x)〉Gauss =
[π
4
〈p2T (x)〉Gauss

]1/2
. (69)

Of course, in no model considered so far such a factorized x- and transverse parton momentum dependence was ever
observed, and in the bag model we do not observe it either. However, it is interesting to ask, for example, to which
extent the relation (69) is supported in a model. With 〈p2T (x)〉 defined in (66) we obtain for the expression on the RHS
of (69) the result plotted as dashed line in Fig. 2c. The remarkable observation is that (69) is supported within an
accuracy of O(10%) in the valence-x region. We remark that this conclusion is insensitive to the way the integration

constant in f
(1)q
1 (x)reg is fixed, provided this is done in a reasonable way (see above).

However, the bag model supports the Gaussian model much more than that, in the following sense. In the Gauss
model we have f q

1 (x, pT ) = f q
1 (x, 0) exp(−p2T /〈p2T (x)〉Gauss) where, by definition, f q

1 (x, 0) = f q
1 (x)/(π〈p2T (x)〉Gauss).

When dealing with a model with non-Gauss-like transverse momentum dependence, this can be used to ’fit’ the
Gaussian width

〈p2T (x)〉Gauss = π
f q
1 (x, 0)

f q
1 (x)

(70)

such that the Gaussian model is exact at pT = 0. By continuity arguments the Gaussian model can be expected to
be a good approximation to the exact model results also for pT > 0 in some vicinity close to pT = 0. The question
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FIG. 3: (a) 〈p2T 〉 of fq
1 as function of x. Solid line: computed using the exact definition in Eq. (66). Dashed line: using the

Gauss model relation, Eq. (70). (b) and (c) fq
1 (x, pT ) vs. pT for selected values of x. The thin dotted lines are the respective

Gauss model approximations obtained from the Gaussian widths from Fig. 3a.
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is: how large is the pT -region in which the Gaussian model with the width (70) will provide a useful approximation
to the pT -dependence of the unpolarized TMD?
Let us first compare the results for the mean transverse momentum square 〈p2T (x)〉 defined in Eq. (66) and the

expression from the Gauss model 〈p2T (x)〉Gauss, Eq. (70). It has to be noticed that these are a priori completely
different quantities. It is therefore remarkable that the results agree so well, especially for valence x, see Fig. 3a.
In order to see to which extent the bag model is compatible with a Gauss-like shape of the transverse momentum

distributions, we plot the pT -dependence of fu
1 (x, pT ) for 0 ≤ pT < MN for selected values of x = 0.1, 0.2, 0.3 in

Fig. 3b, and x = 0.4, 0.5, 0.6 in Fig. 3c. In Figs. 3b and c, we also plot the respective Gaussian approximations (as thin-
dotted lines). The result is astonishing: In the valence-x region the exact curves and their Gaussian approximations
agree excellently!
Not visible in Figs. 3b and c is that the first worthwhile mentioning deviations from the Gaussian behaviour start

to become apparent only at larger pT > 0.5GeV. The crucial difference is obviously in the large-pT asymptotics:
f q
1 (x, pT ) ∼ α(x, pT )/p

4
T with |α(x, pT )| < const. (The function α(x, pT ) oscillates, with a period defined by the

periods of the spherical Bessel functions in (14), around some value which depends on the TMD but not on x. For
all TMDs the respective functions α(x, pT ) are bound from above and below.)
Of course, non-perturbative models aiming at an effective description of the nucleon properties at hadronic scale

are not able to address the large-pT region, where one may apply perturbative QCD. Effective models can, however,
provide valuable insights for transverse momenta up to the order of magnitude of the hadronic scale, i.e. for pT < MN .
In this pT -region the bag model supports the concept of a Gaussian distribution of the transverse parton momenta in
the case of f q

1 (x, pT ).
Let us now turn our attention to other TMDs, keeping the discussion shorter after the detailed investigation of f q

1 .
The TMDs gq1 , h

q
1, e

q, gT , h
q
L, which exist also as collinear parton distribution functions, have the same large-pT

behavior like f q
1 , and consequently also have divergent (1)-moments (which can be regularized as in the case of f q

1 ). In

contrast to this g⊥q
1T , h

⊥q
1L , f

⊥q, h⊥q
T behave like α(x, pT )/p

5
T at large pT and have well-defined convergent (1)-moments.

Finally h⊥q
1T , g

⊥q
L , g⊥q

T , hqT behave like α(x, pT )/p
6
T and at large pThave well-defined convergent (1)-moments, too.

Is it possible to approximate the pT -dependence also of the other TMDs in a Gaussian model? The answer is yes.

Fig. 4 shows the Gaussian widths 〈p2T (x)〉Gauss as defined in Eq. (70) for the all TMDs. (Widths of h⊥q
1L , f

⊥q, g⊥q
T

are not shown, because they correspond to those of respectively g⊥q
1T , h

⊥q
T , h⊥q

1T thanks to the relations (41–43). Also

the widths of g⊥q
L = −hqT are not shown, because of the discarded relation g⊥q

L = −kz/MN h⊥q
1T implies the same

pT -behaviour of h
⊥q
1T , g

⊥q
L , hqT .)

We observe a modest x-dependence of the various 〈p2T (x)〉Gauss, see Figs. 4a–c. Important for the widths of gq1, h
q
1

is that they are not larger than that of f q
1 in order to comply with positivity, which is of course the case, see Fig. 4a.

However, the widths of other TMDs are not bound in this way by 〈p2T (x)〉Gauss of f q
1 . In fact, the 〈p2T (x)〉Gauss of

the pretzelosity distribution h⊥q
1T exceeds the width of f q

1 , see Fig. 4c. Taken literally this would imply a violation of
positivity, but we have to keep in mind that the 〈p2T (x)〉Gauss only approximate the true pT -behavior of TMDS in the
model, and the exact model results always satisfy positivity, see Sec. III F and App. B.
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Fig. 5 shows the pT -dependence of the TMDs for selected values of x, chosen to optimize the clarity of the plots.
The thin dotted lines are the respective Gauss model approximations obtained from the Gaussian widths from Fig. 4.
We observe in general a good agreement, including even g⊥u

L which has a zero in x, see Fig. 4i.
Some TMDs, most notably for gq1 and eq in Fig. 4a and 4e, have for fixed values of x a zero in pT . One is tempted to

suspect a model-artifact which can be traced back to the oscillatory behaviour of the Bessel functions in (14). However,
in a covariant parton model calculation it was observed that gu1 (x, pT ) becomes negative for some values of x, pT [83].
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This detail may deserve further attention. But the effect is in any case small, and in phenomenological applications
the total result, for example, in SIDIS after convolution with a fragmentation function, is strongly dominated by
contributions from the valence-x region and pT . 0.4GeV, where the TMDs are sizable.
Thus, to draw an intermediate conclusion, in the valence-x region the bag model strongly supports the Gaussian

model with a weakly x-independent Gaussian widths 〈p2T (x)〉Gauss.
Thus, the bag model results also encourage to use the so convenient Gaussian model for TMDs also in future (until

the data will teach us the opposite). But how to use in practice these model predictions? Indeed, one cannot use the
bag model predictions literally, since, for example, the Gaussian width of f q

1 from bag model underestimates what is
needed in phenomenology, see Eqs. (67) and (68).
However, the pT -broadening mechanism [11] is in lowest order approximation polarization independent. Therefore,

model predictions for ratios of widths can be expected to be more reliable and useful for practical applications. In
view of the weak x-dependence of the 〈p2T (x)〉Gauss we chose xv = 0.3 as a typical valence-x value and summarize the
results for the 〈p2T (x)〉Gauss, in units of the width of f q

1 , in Table I.
It is worth to compare to the results from the light-cone constituent quark model [81, 86]. In that model the

wave-functions fall off with pT sufficiently fast, such that 〈p2T 〉 defined in Eq. (64) exists. For the f q
1 in that model

〈p2T 〉 = 0.080GeV2 is close to our 〈p2T (xv)〉Gauss = 0.077GeV2. For gq1 , h
q
1 the results are comparably similar. However,

in the case of g⊥q
1T , h

⊥q
1L , h

⊥q
1T the light-cone constituent quark model yields smaller widths compared to the bag model,

see Table I. Twist-3 TMDs were not studied in [81, 86].

TMD j 〈p2T 〉 〈p2T (xv)〉Gauss

Ref. [86] (bag, here)

fq
1 1 1

gq1 0.74 0.71

hq
1 0.79 0.85

g⊥q
1T , h⊥q

1L 0.74 0.95

h⊥q
1T 0.63 1.11

eq - 0.68

gqT - 0.84

hq
L - 1.01

g⊥q
T , g⊥q

L , hq
T - 1.11

f⊥q , h⊥q
T - 0.94

TABLE I: Average transverse momentum squares in T-even TMDs from light-cone constituent quark model [86], and the bag
model (results obtained here). The 〈p2T 〉 from [86] are defined according to (64). The bag model results for the Gaussian widths
are defined according to (70) and taken at the valence-x point xv = 0.3. All results are in units of the respective value for fq

1 ,

which is 〈p2T 〉 = 0.080GeV2 in the case of [86], and 〈p2T (xv)〉
(f1)
Gauss = 0.077GeV2 in the case of the bag model.
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C. WW-type approximations

By exploring the equations of motion, twist-3 parton distributions typically can be decomposed into pieces related
to leading-twist TMDs, current quark mass terms, and quark-gluon-quark correlators. The latter are often referred
to as ’pure twist-3’ or ’interaction dependent’ terms, and are marked by a tilde. For T-even TMDs one obtains [17]
(we suppress the arguments x and k⊥)

xeq = xẽq +
mq

M
f q
1 , (71)

xf⊥q = xf̃⊥q + f q
1 , (72)

xg⊥q
L = xg̃⊥q

L + gq1 +
mq

M
h⊥q
1L , (73)

xg⊥q
T = xg̃⊥q

T + g⊥q
1T +

mq

M
h⊥q
1T , (74)

xgqT = xg̃qT +
~p 2
T

2M2
g⊥q
1T +

mq

M
hq1 , (75)

xhqL = xh̃qL − ~p 2
T

M2
h⊥q
1L +

mq

M
gq1 , (76)

xhqT = xh̃qT − hq1 −
~p 2
T

2M2
h⊥q
1T +

mq

M
g⊥q
1T , (77)

xh⊥q
T = xh̃⊥T + hq1 −

~p 2
T

2M2
h⊥q
1T , (78)

xg′qT = xg̃′qT +
mq

M
hq1 −

mq

M

~p 2
T

2M2
h⊥q
1T . (79)

where in the last equation the notation is used g′qT ≡ gqT − ~p 2
T

2M2 g
⊥q
T and analog for g̃′qT [29]. If we systematically

assume that pure twist-3 and quark mass terms are small, which we indicate symbolically and generically by O(ε),
and integrate over transverse momenta, then we obtain the following Wandzura-Wilczek-type approximations

xeq(x) = O(ε), (80)

xf⊥q(x) = f q
1 (x) +O(ε), (81)

xg⊥q
L (x) = gq1(x) +O(ε), (82)

xg⊥q
T (x) = g⊥q

1T (x) +O(ε), (83)

xgqT (x) = g
⊥(1)q
1T (x) +O(ε), (84)

xhqL(x) = −2 h
⊥(1)q
1L (x) +O(ε), (85)

xhqT (x) = −hq1(x)− h
⊥(1)
1T (x) +O(ε), (86)

xh⊥q
T (x) = hq1(x)− h

⊥(1)
1T (x) +O(ε), (87)

xg′qT (x) = O(ε). (88)

What these approximations have in common with the classic Wandzura-Wilczek (WW) approximation is that pure
twist-3 and current quark mass terms are neglected. However, the neglected operators are different in all cases.
Figs. 6a–6i compare respectively the left- (solid lines) and right-hand-sides (dashed lines) of the Eqs. (80–88),

assuming that O(ε) is zero in each case. In all Figures the same scale is used in order to better compare the
magnitudes of the various functions. First we observe that xeq(x) and xg′qT (x) are not zero, as one would expect on
the basis on the WW-type approximations, though the functions are not large, see Figs. 6a and 6i.

Next we remark that the WW-type approximations for xf⊥q(x), xhqL(x), xh
⊥q
T (x) can be considered as roughly

supported by the bag model, see Figs. 6b, 6f, 6h. In the remaining cases, however, the WW-type approximations
work only modestly, for example Fig. 6e, or not at all, see Figs. 6c, 6d, 6g.
At first glance one might be surprised that the WW-type approximations are not exactly fulfilled in a no-gluon

model with massless quarks, as apparently there are no contributions from quark-gluon and mass terms. However,
here one has to recall that the WW-type approximations originate from applying QCD equations of motion, and
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separating leading and subleading twist terms. In principle, one could repeat this game in the bag model, too. As the
quarks are not free (but confined by the bag), one would consequently encounter certain “interaction dependent” tilde-
terms in the model, too. These bag-model tilde-terms can be seen directly in the case of eq(x), g′qT (x) in Figs. 6a, 6i.
In the other plots in Fig. 6 they are apparent as the differences between the solid and dashed lines. It has been
argued that the bag, which is a model for confinement, in some sense mimics the effects of gluons [103]. However, to
which extent the bag-model interaction–dependent terms are able to estimate reliably the QCD interaction–dependent
terms, remains to be seen.
In any case, it is interesting to observe that the bag model roughly supports the WW-type approximation for

xf⊥u(x), see Fig. 6b, which played an important role in the interpretation [59] of the EMC data on the azimuthal

asymmetry Acosφ
UU in unpolarized SIDIS [36] as being due to the Cahn effect [8].
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FIG. 6: Test of WW-type approximations in the bag model at the low scale. The solid lines show x times twist-3 TMDs, as
given on the left-hand-sides on the Eqs. (80–88). The dashed lines are twist-2 TMDs (or their transverse moments or linear
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Having discussed the WW-type approximations for TMDs, whose usefulness remains to be tested [99], it is interest-
ing to have a look back on the “classic WW-approximations” for gqT (x) and h

q
L(x) [103, 109], which are distinguished

from the WW-type approximations in that in their derivations the notion and complications of transverse parton
momenta does not need to be involved [103, 109], though can be considered [101, 124]. These are therefore in a
certain sense “collinear” approximations. They are given by

gqT (x)
WW≈

∫ 1

x

dy

y
ga1 (y) , (89)

hqL(x)
WW≈ 2x

∫ 1

x

dy

y2
ha1(y) . (90)

Figs. 7a and 7b show to which extent the WW approximations are supported by the bag model: moderately in the
case of gqT (x), and somewhat better in the case of hqL(x). (In Figs. 7a and 7b we compare x times the functions and
their WW-approximations, because at small x . 0.1 the approximations (89, 90) are poorly supported, which should
not worry us as the bag model is expected to be more meaningful in the valence-x region, see Sec. II.)
Finally, we remark that by combining the classic WW approximations for gqT (x) in Eq. (89) [109], and hqL(x) in

Eq. (90) [103], with respectively the WW-type approximations in Eqs. (84) and (85), one obtains in principle a further
class of approximations [99], which we shall denote by “WW & type” (short for WW and WW-type) approximations.
These approximations relate leading twist TMDs to twist-2 parton distributions as follows [98, 99]

g
⊥(1)a
1T (x)

WW & type≈ x

∫ 1

x

dy

y
ga1 (y) , (91)

h
⊥(1)a
1L (x)

WW & type≈ −x2
∫ 1

x

dy

y2
ha1(y) . (92)

These approximations were used in literature in order to make estimates for certain double [97] and single [98] spin
asymmetries in SIDIS. In Figs. 7c and 7d we test the quality of these approximations in the bag model at the low
scale. In both cases we observe that the approximations tend to overestimate the magnitude of the true model results

for g
⊥(1)a
1T (x) and h

⊥(1)a
1L (x), somewhat more in the former case and less in the latter case.

It is, however, difficult to suspect on the basis of these observations at the low scale of the bag model, whether the
predictions from Refs. [97, 98] will similarly overestimate data. The evolution effects may play an important role.
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FIG. 7: (a) and (b): The test of the classic WW approximations for gqT (x) [109] and hq
L(x) [103], see Eqs. (89, 90), in bag model.
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⊥(1)q
1T (x) and h

⊥(1)q
1L (x) in Eqs. (91, 92), which result from combining Eqs. (84, 85)

and (89, 90). All results refer to the low bag model scale.
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Though the precise evolution pattern of polarized transverse momentum dependent distribution functions is not yet
fully understood, it seems reasonable to expect the evolution from a low hadronic to experimentally relevant scales will
“shift” the x-shape of the TMDs towards smaller x, see also [25]. In other words, the region of valence- and large-x in
the bag model at its low scale, say 0.3 . x . 0.8, could be what will be just relevant at higher scales in the experiments
at COMPASS, Jefferson Lab or HERMES. Remarkably, in the region of larger x & 0.3 the approximations (91, 92)
work reasonably well, see Figs. 7c and 7d.

D. Orbital angular momentum

For completeness we include here also the bag model results for the nucleon spin decomposition. Of course, it is well
known that in the bag model 65% of the nucleon spin is due to the intrinsic spin of the quarks, and the remaining 35%
are due to quark orbital motion [104], see also the study of this issue in the bag model in the context of generalized
parton distribution functions [125]. However, what is new here is that we obtain this information from the pretzelosity
distribution, namely

2L3
u ≡ −2

∫
dx h

⊥(1)u
1T (x) = 0.46 , 2L3

d ≡ −2
∫
dx h

⊥(1)d
1T (x) = −0.11 , 2L3

Q = 2L3
u + 2L3

d = 0.35 , (93)

2S3
u ≡

∫
dx gu1 (x) = 0.87 , 2S3

d ≡
∫
dx gd1(x) = −0.22 , 2S3

Q = 2S3
u + 2S3

d = 0.65 , (94)

2J3
u = 2L3

u + 2S3
u =

4

3
, 2J3

d = 2L3
d + 2S3

d = −1

3
, 2J3

Q = 2L3
Q + 2S3

Q = 1 . (95)

This is a typical result for relativistic quark models at low hadronic scales [126, 127]. We remark that the MIT bag
also reasonably well describes the axial coupling constant: the Bjorken sum rule yields gA =

∫
dx (gu1 − gd1)(x) = 1.09

vs. 1.26 in experiment. (At this point it is interesting to note that experimentally the Bjorken sum rule is verified
with not much better accuracy than that [128], see also [129] for a recent comparison of QCD and data.)
However, in order to compare such numbers to phenomenology or lattice QCD [130] one needs to carefully take

into account evolution effects [131] which, in the case of bag model, is supposed to start at a very low hadronic scale
[132]. Evolution techniques possibly suitable for that were discussed in the context of the Bjorken sum rule in [129].
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VI. CONCLUSIONS

We presented a study of leading- and subleading-twist TMDs in the MIT bag model. Since this model lacks explicit
gluon degrees of freedom, the Wilson-link needed in QCD to render the definitions of TMDs color gauge invariant
is absent. As a consequence T-odd TMDs vanish. Attempts to model T-odd TMDs in the bag were presented in
[91–93]. In this work we have focused on the 14 T-even TMDs (6 leading- and 8 subleading-twist).
Another consequence of the absence of the Wilson-link (in any effective approach with global color symmetry only),

is that certain relations hold among TMDs, the so-called LIRs [17, 100]. There are 5 such LIRs among the 14 T-even
leading- and subleading-twist TMDs, and we have proven that they are all satisfied in the bag model.
Recently further relations among TMDs were found in models. One of the motivations of this work was therefore

to shed some light on how such quark model relations arise. We have shown that in the MIT bag model there are not
more and not less than 9 linear and 2 non-linear relations among the 14 T-even leading- and subleading-twist TMDs.
We reviewed in detail that some of these relations are supported also in other quark models [79, 81, 82, 85] .
One of those linear relations, found in our previous bag model study [80], connects the difference of gq1 and hq1 to the

(1)-moment of pretzelosity. It was confirmed in several other [81, 82, 85] though not all [85] quark models. What makes
this relation particularly interesting, is the observation [84] that such a difference between helicity and transversity
distributions is related in a light-cone SU(6) quark-diquark model [133] to quark orbital angular momentum (OAM).
Although intuitively the idea of quark orbital motion is associated with TMDs, this is to best of our knowledge the

first ’rigorous’ connection of a TMD to OAM — in a model, of course. While in gauge theories there is no gauge-
invariant definition of an OAM field operator, in quark models the situation is simpler and there are no ambiguities.
Another important motivation for our study was therefore to investigate whether there exists any connection between
pretzelosity and quark OAM in the bag model. The answer is yes, agrees with the findings of [84], and reads

L3
q = (−1)

∫
dx h

⊥(1)q
1T (x) . (96)

Thus, by measuring the single spin asymmetry A
sin(3φ−φS)
UT due to h⊥q

1T [17] one could access information on OAM. Of
course, the relation (96) is model-dependent. But it is supported by two independent approaches, bag model (here)
and light-cone SU(6) quark-diquark model [84]. Moreover, at least in the context of bag model, the information on
OAM gained from pretzelosity, Eq. (96), is equivalent to what one can learn from generalized parton distribution
functions [125]. It will be exciting to see to what extent experimental information on TMDs and generalized parton
distribution will, on the basis of a quark model interpretation, converge to give a compatible picture of OAM.

The pretzelosity distribution h⊥q
1T seems to play in this context a central role. It is also related to the non-sphericity

of the spin-distribution in the nucleon [32]. It is interesting to ask, whether a quark model relation of the type (96)
may inspire a way to establish a rigorous connection between TMDs and OAM in QCD. The task is demanding, as
we observe (96) on the level of matrix elements only. Further studies in effective approaches, and numerical results
from lattice QCD could provide valuable insights. For first attempts to study TMDs on a lattice see [34].
The third main result of this work concerns practical aspects which are of interest for phenomenology. For example,

in many phenomenological studies it is assumed that in TMDs the x- and pT -dependencies factorize, and the latter is
“Gaussian”. Many authors have stressed that in their models the x- and pT -dependencies of TMDs are non-factorizing
and non-Gaussian. But in practical applications the Gaussian Ansatz works with a useful accuracy, e.g. [58–60].
How to reconcile these observations? In order to address this question, we introduced the notion of a (in general

x-dependent) ’Gaussian width’ which can be applied to any TMD. This effective Gaussian width is designed such that
it reproduces the pT -dependence of the TMD exactly in a vicinity of pT = 0 by definition. Although in the bag we
also observe non-factorizing, non-Gaussian x- and pT -dependencies, in this way we made two interesting observations.
In the valence-x region (and we speak here about a low hadronic scale), this effective ’Gaussian width’ turns out to
be only weakly x-dependent. Moreover, such an effective Gaussian Ansatz approximates reasonably well the exact
model results not only in the vicinity of pT = 0, but up to pT . O(MN ).
This is good news for phenomenological studies for two reasons: azimuthal asymmetries in Drell-Yan or SIDIS are

dominated by intrinsic transverse parton momenta [8–10], and one expects azimuthal and (single) spin phenomena
to be sizable in the valence-x region. And this is where we find the Gaussian Ansatz to be a useful approximation.
Surely, care is required when sea-quark effects start to play a role, and for a precision treatment of transverse momenta
one has to use a rigorous approach such as the Collins-Soper-Sterman formalism [11] as implemented in [134].
Finally, we used the model results to test the Wandzura-Wilczek-type approximations [97–100] which were suggested

as, at the presently early stage, useful tools for first interpretations of data. These approximations consist in neglect
’pure-interaction-dependent’ terms (in QCD: quark-gluon correlations, in the bag model: bag boundary conditions).
We observe that, for some TMDs these are fair approximations in the valence-x region.
To conclude, though obtained in a simple model, our results bear many interesting insights, and we hope they will

stimulate further studies in quark models.
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Appendix A: Proofs of LIRs

In this Appendix we prove the LIRs (34–38). Thanks to the model relations discussed in Sec. III B, we do not
need to prove every LIR. For example, if we prove the LIR (34) then also the LIR (35) holds due to the relations
(42, 45, 46), which can be seen conveniently by combining (45, 46) to form (53). Similarly, if we prove the LIR (36)
then it is clear, that also the LIR (37) holds, due to the model relations (43, 44). Finally, (38) is evidently true, c.f.
the model relation (47). Thus, it is sufficient to demonstrate, for example, that the LIRs (34) and (36) hold.

In order to prove (36) we rewrite the expression for h
⊥(1)
1T (x) in a convenient for our purposes way. Recalling that

k is a function of k⊥ and kz = xMN − ω/R0 according to (18), we may write

h
⊥(1)q
1T (x) = Pq A

∫
d2k⊥

k2⊥
2M2

N

[
−2M̂2

N t21(k)

]
= Pq A

∫
d3q

∫
dτ

2π
ei(kz−q cos θ)τ

[
− sin2 θ t21(q)

]
(A1)

where we replaced the transverse momentum integral by an integration over the independent variables ~q with q = |~q |,
using a delta-function

∫
dτ/(2π) ei(kz−qz)τ = δ(qz − kz), and the spherical coordinates qz = q cos θ and q2⊥ = q2 sin2 θ.

Next we differentiate (A1) with respect to x, recalling that the x-dependence is ’hidden’ only in kz according to (18)
with d

dx kz =MN . We obtain

d

dx
h
⊥(1)q
1T (x) = Pq A

∫
d3q

∫
dτ

2π
ei(kz−q cos θ)τ (iMNτ)

[
− sin2 θ t21(q)

]

= Pq A

∫
d3q

∫
dτ

2π

{
−MN

q

d

d cos θ
ei(kz−q cos θ)τ

}[
− sin2 θ t21(q)

]

= Pq A

∫
d3q

∫
dτ

2π

MN

q
ei(kz−q cos θ)τ

[
−2 cos θ t21(q)

]

= Pq A

∫
d3q δ(qz − kz)

[
2MNqz

t21(q)

q2

]

= Pq A

∫
d2k⊥

[
2M̃N k̃z t

2
1(k)

]

≡ −hqT (x) (A2)

where we interchanged the order of the integrations and differentiation, which is legitimate in our case, integrated by
parts in the third step, and finally recovered the expression for (−1)hqT (x), which completes the proof of the LIR (36).
The proof of the LIR (34) is straightforward, and consists of repeating steps analog to (A1, A2).
It is interesting to remark that a different version of the LIR (36) is the following

h
(1)q
T (x)

LIR
= − 1

2

d

dx
h
⊥(2)q
1T (x) , (A3)

with the subtlety that the (2)-moment of pretzelosity is divergent, but its derivative with respect to x is finite, i.e.
the same careful treatment is required as in the case of the (1)-moment of f q

1 discussed in detail in Sec. VB. The
numerical bag model results for TMDs satisfy all LIRs including the version (A3).
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Appendix B: Proofs of inequalities

This Appendix contains the explicit demonstrations that the quark TMDs from the bag model satisfy the inequalities

(54–58). We recall that, in the present version of the model, the T-odd TMDs f⊥q
1T and h⊥q

1 are absent and that the
inequalities for antiquarks are violated, see Sec. II for a detailed discussion.

In order to check the inequalities in (54) we work directly with the model expressions. With k̂z = kz/
√
k2⊥ + k2z we

have −1 < k̂z < 1 which we use below in (B1), −1 ≤ (2k̂2z − 1) ≤ 1 we use in (B2), and k̂2z < 1 used in (B3),

f q
1 (x, k⊥) = NqA

[
t20 + 2k̂z t0t1 + t21

]
≥ NqA (t0 − t1)

2 ≥ 0 , (B1)

gq1(x, k⊥) = PqA

[
t20 + 2k̂z t0t1 + (2k̂2z − 1)t21

]
≤ PqA

[
t20 + 2k̂z t0t1 + t21

]
=
Pq

Nq
f q
1 (x, k⊥) , (B2)

hq1(x, k⊥) = Pq A

[
t20 + 2k̂z t0t1 + k̂2z t

2
1

]
≤ Pq A

[
t20 + 2k̂z t0t1 + t21

]
=
Pq

Nq
f q
1 (x, k⊥) , (B3)

The inequalities (B2, B3) imply |gq1(x, k⊥)| < f q
1 (x, k⊥) and |hq1(x, k⊥)| < f q

1 (x, k⊥), because for the nucleon in SU(6)

∣∣∣∣
Pq

Nq

∣∣∣∣ < 1 , q = u, d. (B4)

In order to check the inequalities (55, 56) it is convenient to explore the model relations (39–47). For example,
because of (B4) the relation (39) immediately implies that for the nucleon the Soffer inequality (55) is a true inequality
|hq1(x, k⊥)| < 1

2 (f
q
1 (x, k⊥)+g

q
1(x, k⊥)), see also [116]. Similarly, by using the relations (39, 45) to eliminate transversity,

we conclude with (B4) that (56) is a true inequality, i.e. |h⊥q
1T (x, k⊥)| < 1

2 (f
q
1 (x, k⊥)− gq1(x, k⊥)).

In order to verify the inequalities (57, 58) we explore the linear (39–47) and non-linear (51, 52) model relations.

It is sufficient, thanks to the absence of the T-odd TMDs f⊥q
1T and h⊥q

1 and the relation (42), to prove one of these
inequalities, let us say (58). For that we multiply (51) by (k2⊥/2M

2
N)2, and eliminate transversity by means of the

relation (39) and h
⊥(1)q
1T (x, k⊥) by means of the relations (39, 45). This yields

h
⊥(1)q
1L (x, k⊥)

2 =
k2⊥

4M2
N

(
P 2
q

N2
q

f q
1 (x, k⊥)

2 − gq1(x, k⊥)
2

)
<

k2⊥
4M2

N

(
f q
1 (x, k⊥)

2 − gq1(x, k⊥)
2

)
, (B5)

where in the last step we explored (B4).
It is interesting to remark that, except for f q

1 (x, k⊥) ≥ 0, all the other inequalities in (54–58) are true inequalities
for the proton in SU(6), i.e. they are never saturated. For other baryons in SU(6) saturations may occur, for example,
for strange quarks in the Λ hyperon, where Ns = Ps = 1, see [116] for a related discussion.
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