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The Monthly problem #11456 [1] asks to evaluate

α = lim
n→∞

n

n∏
m=1

(
1− 1

m
+

5
4m2

)
.

Numerical computations, using, say, n = 109, yields the numerical value
3.6898333 . . .. Using this value as input to the Inverse Symbolic Calculator 2.0
tool (available at http://glooscap.cs.dal.ca:8087, one of the output results is
the tantalizingly simple expression

α
?=

eπ + e−π

2π
.

Indeed, this result can be established directly by typing the Maple command

n * product (1 - 1/m + 5/(4*m^2), m = 1..n);

which yields the expression

nΓ (n+ 1/2− i) Γ (n+ 1/2 + i)
Γ2(n+ 1)Γ(1/2− i)Γ(1/2 + i)

.

After typing limit(%,n=infinity); this reduces to

1
Γ(1/2− i)Γ(1/2 + i)

which, after simplify(%);, yields the final result:

coshπ
π

.
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The Monthly problem #11457 [2] asks to evaluate

F (a, b) =
∫ b

a

arccos

(
x√

(a+ b)x− ab

)
dx

Here again, computer experimentation (using either Mathematica or Maple)
yields a number of specific results:

F [0, b] = bπ/4 for b ≥ 0,

F [1, b] =
(b− 1)2π
4(b+ 1)

for b ≥ 1,

F [2, b] =
(b− 2)2π
4(b+ 2)

for b ≥ 2,

F [3, b] =
(b− 3)2π
4(b+ 3)

for b ≥ 3,

which quickly suggest the “obvious” answer:

F [a, b] ?=
(a− b)2π
4(a+ b)

This result can be established directly by the Maple command

factor(int(arccos(x/sqrt((a+b)*x - a*b)), x=a..b)) assuming a>0, a<b;
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