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We present total, energy-sharing and triple differential cross sections for one-photon, double ion-
ization of lithium and beryllium starting from aligned, excited P states. We employ a recently de-
veloped hybrid atomic orbital/ numerical grid method based on the finite-element discrete-variable
representation and exterior complex scaling. Comparisons with calculated results for the ground-
state atoms, as well as analogous results for ground-state and excited helium, serve to highlight
important selection rules and show some interesting effects that relate to differences between inter-
and intra-shell electron correlation.

I. INTRODUCTION

Photo-double ionization (DPI) processes, in which two
electrons are ejected into the continuum following ab-
sorption of a single photon, offer a powerful method for
exploring the effects of electron correlation. The joint
angular distribution provides the most sensitive probe
of electron correlation, as well as the most significant
challenges to ab initio theory, since its accurate descrip-
tion cannot be obtained with independent particle mod-
els nor, at energies close to threshold, with perturbative
methods. While DPI from simple closed-shell atoms has
been relatively well studied, there has been far less the-
oretical work on DPI from excited states. To our knowl-
edge, theoretical results for differential DPI cross sec-
tions from excited states have been calculated only for
helium [1] and only for excited S states. Excited atomic
targets with L 6= 0 can be aligned and then offer the
possibility of studying the dependence of DPI cross sec-
tions on the direction of photon polarization, posing ad-
ditional challenges to theory. Indeed, the first experi-
mental measurements on the orientation dependence of
DPI cross sections have recently been performed on laser-
excited and aligned lithium [2]. These initial measure-
ments only examined orientation dependence of the total
cross sections, but given the continued rapid develop-
ments in trapping, laser-preparation and advanced detec-
tion techniques, coupled with the availability of intense
VUV optical sources, it should not be long before results
from kinematically complete experiments on DPI from
excited atomic targets become available. With that an-
ticipation in mind, we present the results of calculations
on fully differential angular distributions for DPI from
aligned lithium and beryllium atoms in excited P-states,
along with comparisons to analogous processes in helium.

The results presented here were obtained with a a grid-
based application of the exterior complex scaling (ECS)
method [3], recently extended to handle many-electron
targets [4]. This modification of the finite-element dis-
crete variable representation (FEM-DVR) approach uses
atomic orbitals, constructed from DVR functions in the

first few elements, to describe the inner-shell electrons
while the remainder of the DVR representation is used
to represent the continuum portions of the wave func-
tion. This method, which was used in our recent study of
DPI from ground-state beryllium [4], along with other as-
pects of the theoretical formulation, are briefly described
in the following section. Computational details are then
presented in Sec. III, followed by results for lithium and
beryllium. We conclude with a brief summary.

II. THEORETICAL METHOD

The idea behind the hybrid orbital/FEM-DVR ap-
proach is conceptually simple. The goal is to derive
an effective two-electron Hamiltonian that can be rep-
resented with an exterior-scaled FEM-DVR basis. To
treat double continuum processes in an N-electron atom
with two “active” electrons, one expands the wave func-
tion in configurations in which two electrons are repre-
sented by a FEM-DVR product basis of radial functions
χ and spherical harmonics Ylm, and the rest are repre-
sented by atomic orbitals ϕ with a fixed occupancy in
each configuration. Such an expansion (suppressing the
spin functions for simplicity) takes the form:

Ψ(1,...N) =
∑

i,j

Ci,j

∣∣ϕn1
(1)ϕn2

(2) ...ϕnN−2
(N − 2)

× χi(rN−1)Ylimi
(ΩN−1)χj(rN )Yljmj

(ΩN )
∣∣ .

(1)

The radial grid is partitioned into a number of finite el-
ements, with DVR basis functions in each element. We
use this underlying DVR basis to form a set of atomic
orbitals, which are themselves constructed as linear com-
binations of DVR functions, but only using the M DVR
functions that span the first few elements:

ϕα(r) =

M∑

j=1

Uαjχj(r). (2)

Since the primitive DVR polynomial basis functions have
compact support within the finite element boundaries,
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the entire basis of orbitals and DVR functions can be
kept orthonormal. This hybrid approach, as we have
shown, takes advantage of a key simplification in the cal-
culation of two-electron integrals when using FEM-DVR
basis functions, namely, that the radial portion of the
electron-electron repulsion matrix elements are diagonal
in the DVR index of each electron [4, 5].

When the core electrons are constrained to doubly oc-
cupy a set of orbitals, the effective two-electron Hamilto-
nian is particularly simple and takes the form:

H = h(1) + h(2) +
1

r12
, (3)

where 1/r12 is the Coulomb repulsion between the active
electrons and the one-body operator h is

h = T −
Z

r
+

∑

o

2Jo −Ko, (4)

where T is the one-electron kinetic energy operator, Z/r
the nuclear attraction, the sum runs over all the dou-
bly occupied orbitals and 2Jo and Ko are the direct and
exchange components, respectively, of the core interac-
tion with the active electrons. Eqs. (3)-(4) apply directly
to the case of Be, where the core consists of the doubly
occupied 1s orbital.

When a core orbital is to be only partially occupied
in each configuration, a frozen core ansatz is still well
defined by using Eq. (1) and giving that core orbital
the same partial occupancy in each configuration, but
it is then not possible to uniquely define an energy-

independent effective two-electron Hamiltonian without
further approximation [6]. This is the case for the 3-
electron lithium atom, when we constrain one of the core
electrons to occupy a 1s orbital, while allowing the other
two electrons to be unconstrained. An effective 2-electron
Hamiltonian for lithium is obtained by starting with a
frozen core ansatz for the 3-electron wave function:

Ψ(1, 2, 3) = A[Ψ(12)ϕ1s(3)], (5)

where Ψ(12) is presumed to be antisymmetric and A an-
tisymmetrizes the coordinates of electron 3 with those of
1 and 2. If we ignore exchange scattering with the frozen
core electron, i.e. assume A = 1, then we can substitute
Eq. (5) into the Schrödinger equation and integrate out
the coordinates of electron 3 to obtain an effective two-
electron Hamiltonian as in Eq.(3), where the one-body
operators are now given as

h(r) = T −
3

r
+ J1s(r). (6)

One could attempt to refine the ansatz by including a
semi-empirical local exchange potential in Eq. (6) [7],
but we have not done so here. We will refer to the
combination of Eqs. (3) and (6) as an effective poten-
tial frozen-core approximation, to distinguish it from a
frozen-core expansion with full exchange. The frozen-
core models, both with and without full exchange, have

been applied to DPI from ground-state lithium [8, 9]
as well as low-energy electron-impact ionization of he-
lium [7]. The models were found to give results that
were in good mutual accord and that agreed with avail-
able experimental data [8, 10].

Some care is needed when working with an uncon-
strained primitive DVR basis and an effective two-
electron Hamiltonian to surpress the appearance of un-
physical (bosonic) states that result from over-population
of core orbitals by more than two electrons. In our hybrid
orbital-DVR approach, for symmetries in which there
are core orbitals, the atomic orbitals are, by construc-
tion, orthogonal to the other primitive DVR functions
used in the representation of the effective Hamiltonian,
so the imposition of proper orthogonality constraints is
straightforward. For the target atoms considered here,
we can use the complete basis of primitive DVRs for all
basis functions with l 6= 0, since there are no restrictions
in those symmetries. For calculations on beryllium, we
must exclude all two-electron configurations involving a
1s orbital, since it is doubly occupied in the core, while
for lithium, only one configuration, namely 1s2 is ex-
cluded from the expansion.

The amplitude for double photoionization is con-
structed from a solution of the driven equation for the
first-order wave function (scattered wave) that is ob-
tained when the radiation field is treated as a pertur-
bation:

(E0 + ω −H)Ψ+
sc = (ǫ · µ)Ψ0 , (7)

where H is the effective Hamiltonian as given above, ω
is the photon frequency, ǫ is the photon polarization vec-
tor, µ is the electronic dipole operator and Ψ0 is the wave
function describing the initial state of the atom with en-
ergy E0. Equation (7) must be solved with outgoing-
wave boundary conditions. Those boundary are rigor-
ously applied by transforming the radial coordinates of
the electrons according to the exterior complex scaling
(ECS) transformation, which scales those coordinates by
a phase factor beyond some radius R0, as discussed for
example in [5]. The scattered wave Ψ+

sc is expanded in
coupled spherical harmonics,

Ψ+
sc =

∑

l1l2

ψl1,l2(r1, r2)

r1r2
YLM

l1,l2(r̂1, r̂2) , (8)

and then used to compute the amplitude f(k1,k2) for
double photoionization producing photolectrons with
momenta k1 and k2.

The DPI amplitude can be expressed as a coherent sum
of partial-wave amplitudes [11, 12]:

f(k1,k2) =
∑

l1,l2

(
2

π

)
i−(l1+l2)eiηl1

(k1)+iηl2
(k2)

×Fl1,l2(k1, k2)Y
LM
l1,l2(k̂1, k̂2) ,

(9)

where the radial amplitudes Fl1,l2(k1, k2), which are eval-
uated along a hypersphere ρ0 in the (r1, r2)-plane just
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inside the ECS turning point R0, are computed using
a surface-integral formulation that amounts to the in-
tegration of the Wronskian between the scattered wave
decomposition of the full solution ψl1,l2(r1, r2) and two
partial-wave testing functions [5, 11, 12]:

Fl1,l2(k1, k2) =

ρ0

2

∫ π/2

0

[
ϕk1

l1
(r1)ϕ

k2

l2
(r2)

∂

∂ρ
ψl1,l2(r1, r2)

− ψl1,l2(r1, r2)
∂

∂ρ
ϕk1

l1
(r1)ϕ

k2

l2
(r2)

]∣∣∣∣
ρ=ρ0

dα ,

(10)

where the integration is over the hyperspherical angle
α ≡ tan−1 (r2/r1). The testing functions ϕk

l themselves
are partial-wave components of the continuum eigenfunc-
tions of the one-body operator h defined in Eq. (3). Their
numerical construction is detailed in ref. [4].

The triply differential cross sections (TDCS) are com-
puted from the amplitudes in Eq. 9 by

d3σ

dE1dΩ1dΩ2
=

4π2ω

c
k1k2

∣∣f(k1,k2)
∣∣2 , (11)

in the length gauge. Integration of the TDCS over the
angles Ω1 and Ω2 of the electrons yields the singly differ-
ential cross section (SDCS) which is given simply by

dσ

dE1
=

4π2ω

c
k1k2

(
2

π

)2 ∑

l1l2

|Fl1,l2(k1, k2)|
2
. (12)

With this definition of the SDCS, the total integrated
cross section for double photoionization at photon energy
ω with excess energy E = ω + E0 is

σ =

∫ E

0

dσ

dE1
dE1. (13)

Since the SDCS is symmetric about E/2, one can alter-
natively define the total cross section as

σ =

∫ E/2

0

dσ̃

dE1
dE1. (14)

where the scaled SDCS is defined as

dσ̃

dE1
= 2

dσ

dE1
. (15)

so that the total DPI cross section is computed by in-
tegrating the scaled cross section over half the available
energy range. This definition is commonly used in pre-
vious theoretical work, so we continue to use the latter
definition of the SDCS here.

III. COMPUTATIONS

For the calculations on Li and Be, the driven equation
for the scattered wave was solved with radial grids that
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FIG. 1: (Color online) Total DPI cross section of lithium from
the 1s

22p, 2P excited state. RMPS and TDCC results from
ref. [8]. 1 kb = 10−21 cm2.
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FIG. 2: (Color online) Total DPI cross section of beryl-
lium from the 1s

22s2p, 3P excited state. RMPS results from
ref. [13].

extended to 70.0 bohr and had finite-element boundaries
at 2.0, 7.0,12.0, 20.0, 30.0, 40.0 and 50.0 bohr. We used
15th-order DVR in each element. The complex turn-
ing point R0 was located at 40.0 bohr and the rotation
angle was 30◦. Partial waves up to lmax = 9 were in-
cluded in the expansions. The 1s orbital, along with a
complementary set of atomic s-type atomic orbitals, was
formed using DVR functions only from the first two ele-
ments. The initial-state (1s)1s2p,2P and (1s2)2s2p,1,3P
target states for Li and Be, respectively, were obtained
from full configuration-interaction calculations with the
effective 2-electron Hamiltonian using functions defined
on the real portion of the radial grid out to 20.0 bohr.

For purposes of comparison, we will also show results
for 1s2p,1,3P helium. The bound states were described on
4 finite elements with boundaries at 5.0, 10.0, 18.0, and
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FIG. 3: (Color online) Singly differential cross sections for double ionization of 1P0 beryllium (solid curves) and 1P0 helium
(dashed curves) at 10 eV above threshold. Left panel: z-polarization; right panel: x-polarization.
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FIG. 4: (Color online) As in Fig. 3, for 3P0 beryllium and 3P0 helium.

26.0 bohr, while the continuum state calculations used
4 additional finite-element boundaries at 34.0, 42.0, 54.0
and 70.0 bohr with the ECS turning point at R0=42.0
bohr. We again used lmax=9 for these calculations.

We are confident that the results given below are con-
verged with respect to grid size, DVR order, extraction
radius and number of partial waves included. This was
confirmed with calculations using fewer functions than
those reported. We have also checked that calculations
in the length and velocity gauges gave virtually identical
results, so only length gauge results will be presented.

In all cases considered, we can perform separate calcu-
lations, in symmetry, using the 2-electron effective poten-
tial formulation with the two photoelectrons coupled to
overall singlet or triplet states. In the Be and He cases,
these double continua are reached from initial states of
the same spin and opposite parity. In the Li case, the
overall spin of the 3-electron system is a doublet, so one
must combine the 2-electron singlet or triplet states with

the remaining 1s electron to make an overall doublet [7].
Since the spins of the photoejected electrons are generally
not detected, we combine the two independent doublets
using appropriate spin statistical weights to obtain the
physical cross sections for Li [8]:

σtotal = 2

(
1

4
σS=0 +

3

4
σS=1

)
(16)

IV. RESULTS

Total double ionization cross sections for the excited
1s22p, 2P state of Li have been previously calculated us-
ing the R-matrix plus pseudostates (RMPS) and time-
dependent close-coupling (TDCC) methods [8] and are
compared with the present results in Fig. 1. The present
results agree rather well with the RMPS velocity gauge
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FIG. 5: (Color online) Singly differential cross sections for double ionization of 2P0 lithium at 10 eV above threshold. Singlet
(solid curves) and triplet (dashed curves) contributions are individually labelled. Left panel: z-polarization; right panel:
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FIG. 6: (Color online) Triply differential cross sections for double ionization of 1P0 beryllium (solid lines) and 1P0 helium (dashed
lines) with z- and x-polarized light at 10 eV above threshold and equal energy sharing.The arrow indicates the direction of the
fixed electron. Radii of circles, marked to the right, give magnitude of cross sections in units of b/eV/sr2. 1 b=10−24cm2. The
right panels show a blowup of the same TDCS in more detail.

results, but are smaller than the RMPS length and
TDCC results by approximately 10% and 20%, respec-
tively. RMPS total DPI cross sections are also avail-
able [13] for the 1s22s2p, 3P state of Be and are com-
pared with the present results in Fig. 2. In this case, the
(polynomial fitted) RMPS length and velocity gauge re-
sults are almost identical and agree well with the present
results.

Differential DPI cross sections for excited-state Li and
Be have neither been measured nor previously calculated.
For ground-state Li, TDCS results from TDCC and con-
vergent close-coupling (CCC) calculations have recently

been published [9]. We have compared those results with
values obtained using the current methodology. We find
excellent agreement with the TDCC results, and some-
what poorer agreement with CCC, to the extent that the
latter two show small differences.

Before proceeding to the differential cross sections, it is
useful to review the dipole selection rules when the initial
state of the target atom has Po symmetry. Without loss
of generality, we can choose the z-direction as the axis
of quantization and assume the initial state is aligned
along that direction, i.e, it has quantum numbers L=1
and M=0. We then consider ionization by photons lin-
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FIG. 7: (Color online) As in Fig. 6, for 3P0 beryllium and 3P0 helium.
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early polarized along the x or z directions. For parallel
(z) polarization, the final continuum states are connected
to the initial state by the z-component of the dipole oper-
ator and can have S or De

0 symmetry. For perpendicular
(x) polarization, the final continuum states are connected
to the initial state by the x-component of the dipole oper-
ator and can have De

±1 or Pe
±1 symmetry. Po →Pe transi-

tions are dipole-forbidden with one-electron targets, but
are fully allowed in many-electron atoms. Transitions to
the Pe continua are not mentioned in the two recent stud-
ies of DPI from 2P excited Li [2, 8]. We note that while
there is no selection rule that can be used to predict the

ratio of integral cross sections (either total or SDCS) for
parallel to perpendicular polarization, since more than
one total symmetry component is involved, a straight-
forward application of the Wigner-Eckart theorem shows
that the ratio of D0 to Dx, for both total cross sections
and SDCS at all energy sharings, must be 4/3.

The SDCS for Be 1P0 and 3P0 at 10 eV excess energy
above threshold are shown in Figs. 3 and 4, respectively.
For comparison, we also plot results for the same ex-
cited He states at the same excess energy. The He cross
sections are generally larger than the corresponding Be
cross sections, but the relative contributions of the vari-
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ous symmetry components to the total are similar. Sev-
eral selection rules are evident in the results, namely,
that the 3S and 1Pe contributions vanish at equal en-
ergy sharing [14]. Curiously, the Pe component, which
only contributes to DPI with perpendicular polarization,
is vanishingly small at all energy sharings in the case of
the 1P0 targets, but is the dominant component in the
case of the 1P0 targets. We note the ratio of D0 to Dx is
always 4/3.

Figure 5 shows SDCS for Li 2P0 at 10 eV excess en-
ergy. For each allowed spatial symmetry, we show the
individual spin contributions, as well s the totals, the
latter computed using Eq. (16). The relative magnitudes
of the various components is somewhat different for Li
than it is for Be. With parallel polarization, 1S and 1D
components are almost the same, where as in Be, 1S is the
dominant. The triplet components are generally smaller
than the singlet contributions, a fact also noted by Col-
gan et al. [8].

Figures 6 and 7 show TDCS for the 1P0 and 3P0 states
of beryllium, respectively. We have again plotted the
TDCS for the analogous states of He for comparison. The
He singlet and triplet results were results scaled, sepa-
rately in both cases, so that the major lobes at Θ1 = 0◦

had the same peak values as in Be. Even with this in-
ternormalization, the He and Be TDCS are found to be
rather different, apart from the general pattern of lobes
and zeros which are largely dictated by symmetry. It
is evident that the angular distributions are very sensi-
tive to the orientation of the polarization. In all cases,
we observe that the “B1” selectrion rule [14] is satisfied,
which states that both electrons can’t go out perpendic-
ular to the polarization direction for final state M not
equal to zero. This is evident for the Θ1 = 0◦ panels in
Figs. 6 and 7 for x-polarization. We can see that no such
selection rule applies when the final state has M=0, by
examining the z-polarization results for Θ1 = 90◦ in both
Figs. 6 and 7. For the triplet cases shown in Fig. 7, we
see another selection rule at play which prevents back-
to-back ejection, independent of the orientation of the
polarization. Note that for these equal energy sharing
results, the two photoelectrons, due to Coulomb repul-
sion, are never ejected in the same direction.

Finally, we show TDCS results for 2P0 lithium in
Fig. 8. Since these are obtained from an incoherent com-

bination of singlet and triplet contributions, the only se-
lection rules that survive are those preventing back to
back ejection for x-polarization at Θ1 = 0◦ and 90◦. To
highlight underlying similarities between the TDCS for
Be and Li, we have taken the TDCS for singlet and triplet
Be and combined them as we would for Li, using Eq. 16.
The TDCS for this “synthetic” Li atom, constructed from
Be results, are shown in the right-hand panels of Fig. 8.
They bear a marked similarity to the true Li results, par-
ticularly at Θ1 = 60◦ and 90◦.

V. CONCLUSIONS

The hybrid orbital/DVR method offers an efficient and
viable way of extending grid-based studies of DPI to
many-electron atoms with two active electrons. We have
applied this technique to obtain fully differential cross
sections from aligned, excited P-states of lithium and
beryllium and have shown that the TDCS are very sen-
sitive to the orientation dependence of the ionizing radi-
ation with respect to the axis of quantization. Compar-
isons between Be and analogous helium states shows that
the differences are much larger when comparing excited-
state cross sections than ground-state cross sections. Fi-
nally we have been able to show that similarities between
Be and Li can be revealed when the TDCS for singlet and
triplet excited Be P-states are incoherently combined to
produce cross sections for a ”synthetic” Li atom. It is
our hope that these results will prompt future experi-
ments aimed at kinematically complete measurements of
DPI with aligned atomic targets, thereby extending the
body of such information that currently includes only
ground-state targets.
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