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ABSTRACT 

The major problem of measurement of a power spectral density (PSD) distribution of 

surface heights with surface profilometers arises due to the unknown Modulation Transfer 

Function (MTF) of the instruments, which tends to distort the PSD at higher spatial frequencies. 

The special mathematical properties of binary pseudo-random patterns make them an ideal basis 

for developing MTF calibration test surfaces. Two-dimensional binary pseudo-random arrays 

(BPRAs) have been fabricated and used for the MTF calibration of the MicroMap
TM

-570 

interferometric microscope with all available objectives. An investigation into the effects of 

fabrication imperfections on the quality of the MTF calibration and a procedure for accounting 

for such imperfections are presented. 

 

 

Keywords: surface metrology, surface profilometer, interferometric microscope, modulation 

transfer function, power spectral density, calibration, fabrication tolerances, metrology of x-ray 
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1. INTRODUCTION 

Roughness and figure specifications for state-of-the-art x-ray optics consistently push the 

limits of surface profilometry. In order to keep pace with growing demands of sub-Angstrom 

surface roughnesses and sub-micro radian slope variations, new surface profilometers and 

measurement techniques must be developed in parallel that achieve the desired  precision.
1,2

 

Addressing systematic errors unique to each instrumental system is a critical step in realizing this 

goal. A common systematic error of a surface profilometer is the unknown impulse response, or 

point spread function (PSF), inherent to an instrumental setup which tends to distort 

measurements. The PSF is interpreted as an irradiance distribution as a function of position that 

convolves with an ideal image to yield a measured image.  Contributions to the PSF come from 

various sources including, but not limited to, the instrument‟s optical system, detector, signal 

processing and software algorithm. In principle it is possible to measure or calculate the PSF of 

each component separately and combine them to determine the entire system‟s PSF.
3
  

However, when correcting these distortions it is often more convenient to work in the 

spatial frequency domain rather than the spatial domain for several reasons. Firstly, a 

convolution in the spatial domain is equivalent to a multiplication in the spatial frequency 

domain, which is far simpler to work with. In this domain the PSF is referred to as the optical 

transfer function (OTF) which is generally a complex function comprised of a magnitude and 

phase portion called the modulation transfer function (MTF) and phase transfer function (PTF), 

respectively.
3
 Additionally, the power spectral density (PSD) distribution of a surface under test 

(SUT), obtained by the square of a straightforward Fourier transform of the measured height 

distribution, provides a basis for a more rigorous statistical description of the surface topography 

than a single value obtained from roughness calculations.
4-7

 For example, the measured PSD 
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distributions provide a closed set of data necessary for three-dimensional calculations of 

scattering of light by optical surfaces.
8-10

 When squared, the phase portion of the OTF drops out 

which provides the following relation: 

2MTFPSDPSD SUTmeasured      (1) 

The MTF in Eq. (1) is the total MTF of the instrumental system, and is a product of the 

individual components. As such, it provides a simple method to experimentally determine the 

MTF of an entire instrumental system. The MTF can be determined by comparing the measured 

PSD distribution of a known test surface to the ideal numerically simulated PSD distribution of 

the same SUT. The square root of the ratio of the measured PSD distribution to the simulated 

PSD distribution gives the MTF of the system. 

The effectiveness of this method hinges critically on the appropriate choice of test 

surface. Some common test patterns used in MTF measurements include bar targets,
11

 knife-edge 

sources,
12,13

 (step height standards
14

) and white noise patterns.
15

 In Refs. [16,17] a new type of 

test surface based on binary pseudo random (BPR) patterns has been suggested for use as a 

calibration standard. The effectiveness of the method was demonstrated experimentally with a 

BPR grating which is a one-dimensional (1D) realization of the method.
16,17

 Recently, the 

method was expanded upon by using two-dimensional (2D) binary pseudo-random arrays 

(BPRAs), which are suitable for the direct measurement of the 2D MTF.
18,19

 BPR surfaces have 

numerous advantages over other surfaces. The major distinguishing property of an ideal BPR test 

surface is a deterministic white-noise-like PSD distribution of the surface. This provides equal 

sensitivity of the MTF calibration to the entire spatial frequency range of an instrument.
16-19  

However, possible fabrication imperfections of the BPRGs and BPRAs can, in principle, distort 

the expected ideal white-noise-like PSD distributions of the fabricated surfaces. 
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In the present work, we provide a comprehensive analysis on the influence of fabrication 

imperfections of the BPR test surfaces that may affect MTF measurement. We show that the 

BPRA profile imperfections characteristic of regular micro- and nano- lithography fabrication 

processes lead to only a 10-15% perturbation of the inherent PSD of the BPRA. This 

perturbation is rather insignificant if compared with the overall MTF correction that is, e.g., in 

the case of the MicroMap
TM

-570 interferometric microscope, more than 2 orders of magnitude. 

Moreover, we show that this small perturbation of the inherent PSD of the BPRA can be 

analytically accounted for. The analytical methods for correction of the inherent BPRA PSD are 

developed and used to measure the MTF of the MicroMap
TM

-570 interferometric microscope.  

2. BINARY PSEUDO-RANDOM SEQUENCES AND ARRAYS AS TEST SURFACES 

2.1 Background 

Binary arrays play an important role in astronomy, where they are employed as imaging 

detectors for x- and gamma-ray sources. After their original conception in the late 60s,
20,21

 

different aperture designs were proposed and evaluated for their imaging capabilities. An 

important advance was made in 1978
22

 with the introduction of the uniformly redundant array 

(URA), a design possessing both high throughput (50%) and flat PSD spectrum (when sampled 

at the Nyquist frequency). Tracking the mentioned similarity of the binary pseudo-random 

sequences and uniformly redundant arrays, we employ terms BPRG and BPRA rather than URA 

for the latter one, when discussing the test surfaces used for the MTF calibration.    

Today the URA remains the aperture of choice for many applications, including medical 

imaging, plasma research, homeland security, and x-ray holography. The URA's superior 

imaging capability originates from the fact that its cyclical autocorrelation function is a delta 

function. URA‟s are related by the fact that they can be constructed from binary pseudo-random 
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sequences. Although we have chosen the term „binary pseudo-random sequence,‟ such sequences 

are alternatively referred to as pseudo-noise sequences or m-sequences.
23

 A BPR sequence is a 

special type of binary sequence with a two-valued periodic autocorrelation function. It has been 

extensively studied in the literature.
24

  What distinguishes one particular URA pattern from any 

other is the specific BPR sequence chosen and the details of the packing used to transform the 

linear array of binary numbers into a 2-D pattern. One-dimensional URAs also can be used. The 

URA used in this paper follows the original prescription of the twin-prime class. In its original 

form, the URA was configured as a rectangular aperture of dimensions sr , where r  and s  are 

prime numbers and 2sr . Thus, the matrix ),(),( JIAjiA , where iI rmod and 

jJ smod . Furthermore,
22
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For more details see Ref. [22].  

2.2 Use as MTF calibration standard 

Using test surfaces based on BPR sequences and arrays has a number of advantages 

compared to test surfaces based on other commonly used patterns used for MTF 

measurements.
11-15

 A bar pattern
11

 can only be used for measuring the MTF at a single 
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fundamental spatial frequency at a time. Moreover, for each fundamental frequency, a series of 

measurements at harmonic frequencies needs to be made to determine the MTF at the 

fundamental frequency. Consequently, obtaining the MTF over a range of spatial frequencies can 

be a very long and tedious process requiring numerous measurements.
3,11 

In surface profilometry a knife edge source
12,13

 can be modeled as a step height artifact.
14

 

The use of such a surface for MTF measurement of surface profilers has been presented in Ref. 

[14]. There are a number of disadvantages in using these surfaces. The inverse quadratic 

dependence of the PSD spectrum on spatial frequency limits the sensitivity to higher spatial 

frequency distortion. It also proves necessary to pre-process the data to filter out PSD variations 

at higher spatial frequencies. Furthermore, the MTF calibration exhibits a strong dependence on 

the position of the step height within the field of view of the instrument. 

The advantage of white noise sources
15

 is that the inherent PSD should be essentially flat 

which provides equal sensitivity to the instrumental MTF over the entire spatial frequency range. 

Any deviation in the measured PSD distribution from a flat PSD distribution is a direct measure 

of the instrumental MTF. From a practical standpoint, however, developing and using test 

surfaces based on generic white noise sources for MTF measurement of profiling instruments 

can be problematic, because white noise sources are typically not uniquely specified. 

The primary property of BPR sequences and arrays that makes them an attractive option 

for MTF measurement test surfaces is their inherently flat (i.e. spatial frequency independent) 

PSD distributions. In contrast to a white noise source, this property is guaranteed by the 

deterministic spacing of the binary elements such that the cyclic autocorrelation function is a 

delta function. Therefore, BPR test surfaces are easy to specify for standard micro- and nano-

fabrication processes. For our purposes a surface based on a BPR pattern is determined as a set 
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of rectangular grooves (of binary height levels) with grooves and peaks corresponding to values 

of 1 and 0 in the BPR sequence or array. As such, the PSD from a BPR grating or array is a 

result of the groove distribution and is not particularly sensitive to the groove shape or roughness 

of the groove surfaces, top or bottom. As shown in the present work, it is easy to account for any 

possible effect of fabrication imperfections on the spectral properties of the BPR test surface.  

The suggested method involving BPR test surfaces can be adapted for a large variety of 

profiling instruments including interferometers, interferometric microscopes, atomic force and 

scanning electron microscopes
25

 and scatterometers.
19

 The listed advantages make BPR based 

test surfaces ideal for developing international MTF calibration standards.  

The utility of using 1D BPR gratings for MTF calibration of the MicroMap-570
TM

 

interferometric microscope has been demonstrated in Refs. [16,17]. These surfaces, however, are 

limited to measuring the MTF along a single direction at a time. BPRAs possess similar 

properties to the BPRGs with the added advantage of allowing for the direct measurement of the 

2D MTF.
18,19

  

3. CHARACTERIZATION OF PROTOTYPE BPRAS 

3.1 Fabrication of BPRA prototypes 

A set of nine prototype BPRA samples was fabricated using high-resolution electron 

beam lithography and Induction Coupled Plasma (ICP) etching into a silicon substrate. The 

datasets representing the pseudo-random patterns are generated according to the formulae 

presented in Sec. 2.1. The same dataset is used for all of the prototypes and consists of 4021 × 

4019 elements. A value of 1 in the data set corresponds to rectangular groove in the substrate and 

values of 0 represent peaks, or portions that are not etched. The nine prototypes can be thought 
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of as three sets of three BPRAs, with each set etched to a different depth: 49 nm, 63 nm, and 122 

nm. Although, in principle, etch depth should only correspond to the overall amplitude of the 

PSD, in a real measurement setup the etch depth may be an important factor that allows for 

suppression of some effects due to fabrication imperfections. Having samples etched to different 

depths allows one to draw a conclusion about potential effects of the imperfections. Additional 

information regarding the fabrication of these BPRA samples can be found in Ref. [18]. 

Within a set of BPRAs etched to the same depth, each BPRA is different only in regards 

to fundamental element size which ranges from 200 nm, to 400 nm, to 600 nm. The fundamental 

element size effectively determines the highest frequency up to which the PSD of the surface is 

expected to be flat. This frequency is equal to 2/1 , where  is the fundamental element size. 

The lower frequency bound for which the PSD of the surface is flat is determined by the total 

size of the surface which is equal to the product of the fundamental element size and the number 

of columns/rows in the BPRA. If the BPRA is measured outside of this frequency range, the PSD 

of the surface is no longer guaranteed to be frequency independent. Thus, a BPRA test surface 

should fill the entire field of view of the instrument in question, but should not be sampled at 

intervals shorter than the fundamental element size of the surface. 

For the present work the instrument in question is the MicroMap
TM

-570, which can be 

equipped with five objectives, 2.5×, 5×, 10×, 20×, and 50×. The 640 × 480 pixel imaging CCD 

has an effective pixel size determined by the objective in place: 3.92 m, 1.96 m, 0.98 m, 0.49 

m and 0.192 m, respectively. Thus, in principle the fabricated samples provide suitable 

surfaces for full aperture MTF measurement of the instrument equipped with all objectives. 



 12 

3.2 General consideration of fabrication imperfections 

As was mentioned in Sec. 2.2, the special mathematical properties of a BPRA are such 

that the PSD inherent to the test surface will have a low sensitivity to groove shape distortion.
16

 

However, in order to use Eq. (1) for an effective and precise MTF measurement, the PSD 

inherent to the test surface should be well known a priori. Consequently, it‟s important to 

consider how fabrication imperfections, particularly groove shape, will affect the inherent PSD 

of a given test surface.  

Measurements made with the Dimension-3000 Scanning Probe Microscope (SPM) 

provide critical information on the surface characteristics of the BPRA samples. These 

measurements provide the basis for developing the theoretical models needed for the MTF 

calibration work. That is, the SPM data is used to estimate the groove shape distortion by means 

of curve fitting to a simple smoothing function with a small number of parameters. The model 

with the parameters found in the curve fitting is then used to calculate the inherent PSD of a 

model BPRA with the same groove shape. This process is discussed in greater detail in a later 

section. 

Each of the nine BPRAs was measured under several different magnifications with the 

SPM. A three dimensional height distribution obtained from a typical measurement shown in 

Fig. 1a, depicts a 5 m × 5 m section of the 400 nm BPRA etched to 63 nm drawn to scale. 

This figure clearly reveals non-ideal sidewall profiles. In other words, the etching did not 

produce the desirable 90 degree sidewall slopes at the groove boundaries. Figure 1b shows a 5 

m × 5 m array plot of the 600 nm BPRA etched to 63 nm with darker shaded regions 

corresponding to grooves in the substrate. This figure reveals a degree of success for the 

fabrication in that the shapes of the BPRA elements in the plane of the grating are highly 
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rectangular. Consequently, the major perturbation to the inherent PSD of the test surface will be 

a result of non-ideal (rounded) sidewalls.  

In order to understand the affect of rounded sidewalls on the inherent PSD of a BPRA, 

we start with a theoretical consideration. A smoothing function can be applied to an “ideal” 

BPRA model to account for rounded sidewalls that mimics a “real” fabricated BPRA surface. A 

number of different smoothing functions can be used and the following is one example of such a 

function:  

22 2/p
p

p

epmBAmC ,      (4) 

where mB  is the original height of the ideal profile at point m  in the sequence, p  is the 

number of points on either side of mB  to be used in smoothing,  mC  is the new height of the 

rounded profile at point m , A  is a normalization constant, and 2  determines the „strength‟ of 

the smoothing function. The free parameters 2  and p  can be adjusted to vary the shape 

distortion from very slight rounding to relatively large distortions. Figure 2a shows 1D height 

profile traces of the first few elements from several BPRA models in which only the strength of 

rounding has been varied. These models were created using a fundamental element size of 0.6 

units, which corresponds to a Nyquist frequency of ~0.8 units.
-1

 The calculated PSDs from these 

models are shown in Fig. 2b. Although the data presented in Fig. 2 show only a small portion of 

the numerical models created and analyzed, the results are typical. 

3.3 MicroMap
TM

-570 measurements 

In general, it cannot be expected that an entire BPRA fits perfectly within the field of 

view of the microscope. In most cases only a portion of the BPRA falls in the field of view. It 
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was shown in Ref. [17] that averaging the PSD spectra of multiple measurements, obtained by 

successively shifting the field of view to different portions of a SUT, accurately recovers the 

PSD spectrum of the surface. Additionally, averaging several measurements significantly 

reduces the noise. Of course, the range of spatial frequencies in the measured PSD spectrum is 

defined by the total size of the field of view in the lower end and by the effective pixel size in the 

higher end. It is important to make the distinction between the detectable spatial frequency range 

and the spatial frequency range used to describe the BPRA. For the BPRA, the spatial frequency 

range is determined as the range over which the PSD is invariant. The detectable range will 

generally be just a portion of the BPRA frequency range, being cutoff in the low frequency range 

by the size of the detector and in the high frequency range by the detector effective pixel size. 

Each of the nine BPRAs was measured with MicroMap
TM

-570 interferometric 

microscope equipped with all five objectives. Using PSD software developed at the ALS 

OML,
5-7

 the 2D PSD is calculated for each surface. The software includes the option to average 

the PSDs from several different measurements. For ease of visualization, the 2D PSDs have been 

integrated along the x and y directions to produce two 1D PSDs along the y and x directions, 

respectively. Figures 3 and 4 show the results of these PSD calculations for 400 nm BPRA with 

the 122 nm etch depth and the 600 nm BPRA with the 49 nm etch depth, respectively.  

The PSDs exhibit a relatively high degree of flatness at the lowest spatial frequencies for 

each given objective. As the frequency increases, however, there is a rather quick and steep roll 

off of the PSD of several orders of magnitude. This data clearly demonstrates the major impact 

of the instrumental MTF and the need to calibrate this effect. Only at a small number of the 

lowest spatial frequencies for a given objective do the PSDs appear to be unaffected by the 

instrumental MTF. 
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The PSDs in Fig. 4 obtained from a shallower etched BPRA do not exhibit the same 

degree of flatness in the low spatial frequency ranges as those in Fig. 3. As was noted in Sec. 3.1, 

a difference in etch depth should really only manifest itself in the PSD as an overall shift of the 

PSD amplitude. These raised low frequency tails start to flatten out as the magnification is 

increased. Upon examining the height distribution data obtained directly from MicroMap
TM

-570 

measurements, the source of these perturbations becomes clear. 

Figure 5 shows height distribution measurements of the silicon substrate next to one of 

the samples and of the 600 nm BPRA with 43 nm etch depth. The measurements were made with 

MicroMap
TM

-570 when equipped with the 5  objective. The measurement of the silicon 

substrate, Fig. 5a, clearly reveals low frequency surface variations in the silicon substrate with 

peak to valley values on the order of 8 nm. When examining the height distribution of the BPRA, 

Fig. 5b, along with the BPR pattern, the surface variations of the silicon substrate also show 

through. Evidently, when the etch depth is not sufficiently deep, the inherent waviness of the 

silicon wafer distorts the measured PSDs, particularly in the low frequency range. This effect is 

not noticed when measuring with higher magnification objectives as these low frequency 

contributions are cut off.  

Because similar raised low frequency tails are not noticeable in Fig. 3, it is possible to 

conclude that etch depths of 122 nm are deep enough to suppress perturbations due the silicon 

substrate‟s surface variations. For future samples, a better approach than setting limits on etch 

depth would be to start with higher quality polished substrates.   
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4. AB INITIO MTF CALIBRATION 

4.1 BPRA modeling  

The process of calibrating the MTF of the MicroMap
TM

-570 necessarily begins by 

estimating the perturbation to the inherent PSDs of the BPRAs due to groove shape distortion 

resulting from the fabrication process. As mentioned in Sec. 3.3, this is completed by means of 

curve fitting SPM data. Of the three sets of BPRAs, the samples etched to 63 nm yielded the 

highest quality SPM data. That is, the height traces exhibit the smoothest and most consistent 

height distributions, which allow the most accurate modeling. For this reason, the 200 nm, 400 

nm, and 600 nm BPRAs etched to 63 nm were chosen for an ab initio approach to the MTF 

correction. 

The fitting procedure used to estimate the groove shape begins by taking a trace of the 

height profile of a single peak to groove boundary from the SPM data, see Fig. 6a. The first step 

is to create a new dataset that is an “ideal” representation of the real BPRA sample. This can be 

accomplished by forcing the SPM height profile to binary height levels using a threshold height. 

Above the threshold height the “ideal” dataset will have a value equal to the average peak height, 

below the threshold the value will be 0, see Fig. 6b. A smoothing function is then applied to the 

“ideal” dataset that approximates the rounding. The function used here is the same as Eq. (4). 

The free parameters 2  and p  are varied and the best fit parameters are determined by 

minimization of the mean root square deviation, see Fig. 6c. Using different height profiles from 

different portions of the SPM data, the same fitting procedure is repeated. The final best fit 

parameters are found as the average of the best fit parameters found in the individual fitting 
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routines. In this way best fit parameters were calculated from the SPM data obtained from the 

600 nm BPRA etched to 63 nm.  

A model BPRA was created based using the above prescriptions and the corresponding 

2D PSD inherent to the particular realization of the BPRA sample was calculated. It was found 

that the inherent PSD is expected to deviate from a flat PSD by ~15% at the highest frequency, 

determined by the fundamental element size, of the BPRA. In the detectable range of the 

measurement system, as determined by the objective, the deviation from a flat PSD can be 

considerably less. For example, the highest spatial frequency of a 600 nm BPRA is 0.833 m.
-1

 

The highest detectable spatial frequency of the MicroMap
TM

-570 when equipped with the 10  

objective (effective pixel size 0.98 m) is ~0.5 m.
-1

 At this spatial frequency, the deviation 

from a flat PSD is only about 8%. 

4.2 MTF calibration of MicroMap
TM

-570 interferometric microscope 

For an ab initio calibration, we use the MTF that is directly found as the square root of 

the ratio of the measured 2D PSD to the „theoretical‟ 2D PSD, which is calculated using the 

BPRA model of the 600 nm BPRA etched to 63 nm. In order to relate the PSD measured by the 

MicroMap
TM

-570 to the PSD calculated from the theoretical model, additional considerations are 

needed. The PSDs from the BPRA models presented up to this point correspond to measuring a 

real BPRA in which the detector has the exact same number of pixels as the BPRA has elements 

and in which the detector is aligned such that each pixel perfectly maps to a single element of the 

BPRA. Such a system would be an ideal measuring system, which is essentially an impossible 

scenario in a real lab setting. The MicroMap
TM

-570 detector has 640  480 pixels, with an 

effective pixel size that varies with the objective being used. This results in two differences from 
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the ideal scenario. First, the entire field of view, for the majority of the cases, will be smaller 

than the BPRA. Second, for BPRAs presented in this work, a single pixel in the detector may 

„see‟ just a portion of, or more than, one element of the BPRA. 

Accordingly, the theoretical PSD is calculated in a way that reflects how real 

measurements are made. To account for the effective pixel size of the detector, we apply a 

simple convolution procedure. For example, for the 10  objective, the effective pixel size of the 

detector is 0.98 m  0.98 m. We convolve the model by calculating the average height for 

each adjacent section of 0.98 m  0.98 m of the model. After the convolution, several sections 

of 640  480 points are extracted from the convolved model, which represents taking several 

measurements with the MicroMap
TM

-570 equipped with the 10  objective. The final 2D PSD is 

then calculated by averaging the 2D PSDs of the individual sections.  

Using the theoretical PSD calculated from the preceding example, the two dimensional 

MTF has been experimentally determined for the MicroMap
TM

-570 equipped with the 10× 

objective. Again, this is achieved by dividing the measured PSD of the sample by the calculated 

theoretical PSD of the sample and taking the square root. For visualization purposes the 

measured 2D MTF was integrated along each direction and is shown in Fig. 7. From a qualitative 

standpoint the MTF results exhibit precisely the expected characteristics. Namely, there is 

negligible modulation of the measured signal in low frequency range, but at the highest 

frequencies, the signal is considerably modulated to less than %20 of the expected value. 

Furthermore, PSD measurements, which are a product of the signal and the MTF squared, are 

reduced to less than %4 of the expected value at the highest frequencies.  

The MTF found in this way was then used to correct measurements made with the 10x 

objective of the other BPRAs (200 nm and 400 nm) with the same etch depth, Fig. 8. The lower 
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curves are the un-corrected curves and the top curves have been divided by the MTF squared. 

These results offer a good indication of success. The PSDs inherent to these BPRAs are expected 

to be largely flat across the entire detectable spatial frequency range. The corrected PSDs clearly 

demonstrate that the when the experimentally determined instrumental MTF has been accounted 

for, the recovered PSD exhibits precisely the expected characteristics that are guaranteed by the 

mathematical properties of the BPRAs. Note that a roll off of more than three orders of 

magnitude in the high frequency range of the PSDs has been corrected when the MTF calibration 

is applied. These results provide verification that the proposed method and corresponding test 

surfaces are suitable for direct two-dimensional MTF calibration across the entire spatial 

frequency bandwidth of the instrument in question. 

An interesting result of applying the MTF correction to these measurements is that the 

value of the RMS roughness, which is directly proportional to the square root of the integrated 

PSD, changes drastically. For the case of the 400 nm BPRA, Fig. 8, the directly measured RMS 

roughness is 6 nm compared with a roughness of 15 nm obtained after the MTF calibration has 

been applied. One should expect a change of the roughness number after the MTF correction has 

been applied, particularly for surfaces with random distributions of surface height, like the 

BPRAs. For optics, however, which generally have a fractal like 1D PSD that decreases sharply 

with increasing spatial frequency,
26

 the PSD distribution at high spatial frequencies does not 

significantly contribute to the overall roughness. As such, applying the MTF correction to such 

an optic will not drastically alter the roughness value. 

In the straightforward application of the proposed method, as has been done for an 

illustrative purpose throughout the present work, the MTF found tends to be noisy. This is 

related to the fact that the MTF is found by dividing a measured PSD by a simulated PSD, which 
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each have inherent noise. Consequently, the PSDs with the MTF correction applied are 

significantly noisier than the original measurements, Fig. 8. The influence of noise can be simply 

suppressed by averaging over multiple measurements performed over different areas of the test 

surface.
16,17

 In the present case, only four such measurements were made. Another way to get a 

smoother MTF distribution of a profilometer is to fit the measured MTF to an analytical model
19

 

with the fabrication imperfection analytically accounted for. Such a description of the MTF 

allows evaluation of the effective pixel size of the instrument and, therefore, its real Nyquist 

frequency.
 

5. CONCLUSION 

Test surfaces based on binary pseudo-random arrays have been fabricated and their 

applicability for calibration of the two dimensional MTF of an interferometric microscope has 

been investigated. Special considerations have been made to account for effects on the 

calibration of a non-ideal (deviated from an ideal rectangular) profile of the array elements. The 

profile non-ideality appears to be due to the imperfections of the used fabrication processes. The 

inclusion of fabrication imperfections in BPRA models is generally characterized by a high 

frequency roll off in the PSD of about 10-15% with little to no effect at lower spatial frequencies. 

Because the range of detectable spatial frequencies is limited by the measuring system, much of 

the effect of fabrication imperfections seen at higher spatial frequencies of the test surface is not 

detectable in the course of the MTF calibration.  

The profile distortion was measured with a scanning probe microscope. It has been 

shown that the measured surface profile can be sufficiently approximated with a simple 

analytical model. The approximation allows for numerical evaluation of the inherent PSD of the 
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fabricated test surface. The found inherent PSD is used to precisely calibrate the profilometer 

MTF with a total accounting of the non-ideality of the fabricated test surface.  

As an example, results of measuring the MTF of the MicroMap
TM

-570 equipped with the 

10× objective using the 600 nm BPRA etched to 63 nm as a reference surface have been 

presented. Using the experimentally determined MTF, measurements of the other BRPA‟s (200 

nm, 400 nm) have been corrected. The corrected PSDs exhibit precisely the characteristics that 

are expected for such surfaces, providing conclusive evidence of the applicability of this MTF 

calibration procedure for precise MTF calibration of the interferometric microscope.  

In summary, the investigations performed here have demonstrated a low sensitivity of 

modulation transfer function calibration using binary pseudo-random gratings and arrays to the 

groove shape perturbation due to fabrication imperfections. This is because the inherent PSD of a 

BPRA is a result of the distribution of its elements rather than the element shape. Therefore, the 

BPRA test surfaces precisely satisfy the requirements of ease of specification and reproducibility 

of the test surfaces when used as a certified standard.  

Note that further improvement of the fabrication technology directed to develop BPR test 

surfaces with rectangular, or very nearly rectangular, edges is possible.
18

 In this case, the 

considered correction procedure can be omitted; and direct MTF calibration with an accuracy of 

about 1% can be obtained.  

 The developed analytical methods of correction of the inherent PSD distribution of a 

BPRA are useful when specifying the fabrication tolerances of BPR test surfaces suitable for 

calibration of instruments with significantly smaller (e.g., for scanning electron and atomic force 

microscopes) and larger (e.g., for large area interferometers) fields of view than that of the 
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interferometric microscope used in the present investigation. The work to develop such test 

surfaces is in progress. 
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Figure captions: 

Figure 1: 3D height distribution of a 5 m × 5 m section of the 400 nm BPRA, etch depth 63 

nm, as measured with the SPM, (a). 2D height distribution array plot of 5 m × 5 m section of 

the 600 nm BPRA, etch depth 63 nm, as measured with the SPM, (b). Dark shaded regions 

represent grooves in the substrate.  

Figure 2: One dimensional height profiles of the first few elements of model BPRAs with 

different degrees of rounding, (a). The rounded edges approximate fabrication imperfections of 

“real” BPRAs. Calculated 1D PSDs are shown in (b). The curves with increasing deviations from 

flat at the higher spatial frequencies correspond to the models with increasing rounding. 

Figure 3: 1D PSDs obtained by integration along the sagittal, (a) and tangential, (b), directions of 

the measured 2D PSD of the 400 nm BPRA etched to 122 nm. Measurements were made with 

the MicroMap
TM

-570 equipped with 2.5×, 5×, 10×, 20×, and 50× objectives (lines (1), (2), (3), 

(4) and (5), respectively). The PSDs exhibit a high degree of flatness in the low spatial frequency 

range, but the steep high frequency roll off clearly demonstrates the need to calibrate the MTF 

effect. 

Figure 4: 1D PSDs obtained by integration along the sagittal, (a) and tangential, (b), directions of 

the measured 2D PSD of the 600 nm BPRA etched to 43 nm. Measurements were made with the 

MicroMap
TM

-570 equipped with 2.5×, 5×, 10×, 20×, and 50× objectives (lines (1), (2), (3), (4) 

and (5), respectively). The raised low frequency tails clearly visible PSDs from the 2.5  and 5  

objectives indicate the contribution of low frequency surface variations of the inexpensive silicon 

wafer into which the BPRAs are etched. For the higher magnification objectives, these 

contributions are not noticed and the PSDs are relatively flat in the low spatial frequency ranges. 
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Figure 5: MicroMap
TM

-570 measurements with the 5× objective of the bare silicon surface (a) 

and shallow 49 nm etch depth 600 nm BPRA (b). The large-scale roughness of a standard silicon 

wafer is evident at lower spatial frequencies. The low frequency roughness limits the use of these 

reference samples in calibrating the 2.5× and 5× objectives. Polished silicon flats should not 

have this roughness. 

Figure 6: Viewgraphs illustrating the different steps in the curve fitting procedure used to 

develop a best fit model of the real BPRA sample. A height profile from the SPM data of a single 

peak to groove boundary, (a). A dataset representing an “ideal” BPRA, solid line, is created by 

forcing the SPM data to binary height levels using a threshold height, dotted line, (b). A 

smoothing function, like that of Eq. (4), is applied to the “ideal” dataset to approximate the 

rounding of the real BPRA sample, (c). 

Figure 7: MTF results obtained after taking the square of the ratio of the measured 2D PSD to the 

theoretical PSD. The 2D MTF has been integrated along the sagittal (a) and tangential (b) 

direction for visualization purposes.  

Figure 8: Measured (lines marked “1”) and MTF corrected (lines marked “2”) 1D PSDs of the 

400 nm BPRA, (a) and 200 nm BPRA, (b) with 63 nm etch depth. Measurements were made 

with the MicroMap
TM

-570 using the 10× objective. For (a) the PSD is along the tangential 

direction and for (b) the PSD is along the sagittal direction. Corrected PSDs are virtually flat 

across the entire frequency range. 
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