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Executive Summary 

The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and 
concentrating solar power (CSP) technologies. The report is organized into five chapters. 
Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents 
production and shipment data, material and supply chain issues, and solar industry employment 
trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and 
market drivers such as recently passed federal legislation, state and local policies, and 
developments in project financing. Chapter 5 provides data on private investment trends and 
near-term market forecasts. 
 
Highlights of this report include: 

• The global PV industry has seen impressive growth rates in cell/module production 
during the past decade, with a 10-year compound annual growth rate (CAGR) of 
46% and a 5-year CAGR of 56% through 2008. Global production reached 6.9 GW in 
2008, led primarily by manufacturers in Europe, China, and Japan. China has realized 
very high growth rates in recent years and was tied with Europe at 27% market share in 
2008. The United States ranked fifth in 2008 at 6% market share or 0.41 GW of 
production. 

• Thin-film PV technologies have grown faster than crystalline silicon over the past 
5 years, with a 10-year CAGR of 47% and a 5-year CAGR of 87% for thin-film 
shipments through 2008. Global thin-film market share increased to 14% in 2008. The 
United States was the global leader in thin-film production in 2008, with its top two 
manufacturers both thin-film producers, First Solar (CdTe) and United Solar Ovonics or 
Uni-Solar (a-Si). First Solar was the second-largest global PV producer in 2008. 

 
• Global installed PV capacity increased by 6.0 GW in 2008, a 152% increase over 

2.4 GW installed in 2007. The 2008 addition brought global cumulative installed PV 
capacity to 13.9 GW. Leaders in 2008 capacity additions were Spain at 2.7 GW, 
Germany at 1.5 GW, and the United States and Italy both at 0.34 GW. Germany 
maintained its lead in cumulative installed capacity in 2008 with 5.3 GW, followed by 
Spain at 3.4 GW, Japan at 2.1 GW, and the United States at 1.1 GW. The grid-connected 
market accounted for 97% of 2008 capacity additions and 94% of cumulative installed 
capacity in 2008. 

• The United States installed 0.34 GW of PV capacity in 2008, a 63% increase over 
0.21 GW in 2007. The 2008 addition brought U.S. cumulative installed PV capacity to 
1.1 GW. California continued to dominate the market with nearly 180 MW installed in 
2008, bringing cumulative installations to 530 MW or 67% of the U.S. market. New 
Jersey followed with 23 MW installed in 2008, bringing cumulative capacity to 70 MW 
or 9% of the U.S. market. 

• Global average PV module prices dropped 23% from $4.75/W in 1998 to $3.65/W in 
2008. Module prices rose slightly from 2002 to 2007 caused by polysilicon supply 
constraints, but resumed their downward trend by decreasing from $4.07/W in 2007 to 
$3.65/W in 2008. Capacity-weighted, average PV installation costs in the United States 



 
x 

decreased 31% from $10.8/W in 1998 to $7.5/W in 2008. The cost decline of $0.3/W 
from 2007 to 2008 corresponds to a $0.42/W decline in module prices over the same 
period, whereas installation cost reductions from 1998–2005 were largely attributable to 
non-module costs (prices are given in real 2008$). 

• Federal legislation, including the Emergency Economic Stabilization Act of 2008 
(EESA, October 2008) and the American Recovery and Reinvestment Act (ARRA, 
February 2009), is providing unprecedented levels of support for the U.S. solar 
industry. The EESA and ARRA provide extensions and enhancements to the federal 
investment tax credits (ITCs), including allowing utilities to claim the ITC, a new 30% 
manufacturing ITC for solar and other clean energy technologies, and an option that 
allows grants in lieu of tax credits for taxpaying corporate entities. The $787 billion 
ARRA package includes additional funds for the DOE Loan Guarantee program, DOE 
EERE programs, and other programs and initiatives. In addition to federal support, state 
and local policies, incentives, rules and regulations, as well as financing developments 
continue to encourage deployment of solar energy technologies.  

• In 2008, global private-sector investment in solar energy technology topped $16 
billion, including almost $4 billion invested in the United States. From 2004 to 2008, 
global private sector investment increased more than 25-fold. Each of three major sources 
of new investment, venture capital and private equity, debt, and public equity, grew at a 
CAGR of more than 67%. Global venture capital and private equity investment in solar 
grew at a 4-year CAGR of 68% from $539 million in 2004 to $4.34 billion in 2008. U.S. 
venture capital and private equity investment increased from $61 million in 2004 to $2.3 
billion in 2008, corresponding to a 4-year CAGR of 148%. 

• Solar PV market forecasts made in early 2009 anticipate global PV production and 
demand to increase fourfold between 2008 and 2012, reaching roughly 20 GW of 
production and demand by 2012. Europe is expected to remain the largest market for 
solar power, but the North American market is expected to grow the fastest. Module 
prices are projected to decrease 34% from 2008 to 2010, and system prices are projected 
to decrease 31% from 2008 to 2010. 

• Globally, about 13 GW of CSP was announced or proposed through 2015, based on 
forecasts made in mid-2009. Regional market shares for the 13 GW are about 51% in 
the United States, 33% in Spain, 8% in the Middle East and North Africa, and 8% in 
Australasia, Europe, and South Africa. Of the 6.5-GW project pipeline in the United 
States, 4.3 GW have power purchase agreements (PPAs). The PPAs comprise 41% 
parabolic trough, 40% power tower, and 19% dish-engine systems.  
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Notes 

• This report includes historical price information and forecasts of future prices. Past and 
future prices can be provided as "current/nominal" (actual prices paid in the year stated) 
or "real" (indexed to a reference year and adjusted for inflation). In some cases, the report 
states whether prices are current/nominal or real. However, some of the published 
analyses from which price information is derived do not report this distinction. In 
practice, prices are usually considered to be current/nominal for cases in which the 
distinction is not stated explicitly. 

• In some tables and figures, the sum of numerical components is not equal to the total sum 
shown due to rounding. Also, note that calculations such as growth rates were computed 
before numbers were rounded and reported. Standard rounding conventions were used in 
the report. 

• Solar water heating, space heating and cooling, and lighting technologies are not covered 
in this report. DOE supports these technologies through its Building Technologies 
Program.
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1. Installation Trends, Photovoltaic and Concentrating 
Solar Power 

This chapter presents global and U.S. trends in photovoltaic (PV) and concentrating solar power 
(CSP) installations. Section 1.1 summarizes global installed PV capacity, growth in PV capacity 
over the past decade, and market segmentation data such as interconnection status and sector of 
application. Section 1.2 does the same for the U.S. market and includes a discussion of U.S. 
states with the largest PV markets. Section 1.3 presents global and U.S. installed CSP capacity. 
 
1.1 Global Installed PV Capacity 
 
1.1.1 Cumulative Installed PV Capacity Worldwide 
 
Cumulative installed PV capacity worldwide is 13.9 GW, with data from multiple sources 
represented in Figure 1.1 (EurObserv’ER 2009, IEA 2009, Mints et al. 2009, Sherwood/IREC 
2009).1 Germany is the clear leader at 5.3 GW of cumulative installed capacity, followed by 
Spain, Japan, the United States, Italy, South Korea, and France. Other European Union (EU) 
countries contributed about 0.37 GW of the 0.97 GW attributed to the Rest of World (ROW) 
countries.2

 

 The capacity of 13.9 GW is a 75% increase over 7.9 GW of 2007 cumulative 
installed capacity, for a 2008 addition of approximately 6.0 GW. The 6.0 GW represents a 152% 
increase over 2.4 GW installed in 2007. 

Figure 1.1 Global cumulative installed PV capacity through 2008  
(EurObserv’ER 2009, IEA 2009, Mints et al. 2009, Sherwood/IREC 2009) 

                                                 
1 Data for the top countries shown in Figure 1.1 are from IEA 2009. 2008 data for EU countries not included in IEA 
2009 are from EurObserv’ER 2009 and contribute to the ROW total. U.S. data are from Larry Sherwood/IREC. The 
estimate for ROW installed capacity and market share is based on data from IEA 2009 and EurObserv’ER 2009 for 
countries not in the top seven; ROW demand share is from Mints et al. 2009. 
2 The IEA 2009 report estimates global cumulative installed PV capacity through 2008 to be 13.4 GW. This is close 
to the 13.9 GW shown in Figure 1.1, but Figure 1.1 also includes an overall ROW estimate as described in the 
previous footnote. 
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The range of estimates for cumulative installed PV capacity worldwide through 2008 is between 
13 and 17 GW, with at least two sources at the upper end of the range (REN21 2009, Boas et al. 
2009). The higher estimates likely represent cumulative production or shipments of PV cells and 
modules. In a rapidly growing industry, it makes sense that cumulative production should be 
greater than cumulative shipments, which should be greater than cumulative installed capacity.  
Data presented in this report reflect cumulative global production of 18.5 GW from 1997 to 
2008, cumulative global shipments of 15.2 GW from 1997 to 2008, and cumulative installed 
capacity of 13.9 GW. 

1.1.2 Growth in Cumulative and Annual Installed PV Capacity Worldwide 
 
As illustrated in Figure 1.2, Germany’s cumulative installed PV capacity reached 5.3 GW as of 
the end of 2008. This is a 38% increase over 2007 cumulative installed capacity of 3.9 GW. 
Germany’s market for PV has been supported by a feed-in tariff (FIT) since 2000, providing a 
guaranteed payment for a 20-year period for PV-generated electricity feeding into Germany’s 
grid. Germany’s PV market experienced its highest annual growth year in 2004, a 290% increase 
from 0.15 GW in 2003 to 0.60 GW in 2004, coinciding with an amendment enhancing and 
streamlining Germany’s FIT (called Erneuerbare-Energien-Gesetz [EEG]).3

 

  

Figure 1.2 Cumulative installed PV capacity in top seven countries 
(IEA 2008, IEA 2009, Sherwood/IREC 2009) 

                                                 
3 The revision to the EEG included an overall increase in the per-kWh payment for PV-generated electricity among 
other adjustments such as the setting of degression rates and the specification of payment rates according to PV-
system type (building versus ground mounted) and size. 
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Spain surpassed Japan in 2008 as the number two market as measured by cumulative installed 
PV capacity of 3.4 GW, a 410% increase over Spain’s 2007 cumulative installed capacity of 
0.66 GW. This tremendous increase in capacity was the result of support from Spain’s FIT. This 
was the second year that Spain’s cumulative capacity grew by more than 300%. With 2006 
cumulative capacity at 0.14 GW, growth to 0.66 MW in 2007 was a 360% increase. 
 
Japan’s cumulative installed capacity reached 2.1 GW in 2008, an approximately 12% increase 
over the 2007 level of 1.9 GW. Japan had the largest market for PV until Germany surpassed 
Japan in 2005, coinciding with the end of Japan’s “70,000 Roofs” Program. Japan’s cumulative 
installed capacity had reached 1.1 GW by the end of 2004, still greater than Germany’s 1.0 GW 
at that time. 
 
With U.S. policy support for PV via the federal investment tax credit, as well as state rebate 
programs and other incentives and financing mechanisms, the U.S. PV market experienced a 
43% increase in cumulative installed capacity, from 0.77 GW in 2007 to 1.1 GW in 2008.  

Other leading markets include Italy, South Korea, and France, with 2008 cumulative installed PV 
capacity reaching 0.46, 0.36, and 0.18 GW, respectively. This represents growth of 280% for 
Italy (0.12 GW in 2007), 360% for South Korea (0.078 GW in 2007), and 140% for France 
(0.075 GW in 2007).  

Figure 1.3 presents annual installed PV capacity from 1997–2008 for the seven leading 
countries. Spain led in 2008, adding 2.7 GW, an increase of 420% over 0.51 GW installed in 
2007. Germany added 1.5 GW in 2008, an increase of 33% (1.1 GW added in 2007). The United 
States and Italy were third with 0.34 GW of 2008 additions, a 63% increase for the United States 
(0.21 GW added in 2007) and a 380% increase for Italy (0.070 GW added in 2007). 

 
Figure 1.3. Annual installed PV capacity in top seven countries 

(IEA 2008, IEA 2009, Sherwood/IREC 2009) 
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Other leading markets were South Korea, Japan, and France. South Korea’s annual additions 
topped Japan’s, increasing from 0.043 GW in 2007 to 0.28 GW in 2008 (540% growth). Japan 
added 0.23 GW, an increase of 7% over the 2007 level of 0.21 GW. France added 0.10 GW in 
2008, a 230% increase over the 0.031 GW installed in 2007.    
 
1.1.3 Worldwide PV Installations by Interconnection Status and Application 
 
As illustrated in Figure 1.4, grid-connected PV has represented the majority of installed capacity 
additions worldwide since about 1999, increasing its cumulative market share each year:  44% in 
1998, 52% in 1999, nearly 92% in 2007, and 94% in 2008. The grid-connected market 
contributed 97% of 2008 capacity additions. The faster growth in the grid-connected PV market 
has been supported by incentives for grid-connected PV in the top global markets. The grid-
connected market grew at 10- and 5-year CAGRs of 54% and 56%, respectively, while the off-
grid market grew at 10- and 5-year CAGRs of 14% and 15%, respectively.  

Grid-connected, cumulative installed capacity represented in Figure 1.4 grew nearly 80% from 
7.3 GW in 2007 to 13.1 GW in 2008. Off-grid capacity grew 24% from 0.67 GW in 2007 to 
0.83 GW in 2008. Grid-connected markets are typically easier to track than off-grid, because 
grid-connected data associated with incentive programs are generally available, whereas off-grid 
data are often elusive. 

 
Figure 1.4. Global cumulative installed PV capacity by interconnection status 

(EurObserv’ER 2009, IEA 2008, IEA 2009) 
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The continued success of Germany’s PV market and the recent high rates of growth in Spain and 
Italy are due largely to support in the form of FITs. This production incentive has greatly 
motivated the installation of rooftop, grid-connected PV and large PV power plants in Germany, 
large-scale PV plants in Spain, and grid-connected distributed generation in Italy (IEA 2008). 
Incentives in the United States and other top markets have also greatly favored grid-connected 
additions. 

Despite dominance of the grid-connected market worldwide, there is still variation in the types of 
PV systems installed in different countries, reflecting various types of subsidy support, market 
maturity, demand for particular applications, and various economic and cost factors. More than 
half of the countries listed in Figure 1.5 have a majority of grid-connected PV, including 
Germany, Spain, Japan, South Korea, Italy, and the United States (toward the right side of the 
graph). Cumulative installed capacity for countries such as Sweden, Israel, Malaysia, Turkey, 
Mexico, and Norway (shown to the left of the United States on the graph) have a dominant off-
grid residential market. In Canada and Australia, significant portions of the PV markets consist 
of off-grid commercial PV installations. In Australia, this capacity consists mainly of off-grid 
industrial and agricultural applications (IEA 2009). 

  
Figure 1.5. Application market share of cumulative installed PV capacity  

in IEA countries through 2008 
(IEA 2009, Mints 2009) 
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1.2 U.S. Installed PV Capacity 
 
1.2.1 Cumulative U.S. Installed PV Capacity 
 
Cumulative installed PV capacity4 in the United States topped 1 GW in 2008, increasing 43% 
from 0.77 GW in 2007 to 1.1 GW by the end of 2008 (Sherwood/IREC 2009).5

Enhanced government support on both the federal and state levels has been critical for expanding 
the adoption of solar energy in the United States since 2005. The Energy Policy Act of 2005 
(EPACT 2005) raised the federal investment tax credit (ITC) for solar from 10% to 30% for 
nonresidential installations and from 0% to 30% for residential installations. EPACT 2005 
capped the ITC for residential solar installations at $2,000, but this cap was removed by the 
Emergency Economic Stabilization Act of 2008 (EESA), effective January 1, 2009. On the state 
level, large incentive programs, such as the California Solar Initiative (CSI) and New Jersey’s 
Consumer On-site Renewable Energy Program, offered rebates covering a significant proportion 
of the up-front costs of PV systems. Other state and local policies, such as renewable portfolio 
standards (RPSs) and improved interconnection and net metering rules, have further promoted 
the growth of solar energy in recent years. 

 U.S. PV 
installation growth has been accelerating in recent years. The United States installed 0.34 GW in 
2008, an annual increase of 63% over 0.21 GW installed in 2007. Growth in annual additions 
from 0.14 GW in 2006 to 0.21 GW in 2007 was 44%, and the 5-year CAGR for annual additions 
from 2003 to 2008 was 37%. 

1.2.2 U.S. PV Installations by Interconnection Status 
 
In the United States, cumulative, installed off-grid PV capacity was higher than grid-connected 
capacity until 2004 (Figure 1.6). The grid-connected market has since dominated and continued 
to increase its market share (65% in 2007, 71% in 2008), which is due to federal and state 
incentive support. Of the 1.1 GW of cumulative installed PV capacity in 2008, an estimated 
0.79 GW are grid connected and 0.32 GW are off grid. 

                                                 
4 Includes grid-connected and off-grid installed PV capacity. 
5 The U.S. installed PV capacity data presented in this report are based on data from Larry Sherwood, with the full 
reference to his report, U.S. Solar Market Trends 2008, http://irecusa.org/irec-programs/publications-reports/, 
provided at the end of Chapter 1. Note that the numbers presented in this chapter are slightly different from those in 
Sherwood’s report, as the data used for this report were obtained directly from him in June 2009.  

http://irecusa.org/irec-programs/publications-reports/�
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Figure 1.6. U.S. cumulative installed PV capacity by interconnection status 

(Sherwood/IREC 2009) 
 

1.2.3 U.S. PV Installations by Application and Sector 
 
In addition to grid-connected versus off-grid, PV installations can be categorized by application, 
including building-integrated, rooftop, and ground-mounted PV, and sector, which comprises 
residential, commercial, and utility markets.  

As shown in Figure 1.7, rooftop PV installations were estimated at 64% or nearly two-thirds of 
U.S. installations in 2008. Assuming 0.34 GW or about 340 MW installed in the United States in 
2008, as stated in Section 1.2.1, rooftop installations amounted to nearly 218 MW.  

 

 
Figure 1.7. U.S. PV applications, 2008 market shares 

(EuPD Research 2008) 
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During the past couple of years, there has been an increase in the installation of ground-mounted 
PV systems. The Boulder City, Nevada, 10-MW, ground-mounted PV project, which came 
online in December 2008, is the largest thin-film solar power plant in North America. The 
project was developed by Sempra Generation and consists entirely of First Solar thin-film 
modules (First Solar 2008). Large ground-mounted PV systems were also installed in 2007 at 
Nellis Air Force Base in Nevada (14 MW) and Alamosa, Colorado (8 MW). Only one new large 
installation came online in 2008, but many new ground-mounted projects began development in 
2008. Examples are Pacific Gas & Electric’s 550-MW Topaz Solar Farm and the 250-MW 
California Valley Solar Ranch (Bradford et al. 2008). Large PV systems are expected to increase 
in market share, supported by the utilities’ need to meet renewable portfolio standard (RPS) and 
solar set-aside requirements and their recently legislated ability to utilize the federal ITC 
(expanded ITC passed October 2008). 
 
Figure 1.8 shows that although the number of nonresidential installations including commercial 
and utility PV is increasing, the residential sector still accounts for the vast majority of annual 
installations. In 2008 nearly 17,000 grid-connected residential installations were installed, 
compared to fewer than 2,000 grid-connected nonresidential PV installations. 

 
Figure 1.8. Annual trend in number of U.S. grid-connected PV installations by sector 

(Sherwood/IREC 2009) 
 
Although grid-connected residential PV installations have greatly outnumbered grid-connected 
nonresidential PV installations for almost a decade, the annual capacity added by new 
nonresidential PV installations is much greater because of larger system sizes in the commercial 
and utility sectors. As indicated in Figure 1.9, the additional capacity from grid-connected 
nonresidential installations accounted for 73% of the 0.29 GW (or 290 MW) of grid-connected 
capacity added in 2008. 
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Figure 1.9. U.S. annual grid-connected PV capacity  

(Sherwood/IREC 2009) 
 
1.2.4 U.S. States with the Largest PV Markets 
 
The top six states in terms of cumulative, installed grid-connected PV capacity as of the end of 
2008 were California (530 MW, 67% market share), New Jersey (70 MW, 9% market share), 
Colorado (36 MW, 4.5% market share), Nevada (34 MW, 4% market share), Arizona (25 MW, 
3% market share), and New York (22 MW, 3% market share).  

 
Figure 1.10. Annual grid-connected PV capacity and cumulative market share  

in top U.S. state markets, 2004–2008 
(Sherwood/IREC 2009) 
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Figure 1.10 shows annual installed capacity for the top six states for the past 5 years. California 
continued to lead the U.S. market with nearly 180 MW of new grid-connected PV in 2008, 
representing 95% growth from the 92 MW installed in 2007. In New Jersey, 23 MW of new 
capacity were installed in 2008, amounting to 37% annual growth from the 16 MW installed in 
2007. Colorado’s annual capacity additions increased 88% from 11 MW installed in 2007 to 
22 MW installed in 2008. Annual installed capacity in Nevada decreased slightly from 16 MW in 
2007 to 15 MW in 2008, with most new capacity coming from the 10-MW El Dorado project. 
Arizona continued to see steady growth with a 130% increase in installed capacity, from 2.8 MW 
in 2007 to 6.4 MW in 2008. In New York, 7 MW were installed in 2008, an 85% increase over 
the 3.8 MW installed in 2007. 

1.3 Global and U.S. Installed CSP Capacity 
 
1.3.1 Cumulative Installed CSP Worldwide 
 
At the end of 2008, there were 430 MW of cumulative, grid-tied concentrating solar power 
(CSP) capacity worldwide, with more than 95% (419 MW) of this global capacity located in the 
southwestern United States. By July 2009, global capacity increased to about 550 MW with the 
addition of 120 MW in Spain. This reduced the U.S. share to approximately 75%. Of the 
550 MW of CSP worldwide, nearly 95% (519 MW) is parabolic trough technology, with the 
remainder (31 MW) being tower technology. Table 1.1 lists installed CSP plants worldwide as of 
July 2009. 

Table 1.1. Global Installed CSP Plants 
Plant Name Location Technology Type Year Installed Capacity (MW) 

SEGS I - IX California, United States Trough 1985–1991 354 
APS Saguaro Arizona, United States Trough 2005 1 
Nevada Solar One Nevada, United States Trough 2007 64 
PS10 Spain Tower 2007 11 
Puertollano Plant Spain Trough 2009 50 
Andasol I Spain Trough 2009 50 
PS20 Spain Tower 2009 20 

Grama et al. 2008 
 
1.3.2 Major non-U.S. International Markets for CSP 
 
Besides the United States, Spain and North Africa are promising markets for CSP. The first 
commercial CSP plant in Spain, the 11-MW tower system known as PS10, was completed in 
2007. With a 25% capacity factor, PS10 can generate 24 GWh/yr, enough to supply about 5,500 
households with electricity (Grama et al. 2008). No new systems were connected to the grid in 
Spain in 2008. 

As of July 2009, nearly 400 MW of CSP capacity, mostly trough systems, were under 
construction in Spain, supported by the government’s feed-in tariff (FIT) policy, which 
guarantees payment for electricity produced by a CSP system. The FIT has two major 
restrictions. First, the maximum allowable size of a plant is 50 MW. Second, there is an overall 
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capacity ceiling of 500 MW. During the first half of 2009, construction was completed on the 
50-MW Andasol I trough plant and the 50-MW Puertollano trough plant (Solar Millennium 
2009, CSP Today 2009). Andasol I became the first commercial CSP plant with energy-storage 
capability designed specifically for electricity generation after sunset. This added feature enables 
the plant to provide electricity for ~7.5 hours after sunset (Solar Millennium 2009). 

The region of North Africa has the potential for sizable CSP growth. Feasibility studies show 
that North African power plants could provide about 15% of Europe's electricity needs. One of 
the requirements for this to occur is the construction of a 2,000-mile transmission cable 
connecting the two continents (Merrill Lynch 2008). Discussion on the matter has occurred, but 
major policy decisions have yet to be made. In Morocco, 20 MW of CSP will be hybridized with 
a natural gas plant (Global Environment Facility 2009), and similar planning is under way in 
Algeria and Egypt. This type of design, known as an integrated solar combined cycle (ISCC), is 
gaining some traction in the region. An ISCC plant combines heat from the natural gas turbine 
and the solar field, achieving capacity gains without increasing emissions. Another benefit of 
such a system is that an additional turbine is not needed when the CSP portion is built. This both 
speeds up the construction process and helps keep capital expenditures in check.  
 
On the global level, nearly 600 MW of CSP were in the engineering, procurement, and 
construction stages by the end of 2008 (Grama et al. 2008), as summarized in Table 1.2. The 
majority were trough systems being built in Spain, with North African countries installing trough 
and tower capacity as part of ISCC plants. Mexico and China were also constructing trough 
systems. 

Table 1.2. CSP Plants Under Construction, by Country 
Country Technology Type Capacity (MW) 

Algeria Trough 43 
Australia Linear Fresnel Reflector 1 
China Trough 50 
Egypt Tower 31 
Mexico Trough 29 
Morocco Trough 30 
Spain Trough 350 
Spain Tower 37 
Total   571 

Grama et al. 2008 
 
1.3.3 U.S. Installed CSP Capacity 
 
As of the end of 2008, 419 MW of grid-tied CSP capacity had been installed in the southwestern 
United States, accounting for more than 95% of global CSP capacity. The Solar Electricity 
Generating Stations (SEGS) in the Mojave Desert of southern California account for 354 MW of 
this capacity. SEGS comprises nine parabolic trough plants, ranging from 14 to 80 MW, located 
in three main locations (Daggett, Harper Lake, and Kramer Junction); this is illustrated in 
Figure 1.11. The plants were built between 1984 and 1991 and together have generated more 
than 11,000 GWh (BrightSource 2008). 
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Figure 1.11. Concentrating solar power plants of the southwest United States 

(NREL 2009) 
 

As summarized in Table 1.3, the next CSP plant to come online in the United States after the 
SEGS plants was the Arizona Public Service (APS) Saguaro 1-MW parabolic trough plant. 
Installed in Red Rock, Arizona, in 2005, the system has a capacity factor of 23%, allowing for 
the generation of 2 GWh per year (Grama et al. 2008). Another 64 MW of CSP capacity are 
accounted for by the Nevada Solar One parabolic trough plant in Boulder City, Nevada. 
Connected to the grid in 2007, this plant has a capacity factor of 23% and generates more than 
130 GWh each year (Acciona Energy 2008, Grama et al. 2008). The estimated cost of electricity 
generated by the Nevada Solar One plant is about $0.18/kWh (Bullard et al. 2008). 

Table 1.3. Installed CSP Plants in the United States 

Plant Name Location 
Technology 

Type 
Year 

Installed 
Capacity 

(MW) 
SEGS I Daggett, CA Trough 1985 14 
SEGS II Daggett, CA Trough 1986 30 
SEGS III Kramer Junction, CA Trough 1987 30 
SEGS IV Kramer Junction, CA Trough 1987 30 
SEGS V Kramer Junction, CA Trough 1988 30 
SEGS VI Kramer Junction, CA Trough 1989 30 
SEGS VII Kramer Junction, CA Trough 1989 30 
SEGS VIII Harper Lake, CA Trough 1990 80 
SEGS IX Harper Lake, CA Trough 1991 80 
APS Saguaro  Saguaro, AZ Trough 2005 1 
Nevada Solar One Boulder City, NV Trough 2007 64 
Total 419 

Grama et al. 2008 

Nevada Solar One, 64MW 

APS Saguaro, 1MW 

SEGS III-VII, 150MW 

SEGS I & II, 44 MW 
SEGS VIII & IX, 160MW 
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2. Industry Trends, Photovoltaic and Concentrating Solar Power 

This chapter covers global and U.S. PV and CSP industry trends. Section 2.1 summarizes global 
and U.S. PV cell/module production trends, including production levels, growth over the past 
decade, and top producers. Section 2.2 presents data on global and U.S. PV cell/module 
shipments and associated revenue, including shipment levels and growth over the past decade, 
top companies in terms of shipments, shipment levels by type of PV technology, and U.S. import 
and export data. Section 2.3 provides information on major CSP component manufacturers and 
CSP component shipments. Section 2.4 discusses material and supply-chain issues for PV and 
CSP, including polysilicon, rare metals, and glass supply for PV; material and water constraints 
for CSP; and land and transmission constraints for utility-scale solar projects. Section 2.5 covers 
global and U.S. solar industry employment trends for both PV and CSP. 
 
2.1 PV Production Trends 
 
2.1.1 Global PV Production 
The global PV industry has seen impressive growth rates in cell/module production during the 
past decade, with a 10-year CAGR of 46% and a 5-year CAGR of 56% through 2008. Annual 
growth from 2007 to 2008 was 87%, higher than the 51% annual growth from 2006 to 2007. 

Global production (Figure 2.1) reached 6.9 GW for the year 2008, an 87% increase over 3.7 GW 
produced in 2007, which was led primarily by manufacturers in Europe, China, and Japan. The 
market shares for the top regions/countries are 27% each for Europe and China, 18% for Japan, 
12% for Taiwan, 6% for the United States, and 10% for the rest of the world (ROW). From 1997 
to 2008, approximately 18.5 GW of PV cells were produced globally. 
 

 
Figure 2.1. Global annual PV cell/module production by region 

(Maycock 2002, Bradford et al. 2006, Bradford et al. 2008a, Bradford et al. 2009) 
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Europe and Japan have had strong production growth rates during the past decade, with 10-year 
CAGRs of 50% and 38% (from 1998–2008), respectively, resulting in their dominance of the PV 
market. Europe and Japan increased their collective market share from 24% in 1980 to 76% in 
2004. Since 2004, however, their combined share has dropped to approximately 45%, which is 
due to the rapid growth of emerging producers such as China and Taiwan.  

China has seen the highest growth rates in recent years, with a 5-year (2003–2008) CAGR of 
170%. In 2001, China contributed only about 1% of global production; it did not become a 
significant global contributor until 2005 when its market share reached 7%. Taiwan has also 
experienced high growth rates, with a 5-year CAGR of approximately 119%, surpassing U.S. 
production levels in 2007 to become the world’s fourth-largest producer. Taiwan continued to 
gain market share over the United States in 2008. Production in Taiwan increased from 
approximately 0.37 GW (10% market share) in 2007 to 0.85 GW (12% market share) in 2008. 
The United States produced 0.27 GW (7% market share) in 2007 and 0.41 GW (6% market 
share) in 2008.  

Figure 2.2 shows 2008 market shares for the top ten PV cell/module producers worldwide, and 
Figure 2.3 shows production data for the top ten companies from 2002 to 2008. Japan-based 
Sharp Corporation was the global leader in PV production between 2000 and 2006. In 2007, 
German-based Q-cells overtook Sharp to become the world’s number-one producer at 0.39 GW 
and maintained this position through 2008. Sharp’s market share for production continued to 
decrease through 2008, dropping from 9% in 2007 to 6% in 2008. Q-cells also lost production 
market share, dropping from 11% in 2007 to 8% in 2008. 

 
Figure 2.2. Top global PV cell/module producers 2008 

(Bradford et al 2009) 
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Figure 2.3. Global annual PV cell/module production by manufacturer 2002–2008 

(Bradford et al. 2006, Bradford et al. 2008a, Bradford et al. 2009) 
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its focus from crystalline technologies to thin-film PV going forward. Sharp indicated it plans to 
upgrade its current 15-MW, thin-film plant to a 160-MW plant. The company is also developing 
a 1-GW, thin-film plant within a liquid crystal display (LCD) manufacturing facility. Sharp 
estimates that the new factory will begin thin-film shipments in 2010. 

Motech Solar, a crystalline silicon cell producer, is the largest PV producer in Taiwan and the 
sixth largest globally. The company’s 2008 production of 0.38 GW is a 120% increase over its 
2007 production value of 0.18 GW. Motech has indicated plans to expand its PV production 
capabilities into China and the United States. 

2.1.2 U.S. PV Production 
 
As with the global trend in PV production, the United States has seen strong growth rates in the 
past decade, with a 10-year CAGR of 23% and a 5-year CAGR of 32%. Production in 2008 
reached 0.41 GW, an increase of 52% over 0.27 GW produced in 2007. Figure 2.4 illustrates 
production levels from 1997–2008.  In 2003, the U.S. PV industry experienced an 18-MW dip in 
production, resulting primarily from the bankruptcy of AstroPower, the second-largest U.S. 
producer at that time. AstroPower’s 30-MW production capacity and assets were acquired by GE 
Energy for $15 million. After 2003, U.S. production resumed strong growth. Despite increases in 
domestic production, U.S. market share in global production has fallen to 6%, which is due to 
more rapid growth in other regions/countries such as Europe, China, and Taiwan. The United 
States dominates global thin-film production. 

 

 
Figure 2.4. U.S. annual PV cell/module production 

(Maycock 2002, Bradford et al. 2006, Bradford et al. 2008a, Bradford et al. 2009) 
 

Figures 2.5 and 2.6 summarize U.S. annual PV cell/module production by manufacturer.   

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

A
nn

ua
l P

V
 c

el
l/m

od
ul

e 
pr

od
uc

tio
n 

(G
W

)



 
19 

 
Figure 2.5. U.S. annual PV cell/module production by U.S. manufacturer  

(Bradford et al. 2006, Bradford et al. 2008a, Bradford et al. 2009) 
  

 
Figure 2.6. Top U.S. PV cell/module producers 2008 

(Bradford et al. 2009) 
 
The United States is the global leader in thin-film PV cell/module production, and accordingly, 
the top two U.S. manufacturers for 2008 were both thin-film producers. Thin-film PV 
cells/modules produce electricity via extremely thin layers of semiconductor material made of 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

2001 2002 2003 2004 2005 2006 2007 2008

A
nn

ua
l P

V
 c

el
l/m

od
ul

e 
pr

od
uc

tio
n 

(G
W

) Other
Global Solar
Schott Solar
Evergreen Solar
BP Solar
Solarworld CA (Shell Solar)
United Solar Ovonics
First Solar

First Solar,
147 MW,

36%

United Solar 
Ovonics, 
113 MW,

27%

Solarworld 
CA (Shell 

Solar), 
61 MW,

15%

BP Solar, 
28 MW, 7%

Evergreen 
Solar, 

27 MW, 6%

Schott Solar,
11 MW, 3%

Global Solar,
7 MW, 2% Other

4%



 
20 

cadmium telluride (CdTe), amorphous silicon (a-Si), copper indium gallium diselenide (CIGS), 
copper indium diselenide (CIS), or other emerging materials. First Solar is the world’s largest 
manufacturer of thin-film (CdTe) modules, with 2008 global production of 0.50 GW, an increase 
of 140% from 2007. U.S. production for First Solar in 2008 was 0.15 GW (shown in Figure 2.6 
as 147 MW). United Solar Ovonics (or Uni-Solar), a producer of a-Si thin-film technology, was 
the second-largest PV producer in the United States in 2008, with a 27% U.S. production market 
share. Uni-Solar’s 2008 domestic production reached 110 MW, a 140% increase over its 2007 
production level. 

In 2008, SolarWorld and BP Solar were ranked third and fourth, respectively, in terms of U.S. 
PV production. SolarWorld and BP Solar produced 61 and 28 MW, respectively, in 2008. 
Evergreen Solar, fifth in U.S. market share, produced 27 MW in 2008, opened an 80-MW 
facility in June 2008, and expects an additional 80-MW capacity at the facility to be completed 
in 2009. Schott Solar was ranked sixth, producing 11 MW in 2008. Of Schott Solar’s 80 MW of 
global production in 2008, most (88% or 70 MW) were manufactured in Germany. Global Solar, 
an Arizona-based company, produced 7.2 MW in 2008; the company primarily manufactures 
flexible, thin-film, CIGS-based cells. 
 
2.2 Global and U.S. PV Shipments and Revenue 
 
2.2.1 Global PV Shipments 
 
Shipments of PV cells/modules more accurately reflect demand for PV, as not all cells/modules 
end up in the market the year they are produced. Conversely, inventory (produced in an earlier 
year) may get shipped out, making it possible for shipments to exceed production in a particular 
year and/or for a particular manufacturer. This section presents shipment as opposed to 
production data, but does not attempt to compare and reconcile these numbers. 
 
Global shipments of PV cells/modules have seen extensive growth over the last decade, with a 
10-year CAGR of 45% and 5-year CAGR of 52% through 2008 (Mints and Tomlinson 2007, 
Mints and Tomlinson 2008, Mints 2009). Annual growth from 2007 to 2008 was 79%, higher 
than the 55% annual growth from 2006 to 2007. 
 
Global shipments reached 5.5 GW for the year 2008, an increase of 79% from 3.1 GW shipped 
in 2007 (Figure 2.7). The market shares for the top regions/countries were 31% for Europe, 22% 
for Japan, 19% for China, 11% for Taiwan, 7% for the United States, and 9% for the ROW.  
From 1997–2008, a total of approximately 15.2 GW of PV cells/module were shipped globally. 
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Figure 2.7. Global annual PV cell/module shipments by region 

(Mints and Tomlinson 2007, Mints and Tomlinson 2008, Mints 2009) 
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manufacturers in China and Taiwan.  
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shipments surpassed those of the United States to become the third-largest contributor to global 
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contributor. Both China and Taiwan continue to gain market share over the United States. While 
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

A
nn

ua
l P

V
 c

el
l/m

od
ul

e 
sh

ip
m

en
ts

 (G
W

)
ROW

Taiwan

China

Japan

Europe

U.S.



 
22 

2007. In 2007, Sharp experienced a 16% decrease in shipments, a drop from 0.43 GW in 2006 to 
0.36 GW in 2007. From 2006 to 2008, Sharp’s growth in shipments totaled 5%. 

 
Figure 2.8. Global annual PV cell/module shipments by manufacturer 2004–2008 

(Mints and Tomlinson 2008, Mints 2009) 
 

 
Figure 2.9. Top global companies for PV cell/module shipments 2008 

(Mints 2009) 
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First Solar, the world’s leading manufacturer of thin-film PV (specifically CdTe) has 
experienced tremendous growth in recent years and overtook Kyocera as the fourth-largest 
contributor to global shipments in 2008. First Solar shipped 0.44 GW in 2008, a 130% increase 
from 2007. SunPower and JA Solar also experienced significant growth, both with about 110% 
increases in shipping from 2007, with 0.22 and 0.21 GW shipped, respectively. The top three 
manufacturers, Q-Cells, SunTech, and Sharp, declined in their market shares from 2007 resulting 
from the rapid growth of other companies such as First Solar, SunPower, and JA Solar . Q-Cells 
declined in market share from 11% in 2007 to 10% in 2008. Similarly, SunTech declined from 
10% to 9% and Sharp from 12% to 8%. First Solar increased its market share from 6% in 2007 to 
8% in 2008. Both SunPower and JA Solar increased their market shares from 3% in 2007 to 4% 
in 2008. 

 
2.2.2 Global PV Cell/Module Revenue 
 
Worldwide revenue from PV cells/modules reached $20 billion in 2008, an increase of 80% from 
2007 revenue of $11 billion (Mints 2009). Figure 2.10 provides revenue and associated data for 
the top ten global contributors to PV shipments. Q-Cells, Suntech, and Sharp each brought in 
close to $2 billion in cell and module revenue in 2008. These three companies each shipped from 
nearly 0.46 to 0.55 GW in 2008.  
 

 
Figure 2.10. Top global companies for PV cell/module revenues 2008 

(Mints 2009, company Web sites) 
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lead the global market with a 49% share of total shipments, followed by monocrystalline cells at 
35% of shipments. 
 
Globally, thin-film technologies have grown at a 10-year CAGR of 86% from 1998 to 2008. In 
2003, the total market share of thin-film cells was 5% compared to the 95% market share of 
crystalline cells. In 2008, thin-film technology claimed a 14% global market share (5% a-Si, 
8% CdTe, and 1% other thin films). Forecasts of thin-film market share in 2012 have spanned a 
broad range, from 16%–34% (see Section 5.3). 

 
Figure 2.11. Global annual PV cell/module shipments by PV technology 1997–2008 

(Mints and Tomlinson 2007, Mints and Tomlinson 2008, Mints 2009) 
  
2.2.3 U.S. PV Shipments 
 
During the past decade, the United States has seen steady growth in PV shipments analogous to 
the global PV shipment trends, with a 10-year CAGR of 22% and a 5-year CAGR of 33% 
through 2008. Figure 2.12 illustrates the annual growth of PV shipped from the United States. In 
2003, shipments experienced a 15% dip from the 2002 level, which was due primarily to the 
bankruptcy of AstroPower. In 2004, however, the United States experienced a rapid recovery and 
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maintained an average of 0.14 GW in shipments each year. After 2006, however, the United 
States returned to a state of steady growth. In 2008, 0.39 GW were shipped, a 64% increase from 
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Figure 2.12. U.S. annual PV cell/module shipments 1997–2008 

(Mints and Tomlinson 2007, Mints and Tomlinson 2008, Mints 2009) 
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Figure 2.13. U.S. annual PV cell/module shipments by manufacturer 2004–2008 

(Mints and Tomlinson 2008, Mints 2009) 
  

 
Figure 2.14. Top U.S. companies for PV cell/module shipments 2008 

(Mints 2009) 
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United Solar Ovonics (Uni-Solar) had the second highest at $0.33 billion. First Solar is also one 
of three U.S.-based companies, including BP Solar and SolarWorld CA, with more than 20 years 
of PV production experience. First Solar and BP also earned significant additional revenue from 
non-cell or module sales, amounting to an additional $0.20 and $0.09 billion, respectively, in 
2008. Four out of seven of the top U.S. PV producers are publicly owned, including First Solar, 
Uni-Solar, SolarWorld, and Evergreen Solar. BP, Schott, and Global are all privately owned 
solar PV production companies. 
 

 
Figure 2.15. Top U.S. companies for PV cell/module revenues 2008 

(Mints 2009) 
 

2.2.5 U.S. PV Imports and Exports 
 
Figure 2.16 presents data on U.S. PV cell/module imports and exports, including the crystalline 
silicon and thin-film contributions. From 1999 to 2004, U.S. PV cell/module exports exceeded 
imports significantly. This changed in 2005, when exports and imports nearly evened out, 
resulting from increased U.S. imports of crystalline silicon modules and cells and somewhat 
offset by increased U.S. exports of thin-film modules/cells. In 2006 and 2007, U.S. total PV 
cell/module imports exceeded exports for the first time. Although U.S. thin-film exports doubled 
each year from 2005 to 2007, dominating U.S. exports in 2007, U.S. crystalline silicon 
module/cell imports grew to more than double the exports in 2006 and 2007. The large increase 
in U.S. crystalline silicon module/cell imports was due to a rapid increase in demand for PV 
modules and cells, which was particularly high in 2006 in response to the federal investment tax 
credit for PV systems included in the Energy Policy Act of 2005. U.S. crystalline PV exports 
have remained fairly flat, with increases in exports accounted for by the fast-growing, thin-film 
industry. 
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Figure 2.16. U.S. PV cell/module shipments, exports and imports 

(EIA 2008a) 
 
In 2007, 88% of U.S. PV exports were destined for Europe and 9% went to Asia (Figure 2.17). 
The dominance of the European market is due primarily to significant government incentives in 
countries such as Germany and Spain, which received about 64% and 13% of U.S. shipments, 
respectively. 

 
Figure 2.17. U.S. exports of PV cells and modules, 2007 destination 

(EIA 2008a) 
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2.3 CSP Manufacturer and Shipment Trends 
 
Reflectors, receivers, and turbines are the three major components in CSP technologies that are 
currently being installed worldwide. 
 
2.3.1 CSP Manufacturers 
 
Table 2.1 lists major CSP component (reflector, receiver, and turbine) manufacturers. 
Historically, Flabeg has been the major manufacturer of reflectors, providing a product with 95% 
or better reflectivity. Other emerging companies, such as PPG Industries and Rioglass, aim to 
lower capital costs of glass and increase durability. Furthermore, other companies (e.g., 
Reflectech, 3M, and Alanod) are offering a reflective film as a lower-cost alternative to 
traditional mirrors (Grama et al. 2008). In terms of receivers, Solel has historically been the 
major manufacturer, but Schott Solar Systems recently has become a significant player. For 
turbines, ABB, GE-Thermodyn, and Siemens are major manufacturers, and companies such as 
Alstom, MAN Turbo, and ORMAT are looking to gain market share. 

Table 2.1. CSP Component Manufacturers 
Reflectors Receivers Turbines 
• 3M 
• Alanod 
• Flabeg 
• PPG Industries 
• Reflectech 
• Rioglass 

• Schott Solar Systems 
• Solel 

 

• ABB 
• Alstom 
• GE-Thermodyn 
• MAN Turbo 
• ORMAT 
• Siemens 

Emerging Energy Research 2007, company Web sites 2008 
 
2.3.2 CSP Shipments 
 
Annual U.S. shipments of CSP dish and trough collectors remained relatively constant from 
1999 to 2003, as shown in Table 2.2. A noticeable increase occurred in 2005, followed by a 
substantial increase in 2006. The significant increase in 2006 was primarily the result of a 
64-MW CSP plant in Nevada. The facility, Nevada Solar One, consists of 760 parabolic 
reflectors comprising nearly 219,000 individual mirrors. It was the world’s largest plant built in 
16 years (EIA 2008b). In 2007, shipments dropped dramatically, from 3,852,000 to 33,000 ft2. 

Table 2.2. Annual U.S. Shipments: Parabolic Dish and Trough, 1998–2007 
Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 
Shipments  
(1000 ft2) 21 4 5 2 2 7 — 115 3,852 33 

EIA 2008b 
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2.4 Material and Supply Chain Issues 
 
2.4.1 Polysilicon Supply for PV 
 
This section presents information on polysilicon manufacturing and its importance to the PV 
industry, the historical and 2008 polysilicon market, and polysilicon forecasts and trends. 
 
About 84% of PV produced in 2008 used crystalline silicon semiconductor material derived from 
polysilicon feedstock (Bartlett et al. 2009).6 Polysilicon is silicon purified for use in making 
semiconductors. Solar-grade polysilicon is silicon refined to be at least 99.999999% ("six nines" 
or "6N") pure (Winegarner & Johnson 2006).7

 

 The polysilicon supply and demand imbalance 
that became recognized widely around 2005 was caused not by a lack of silicon (silicon is 
abundant and ubiquitous in Earth's crust) but by a lack of capacity for purifying silicon to the 6N 
level. 

Producing solar-grade polysilicon is complex and capital intensive. Quartz is heated in the 
presence of a carbon source to produce liquid silicon, which is refined and allowed to solidify to 
become what is known as metallurgical-grade silicon (MG-Si), with an average purity of 98.5% 
(Bradford 2008). MG-Si is a relatively abundant and inexpensive commodity worldwide. 
However, it must be processed further to achieve solar-grade purity using one of several 
processes, of which three were most important in 2008: 
 
• Siemens process (chemical deposition) 
• Fluidized bed reactor (FBR) process (resulting in granular silicon) 
• Upgraded MG-Si (UMG-Si) processes. 
 
The Siemens process is the most widely used, followed by FBR. Siemens and FBR facilities are 
capital intensive (typically $100 million or more per 1000 MT/year of capacity) and require 2–3 
years to construct (Rogol et al. 2006, Winegarner & Johnson 2006). UMG-Si processes, which 
enhance the purity of MG-Si, promise substantial cost and time savings over the Siemens process 
and FBR, but the resulting product is of lower purity (i.e., below 6N) and must be blended with 
purer polysilicon for PV applications (Bradford 2008). Maintaining polysilicon quality is critical. 
Even small decreases in PV efficiency resulting from using lower-quality polysilicon can offset 
the savings gained from using the lower-quality polysilicon (Rogol et al. 2006). A variety of 
other polysilicon production processes (e.g., vapor liquid deposition) promise potential cost and 
production-rate advantages if they can attain commercial performance goals (Bradford 2008).  
 
Another source of solar-grade polysilicon is the electronics industry. Polysilicon used in the 
electronics industry must be even purer (7N) than solar-grade polysilicon, and about 10%–20% 

                                                 
6 Mehta and Bradford 2009, Citi Investment Research 2009, Cowen & Co. 2009, Deutsche Bank 2009, Morgan 
Stanley 2009, Navigant 2009, New Energy Finance 2009, Thomas Weisel 2009, as obtained from Bartlett et al. 
2009. 
7 The chemical definition of purity used here counts the numbers after the decimal point, i.e., 99.999999% is called 
"six nines" or "6N" using the chemical definition. The metallurgical definition of purity, used by some in the solar 
industry, counts the numbers before the decimal point. In other words, 99.999999% is called "eight nines" or "8N" 
using the metallurgical definition. See the errata in Winegarner & Johnson 2006. 
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of the off-specification and scrap polysilicon sold to the electronics industry eventually becomes 
available to the solar industry (Bradford 2008, Winegarner & Johnson 2006). 
 
Beginning around 2004, an imbalance between polysilicon supply and demand contributed to 
increasing polysilicon prices. For years, the PV industry had subsisted largely on leftover 
polysilicon from the electronics industry. However, polysilicon demand for PV surpassed 
demand for electronics in 2007 and has become the primary driver of growth in polysilicon 
production (Bartlett et al. 2009). Polysilicon production facilities, with their high capital costs 
and long construction times, were unable to respond immediately to the PV-driven spike in 
polysilicon demand. This resulted in a supply/demand imbalance and a more than doubling of 
the average polysilicon contract price between 2003 and 2007 (Bradford 2008, Mehta and 
Bradford 2009). 
 
The increase in polysilicon prices prompted a dramatic increase in new polysilicon producers 
and significant investments in new production capacity and new technologies (including 
UMG-Si). In 2008, the additional polysilicon production capacity initiated circa 2005 to satisfy 
the unmet demand began production after 24–30 months of construction (Bradford et al. 2008c). 
By mid-2008, the tightness in polysilicon supply began to ease, and PV cell and panel 
manufacturers reported that polysilicon suppliers were more willing to sign long-term contracts 
with new partners (Bradford et al. 2008c, Bradford et al. 2008b).  
 
The median estimate from several industry analysts was 64,000 MT of polysilicon production in 
2008, and the median 2008 estimate of polysilicon produced for the solar industry was 
45,000 MT (10%–20% of scrap polysilicon from the electronics industry also will become 
available to the solar industry) (Bartlett et al. 2009)8

 

. This represents an estimated 54% increase 
in total polysilicon production compared with 2007. At an average silicon utilization rate of 
8.7 g/W, 45,000 MT is equivalent to 5.2 GW of polysilicon-based PV cell production (Bradford 
2008). 

Most of the polysilicon supply is sold under contract, with only a small proportion available on 
the spot market; some PV manufacturers pay the higher spot market prices because they cannot 
secure long-term contracts (e.g., owing to upfront cash requirements) or because additional 
capacity requirements cannot be met by their contracted polysilicon supply (Bradford 2008). 
Polysilicon spot prices topped $450/kg in early 2008, but they dropped to less than $150/kg by 
early 2009 and less than $100/kg by mid-2009 (Wu and Chase 2009). One estimate of 2008 
average polysilicon contract price was $70/kg (Mehta and Bradford 2009). Generally, spot and 
contract prices are controlled by supply and demand; prices rise when demand exceeds supply 
and vice versa. However, at least one analyst interpreted the high spot prices in 2008 as a false 
market signal, suggesting that they actually heralded new polysilicon supply coming onto the 
market at lower, contract prices (Bradford et al. 2008b). The reasoning is that marginal PV 
manufacturers, who previously had little access to contract polysilicon, began securing 
polysilicon contracts in 2008. As an increasing proportion of their needs were met with this 
lower-priced contract polysilicon, they were able to pay higher prices for their decreasing spot-

                                                 
8 Barclays 2009, Mehta and Bradford 2009, Cowen & Co. 2009, Morgan Stanley 2009, Oppenheimer 2009, Thomas 
Weisel 2009, as obtained from Bartlett et al. 2009. 



 
32 

market requirements while maintaining the same blended average polysilicon cost (i.e., the 
overall cost of contract polysilicon blended with spot polysilicon).  
 
The Siemens process accounted for about 78% and FBR for about 16% of polysilicon produced 
in 2008, with UMG-Si processes accounting for most of the rest (Barclays 2009, Mehta and 
Bradford 2009, Cowen & Co. 2009, Morgan Stanley 2009, Bradford et al. 2008c). Figure 2.18 
shows one analyst's estimate of 2008 production categorized by producer, and Figure 2.19 shows 
it categorized by producing country (Bradford 2008). 
 

 
Figure 2.18. Proportion of 2008 polysilicon production categorized by producer 

(Bradford 2008) 
 

 
Figure 2.19. Proportion of 2008 polysilicon production categorized by producing country9

(Bradford 2008) 
 

                                                 
9 U.S. production includes a company with production in both the United States and Italy. 
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The global economic crisis that became apparent in late 2008, and which is expected to diminish 
funds available for investments and the demand for PV, caused analysts to reduce their 
projections for the growth of PV and polysilicon production (Bartlett et al. 2009). Nevertheless, a 
number of analysts who released reports in early 2009 projected 157,000–203,000 MT of 
polysilicon production by 2012, a two- to threefold increase over 2008 (Figure 2.20). Projecting 
beyond 2010 is more difficult than making nearer-term projections, because decisions to build 
new capacity need only be made 2 years in advance and thus would not need to be made by late 
2008 or early 2009 (Bradford et al. 2008c). Solar applications were projected to use 80%–90% of 
polysilicon supply by 2012 (Mehta and Bradford 2009, Cowen & Co. 2009).  
 

  
Figure 2.20. Polysilicon supply projections through 2012 

(Bartlett et al. 2009)10

 
 

The projected increase in polysilicon supply is expected to meet or exceed PV demand for the 
next several years. Several major trends will influence polysilicon supply and demand during this 
period, with potential to increase supply or decrease demand beyond current projections:  
 

• Improved silicon utilization. The PV industry has continued to improve silicon 
utilization (watts of PV per gram of polysilicon) by decreasing silicon wasted 
during manufacturing, producing thinner wafers, and producing cells with higher 
efficiency. One analyst projects an average 14% improvement in polysilicon 
utilization from 8.7 g/W in 2008 to 7.5 g/W in 2012 (Bradford 2008). Increasing 
silicon utilization decreases the amount of polysilicon required to manufacture an 
equivalent amount of crystalline silicon PV. 

                                                 
10 Projections through 2010 reflect estimates made by six analysts (Barclays 2009, Mehta and Bradford 2009, 
Cowen & Co. 2009, Morgan Stanley 2009, Oppenheimer 2009, Thomas Weisel 2009), whereas projections for 2011 
include data from four analysts (Barclays 2009, Mehta and Bradford 2009, Cowen & Co. 2009, Oppenheimer 2009), 
and data for 2012 are from three analysts (Barclays 2009, Mehta and Bradford 2009, Cowen & Co. 2009), obtained 
from Bartlett et al. 2009. 
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• Increased use of UMG-Si. As discussed above, UMG-Si processes could offer 
substantial cost and time savings over the Siemens process and FBR. Significant 
venture-capital UMG-Si investments in 2008 indicated continued interest in this 
approach, but concerns remain about the efficiency of PV cells made with a high 
percentage of UMG-Si (Bradford et al. 2008c). If technology is developed to 
enable the use of UMG-Si in blends higher than the current level of 10%, 
UMG-Si could become a larger source of low-cost PV feedstock. Estimates from 
several industry analysts project the market share of UMG-Si rising from about 
6% in 2008 to 8%–16% in 2012 (Bartlett et al. 2009).11

 
 

• Market penetration of thin-film PV. Thin-film PV, which requires little or no 
polysilicon feedstock, has become a major competitor to crystalline silicon PV. 
Projections of market share rise from about 16% in 2008 to 16%–34% in 2012 
(Bartlett et al. 2009).12

 

 Increased use of thin-film PV reduces demand for 
crystalline silicon PV and polysilicon feedstock. 

Other factors that could affect the supply of or demand for polysilicon include larger-than-
expected polysilicon production by companies based in China, technological breakthroughs (e.g., 
rapid penetration of concentrating PV), manufacturing disruptions (e.g., an accident in a very 
large polysilicon manufacturing facility), PV supply-chain disruptions (e.g., shortages of solar-
grade graphite or glass), changes in PV-related government policies, and other "macro shocks" 
(e.g., large-scale natural disasters or epidemics) (Rogol et al. 2008).  
 
As a result of the aforementioned trends toward increased polysilicon supply and/or moderated 
demand, polysilicon prices are expected to decrease over the next several years (Figure 2.21). PV 
cell manufacturers may be able to minimize/stabilize the price they pay for polysilicon by 
measures such as securing fixed-price contracts, producing their own polysilicon, or partnering 
with polysilicon producers. 

 

                                                 
11 Barclays 2009, Mehta and Bradford 2009, Cowen & Co. 2009, Morgan Stanley 2009, as obtained from Bartlett et 
al. 2009. 
12 Mehta and Bradford 2009, Citi Investment Research 2009, Cowen & Co. 2009, Deutsche Bank 2009, Morgan 
Stanley 2009, Navigant 2009, New Energy Finance 2009, Thomas Weisel 2009, as obtained from Bartlett et al. 
2009. 
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Figure 2.21. Polysilicon price projections through 2015 

(Mehta and Bradford 2009) 
 
Polysilicon price and silicon utilization have a substantial effect on PV module manufacturing 
cost. Figure 2.22 plots module manufacturing cost (for a European-produced, multicrystalline 
silicon module manufactured in 2008) versus blended polysilicon price (a weighted average of 
contract and spot price) for three levels of silicon utilization. This figure illustrates the 
importance to PV module economics of lowering polysilicon costs and increasing silicon 
utilization (Mehta and Bradford 2009). 
 

 
Figure 2.22. PV module sensitivity to polysilicon price and utilization 

(Mehta and Bradford 2009) 
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2.4.2 Rare Metals Supply and Demand for PV 
 
As discussed above, thin-film PV technologies, which use 100 times less silicon than 
conventional crystalline cells (e.g., for a-Si PV) or use no silicon at all (e.g., for CdTe, CIGS, 
and CIS PV), are projected to garner 16%–34% of the PV market by 2012. This large-scale 
production has raised concerns about the supply of rare metals such as indium, gallium, and 
tellurium (Grama & Bradford 2008). Indium and tellurium have been estimated to limit total 
thin-film capacity to between 100 GW for CdTe (Feltrin & Freundlich 2008) and 30 TW for 
CIGS/CIS (Zweibel 2005) based on different estimates of rare metal supply. 
 
The estimated worldwide indium reserve base13

 

 was 16,000 MT in 2007, and annual production 
was 510 MT (Grama & Bradford 2008). CIGS PV requires approximately 20 MT of indium per 
GW. With projected production growth to 3.1 GW by 2012, CIGS PV will require approximately 
63 MT of indium (12% of current annual production) by that year (Grama & Bradford 2008). 
Competing uses for indium include LCD displays, integrated circuits, and electronic devices. 
The market price for indium reached $835/kg in early 2007, but fell to $750/kg in August 2008 
(Grama and Bradford 2008). Indium recycling could increase significantly, and alternative 
sources could be developed, if the indium price stays high. Indium has substitutes, but they 
usually lead to losses in production efficiency or product characteristics. Gallium can be used in 
some applications as a substitute for indium in several alloys. In glass-coating applications, 
silver-zinc oxides or tin oxides can be used. Indium phosphide can be substituted by gallium 
arsenide in solar cells and in many semiconductor applications. The United States has no primary 
indium or gallium production capacity, and most reserves are located in other countries. 

The estimated worldwide tellurium reserve base was as high as 47,000 MT in 2007, and annual 
production was 475 MT. CdTe PV requires approximately 47 MT of tellurium per GW. With 
projected production growth to 1.2 GW by 2012, CdTe PV will require approximately 55 MT of 
tellurium (12% of current annual production) by that year. Competing uses for tellurium include 
semiconductor and electronics products and metal alloys. The tellurium required for CdTe PV 
has driven a fourfold price increase in the past 5 years; the market price increased from $50/kg in 
2004 to more than $225/kg in August 2008. Tellurium recycling could increase significantly, and 
alternative sources could be developed (e.g., bismuth telluride), if the tellurium price stays high. 
Beyond 2012, tellurium production likely will need to increase to keep pace with demand from 
the solar industry (Grama and Bradford 2008). 
 
2.4.3 Glass Supply for PV 
 
Glass is resistant to long-term weathering, is relatively inexpensive, and has good mechanical 
strength, making it an ideal encapsulation material for crystalline silicon PV as well as an 
encapsulation and substrate material for most thin-film PV. The demand for solar glass is 
expected to see strong growth in conjunction with growing PV demand. Yole Development 
forecasts that solar glass demand will grow from 50 million m2 today to more than 300 million 
m2 in 2015. Mark Farber, former CEO and cofounder of Evergreen Solar, notes that PV currently 

                                                 
13 The U.S. Geological Survey defines base reserves as that part of an identified resource that meets minimum 
physical and chemical criteria related to current production practices (Grama & Bradford 2008). 
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accounts for less than 1% of the glass market, but that it could account for up to 5% by 2012 
(Podewils 2008). 

The glass demand for PV (as well as for CSP) is primarily for high-quality, low-iron glass. This 
demand is met by both the rolled- and float-glass markets. Rolled glass is a better choice for 
solar applications because it requires 80% less energy to manufacture than float glass, it can use 
resources with 30% more iron to achieve the same transparency, and it is 30% less expensive to 
produce. Rolled glass currently supplies 60%–70% of the PV market, and production is growing 
rapidly to meet PV demand, particularly in China. However, demand for rolled glass exceeds 
supply by about 1 year. Float glass, which accounts for more than 90% of the flat glass market, 
will likely supply the additional PV glass demand until the rolled glass market can catch up 
(Podewils 2008). 

There is an increasing trend, particularly in China, toward constructing PV-dedicated glass 
factories and vertically integrating glass production in the PV supply chain by building rolled-
glass factories on site, which minimizes supply-driven price volatility and transportation costs. 
China's CSG Solar Glass Co. built the first factory to produce glass exclusively for the solar 
industry (Podewils 2008). Once operating at full capacity, CSG could produce enough glass for 
2 GW/year of PV. CSG also is vertically integrating, from polysilicon production to finished 
modules, and plans to have 450 MW of cell and module production by 2010. 

2.4.4 Material and Water Constraints for CSP 
 
Concentrating solar power facilities are constructed primarily of concrete, steel, and glass. 
Although these materials are not subject to rigid supply limits, they are affected by changes in 
commodity prices. 

In CSP systems, steel is a commodity that cannot be substituted, and its cost rose substantially 
from 2006 through the first half of 2008. These near-term price increases inflated the levelized 
cost of energy (LCOE) that project developers could offer to utilities. However, the economic 
downturn in the second half of 2008 brought commodities closer to pre-2006 prices (Yahoo 
Finance 2009). For CSP projects to be economically viable, it will be important for steel prices to 
remain at reasonable costs, as project developers do not have pricing power on this commodity 
and must therefore accept the price being offered (Bullard et al 2008). 

The combination of a limited number of companies producing the main CSP system components 
on a commercial scale and a large construction pipeline could create a component supply 
bottleneck, depending on the growth of demand. This is especially true for turbines, which 
require a 24–30 month advance order by the project developer (Merrill Lynch 2008). 
Conversely, several of the main materials and equipment relied on by the CSP industry could 
leverage other manufacturing industries (e.g., automotive and buildings), potentially facilitating a 
relatively fast production ramp-up (Andraka 2008). In addition, some companies are entering 
multiple levels of the value chain, thus becoming less dependent on other companies for meeting 
large supply requests (e.g., Solel and Abengoa are entering the reflector market). For these 
reasons, many believe that reflector and receiver demand will not create bottlenecks in the near 
future (Bullard et al. 2008, Merrill Lynch 2008). 
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Aside from the aforementioned solid materials, the availability of water resources might limit the 
amount of CSP deployed in arid regions. As with fossil and nuclear power plants, the most 
common and economical method for cooling a CSP plant is evaporative water cooling. A typical 
parabolic trough plant requires 800 gallons of water per MWh, which can be reduced to about 
80 gallons per MWh by implementing dry cooling. Dry cooling, however, requires higher capital 
expenditure and is likely to decrease plant efficiency, especially under higher-temperature 
conditions. The loss of efficiency is greatest for systems requiring lower operating temperatures. 
Another cooling solution is to use hybrid wet/dry cooling, which uses less water than 100% wet 
cooling, and also reduces efficiency losses associated with dry cooling. For closed-cycle CSP 
heat engines such as dish-engine generators, air cooling is sufficient (U.S. DOE 2009). 

2.4.5 Land and Transmission Constraints for Utility-Scale Solar 
 
Solar project developers have been attracted to numerous locations in the Southwest, evident 
from a surge of more than 220 applications received by the U.S. Bureau of Land Management 
for new solar power plants (Resseguie 2008). However, transmission in many of these areas is 
lacking and substantial upgrades to the western grid will be necessary for projects to move 
forward. Moreover, land-use conflicts exist, as a large percentage of the area is federal land 
traditionally set aside for conservation and recreational purposes. To address the transmission, 
grid upgrade, and land-use issues, a number of major multi-agency agreements and initiatives 
have arisen at the national, state, and regional levels. Five such agreements and initiatives are 
described in this section.  

The U.S. Bureau of Land Management (BLM) and DOE are collaborating on a Solar 
Programmatic Environmental Impact Statement (PEIS). The PEIS will identify the impacts of, 
and develop better management strategies for, utility-scale solar development on the public lands 
of six states (Arizona, California, Colorado, New Mexico, Nevada, and Utah). The BLM has 
announced the availability of maps that identify 24 tracts of BLM-administered land for in-depth 
study for solar development and requested public comment on those study areas; the schedule for 
release of the draft PEIS will be determined after the evaluation of those comments. Further 
details can be found at http://solareis.anl.gov, and solar energy study area maps are available at 
http://solareis.anl.gov/eis/maps/index.cfm.   
 
The Western Governors’ Association (WGA) and DOE launched the Western Renewable Energy 
Zones (WREZ) Project in May 2008. WREZ involves working groups that are identifying high-
resource areas to include in energy development and environmentally sensitive lands to exclude 
from this development. The assessment was presented to the WGA for approval in June 2009, 
concluding phase one of the process. Subsequent phases will develop a modeling tool and a high-
level transmission plan coordinated through the Western Electricity Coordinating Council. More 
information is available at http://www.westgov.org/.   
 
Most recently, a multi-agency memorandum of understanding (MOU) was signed in October 
2009 regarding coordination in federal agency review of electric transmission facilities on 
federal land. The MOU was signed by the U.S. Department of the Interior, Department of 
Agriculture, Department of Commerce, Department of Defense, Department of Energy, 
Environmental Protection Agency, Council on Environmental Quality, Federal Energy 
Regulatory Commission (FERC), and the Advisory Council on Historic Preservation. The 

http://solareis.anl.gov/�
http://solareis.anl.gov/eis/maps/index.cfm�
http://www.westgov.org/�
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agreement supersedes an earlier MOU signed in August 2006. The October 2009 MOU will cut 
approval time off the normal federal permit process and help break down the barriers to siting 
new transmission lines by:  1) designating a single federal point-of-contact for all federal 
authorizations; 2) facilitating coordination and unified environmental documentation among 
project applicants, federal agencies, states, and tribes involved in the siting and permitting 
process; 3) establishing clear timelines for agency review and coordination; and 4) establishing a 
single consolidated environmental review and administrative record (U.S. DOI 2009). 
 
In California, the Renewable Energy Transmission Initiative (RETI) is a collaboration of public 
and private entities whose objective is to provide information to policymakers and stakeholders 
on the transmission requirements to access cost-effective, environmentally sensitive, renewable 
energy resources. Phase one of the initiative, completed at the start of 2009, identified and 
ranked zones in California and nearby states that can provide and competitively deliver 
renewable energy to the state. Phase two, which includes developing conceptual transmission 
plans and refining previous work, is under way. Additional information is available at 
www.energy.ca.gov/reti. 
 
Another development in California was an MOU signed in August 2007 between the U.S. 
Bureau of Land Management (BLM) (part of the U.S. Department of the Interior) and the 
California Energy Commission (CEC) to document the roles, responsibilities, and procedures to 
follow in conducting a joint environmental review of proposed solar thermal power plant 
projects in the state of California. A number of these projects are proposed to be built in 
California on land owned by the federal government and managed by BLM. Because projects 
need both a right-of-way from BLM and certification from CEC, coordination in the preparation 
of an environmental analysis for each of these projects will avoid duplication of efforts, promote 
intergovernmental coordination at the federal, state, and local levels, and facilitate public review 
by providing a joint document and a more efficient review process (CEC 2007a). 
 
The long approval process for a recent transmission project in California provides an example of 
a project that could have benefited from the type of coordination being carried out through the 
above agreements and initiatives. After 3 years and several major revisions, the 1-GW, 123-mile 
Sunrise Powerlink Transmission Project was approved by the California Public Utilities 
Commission in December 2008. This project allows San Diego Gas & Electric to connect 
producers in the Imperial Valley of California to end users in the San Diego area, and is expected 
to be completed in 2012. The process for obtaining the permit was arduous because of the initial 
lack of disclosure by the proponent, the environmental sensitivity of the land proposed to be 
developed, and the number of stakeholders involved (Herndon 2009). Many PV and CSP 
projects in the planning stages are dependent on the construction of this line. 
 
2.5 Solar Industry Employment Trends 
 
Because of the rapid expansion of the solar industry over the past several years, employers are 
reporting increasing difficulty in finding qualified people to hire. As a result, labor supply and 
demand within the solar industry, and the manner in which the two are tied to educational and 
training opportunities, has recently become a topic of strong interest to both industry and 
government. The possibility of labor shortages within the industry and a surge of interest in 

http://www.energy.ca.gov/reti�
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green jobs as a contributor to economic recovery are two factors driving state and federal 
initiatives. If Germany is any indication of how fast the U.S. solar industry can grow without 
experiencing major bottlenecks in labor supply, then it is possible that the U.S. educational and 
training infrastructure could meet the needs of the industry over the next several years. 

Despite the poor investment climate that is clouding economic growth in the United States and 
abroad, the extension and enhancement of the federal investment tax credit (ITC) as of October 
2008 and additional policy enhancements and economic incentives resulting from the American 
Recovery and Reinvestment Act (ARRA) in February 2009 are expected to encourage industry 
expansion and job creation. In particular, the elimination of the residential investment tax credit 
cap (effective January 2009) should result in more business for PV system installers. Also, the 
new ability of utilities to take advantage of the ITC could result in very large installations being 
constructed and could help lead to the establishment of well-defined career pathways for PV 
system designers and solar electricians. For more details on recent federal policy developments 
that may encourage job growth in the solar industry, see Section 4.1 of this report. 

Though not the focus of this section, studies have quantified the job creation potential of 
renewable energy as compared to fossil fuel technologies. A recent study by analysts at U.C. 
Berkeley concluded that renewable energy technologies generate more jobs per unit of energy 
than fossil fuel-based technologies. Among the renewable energy technologies, solar PV creates 
the most jobs per unit of electricity output. Solar PV was estimated to create 0.87 job-
years/GWh, whereas natural gas and coal were each estimated to create 0.11 job-years/GWh. 
Solar PV thus generates almost eight times as many job-years/GWh as natural gas or coal (Wei 
et al. 2010).14

2.5.1 Types of Jobs in the PV and CSP Industries 

 

 
The following are examples of occupations associated with the manufacture and installation of 
PV and CSP. 

• Manufacturing positions include factory worker, sheet metal worker, glass worker, 
technician (e.g., semiconductor for PV), material handler, factory supervisor, 
manufacturing manager, engineer (quality assurance, manufacturing, chemical process, 
mechanical, electrical, optical), material scientist. 

• Installation positions include solar system installer/technician (PV), solar system designer 
(PV), technical sales representative and estimator (PV), architect (PV), roofing contractor 
(PV), general contractor, supervisor/foreman, heavy construction worker, welder, 
pipefitter, engineer (mechanical, electrical, civil). 

• Administrative and support positions include administrative assistant, purchasing agent, 
accountant, health and safety officer, information technology professional, director. 

Jobs in the solar industry fall into three categories:  direct, indirect, or induced. Direct jobs are 
those within the solar industry (e.g., manufacturing, installation, R&D); indirect jobs are those in 
industries that support the solar industry (e.g., jobs in the polysilicon, glass, and steel industries); 
and induced jobs are those that result from the economic activity stimulated by the solar industry 

                                                 
14 See http://rael.berkeley.edu/greenjobs for more details. 
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(e.g., people buying more goods and services in a region where there is a new PV manufacturing 
plant or where a new PV or CSP installation is under construction). 

Estimating numbers of jobs is a challenging task that is generally performed by surveying 
employers and industry analysts or by using economic input-output models that account for jobs 
based on the trail of goods and services leading up to, and after, production. There is significant 
variation in job number and labor intensity estimates, which results from many factors, 
including:   

• Data collection and analysis method 
• Types of jobs being considered (e.g., direct, indirect, and induced) 
• Types of occupations being considered (e.g., factory worker, installer, salesperson). 
• Variation in estimates of capacity being installed (for job forecasts) 
• Technologies included (e.g., PV, CSP, solar water heating) 
• Types of industry subsectors included (residential new and retrofit, commercial, utility, 

remote or off-grid) 
• Variation in metrics or units being used 
• Variation in the time periods being considered, such as the lifespan of an installation or 

within only a certain phase (e.g., construction, O&M) 
• Whether a study is measuring gross or net job impacts (net impacts account for 

displacement of jobs in other industries such as coal or natural gas). 
 

In this and many reports, the unit of measure used for jobs is the job-year or full-time equivalent 
(FTE), which represents full-time employment for one person for the duration of a year. A 
common metric for labor intensity is jobs/MW (or FTEs/MW), although other metrics such as 
jobs per MWh or jobs per dollar invested are also used depending on the question of interest. 

2.5.2 Current and Projected Employment in the Solar Industry, Global and U.S. 
 
In 2008, an estimated 173,000 people15 were employed worldwide in the solar electric industry, 
according to a 2009 New Energy Finance (NEF) study (McCrone et al. 2009). Most of these jobs 
were in the PV manufacturing value chain and in the construction and installation of PV 
components and projects.16 Of the 173,000 jobs, the PV industry contributed about 169,000 and 
the CSP industry about 4,000. The 169,000 PV jobs correspond to 5.8 GW produced and 
installed globally in 2008 and 14.7 GW of cumulative installed PV capacity through 2008.17

An earlier report produced by the United Nations Environment Programme (UNEP) in 2008 
compiled an estimate of global PV employment based on five industry leaders:  Germany, Spain, 
China, Japan, and the United States. PV jobs in these countries together amounted to 
approximately 170,000 jobs

  

18

                                                 
15 These are direct and indirect jobs, in FTEs. The figure includes jobs in PV and CSP for electricity generation, not 
solar hot water heating jobs. Also not included are induced jobs. 

 worldwide in 2007 (Renner et al. 2008). The 170,000 job number 

16 All job and labor intensity figures quoted in this section from the McCrone et al., New Energy Finance article of 
2009 refer to FTEs. 
17 The 14.7 GW of cumulative installed PV capacity through 2008 is higher than the 13.9-GW estimate provided in 
Section 1.1.1 of this report. Estimates of cumulative installed PV capacity through 2008 range from 13-17 GW. 
18 The figure of 170,000 total jobs worldwide provided in the UNEP report includes direct and indirect jobs. 
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for 2007 is similar to the NEF number of 169,000 PV jobs in 2008 (though the estimates are one 
year apart). However, as previously stated, it is not unusual for job estimates to vary based on 
many factors, including differences in methodology and metrics, which jobs in the value chain 
are being counted, and in this case, for which year and which countries the data are being 
provided. 

Of the 170,000 global PV jobs reported by UNEP for the year 2007, China held the most jobs, 
with 70% of its 55,000 jobs going to the manufacture of PV cells, modules, and processed 
silicon. Germany19

Estimates of U.S. PV jobs for the year 2007 range from 6,000 to 20,000 jobs. EIA reports 
employment in the PV manufacturing industry to be about 6,200 jobs in 2007, based on a survey 
of PV cell/module manufacturers (EIA 2008a). The EIA number does not include all jobs along 
the PV value chain and does not include indirect jobs. By comparison, for the year 2007, ASES 
reported 8,700 direct jobs and 19,800 direct plus indirect jobs (ASES and MISI 2008). For the 
year 2008, EIA’s survey yielded about 11,250 jobs in PV cell/module manufacturing (EIA 
2009). If one used the EIA 2007 and 2008 numbers as an estimate for direct PV jobs, and used a 
multiplier of 1.4 indirect jobs for every direct job, then direct plus indirect PV jobs for 2007 and 
2008 would be about 14,800 and 27,000 jobs, respectively.

 and Spain held approximately 35,000 and 26,000 jobs, respectively, in 2007. 
Japan’s PV employment levels were estimated to be similar to Germany’s (Renner et al. 2008). 
U.S. PV jobs reported by UNEP were 6,800 direct and 15,700 direct plus indirect jobs for the 
year 2006, based on an estimate provided by ASES (Bezdek 2007). However, there is a large 
range in the estimates of U.S. PV jobs provided by various studies. 

20

Regarding projected employment in the United States, Navigant Consulting published an 
employment impact study in September 2008 based on the assumption that the federal 
investment tax credit (ITC) would be extended. A month later, the Emergency Economic 
Stabilization Act (EESA) of 2008 extended and enhanced the ITC (beyond the assumptions 
made in the Navigant study). The Navigant study estimated that 440,000 jobs

 

21 would be created 
in the U.S. solar industry in 2016 if the ITC were extended for 8 years, which is 276,000 more 
jobs than would have been created with only a reduced ITC (the residential ITC expiring and the 
commercial ITC reduced to 10% at the end of 2008).22 Of the 440,000 projected jobs in 2016, 
110,000 were estimated to be direct, 130,000 indirect, and 200,000 induced (Navigant 
Consulting 2008). The breakout by technology is 377,000 PV jobs, 38,000 CSP jobs, and 24,000 
solar water heating jobs. The study methodology involved using economic multipliers to 
calculate indirect and induced jobs from direct jobs; the multipliers are different for construction 
and manufacturing versus O&M jobs (Navigant Consulting 2008, Grover 2007).23

                                                 
19 In Germany in 2008, total renewable energy jobs were about 278,000, with direct plus indirect solar industry jobs 
at 74,400 or 27% of the total, and about 51,000 of solar jobs attributable to PV (the rest to solar thermal heating) 
(Böhme et al. 2009). The increase from 35,000 jobs in 2007 to 51,000 in 2008 reflects 46% employment growth. 

   

20 Job multipliers are described further in the subsequent discussion of the Navigant employment impact study. 
21 Includes direct, indirect, and induced FTEs for PV, CSP, and solar water heating. 
22 The 440,000 total jobs corresponds to nearly 6.5 GW of solar installations added in 2008 and 28 GW of 
cumulative solar installations through 2008 in the extended ITC scenario. By comparison, the reduced ITC scenario 
resulted in 9 GW of cumulative installed capacity through 2008, 19 GW less than the extended ITC scenario. 
23 For construction and manufacturing, the ratio of indirect to direct is 1.4, and induced to direct is 2.1. For O&M, 
the ratios are 0.5 for indirect to direct and 0.8 for induced to direct. 
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2.5.3 Labor Intensity in the PV Industry, Global and U.S. 
 
Total employment in the solar industry is projected to increase over the next 8 years, but labor 
intensity could decrease over time resulting from increased automation, economies of scale, and 
greater efficiencies in the use of labor throughout the supply chain. Employment at the point of 
installation is a significant component of labor intensity, thus benefiting local economies. 

As with estimates of job numbers, labor intensity estimates for PV vary widely, with a range of 
25 jobs/MW to more than 50 jobs/MW (including direct and indirect jobs). As discussed earlier, 
the wide range is due to many factors including differences in methodology, which jobs along 
the value chain are being counted, and the types of indirect jobs considered.  

A recent study by New Energy Finance estimated global PV labor intensity in 2008 to be just 
over 28 jobs/MW, including direct and indirect FTEs (McCrone et al. 2009).24 The components 
of the 28 jobs/MW along the value chain are presented in Table 2.3. PV operation/maintenance 
(O&M), project construction, and rooftop installation accounted for 43% of PV jobs in 2008 
(O&M by itself was 5%). Manufacture of silicon, wafers, cells, and modules accounted for 50% 
of PV jobs in 2008. Adding induced jobs to the PV labor intensity of 28 jobs/MW using the 
multipliers provided in section 2.5.2 (see footnotes) amounts to nearly 53 jobs/MW.25

Table 2.3. Global PV Labor Intensity in 2008 (Direct and Indirect Jobs)  

 

Job Category GW Jobs/MW Total Jobs 
Operation 14.7 0.6 8,820 
PV project construction and 
rooftop installation26 5.8  11 63,800 

Silicon and wafers 5.8 3.5 20,300 
Cell manufacture 5.8 5 29,000 
Module manufacture 5.8 6 34,800 
Inverters 5.8 1.3 7,540 
Research 5.8 0.4 2,320 
Development and services 5.8 0.4 2,320 
Total   28.2 168,900 

McCrone et al. 2009 
 
The 28 jobs/MW worldwide labor-intensity number for 2008 is projected to decrease to about 
13 jobs/MW in 2025 (McCrone et al. 2009). The labor-intensity estimate for 2025 is based on 

                                                 
24 A highly referenced labor-intensity figure for the U.S. PV industry has been 35.5 jobs/MW installed, which 
originates from a study conducted by the Renewable Energy Policy Project (REPP) in 2001.24 The study focused on 
jobs along the value chain that are required to create a 2-kW residential PV system, and therefore does not factor in 
commercial or utility-scale systems. The 35.5 job/MW figure includes mostly direct plus some indirect jobs.  
25 Let x = direct jobs. Using the construction and manufacturing multipliers for the sake of simplicity, direct + 
indirect jobs = x + 1.4x = 2.4x = 28.2. So x = 28.2/2.4 or 11.75 jobs. Total jobs = x + 1.4x + 2.1x = 4.5x = 
4.5(11.75) = 52.875 or about 53 jobs. In summary: the multiplier for total to direct jobs is 4.5, the multiplier for total 
jobs given direct + indirect jobs is 1.875, and the multiplier for induced jobs given direct + indirect jobs is 0.875.    
26 The PV project construction and rooftop installation components were combined based on the data in the New 
Energy Finance report for the purpose of presenting a global labor intensity for all PV system types. 
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39 GW of PV production and installation and 340 GW of cumulative installed PV capacity in 
2025. The share of PV jobs in 2025 attributed to O&M increases to 29% (compared to 5% in 
2008) based on the large cumulative installed PV capacity. PV project construction and rooftop 
installation account for 33%, whereas manufacture of silicon and wafers, cell, and modules 
account for 27% of PV jobs in 2025. Wafer, cell, and module manufacturing, system integration, 
and residential installations are projected to have the most dramatic drops in labor intensity, 
whereas commercial and utility installations will see only a slight decrease, one cause being that 
many of the efficiencies in these areas have already been realized (Navigant Consulting 2008). 

NREL discussions with several U.S. PV installation companies in 2008 also confirmed a pattern 
of decreasing labor intensity. In addition, other insights from these conversations included the 
following: 

• Most installation companies do not have well-defined business groups targeting 
residential, commercial, and utility markets. 

• Many installation companies anticipate substantial growth in the retrofit residential 
market. 

• The retrofit market seems to need more skilled sales people as growth continues. 
• Smaller companies are using skilled employees to do some unskilled work. 

 
2.5.4 Employment and Labor Intensity in the U.S. and Global CSP Industry 
 
As with PV installations, the construction phase of a CSP facility, as opposed to the operation 
phase, results in the greatest economic impact. A report by NREL examining the economic 
impacts of constructing a 100-MWe CSP facility in the United States, specifically Nevada, 
estimated that each year of a 3-year construction period would result in slightly more than 800 
direct jobs and approximately 1,600 indirect and induced jobs (Schwer and Riddel 2004).27 This 
equates to 8 direct jobs/MW and 24 jobs/MW including indirect and induced jobs, just for 
construction. In addition, 0.45 jobs per MW are created directly during the operations and 
maintenance phase.28

Another U.S. example for CSP is the 400-MWe Ivanpah Solar Electric Generating System 
(ISEGS) proposed for a site in California’s Mojave Desert, a power tower plant that would take 
4 years to build and require approximately 500 jobs averaged over the construction period, 
amounting to 1.25 jobs/MW during this time (CEC 2007b). The project also would require 
100 full-time jobs for O&M, equivalent to 0.25 jobs per MW. ISEGS is a very large system, and 
actually is a staged cluster of four separate CSP systems, which could explain the lower O&M 
labor intensity. 

 By comparison, Black & Veatch estimated more than twice that number 
for O&M, namely that every megawatt of CSP constructed results in 0.94 permanent O&M jobs 
(Stoddard et al. 2006). It is unclear, however, whether the higher number includes indirect as 
well as direct jobs. 

                                                 
27 The term “MWe” stands for “megawatt electrical,” and is used to distinguish electrical generation from thermal 
generation at CSP plants.  
28 Direct jobs are in FTEs. In total, 140 O&M jobs are created annually when including indirect and induced jobs. 
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Globally, CSP labor intensity in 2008 is estimated to be 23 jobs/MW (including direct and 
indirect FTEs), which comprises the following components: operation, 0.8 jobs; project 
construction, 12 jobs; manufacturing, 10 jobs; and development and services, 0.4 jobs (McCrone 
et al. 2009).  

2.5.5 Quality Assurance and Certification for Solar PV Installation 
 
Proper installation of solar PV systems is essential for accelerating market acceptance and 
maintaining consumer confidence. DOE SETP supports multi-tiered training and certification 
processes for solar installation technicians by providing funding to the North American Board of 
Certified Energy Practitioners (NABCEP), the only North American organization developing 
and implementing consistent standards. Between years 2003 and 2008, NABCEP certified 
587 PV installers29 and awarded its Certificate of Basic Knowledge to 999 people.30

2.5.6 DOE Response to Current Barriers in Workforce Development 

 The number 
of PV installer certificates issued rose by 22% in 2008, and the number of Certificates of Basic 
Knowledge awarded rose by more than 100%. 

 
Research into workforce development tends to focus on estimating the number of jobs that will 
result from enactment of regulatory policies such as state renewable portfolio standards (RPSs) 
or financial incentives such as the ITC. Establishing baselines for the number of jobs within the 
solar industry has proved to be difficult, and researchers often are hindered by the lack of 
detailed data on occupations found in the solar industry. Based on a submission by DOE SETP, 
however, the Office of Management and Budget (OMB) announced on January 21, 2009, that the 
Standard Occupational Classification for 2010 will be revised to include the occupation of “Solar 
Photovoltaic Installer” (47–2231), thus making it easier to track the number of PV technicians 
and installers. 

To better assess the education, training, and workforce development needs of the solar industry, 
SETP activities in 2009 included: 

• Commencing the development of the Solar Installer Instructor Training network, a multi-
year effort to provide funding to current educational providers to help train instructors at 
other educational institutions that are starting training programs for the downstream PV 
workforce. 

• Exploring ways to provide support to activities that promote higher education in solar 
technologies and upstream workforce development. 

• Providing funding for research and analysis on knowledge gaps, including an 
investigation of critical occupational profiles and estimates of employment within the 
solar industry. 

                                                 
29 It is estimated that NABCEP-certified PV installers represent approximately 10% of the total number of PV 
installers in the United States. 
30 Professionals holding this certificate have demonstrated an understanding of the basic terms and operational 
aspects of a PV system, but the certificate by itself does not qualify an individual to install PV systems. The 
Certificate of Knowledge is held not only by persons interested in becoming installers, but also by industry 
salespeople, contractors, local code officials, utility inspectors, and others. 
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• Through a memorandum of understanding signed in May 2009, partnering with the 
Departments of Labor and Education in leveraging resources to provide green jobs 
training and expertise. 

• Collaborating with federal agencies and other organizations to provide more accessible 
labor statistics. 
 

2.6 References 
 
The American Solar Energy Society (ASES) and Management Information Services, Inc. (MISI) 
(2008). Defining, Estimating, and Forecasting the Renewable Energy and Energy Efficiency 
Industries in the U.S. and in Colorado. 
http://www.ases.org/index.php?option=com_content&view=article&id=465&Itemid=58. 
Accessed December 2009.  

Andraka, C.E. (July 2, 2008). Statement of Charles E. Andraka, Sandia National Laboratories. 
Concentrating Solar Power. United States Senate Committee on Energy and Natural Resources 
Field Hearing in Albuquerque, New Mexico. 

Barclays. (2009). Solar Energy Handbook: The Second Growth Phase of Solar Era. Barclays 
Capital. 

Bartlett, J.E.; Margolis, R.M.; Jennings, C.E. (2009). The Effects of the Financial Crisis on 
Photovoltaics: An Analysis of Changes in Market Forecasts from 2008 to 2009. National 
Renewable Energy Laboratory. NREL Report no. TP-6A2-46713. 

Bezdek, B. (2007). Renewable Energy and Energy Efficiency: Economic Drivers for the 21st 
Century. Boulder, CO: American Solar Energy Society. 
http://www.ases.org/index.php?option=com_content&view=article&id=465&Itemid=58. 
Accessed November 2009. 

Böhme, D.; Dürrschmidt, W.; Van Mark, M., eds. (June 2009). Renewable Energy Sources in 
Figures: National and international development. Berlin, Germany: Federal Ministry for the 
Environment, Nature Conservation and Nuclear Safety (BMU). http://www.erneuerbare-
energien.de/inhalt/5996/3860/. Accessed November 20, 2009. 

Bradford, T. (2008). Polysilicon: Supply, Demand, and Implications for the PV Industry. 
Prometheus Institute and Greentech Media. 

Bradford, T.; Letendre, S.; Flynn, H.; Maycock, P. (March 2006). “22nd Annual Data 
Collection.” PV News. Prometheus Institute and Greentech Media. 

Bradford, T.; Englander, D.; Lewin, A.; Maycock, P. (2008a). March 2008. “24th Annual Data 
Collection - Preliminary.” PV News. Prometheus Institute  and Greentech Media. 

Bradford, T.; Englander, D.; Lewin, A.; Maycock, P. (2008b). April 2008. PV News. “Letter 
from the Editor.” Prometheus Institute  and Greentech Media. 

Bradford, T.; Englander, D.; Lewin, A.; Maycock, P. (2008c). May 2008. PV News. “Polysilicon 
Forecasts through 2012.” Prometheus Institute and Greentech Media. 

http://www.ases.org/index.php?option=com_content&view=article&id=465&Itemid=58�
http://www.ases.org/index.php?option=com_content&view=article&id=465&Itemid=58�
http://www.erneuerbare-energien.de/inhalt/5996/3860/�
http://www.erneuerbare-energien.de/inhalt/5996/3860/�


 
47 

Bradford, T.; Englander, D.; Smith, F.; Maycock, P. (April 2009). “25th Annual Data Collection 
Results: PV Production Explodes in 2008.” PV News. Prometheus Institute and Greentech 
Media. 

Bullard, N.; Chase. J.; d’Avack, F. (May 20, 2008). “The STEG Revolution Revisited.” Research 
Note. London: New Energy Finance. 

California Energy Commission (CEC). (2007a). August 2007. “Memorandum of Understanding 
Between the U.S. Department of the Interior, Bureau of Land Management California Desert 
District, and the California Energy Commission Staff Concerning Joint Environmental Review 
for Solar Thermal Power Plant Projects.” 
http://www.energy.ca.gov/siting/solar/BLM_CEC_MOU.PDF. Accessed November 23, 2009. 

California Energy Commission (CEC). (2007b). October 12, 2007. Ivanpah Application for 
Certification, Executive Summary. 
http://www.energy.ca.gov/sitingcases/ivanpah/documents/applicant/AFC/Volume1/. Accessed 
November 23, 2009. 

Citi Investment Research. (2009). U.S. Solar Stocks: Inventory Has Yet to Peak, so It’s Still Too 
Early. Citi Investment Research. 

Cowen & Co. (2009). Industry Outlook: Industry Hoping for Help from Stimulus Bill. Cowen & 
Co. 

Deutsche Bank. (2009). Solar Photovoltaic Industry: Looking Through the Storm. Deutsche 
Bank. 

Emerging Energy Research. (2007). Global Concentrated Solar Power Markets and Strategies, 
2007–2020. Cambridge, MA: Emerging Energy Research. 

Feltrin, A.; Freundlich, A. (2008). “Material Considerations for Terawatt Level Deployment of 
Photovoltaics.” Renewable Energy, 33, pp.180–185. 

First Solar Inc. (2008). “Corporate Overview Q3 2008.” First Solar Web site. 
http://investor.firstsolar.com/phoenix.zhtml?c=201491&p=irol-irhome. Accessed March 17, 
2009. 

Grama, S.; Bradford, T. (2008). Thin-Film PV 2.0: Market Outlook Through 2012. Prometheus 
Institute and Greentech Media. 

Grama, S.; Wayman, E.; Bradford, T. (2008) Concentrating Solar Power—Technology, Cost, 
and Markets. 2008 Industry Report. Cambridge, MA: Prometheus Institute and Greentech 
Media. 

Grover, S. (2007). Energy, Economic, and Environmental Benefits of the Solar America 
Initiative. Prepared for the National Renewable Energy Laboratory by ECONorthwest. NREL 
Report SR-640-41998. 

Herndon, A. (January 20, 2009). “Sunrise in the West: California’s $1.9bn Renewable Energy 
Transmission Line.” Analyst Reaction. London: New Energy Finance. 

Maycock, Paul D. (February 2002). “World PV Cell/Module Production (1988-2001).” PV 
News. 

http://www.energy.ca.gov/siting/solar/BLM_CEC_MOU.PDF�
http://www.energy.ca.gov/sitingcases/ivanpah/documents/applicant/AFC/Volume1/�
http://investor.firstsolar.com/phoenix.zhtml?c=201491&p=irol-irhome�


 
48 

McCrone, A.; Peyvan, M.; Zindler, E. (June 17, 2009). “Net Job Creation to 2025: Spectacular in 
solar, but modest in wind.” Research Note. London: New Energy Finance. 

Mehta, S.; Bradford, T.; (2009). PV Technology, Production, and Cost, 2009 Forecast: The 
Anatomy of a Shakeout. Prometheus Institute and Greentech Media. 

Merrill Lynch. (2008). Solar Thermal: Not Just Smoke and Mirrors. New York, NY: Merrill 
Lynch. 

Morgan Stanley. (2009). Solar Devices: Dislocation – Industry Reset. Morgan Stanley. 

Mints, P.; Tomlinson, D. (2007). Photovoltaic Manufacturer Shipments & Competitive Analysis 
2006/2007. Report # NPS-Supply2. Palo Alto, CA: Navigant Consulting Photovoltaic Service 
Program. 

Mints, P.; Tomlinson, D. (2008). Photovoltaic Manufacturer Shipments & Competitive Analysis 
2007/2008. Report # NPS-Supply3. Palo Alto, CA: Navigant Consulting Photovoltaic Service 
Program. 

Mints, P. (2009). Photovoltaic Manufacturer Shipments, Capacity, & Competitive Analysis 
2008/2009. Report # NPS-Supply4. Palo Alto, CA: Navigant Consulting Photovoltaic Service 
Program. 

Navigant Consulting (2008). Economic Impacts of Extending Federal Solar Tax Credits. 
Prepared for the Solar Energy Research and Education Foundation (SEREF). 
http://www.seia.org/cs/news_research_and_multimedia/research/. Accessed February 2009. 

Oppenheimer. (2009). PV Market Forecast. Oppenheimer & Co. 

Podewils, C. (February 2008). “On the glass path.” Photon International. pp.74–79. 

Renner, M.; Sweeney, S.; Kubit, J. (2008). Green Jobs: Towards decent work in a sustainable, 
low-carbon world. Washington, DC: Worldwatch Institute. Commissioned and funded by United 
Nations Environment Programme (UNEP). 
http://www.unep.org/labour_environment/features/greenjobs-report.asp. Accessed July 2009. 

Resseguie, L. (November 2008). E-mail correspondence. U.S. Bureau of Land Management 
(BLM).  

Rogol, M.; Choi, P.; Conkling, J.; Fotopoulos, A.; Peltzman, K.; Roberts, S. (2006). Solar 
Annual 2006: The Gun Has Gone Off. Solar Verlag GmbH/Photon Consulting. 

Rogol, M.; Farber, M.; Flynn, H.; Meyers, M.; Paap, S.; Porter, C.; Rogol, J.; Song, J. (2008). 
Solar Annual 2008: Four Peaks. Photon Consulting. 

Schwer, R.K.; Riddel, M. (February 2004). The Potential Economic Impact of Constructing and 
Operating Solar Power Generation Facilities in Nevada. Prepared for the National Renewable 
Energy Laboratory by the Center for Business and Economic Research at UNLV. NREL Report 
SR-550-35037. 

Stoddard, L.; Abiecunas, J.; O’Connell, R. (April 2006). Economic, Energy and Environmental 
Benefits of Concentrating Solar Power in California. Prepared for the National Renewable 
Energy Laboratory by Black & Veatch. NREL Report SR-550-39291. 

Thomas Weisel. 2009. Alternative Energy; Presentation Materials to Investors. Thomas Weisel 
Partners. 

http://www.seia.org/cs/news_research_and_multimedia/research/�
http://www.unep.org/labour_environment/features/greenjobs-report.asp.%20Accessed%20July%202009�


 
49 

U.S. DOE. (2009). Report to Congress. Concentrating Solar Power Commercial Application 
Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation. U.S. 
Department of Energy, www.eere.energy.gov/solar/pdfs/csp_water_study.pdf. 

U.S. Department of Energy, Energy Information Administration (EIA). (2008a). Solar 
Photovoltaic Cell/Module Manufacturing Activities 2003-2007. 
http://www.eia.doe.gov/cneaf/solar.renewables/page/solarreport/solarpv.html. Accessed May 28, 
2009. 

U.S. Department of Energy, Energy Information Administration (EIA). (2008b). Solar Thermal 
and Photovoltaic Collector Manufacturing Activities 2003-2007. 
http://www.eia.doe.gov/cneaf/solar.renewables/page/solarreport/solar.html. Accessed May 28, 
2009. 

U.S. Department of Energy, Energy Information Administration (EIA). (2009). Solar 
Photovoltaic Cell/Module Manufacturing Activities 2008. 
http://www.eia.doe.gov/cneaf/solar.renewables/page/solarreport/solarpv.pdf. Accessed January 
12, 2010. 

U.S. Department of the Interior (DOI). October 28, 2009. “Memorandum of Understanding 
among the U.S. Department of Agriculture, Department of Commerce, Department of Defense, 
Department of Energy, Environmental Protection Agency, the Council on Environmental 
Quality, the Federal Energy Regulatory Commission, the Advisory Council on Historic 
Preservation, and the Department of the Interior, regarding coordination in federal agency review 
of electric transmission facilities on federal land.” 
http://www.doi.gov/news/09_News_Releases/102809a.html. Accessed November 25, 2009. 

Wei, M; Patadia, S.; Kammen, D. (2010). “Putting Renewables and Energy Efficiency to Work: 
How Many Jobs Can the Clean Energy Industry Generate in the U.S.?” Energy Policy. Volume 
38. pp. 919-931. http://rael.berkeley.edu/greenjobs. Accessed January 12, 2010.  

Winegarner, R.M.; Johnson, R.O. (2006). Polysilicon 2006. Sage Concepts, Inc./Solar Insights 
LLC. 

Wu, J.; Chase, J. (2009). “Silicon and Wafer Spot Price Index.” Analyst Reaction. London: New 
Energy Finance. 

Yahoo Finance. (2009). Market Vectors Steel ETF (SLX). 
http://finance.yahoo.com/q/hp?s=SLX&a=11&b=31&c=2005&d=00&e=1&f=2009&g=m. 
Accessed July 2009. 

Zweibel, K. (2005). The Terawatt Challenge for Thin-Film PV. NREL/TP-520-38350. Golden, 
CO: National Renewable Energy Laboratory. 

  

http://www.eere.energy.gov/solar/pdfs/csp_water_study.pdf�
http://www.eia.doe.gov/cneaf/solar.renewables/page/solarreport/solarpv.html�
http://www.eia.doe.gov/cneaf/solar.renewables/page/solarreport/solar.html�
http://www.eia.doe.gov/cneaf/solar.renewables/page/solarreport/solarpv.pdf�
http://www.doi.gov/news/09_News_Releases/102809a.html�
http://rael.berkeley.edu/greenjobs�
http://finance.yahoo.com/q/hp?s=SLX&a=11&b=31&c=2005&d=00&e=1&f=2009&g=m�


 
50 

3. Cost, Price, and Performance Trends 

This chapter covers cost, price, and performance trends for PV and CSP. Sections 3.1 and 3.2 
discuss levelized cost of energy, solar resource, and capacity factor for PV and CSP. Section 3.3 
provides information on efficiency trends for PV cells, modules, and systems. Section 3.4 
discusses PV module reliability. Sections 3.5 and 3.6 cover PV module and installed-system cost 
trends. Section 3.7 discusses PV operations and maintenance (O&M) trends. Section 3.8 
summarizes CSP installation and O&M cost trends, and Section 3.9 presents information on the 
characteristics and performance of various CSP technologies. 
 
3.1. Levelized Cost of Energy, PV and CSP 
 
Levelized cost of energy (LCOE) is the ratio of an electricity-generation system's amortized 
lifetime costs (installed cost plus lifetime O&M costs) to the system's lifetime electricity 
generation. The calculation of LCOE is highly sensitive to installed system cost, O&M costs, 
location, orientation, financing, and policy. Thus it is not surprising that estimates of LCOE vary 
widely across sources. 
 
One recent source estimates that worldwide, the range of LCOE is approximately $0.20–$0.80 
per kWh for rooftop PV and $0.12–$0.18 per kWh for parabolic trough CSP, not including 
government incentives (REN21 2008). The wide LCOE range for PV ($0.20–$0.80 per kWh) is 
due largely to the effect on LCOE of location and the corresponding solar radiation (insolation). 
Worldwide, typical PV LCOE ranges are $0.20–$0.40 per kWh for low latitudes with high 
insolation of 2,500 kWh/m2/year, $0.30–$0.50 per kWh for 1,500 kWh/m2/year (typical of 
Southern Europe), and $0.50–$0.80 per kWh for 1,000 kWh/m2/year (higher latitudes) (REN21 
2008). See Figure 3.2 for a map of the solar resource in the United States, Germany, and Spain. 
 
Figure 3.1 shows LCOE for residential PV systems in selected U.S. cities ranging from about 
$0.20/kWh to more than $0.32/kWh (when calculated with the federal ITC) based on the quality 
of the solar resource. Without the ITC, the range for these same cities is about $0.28/kWh to 
$0.46/kWh. 
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Figure 3.1. LCOE for residential PV systems in several U.S. cities in 2008, with and without the 

federal investment tax credit (NREL 2009a)31

 
 

The LCOEs of commercial and utility-scale PV systems are generally lower than those of 
residential PV systems located in the same region. Installed and O&M costs per watt tend to 
decrease as PV system size increases owing to more advantageous economies of scale and other 
factors (see Section 3.6 on PV Installation Cost Trends and Section 3.7 on PV Operations and 
Maintenance). In addition, larger, optimized, better-maintained PV systems can produce 
electricity more efficiently and consistently. 
 
3.2. Solar Resource and Capacity Factor, PV and CSP 
 
Of all the renewable resources, solar is by far the most abundant. With 162,000 terawatts 
reaching Earth from the sun, just 1 hour of sunlight could theoretically provide all of society’s 
energy needs for 1 year. 

3.2.1. Solar Resource for PV 
 
Photovoltaics can take advantage of direct and indirect (diffuse) insolation, whereas CSP is 
designed to use only direct insolation. As a result, PV modules need not directly face and track 
incident radiation as CSP systems must do. This has enabled PV systems to have broader 
geographical application than CSP. 

Figure 3.2 illustrates the photovoltaic solar resource in the United States, Germany, and Spain 
for a flat-plate PV collector tilted south at latitude. Solar resources across the United States are 
mostly good to excellent, with solar insolation levels ranging from about 1,000–2,500 

                                                 
31 Assumptions for Figure 3.1: residential market, 30-year analysis period, 30-year mortgage, 100% financed, 6% interest rate, 
6% discount rate, marginal tax rate 35%, installed cost $7.5/W, $300 inverter replacement at year 10, $280 inverter replacement 
at year 20, panel degradation 0.5%/year, ITC covers 30% of initial cost, no state or local incentives. 
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kWh/m2/year. The southwest U.S. is at the top of this range, while only Alaska and part of 
Washington are at the low end. The range for the mainland United States is about 1,350–2,500 
kWh/m2/year. The U.S. solar insolation level varies by about a factor of 2; this is considered 
relatively homogeneous compared to other renewable energy resources.  

As is evident from the map, the solar resource in the United States is much higher than in 
Germany, and the southwest United States has better resource than southern Spain. Germany’s 
solar resource has about the same range as Alaska’s, at about 1,000–1,500 kWh/m2/year, but 
more of Germany’s resource is at the lower end of that range. Spain’s solar insolation ranges 
from about 1,300–2,000 kWh/m2/year, which is among the best solar resource in Europe. 

 
Figure 3.2 Photovoltaic solar resource for the United States, Spain, and Germany32

(NREL 2009d) 
 

 
Solar PV resource maps are typically provided for horizontal flat-plate PV collectors versus flat-
plate collectors tilted south at latitude. A horizontally oriented module produces less energy per 
                                                 
32 Annual average solar resource data are for a solar collector oriented toward the south at tilt = local latitude. The 
data for Hawaii and the 48 contiguous states are derived from a model developed at SUNY/Albany using 
geostationary weather satellite data for the period 1998–2005. The data for Alaska were derived by NREL in 2003 
from a 40-km satellite and surface cloud cover database for the period 1985–1991. The data for Germany and Spain 
were acquired from the Joint Research Centre of the European Commission and capture the yearly sum of global 
irradiation on an optimally inclined surface for the period 1981–1990. State and countries are shown to scale, except 
for Alaska. 
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unit of module power than the same module tilted south or equipped with a system that tracks the 
sun. However, horizontal PV systems can be beneficial when land constraints become a 
significant factor, because they have a greater energy density per unit of land area than tilted or 
tracking systems. For a fixed land area, more electricity can be generated from a horizontal PV 
system than from a tilted or tracking system owing to space needed to avoid self-shading and to 
allow for maintenance. On flat commercial roofs, it is cheaper to install flat or nearly flat systems 
(Denholm and Margolis 2008b). 

The total land area suitable for PV is enormous and will not limit PV deployment. For example, 
a current estimate of the total roof area suitable for PV in the United States is approximately 
6 billion square meters, even after eliminating 35% to 80% of roof space to account for panel 
shading (e.g., by trees) and suboptimal roof orientations. With current PV performance, this area 
has the potential for more than 600 GW of capacity, which could generate more than 20% of 
U.S. electricity demand. Beyond rooftops, there are many opportunities for installing PV on 
underutilized real estate such as parking structures, awnings, airports, freeway margins, and 
farmland set-asides. The land area required to supply all end-use electricity in the United States 
using PV is about 0.6% of the country's land area (181 m2 per person) or about 22% of the 
“urban area” footprint (Denholm and Margolis 2008c). 

3.2.2 Solar Resource for CSP 
 
The geographic area that is most suitable for concentrating solar power is smaller than for PV 
because CSP uses only direct insolation. In the United States, the best location for CSP is the 
Southwest. Globally, the most suitable sites for CSP plants are arid lands within 35° north and 
south of the equator. Figure 3.3 shows the direct-normal solar resource in the southwestern 
United States, which includes a detailed characterization of regional climate and local land 
features; red indicates the most intense solar resource, and light blue indicates the least intense. 
Figure 3.4 shows locations in the southwestern United States with characteristics ideal for CSP 
systems, including direct-normal insolation greater than 6.75 kWh/m2/day, a land slope of less 
than 1°, and at least 10 km2 of contiguous land that could accommodate large systems (Mehos 
and Kearney 2007). 

After implementing the appropriate insolation, slope, and contiguous land area filters, 
53,900 square miles are available in the seven states considered to be CSP compatible: 
California, Arizona, New Mexico, Nevada, Colorado, Utah, and Texas. Table 3.1 summarizes 
the land area in these states that is ideally suited to CSP. This relatively small land area amounts 
to nearly 6,900 GW of resource potential and more than 16 million GWh of generating capacity, 
assuming a capacity factor between 25% and 50% (see Section 3.2.3) (Mehos and Kearney 2007, 
Andraka 2008). This is quadruple the annual U.S. electricity generation of about 4 million 
GWh.33

                                                 
33 EIA Net Generation by Energy Source: Total (All Sectors), rolling 12 months ending in June 2009 

 

www.eia.doe.gov/cneaf/electricity/epm/table1_1.html.  

http://www.eia.doe.gov/cneaf/electricity/epm/table1_1.html�
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Figure 3.3. Direct-normal solar resource in the 

U.S. Southwest 
(Mehos and Kearney 2007) 

 

 
Figure 3.4. Direct-normal solar radiation in the 
U.S. Southwest, filtered by resource, land use, 

and topography 
(Mehos and Kearney 2007) 

 
Table 3.1. Ideal CSP Land Area and Resource Potential in Seven Southwestern States34

State 
 

Available Area (square miles) Resource Potential (GW) 
Arizona 19,300 2,468 
California 6,900 877 
Colorado 2,100 272 
Nevada 5,600 715 
New Mexico 15,200 1,940 
Texas 1,200 149 
Utah 3,600 456 
Total 53,900 6,877 

Mehos and Kearney 2007 
 
3.2.3 Capacity Factor, PV and CSP 
 
Capacity factor is the ratio of an energy-generation system's actual energy output during a given 
period to the energy output that would have been generated if the system ran at full capacity for 
the entire period. For example, if a system ran at its full capacity for an entire year, the capacity 
factor would be 100% during that year. Because PV and CSP generate electricity only when the 
sun is shining, their capacity factors are reduced because of evening, cloudy, and other low-light 
periods. This can be mitigated in part by locating PV and CSP systems in areas that receive high 
levels of annual sunlight. The capacity factor of PV and CSP systems is also reduced by any 
necessary downtime (e.g., for maintenance), which is also the case for other generation 
technologies. 
 
For PV, electricity generation is maximized when the modules are normal (i.e., perpendicular) to 
the incident sunlight. Variations in the sun's angle that are due to the season and time of day 
reduce the capacity factor of fixed-orientation PV systems. This can be mitigated in part by 

                                                 
34 CSP power plants require about 5 acres of land area per MW of installed capacity. Electricity generation for a CSP plant can be 
estimated by assuming an average annual solar capacity factor of 25% to 50%, depending on the amount of thermal storage. 
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tilting stationary PV modules to maximize annual sunlight exposure or by incorporating one- or 
two-axis solar tracking systems, which rotate the modules to capture more normal sunlight 
exposure than is possible with stationary modules. Figure 3.5 shows the effect of insolation and 
use of tracking systems on PV capacity factors. Fixed tilt (at latitude) capacity factors are 14%–
24% for Seattle to Phoenix, whereas 1- and 2-axis tracking systems result in higher ranges. 
Analysts sometimes use 18% or 19% for an average U.S. PV capacity factor.35

 
  

 
Figure 3.5. PV capacity factors varying by insolation and use of tracking systems  

(NREL 2009b)36

 
 

The most recently built CSP trough, tower, and dish-engine systems have AC capacity factors in 
the mid-20% range. With 6 hours of thermal storage, capacity factors increase to about 40%, and 
additional increases in thermal storage will enable capacity factors and dispatchability (the 
ability to increase or decrease electricity generation on demand) to increase even more. 
 
3.3 PV Cell, Module, and System Efficiency 
 
In addition to the solar resource and capacity factor discussed above, the amount of electricity 
produced by PV systems depends primarily on the following factors: 

• Cell type and efficiency 
• Module efficiency 
• System efficiency 
• Module reliability. 

                                                 
35 These are DC capacity factors, i.e., based on the DC rating of a PV system and taking into account inverter and other system 
losses. By definition, they are lower than an AC capacity factor, which is how fossil, nuclear, and CSP plants are rated and thus 
are not directly comparable to more traditional AC capacity factors. 
36 Capacity factors were estimated using data from NREL’s PVWatts, a performance calculator for on-grid PV systems: 
http://rredc.nrel.gov/solar/codes_algs/PVWATTS/version1/. The capacity factors shown here reflect an overall derate factor of 
0.77, with the inverter and transformer component of this derate being 0.92, the defaults used in PVWatts. The array tilt is at 
latitude for the fixed tilt systems, the default in PVWatts. 
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This section discusses the efficiency of PV cells, modules, and systems. Module reliability is 
discussed in the next section. 

3.3.1 PV Cell Type and Efficiency 
 
Two categories of PV cells are used in most of today's commercial PV modules: crystalline 
silicon and thin film. The crystalline silicon category, called first-generation PV, includes 
monocrystalline and multicrystalline PV cells, which are the most efficient of the mainstream PV 
technologies and accounted for about 84% of PV produced in 2008 (Bartlett et al. 2009). These 
cells produce electricity via crystalline silicon semiconductor material derived from highly 
refined polysilicon feedstock. Monocrystalline cells, made of single silicon crystals, are more 
efficient than multicrystalline cells but are more expensive to manufacture. 

The thin-film category, called second-generation PV, includes PV cells that produce electricity 
via extremely thin layers of semiconductor material made of amorphous silicon (a-Si), copper 
indium diselenide (CIS), copper indium gallium diselenide (CIGS), or cadmium telluride (CdTe). 
Another PV cell technology (also second generation) is the multijunction PV cell. Multijunction 
cells use multiple layers of semiconductor material (from the group III and V elements of the 
periodic table of chemical elements) to absorb and convert more of the solar spectrum into 
electricity than is converted by single-junction cells. Combined with light-concentrating optics 
and sophisticated sun-tracking systems, these cells have demonstrated the highest sunlight-to-
electricity conversion efficiencies of any PV technologies, in excess of 40%. 

Various emerging technologies, known as third-generation PV, could become viable commercial 
options in the future, either by achieving very high efficiency or very low cost. Examples include 
dye-sensitized and organic PV cells, which have demonstrated relatively low efficiencies to date 
but offer the potential for substantial manufacturing cost reductions. 

The efficiencies of all PV cell types have improved over the past several decades, as illustrated 
in Figure 3.6, which shows the best research-cell efficiencies from 1975 to 2008. The highest-
efficiency research cell shown is a multijunction concentrator at 41.6% efficiency. Other 
research-cell efficiencies illustrated in the figure range from 20% to almost 28% for crystalline 
silicon cells, 12% to almost 20% for thin film, and about 5% and to 11% for the emerging PV 
technologies organic cells and dye-sensitized cells, respectively. 



 
57 

 
Figure 3.6. Best research cell efficiencies 1975–2009 

(Kazmerski 2009) 
 
3.3.2 PV Module Efficiency 
 
The cells described in Figure 3.6 were manufactured in small quantities under ideal laboratory 
conditions and refined to attain the highest possible efficiencies. The efficiencies of mass-
produced cells are always lower than the efficiency of the best research cell. Further, the 
efficiency of PV modules is lower than the efficiency of the cells from which they are made. 

In 2008, the typical efficiency of crystalline silicon-based PV modules ranged from 13.5% for 
multicrystalline modules to 17.5% for high-efficiency monocrystalline modules (Mehta and 
Bradford 2009). For thin-film modules, typical efficiencies ranged from 6.5% for a-Si modules 
to about 10% for CIGS and CdTe modules (Mehta and Bradford 2009). 
 
Figure 3.7 shows best-in-class module efficiencies from 1999 to 2008, with the best crystalline 
silicon efficiencies at 17%–19% and the best thin-film efficiencies at 7%–11% in 2008.  
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Figure 3.7. Best-in-class commercial module efficiencies, 1999–2008, compiled from module 

survey data (Kreutzmann 2008, Photon International 1999–2008) 
 
3.3.3 PV System Efficiency and Derate Factor 
 
A PV system consists of multiple PV modules wired together and installed on a building or other 
location. The AC output of a PV system is always less than the DC rating, which is due to 
system losses.  

For grid-connected applications, a PV system includes an inverter that transforms the DC 
electricity produced by the PV modules into AC electricity. The average maximum efficiency of 
inverters was 95.5% in 2008, up from 94.7% in 2005 (Knoll and Kreutzmann 2008). Other 
factors that reduce a PV system's efficiency include dirt and other materials obscuring sun-
collecting surfaces, electrically mismatched modules in an array, wiring losses, and high cell 
temperatures. For example, NREL’s PVWatts,37

3.4 PV Module Reliability 

 a performance calculator for on-grid PV 
systems, uses an overall derate factor of 0.77 as a default, with the inverter component of this 
derate being 0.92. 

 
Historic data suggest that reliability is a very important factor when considering the market 
adoption of a new technology, especially during the early growth stages of an industry. PV is 
currently experiencing unprecedented growth rates. To sustain these growth rates, it is imperative 
that manufacturers consider the implications of product reliability. 

                                                 
37 http://rredc.nrel.gov/solar/codes_algs/PVWATTS/version1/ 
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Today’s PV modules usually include a 25-year warranty. Standard warranties guarantee that 
output after 25 years will be at least 80% of rated output. This is in line with real world 
experience and predicted performance from damp-heat testing of modules (Wohlgemuth et al. 
2006). 
 
Manufacturers in the United States, Japan, and the European Union currently implement 
qualification standards and certifications that help to ensure that PV systems meet reliability 
specifications. There have been efforts to bring reliability standards to Chinese manufacturers as 
well, considering their rapid growth in the PV market. DOE has been a leader in engaging 
Chinese manufacturers in discussions on reliability standards and codes by organizing a series of 
reliability workshops and conferences in China. The global PV community realizes that if 
reliability standards are not quickly implemented among the fastest-growing producers, 
consumers left with high-maintenance installations could negatively impact market adoption of 
PV modules both now and in the future. 
 
3.5 PV Module Price Trends 
 
Photovoltaic modules have experienced significant improvements and cost reductions over the 
last few decades, and the market for PV modules has undergone unprecedented growth in recent 
years owing to government policy support and other financial incentives encouraging the 
installation of (primarily grid-connected) PV systems. Although PV module prices increased in 
the past several years, prices have been falling steadily over the past few decades and began 
falling again in 2008. This is illustrated in Figure 3.8, which presents average global PV module 
selling prices for all PV technologies.  

Although global average prices provide an index for the PV industry overall, a few caveats are in 
order. First, the PV industry is dynamic and rapidly changing, with advances in cost reductions 
for segments of the industry masked by looking at average prices. For example, thin-film PV 
technologies are achieving manufacturing costs and selling prices significantly lower than for 
crystalline silicon modules. See Table 3.2 (at the end of Section 3.5) for comparison of module 
costs and prices for various PV technologies. Applications such as large ground-mounted PV 
systems, for which deployment is increasing, and applications in certain countries and locations, 
accrue cost advantages based on factors such as economies of scale and the benefits of a more 
mature market (some of this is captured in Section 3.6 on PV installation cost trends). Finally, 
historical trends may not provide an accurate picture going forward, as new developments 
continue to change the PV industry landscape.  

Figure 3.8 shows average global PV module selling prices at the factory gate (i.e., prices do not 
include charges such as delivery and subsequent taxes), as obtained from sample market 
transactions. As stated earlier, these prices are averages over all PV module technologies 
including thin film, for PV power modules greater than 75 W in size and purchased in relatively 
small quantities. Excluded from this category are smaller PV modules, consumer indoor PV 
(e.g., for calculators and watches), and large (e.g., greater than 150 W) standard modules sold in 
large quantities (e.g., 500–1,000-unit minimums) in the unrestricted international commodity 
market. The large-module/large-quantity category has been increasing in market share in recent 
years and constituted more than half of module sales in 2008. In 2008, the average price per watt 
for the large-module/large-quantity category was 11% lower than for the power module category 
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shown in Figure 3.8. The current/nominal prices shown in the figure are actual prices paid in the 
year stated. The 2008/real prices are adjusted for inflation (indexed to 2008 U.S. dollars). 

 
Figure 3.8. Global, average PV module prices, all PV technologies, 1980–2008 

(Mints 2006, Mints 2009, U.S. Bureau of Economic Analysis 2009)38 39

 
PV module prices experienced significant drops in the mid-1980s resulting from increases in 
module production and pushes for market penetration during a time of low interest in renewable 
energy. Prices dropped by more than $10/W (in real 2008$) between the early- to mid-1980s. 
The price of PV by 1987 was approximately $9/W. PV prices then experienced an increase from 
1988 through 1990 as the supply of PV modules diminished because of a limitation in the 
availability of silicon wafers. For the first time in a decade, the market was limited by supply 
rather than demand. Prices then dropped significantly from 1991 to 1995 because of increases in 
manufacturing capacity and a worldwide recession that slowed PV demand. Module prices 
continued to fall, although at a slower rate from 1995 to 2003, which was due to global increases 
in module capacities and a growing market. By 2000, module prices were below $5/W, reaching 
a low of $3/W in 2003 (Mints 2009).  

 

Prices began to increase from 2003 to 2006 as European demand, primarily from Germany and 
Spain, experienced high growth rates after feed-in tariffs and other government incentives were 
adopted. Also contributing to the price increases was an imbalance between polysilicon supply 
and demand from around 2004 to mid-2008. Higher prices were sustained until the third quarter 
of 2008 when the global recession reduced demand, polysilicon supply constraints eased, and 

                                                 
38 Current/nominal data provided by Mints, then adjusted for inflation using GDP deflator from the U.S. Bureau of 
Economic Analysis. 
39 See Table 3.2 later in this section for comparison of module costs and prices for various PV technologies. 
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module supply increased. For the first time since 2003, average module prices declined to 
$3.65/W, down from approximately $4/W in 2007 (in real 2008$). 

Module prices vary considerably by technology (Table 3.2), influenced by variations in 
manufacturing cost and sunlight-to-electricity conversion efficiency, among other factors. 
Manufacturing cost is the reference point against which a manufacturer sets its profit margin; the 
closer the selling price is to the manufacturing cost, the lower the profit margin and vice versa. 
Higher conversion efficiency generally commands a price premium. This is because higher-
efficiency modules require less installation area per watt of electricity production and incur 
lower balance-of-systems costs (i.e., wiring, racking, and other system installation costs) per watt 
than lower-efficiency modules. The current estimated effect is a $0.10 increase in price per 1% 
increase in efficiency; for example, all else being equal, a 20%-efficient module would cost 
about $1 more per watt than a 10%-efficient module (Mehta and Bradford 2009). 

Table 3.2. Module Price, Manufacturing Cost, and Efficiency Estimates by Technology, 2008 

Technology Price  
(2008 $/Wp) 

Manufacturing Cost 
(2008 $/Wp) 

Conversion 
Efficiency 

High-efficiency monocrystalline silicon $3.83 $2.24 17.5% 
Multicrystalline silicon $3.43 $2.12–$3.1140 13.5%  
Amorphous silicon (a-Si) thin film  $3.00 $1.80 6.5% 
Copper indium diselenide/copper indium 
gallium diselenide (CIS/CIGS) thin film  $2.81 $1.26 10.2% 

Cadmium telluride (CdTe) thin film  $2.51 $1.25 10.0% 
Mehta and Bradford 2009 

 
3.6 PV Installation Cost Trends41

 
Lawrence Berkeley National Laboratory (LBNL) has collected project-level installed system cost 
data for grid-connected, customer-sited PV installations in the Unites States from a number of 
solar incentive program administrators (Wiser et al. 2009). The dataset currently includes 
approximately 52,000 PV systems installed in 16 states between 1998 and 2008 and totals 
565 MW, or 71% of all grid-connected PV capacity installed in the United States through 2008. 
Below are trends related to the installed system cost of the PV projects in the LBNL database. In 
all instances, installed costs are expressed in terms of real 2008 dollars and represent the cost to 
the consumer before receipt of any grant or rebate. PV capacity is expressed in terms of the rated 
module direct-current (DC) power output under Standard Test Conditions. Note that the 
terminology “installed cost” in this report represents the price paid by the end-user/customer. 
This should not be confused with the term “cost” as used in other contexts to refer to the cost to a 
company before a product is priced for a market or end user.  

 

 

                                                 
40 The range in manufacturing cost for multicrystalline silicon includes $2.12 for global, vertically integrated PV module 
manufacturers, $2.74 for European manufacturers, and $3.11 for Asian manufacturers, with much of the difference being due to 
the price of polysilicon feedstock paid in 2008 by each type of producer. 
41 This section on PV installation cost trends was provided by Wiser et al. 2009, of LBNL, before the publication of their full 
report, “Tracking the Sun II. The Installed Cost of Photovoltaics in the U.S. from 1998-2008,” http://eetd.lbl.gov/ea/EMS/re-
pubs.html, with the full reference provided in the Chapter 3 references. Note that some of the numbers presented in this section 
may be slightly different from numbers in the published LBNL report, though the numbers stated in the text corresponding to the 
first figure of this section, Figure 3.9, are the same.  

http://eetd.lbl.gov/ea/EMS/re-pubs.html�
http://eetd.lbl.gov/ea/EMS/re-pubs.html�
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Figure 3.9 presents the average installed cost from 1998 to 2008 for the entire sample of projects. 
Capacity-weighted average costs declined from $10.8/W in 1998 to $7.5/W in 2008. This 
represents an average annual reduction of $0.3/W (i.e., a drop of 3.6% per year in real 
dollars). Figure 3.9 also shows that the distribution in installed costs, indicated by the standard 
deviation bars, has narrowed over time, suggesting a maturing market with converging costs. 
Both average installed costs and the distribution in installed costs, however, remained relatively 
stable from 2005 to 2007. Costs declined from 2007 to 2008 at the historical average pace of 
$0.3/W. 
 

 
Figure 3.9. Installed cost trends over time 

(Wiser et al. 2009) 
 
The long-term decline in installed costs from 1998 to 2008 is attributable primarily to a drop in 
non-module costs. Non-module costs can include inverters, other hardware, labor, permitting and 
fees, shipping, overhead, and profit. As shown in Figure 3.10, the average non-module costs 
(calculated as the difference between average total installed cost and a module price index42

 

) 
declined from approximately $5.9/W in 1998 to $3.8/W in 2008, a drop of $2.1/W. By  
comparison, module prices dropped by only $1.3/W over this 11-year period. From 2005 through 
2008, however, non-module costs remained relatively stable; in fact, from 2007 to 2008, non-
module costs increased slightly while module costs declined by $0.5/W. 

                                                 
42 The global, average annual price of power modules published by Navigant Consulting is used (see the previous section, 
Section 3.5 on PV Module Price Trends). 
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Figure 3.10. Module and non-module cost trends over time 

(Wiser et al. 2009) 
 
Although experience to date confirms that significant cost reductions occurred in the United 
States from 1998 through 2008, international experiences suggest that further cost reductions are 
possible and may accompany increased market size. Figure 3.11 compares installed costs in 
Japan, Germany, and the United States, focusing specifically on 2–5-kW residential systems 
installed in 2007 (and excluding sales tax).43 Among these systems, average installed costs were 
substantially lower in Japan and Germany ($6.1/W and $6.8/W, respectively) than in the United 
States ($8.1/W). These differences may partly reflect the much greater cumulative grid-
connected PV capacity in Japan and Germany (about 1.8 GW and 3.8 GW, respectively) at the 
end of 2007 compared to just 0.5 GW in the United States. However, it is also evident that larger 
market size alone does not account for all of the variation; installed costs are higher in Germany 
than in Japan, despite Germany’s grid-connected PV capacity being substantially greater.44

 
 

                                                 
43 Year 2008 data are not yet available for Germany and Japan. 
44 One potential explanation for the relatively low residential PV costs in Japan is that a large portion of the 
residential PV market consists of pre-fabricated homes that include PV as a standard feature. More generally, 
installed costs may differ among countries as a result of a wide variety of factors, including differences in module 
prices, technical standards for grid-connected PV systems, installation labor costs, procedures for receiving 
incentives and interconnection approvals, and the degree to which components are manufactured locally (thereby 
reducing transportation costs). 
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Figure 3.11. Average installed cost of residential systems completed in 2007  

in Japan, Germany, and the United States 
(Wiser et al. 2009) 

 
The United States is not a homogenous PV market, as evidenced by Figure 3.12, which compares  
the average installed cost of PV systems <10 kW completed in 2008 across 16 states. Average 
costs range from a low of $7.3/W in Arizona to a high of $10.5/W in Maryland. Differences in 
the average installed cost across these states may, in part, reflect the differing size and maturity 
of their PV markets. Specifically, the largest PV markets in the United States (California, New 
Jersey, and Colorado45

 

) have among the lowest average costs, and a number of smaller but 
relatively mature markets (Arizona, Connecticut, and Massachusetts) also have low costs. In 
addition, 8 of the 16 states shown in the Figure 3.12 (Arizona, Connecticut, Massachusetts, 
Minnesota, New Jersey, New York, Washington, and Vermont) exempted residential PV systems 
from state sales tax in 2008, and Oregon has no state sales tax. Sales tax exemptions effectively 
reduce post-sales tax installed costs by $0.2–0.4/W, depending on the otherwise applicable sales 
tax rate and assuming that PV hardware costs represent approximately 65% of the total installed 
cost of residential PV systems (an assumption supported by data presented later in this section). 

                                                 
45 The LBNL dataset does not include data from Colorado’s largest PV incentive program (Xcel Energy’s Solar 
Reward’s Program). Thus, the sample of Colorado projects is small, even though the total number of projects 
installed in the state in 2008 is relatively large. 
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Figure 3.12. Variation in installed costs among U.S. states 

(Wiser et al. 2009) 
 
The decline in U.S. PV installed costs over time is partly attributable to the fact that PV systems 
have gotten larger, on average, and exhibit some economies of scale. As shown in Figure 3.13, 
the average size of systems ≤10 kW (a proxy for residential systems) grew from 2.7 kW in 1998 
to 4.6 kW in 2008.46 Similarly, the average size of systems >10 kW (a proxy for non-residential 
systems) rose from 25 to 88 kW over the same period, although the trend is notably more uneven 
than for the smaller systems. As confirmed by Figure 3.14, installed costs generally decline as 
system size increases. In particular, the average installed cost of systems installed in 2008 was 
greatest for systems <2 kW, at $9.2/W, dropping to $6.2/W for systems in the 500–750-kW size 
range, a decline of approximately $2.6/W, or about 28%.47

 

 Of interest, however, is that the 
economies of scale are not continuous but, rather, are most apparent for systems at the lower and 
upper ends of the size spectrum (i.e., for systems in the <5 kW range and the >250 kW range). In 
addition, the average cost of systems >750 kW in 2008 was slightly higher than the average cost 
of 500–750 kW systems ($7.1/W vs. $6.6/W, respectively), perhaps indicative of a greater 
proportion of tracking systems within the larger size range.  

                                                 
46 The data provided by many PV incentive programs did not identify customer type (i.e., residential vs. non-
residential); thus ≤10 kW is used as a proxy for residential systems, recognizing that a non-trivial portion of systems 
≤10 kW are, in fact, non-residential. 
47 Note that the LBNL data do not include several larger PV systems installed in 2008 including a 2.4-MW plant in 
Fontana, CA; a 3.0-MW plant in Fairless Hills, PA; and a 12.6-MW plant in Boulder City, NV. Installed costs for 
the CA and NV projects ($4.3/W and $3.2/W, respectively), as reported in press releases, are considerably less than 
the average installed costs shown in Figure 8 for customer-sited projects >750 kW.  
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Figure 3.13. PV system size trends over time 

(Wiser et al. 2009) 
 

 
Figure 3.14. Variation in installed cost according to PV system size 

(Wiser et al. 2009) 
 
In addition to variation across states and system size, installed costs also vary across key market 
segments and technology types. Figure 3.15 compares the average installed cost of residential 
retrofit and new construction systems completed in 2008, showing separate comparisons for both 
rack-mounted and building-integrated photovoltaic (BIPV), and focusing on systems of 1–3 kW, 
because that is the size range typical of new construction systems. Rack-mounted systems 
installed in residential new construction average $1.2/W less than comparably sized residential 
retrofits. For BIPV systems, residential new construction systems average $1.5/W less than 
residential retrofits. Figure 3.16 compares installed costs of systems using crystalline silicon 
versus thin-film modules, among rack-mounted systems installed in 2008. The data indicate that, 
in both the <10-kW and 10–100-kW size ranges, PV systems using thin-film modules were more 

0

2

4

6

8

10

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Installation Year

Av
er

ag
e 

Si
ze

 o
f 

 
 

Sy
st

em
s 

(k
W

)

0

20

40

60

80

100

Av
er

ag
e 

Si
ze

 o
f >

10
 k

W
 

Sy
st

em
s 

(k
W

)

≤10 kW (left axis)
>10 kW (right axis)

$0

$2

$4

$6

$8

$10

$12

<2 kW
n=791
1 MW

2-5 kW
n=6349
22 MW

5-10 kW
n=4247
29 MW

10-30 kW
n=1010
14 MW

30-100 kW
n=297
15 MW

100-250 kW
n=147
24 MW

250-500 kW
n=109
37 MW

500-750 kW
n=31

18 MW

>750 kW
n=32

34 MW

 System Size Range (kW)

Av
er

ag
e 

In
st

al
le

d 
Co

st
 (2

00
8$

/W
)

Avg. +/- Std. Dev.
Systems Installed in 2008



 
67 

costly, on average, than those with crystalline technology, with a difference of $0.8/W in the 
<10-kW size range and a somewhat smaller cost differential ($0.3/W) in the 10–100-kW range. 
In the >100-kW size range, average installed costs for the two types of systems differed by less 
than $0.1/W.  
 

 
Figure 3.15. Comparison of installed cost for residential retrofit vs. new construction 

(Wiser et al. 2009) 
 

 
Figure 3.16. Comparison of installed cost for crystalline vs. thin-film systems 

(Wiser et al. 2009) 
 
Figure 3.10 presents implied module and non-module costs, imputed from data on total installed 
cost and a module price index. Figure 3.17, in contrast, presents actual data on module, inverter, 
and “other” (e.g., mounting hardware and labor) costs reported to incentive program 
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administrators, for a limited number of projects installed in 2008.48 The magnitude of each 
component and its relative contribution to total costs are similar for the two system size ranges 
shown (<10 kW and 10–100 kW).49

 

 Modules, on average, represent slightly more than 50% of 
total costs, inverters average just under 10% of total costs, and “other” costs make up the 
remaining portion.  

The component cost breakdown in Figure 3.17 conforms reasonably well to PV installer data 
obtained by LBNL in 2008, in which installers shared data on the typical contributions of a 
variety of specific cost components, as a percentage of total installed cost (Figure 3.18). 
Figure 3.18 also presents the average percentage contribution for each cost component for three 
separate PV markets (residential, small commercial, and large commercial).50

 

 Installers reported 
that module costs typically represent approximately 50% of total installed cost, and inverters 
represent 6%–7% of total costs, which is generally consistent with the results presented 
previously. The results, however, provide a greater level of granularity in understanding the 
composition of the remaining costs. In particular, the data indicate that labor and other materials 
contribute roughly 10% each. The remaining cost components include overhead, profit, and 
regulatory compliance (e.g., permitting, interconnection, rebate application), which represent a 
notably greater percentage of total installed costs for residential systems compared with non-
residential systems. 

 
Figure 3.17. Module, inverter, and other costs 

(Wiser et al. 2009) 
 

                                                 
48 Of the 195 MW of 2008 PV installations in the LBNL dataset, incentive program administrators provided module 
and inverter cost data for only 2.6 MW (1.3%), which form the underlying data for this figure. 
49 Insufficient data were available for systems >100 kW to warrant inclusion in this figure. 
50 In total, six installers provided data for residential and large commercial systems, and five installers provided data 
for small commercial systems. 
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Figure 3.18. PV installer data on component costs 

(Wiser et al. 2009) 
 
3.7 PV Operations and Maintenance 
 
Operations and maintenance (O&M) is a significant contributor to the lifetime cost of PV 
systems, and reducing the O&M costs of system components is an important avenue to reducing 
lifetime PV cost. The data, however, are difficult to track, because O&M costs are not as well 
documented as other PV system cost elements (which is due in part to the long-term and periodic 
nature of O&M).  

3.7.1 PV Operations and Maintenance Not Including Inverter Replacement 
 
During the past decade, Sandia National Laboratories has collected O&M data for several types 
of PV systems in conjunction with Arizona Public Service (APS) and Tucson Electric Power 
(TEP) (Table 3.3). Because O&M data were collected for only 5–6 years in each study, data on 
scheduled inverter replacement/rebuilding were not collected; inverters are typically replaced 
every 7–10 years. Therefore, the information in Table 3.3 does not include O&M costs 
associated with scheduled inverter replacement/rebuilding. This issue is discussed in the next 
section of this report. 
 
As shown in Table 3.3, annual O&M costs as a percentage of installed system cost ranged from 
0.12% for utility-scale generation to 5%–6% for off-grid residential hybrid systems. The O&M 
energy cost was calculated to be $0.004/kWh(ac) for utility-scale generation and $0.07/kWh(ac) 
for grid-connected residential systems; note that this is simply annual O&M cost divided by 
annual energy output, not LCOE. For all the grid-connected systems, inverters were the major 
O&M issue. Following are brief summaries of four recent studies on O&M that provide 
additional context. 
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A study by Moore and Post (2008) of grid-connected residential systems followed the experience 
of TEP's SunShare PV hardware buy-down program. From July 2002 to October 2007, O&M 
data were collected for 169 roof-mounted, fixed-tilt, crystalline silicon residential systems 
smaller than 5 kW(dc) and with a single inverter in the Tucson area. A total of 330 maintenance 
events were recorded:  300 scheduled and 30 unscheduled. The scheduled visits were credited 
with minimizing unscheduled maintenance problems. Many of the unscheduled visits involved 
replacing failed inverters that were covered under the manufacturer's warranty. The mean time 
between services per system was 10.1 months of operation, with a maintenance cost of $226 per 
system-year of operation. 

A study by Moore et al. (2005) of grid-connected commercial systems followed the experience 
of PV systems installed by APS. From 1998 to 2003, O&M data were collected for nine 
crystalline silicon systems 90 kW(dc) or larger with horizontal tracking. Most of the O&M issues 
were related to inverters, which required adjustments for up to 6 months after system installation, 
after which the inverters generally performed well. Maintenance associated with the PV modules 
was minimal. Maintenance associated with the tracking components was higher initially, but 
became a small factor over time. 

A study by Moore and Post (2007) of utility-scale systems followed the experience of large PV 
systems installed at TEP's Springerville generating plant. From 2001 to 2006, O&M data were 
collected for 26 135-kW(dc) crystalline silicon systems (all 26 systems were operational 
beginning in 2004). The systems were installed in a standardized manner with identical array 
field design, mounting hardware, electrical interconnection, and inverter unit. About half the 
O&M costs were attributed to scheduled visits and half to unscheduled visits. Many of the 
156 unscheduled visits were due to unusually severe lightning storms. The mean time between 
unscheduled services per system was 7.7 months of operation. 

A study by Canada et al. (2005) of off-grid residential hybrid systems followed the experience of 
a PV system lease program offered by APS. From 1997 to 2002, O&M data were collected for 
62 standardized PV hybrid systems with nominal outputs of 2.5, 5, 7.5, or 10 kWh/day and 
including PV modules, a battery bank, an inverter and battery-charge controller, and a propane 
generator. Because of the geographic dispersion of the systems, travel costs accounted for 42% 
of unscheduled maintenance costs. Overall, O&M (including projected battery replacement at 
6-year intervals) was calculated to constitute about half of the 25-year lifecycle cost of the PV 
hybrid systems, with the other half attributed to initial cost. 
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Table 3.3. Summary of Arizona PV System O&M Studies, Not Including O&M Related to 
Inverter Replacement/Rebuilding 

System Type 
(Reference) 

O&M Data 
Collection 

Period 
Scheduled O&M Unscheduled O&M 

Annual O&M 
Cost as 

Percentage of 
Installed 

System Cost 

O&M 
Energy 
Cost51

Grid-Connected 
Residential, 
Fixed Tilt 
(Moore and 
Post 2008) 

 

2002–2007 

Visits by category: 
general 
maintenance/inspection 
(45%), pre-acceptance 
checks required for 
SunShare program 
(55%) 

Visits by category: 
inverter (90%), PV 
array (10%) 

1.47% 
$0.07/ 
kWh 
(ac)  

Grid-Connected 
Commercial, 
Horizontal 
Tracking 
(Moore et al. 
2005) 

1998–2003 

Inverters were the primary maintenance issue; 
most systems required inverter adjustments 
during initial setup for up to 6 months after 
installation, after which the inverters generally 
performed well. Minimal maintenance was 
associated with modules. Maintenance for 
tracking components started higher during 
early part of development effort, but decreased 
over time. 

 0.35% Not 
Reported 

Utility-Scale 
Generation, 
Fixed Tilt 
(Moore and 
Post 2007) 

2001–2006 

Mowing native 
vegetation, visually 
inspecting arrays and 
power-handling 
equipment 

Costs by category: 
inverter (59%), data 
acquisition systems 
(14%), AC 
disconnects (12%), 
system (6%), PV 
(6%), module 
junction (3%). 

0.12% 
$0.004/ 

kWh 
(ac) 

Off-Grid 
Residential 
Hybrid (Canada 
et al. 2005) 

1997–2002 

Quarterly generator 
service (oil change, 
filter, adjustment, and 
inspection), battery 
inspection and service, 
inverter inspection, 
overall system 
inspection; 
repairs/replacements 
made when problems 
noted. 

Costs by category: 
system setup, 
modification, and 
removal (41.4%); 
generator (27.8%); 
inverter (16.5%); 
batteries (4.7%); 
controls (4.2%);  
PV modules (2.7%); 
system electrical 
(2.6%). 

5%–6%52 Not 
Reported  

                                                 
51 Annual O&M cost divided by annual energy output, not LCOE. 
52 This cost was calculated for the 4-year period 1999–2002 because O&M costs stabilized about 2 years into the program; the 
costs included battery service, but not battery replacement. 
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3.7.2 PV Inverter Replacement and Warranty Trends 
 
Inverters have become a central component in the solar industry owing to the ever-growing grid-
connected PV market. Although much attention is given to increasing inverter efficiencies, 
inverter reliability has a greater impact on lifetime PV system cost, which makes it an important 
factor in market adoption. In the study of TEP's utility-scale PV described above, 
replacing/rebuilding inverters every 10 years was projected to almost double annual O&M costs 
by adding an equivalent of 0.1% of the installed system cost, bringing total annual O&M cost to 
0.22% of installed system cost (Moore and Post 2007). Similarly, the O&M energy cost was 
projected to increase by $0.003/kWh(ac), resulting in a total O&M energy cost of 
$0.007/kWh(ac); note that this is simply annual O&M cost divided by annual energy output, not 
LCOE. 

Inverter cost accounts for about 6%–9% of a PV system's initial installed cost (see Section 3.6). 
Current inverters have an average lifespan of about 7 to 10 years, meaning that they might have 
to be replaced two to three times over the lifetime of a PV system. The warranty that a 
manufacturer is willing to provide is a good indication of an inverter’s reliability.  

Figure 3.19 illustrates default inverter warranty data. As inverter reliabilities increase, 
manufacturers have started to offer longer warranties. Today, a majority of manufacturers are 
comfortable giving default 5-year warranties as opposed to 1–3 year warranties as was the case 
5 years ago. In addition, a growing number of manufacturers have begun offering customers 
optional warranties with up to 10 years of coverage for an additional fee. This suggests that 
inverter companies are becoming increasingly confident in the reliability of their products. 

 
Figure 3.19. Inverter default warranties, 2002–2008 

(Knoll and Kreutzmann 2008, Photon International 2002–2008) 
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3.8 CSP Installation and Operations and Maintenance Cost Trends 
 
The average cost, after federal incentives, for a CSP plant without storage is greater than 
$4,000/kW in the United States (Bullard et al. 2008). For example, investment for construction 
and associated costs for the 64 MW Nevada Solar One plant amounted to $260 million or about 
$4,100/kW (Acciona Energy 2008). System developers strongly believe that improvements in 
design will reduce this cost considerably, making it more competitive with traditional electricity 
sources. 
 
Figure 3.20 shows a typical cost breakdown for components of a parabolic trough system, with 
the solar field comprising approximately 50% of the total installed cost; solar field components 
include the receivers, mirrors (reflectors), structural support, drivers, and foundation. Receivers 
and mirrors each contribute approximately 10% to the total. The power block, which is not 
considered part of the solar field, normally has the highest cost of all the major components, 
contributing roughly 20% to the total (Pitz-Paal et al. 2005). 

 
Figure 3.20. Generic parabolic trough CSP cost breakdown 

(Pitz-Paal et al. 2005) 
 
3.9 CSP Technology Characteristics and System Performance 
 
Four types of CSP technology are currently under development:  parabolic trough technology, 
power tower technology, dish-engine technology, and linear Fresnel reflector technology. 
 
3.9.1 Parabolic Trough Technology 
 
Trough technology uses one-axis tracking, has a concentration ratio of 80 (concentration ratio is 
calculated by dividing reflector area by focal area), and achieves a maximum temperature of 
about 400°C. This relatively low temperature limits potential efficiency gains and is more 
susceptible to performance loss when dry cooling is used. Moreover, the relatively low operating 
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temperature makes it very difficult to provide the amount of heat storage (in a cost-effective 
manner) that is required for around-the-clock dispatchability (Grama et al. 2008, Emerging 
Energy Research 2007). 

3.9.2 Power Tower Technology 
 
Receiver technology uses two-axis tracking, has a concentration ratio up to 1,500, and achieves a 
maximum temperature of about 650°C (Grama et al. 2008). The higher operating temperature of 
tower technology reduces susceptibility of these systems to efficiency losses, especially when 
dry cooling is used. The reflectors, called heliostats, comprise 40% of capital costs (Emerging 
Energy Research 2007). 

3.9.3 Dish-Engine Technology 
 
Dish-engine technology uses two-axis tracking, has a concentration ratio up to 1,500, and 
achieves a maximum temperature of about 700°C (Emerging Energy Research 2007). This 
technology set the world record for solar thermal conversion efficiency, achieving 31.25% 
(Andraka 2008). 

3.9.4 Linear Fresnel Reflector Technology 
 
Linear Fresnel reflector technology uses one-axis tracking, has a concentration ratio of 80, and 
achieves a maximum temperature of about 400°C. The reduced efficiency (15% to 25%) 
compared to troughs is expected to be offset by lower capital costs (Grama et al. 2008, Emerging 
Energy Research 2007). 

3.9.5 Storage 
 
Thermal energy storage (TES) has the potential to extend CSP production time up to 16 hours 
per day, increasing capacity factor to more than 50% and allowing for greater dispatchability. 
Although capital expenditure increases when storage is added, the LCOE will most likely 
decrease because of the increased capacity factor and greater utilization of the power block 
(NREL 2009c). Moreover, storage increases the technology’s marketability, as utilities can 
dispatch the electricity to meet non-peak demand. For example, a molten salt mixture of 60% 
sodium nitrate and 40% potassium nitrate is used as the storage medium for the 50-MW 
Andasol I plant located in Spain, enabling more than 7 hours of additional electricity production 
after direct-normal insolation is no longer available. Various mixtures of molten salt are being 
investigated to optimize the storage capacity, and research is being conducted on other mediums 
such as phase-change materials. Synthetic mineral oil, which has been the historical heat transfer 
fluid used in CSP systems, is also being viewed as a potential storage medium for future systems.  

3.9.6 Heat-Transfer Fluid 
 
Improvements in the heat-transfer fluid (HTF) are necessary to bring down the LCOE for CSP. 
This can be accomplished by lowering the melting points and increasing the vapor pressure of 
these substances. Dow Chemical’s and Solutia’s synthetic mineral oils have been used widely as 
the HTF in trough systems. The problem with these synthetic oils is that they break down at 
higher temperatures, preventing the power block from operating at higher, more efficient 
temperatures. Molten salts can withstand higher temperatures than the currently available 
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synthetic oils and are being considered as an HTF. The downside is that they freeze at a higher 
temperature than the synthetic oils, which means a drop in temperature during the night may 
solidify the substance. This, in turn, can damage the equipment when the salt expands and puts 
pressure on the receivers. Corrosion of the receivers is another potential concern when salts are 
introduced. Nonetheless, research is being conducted to use this substance as both an HTF and 
TES medium. If this can be accomplished, costly heat exchangers would not be needed, thus 
helping to reduce the LCOE. 

3.9.7 Water Use 
 
As stated previously in Section 2.4.4, a water-cooled parabolic trough plant typically requires 
approximately 800 gallons per MWh. Power towers operate at a higher temperature and have 
lower water cooling needs, ranging from 500–750 gallons per MWh. Dish-engine systems do not 
require water cooling. As CSP plants are usually constructed in dry regions, water-scarcity issues 
and competing uses are of concern (except for dish-engine systems). An alternative to water 
cooling is dry or air cooling, which eliminates about 90% of water consumption (U.S. DOE 
2009). However, air cooling requires higher upfront capital costs and can result in a 5% decrease 
in electricity generation, depending on location temperature. This plant-efficiency reduction 
amounts to a 2%–9% increase in LCOE . An alternative is to implement hybrid cooling, which 
decreases water use while minimizing the generation losses experienced with dry cooling. 

3.9.8 Land Requirements 
 
The amount of acreage needed for a CSP facility depends partly on the type of technology 
deployed. More importantly, though, land use is dependent on thermal storage hours and a 
location’s solar insolation. Common practice is to state land requirements in terms of acres per 
MW.  The range normally provided is 4–8 acres in a location with solar insolation similar to that 
found in the U.S. desert Southwest (SNL 2009). The low end of the range is possible when 
greater self-shading of reflectors is allowed, although this results in reduced electricity output. 
The high end represents the additional land needed for energy storage, with energy storage 
resulting in higher capacity factor. Because of such variation, when considering land needs, it 
can be more useful to provide a number in terms of acres per MWh. When this is done, a 
comparison among CSP technology types can more easily be made. The general trend at this 
stage of technology development is that power towers require approximately 20% more land per 
MWh than troughs. Commercial dish-engine facilities have not yet been built, so a comparison 
of land requirements for this technology with other CSP technologies has not yet been made. 
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4. Policy and Other Market Drivers 

This chapter covers key elements of U.S. federal, state, and local policies pertaining to solar 
energy technologies, as well as market-based developments that affect U.S. solar market 
evolution. Section 4.1 discusses federal policies, incentives, and programs including tax credits, 
depreciation benefits, grants, the DOE loan guarantee program, clean renewable energy bonds, 
and other federal programs and incentives. Section 4.2 discusses state and local policies and 
incentives, and rules and regulations including permitting, interconnection, net metering, direct 
cash incentive programs, renewable portfolio standards and solar set-asides, and clean energy 
funds. Section 4.3 provides information on major financing mechanisms and programs:  third-
party power purchase agreement financing, customer solar lease financing, property-assessed 
clean energy programs, and other emerging financing structures. 
 
4.1. Federal Policies and Incentives, PV and CSP 
 
Federal policies and incentives play an important role in the commercialization and adoption of 
solar technologies; they have enabled rapid expansion of solar markets in countries such as 
Germany, Spain, and Japan. Legislation enacted in the United States in 2008 and early 2009 
provides unprecedented levels of federal support for U.S. renewable energy projects, including 
solar energy projects. 

The Emergency Economic Stabilization Act of 2008 (EESA or “bailout bill”) became law on 
October 3, 2008. It contains tax incentives designed to encourage individuals and businesses to 
invest in renewable energy, including 8-year extensions of the business and residential solar 
investment tax credits (ITCs). 

The American Recovery and Reinvestment Act (ARRA or “stimulus bill”) was signed into law 
on February 17, 2009, with an estimated $787 billion overall in tax incentives and spending 
programs.  Many ARRA provisions support solar energy.  

This section discusses the major U.S. federal policies and incentives directed toward solar 
energy, with an emphasis on provisions in the EESA and ARRA. For additional information, 
including how to apply for the benefits of the policies, see the list of Web sites at the end of this 
section. 

4.1.1 Investment Tax Credit 
 
Sections 48 (for businesses) and 25D (for residences) of the Internal Revenue Code detail the 
federal ITC for certain types of energy projects, including “equipment which uses solar energy to 
generate electricity." Like other tax credits, the ITC reduces the tax burden of individuals and 
commercial entities that make investments in solar energy technology. On an industry level, a 
long-term ITC provides consistent financial support for growth such as building manufacturing 
plants, developing an installer workforce, and investing in large-scale solar electric plants that 
require extended planning and construction time. 

For commercial projects, the ITC is realized in the year in which the solar project begins 
commercial operations, but vests linearly over a 5-year period (i.e., one-fifth of the 30% credit 
vests each year over a 5-year period). Thus, if the project owner sells the project before the end 
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of the fifth year since the start of commercial operations, the unvested portion of the credit will 
be recaptured by the IRS. This period is sometimes referred to as the 5-year “clawback” period. 

The EESA extended the ITC through December 31, 2016, including extensions of the 
commercial and residential solar ITCs, providing a credit of up to 30% of the total capital costs 
of a project (including equipment and labor) (SEIA 2008).53

4.1.2 Renewable Energy Grants 

 The EESA removed the cap on the 
ITC for residential PV systems (previously $2,000), effective for property placed in service after 
December 31, 2008. The bill also allows individual taxpayers to use the credit to offset 
alternative minimum tax liability. Another change to the ITC was to allow regulated utilities to 
claim the tax credit, providing significant support for increased utility investment in solar energy 
projects. The ARRA enhanced the ITC further by allowing individuals and businesses to qualify 
for the full amount of the solar tax credit, even if projects receive subsidized energy financing. 
Previously, the ITC would not apply to the portion of the investment funded via subsidized 
financing such as below-market loans. Also, the ARRA removed the $2,000 cap on the ITC for 
residential solar water heating systems. 

 
Section 1603 of the ARRA authorizes the Department of the Treasury to issue renewable energy 
project developers cash grants in lieu of the ITC. The grants program was created in response to 
the lack of available financing and limited appetite for tax credits resulting from the financial 
crisis and economic downturn. The program is designed like the ITC and offers an equivalent 
30% benefit based on the cost of the solar property that is placed in service.  

Grants are available for qualifying property that is placed in service during 2009 and 2010. Solar 
projects that commence construction by December 31, 2010, and are placed in service prior to 
2017 also qualify. Developers must apply for the grant by September 30, 2011, and only 
taxpaying corporate entities are eligible. Grant applications will be processed within 60 days 
from the date it is received or the system is placed in service, whichever is later. 

There are several variables that determine whether a developer might opt to apply for a cash 
grant. These factors may include state and local incentives and mandates, project scale and 
required lead time for development, and the ability to monetize tax credits. The Treasury 
Department began accepting applications for grants on July 31, 2009, and the first payments 
were announced on September 1. By the end of November 2009, 65 solar projects had received 
funds, with allocations totaling more than $18 million. 

More information is available online: http://www.treasury.gov/recovery/1603.shtml 

  

                                                 
53 Historically, through 2005, the size of the commercial solar credit was equal to 10% of the project’s “tax credit basis,” the 
portion of system costs to which the ITC applies. The Energy Policy Act of 2005 temporarily increased the solar credit to 30% of 
a project’s tax credit basis, for projects placed in service between January 1, 2006, and January 1, 2008. In late December 2006, 
the Tax Relief and Healthcare Act of 2006 extended the in-service deadline to December 31, 2008, and in October 2008, the 
EESA extended it once again for a full 8 years, through December 31, 2016. Unless extended again or otherwise altered over the 
next 8 years, the Section 48 commercial solar credit will revert back to 10% for projects placed in service on January 1, 2017. 

http://www.treasury.gov/recovery/1603.shtml�
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4.1.3 Manufacturing Tax Credit 
 
The ARRA created a tax credit for new investments in advanced energy manufacturing that, 
similar to the ITC, is equal to 30% of the investment. Eligible technologies include renewable 
energy, energy conservation, electric grids supporting intermittent sources of renewable energy, 
carbon capture and storage, biofuel refining or blending, and hybrid-electric vehicles and 
components. The cap for new manufacturing investment credits is $2.3 billion, supporting 
$7.7 billion of manufacturing capital investment.54 In determining which projects receive the tax 
credits, the Treasury Department, in coordination with the Department of Energy, will consider 
the following factors:  commercial viability, job creation, greenhouse gas impact, technological 
innovation and cost reduction, and time to completion. More information is available online: 
http://www.energy.gov/recovery/48C.htm 

4.1.4 MACRS and Bonus Depreciation 
 
Section 168 of the tax code allows investors to depreciate certain investments in solar power 
(and other types of) projects using a 5-year accelerated depreciation schedule known as the 
Modified Accelerated Cost Recovery System (MACRS). Under this provision, “equipment 
which uses solar energy to generate electricity” qualifies for 5-year, double declining-balance 
depreciation. In most cases, 100% of a solar project’s cost will qualify for this accelerated 
schedule, but the 30% ITC will reduce the project’s depreciable basis by 15%. Assuming a 40% 
combined effective state and federal tax bracket and a 10% nominal discount rate, on a present-
value basis, this 5-year MACRS depreciation schedule provides a tax benefit equal to about 26% 
of system costs (Bolinger 2009).55

In addition to the standard MACRS, the EESA includes a bonus depreciation schedule for solar 
projects installed in 2008. Qualifying projects can receive 50% depreciation in the first year, with 
the remaining 50% depreciated over the 5-year MACRS schedule. The ARRA extends the 50% 
year-one bonus depreciation incentive for qualified renewable energy investments made through 
2009. The ARRA also extends through 2009 a recent increase in the size of the write-off 
available (up to 100% of a $250,000 investment, a declining percentage after $250,000, and 
phasing out at $800,000). 

 Taken together, the 30% ITC and accelerated depreciation 
provide a combined tax benefit equal to about 56% of the installed cost of a commercial solar 
system (Bolinger 2009). 

4.1.5 Renewable Energy Loan Guarantee Program 
 
The DOE loan guarantee program established by Title XVII of the Energy Policy Act of 2005 
was expanded by the ARRA to include a new Section 1705 loan guarantee program, in addition 
to the existing Section 1703 program. The ARRA permitted the guarantee of about $40 billion of 
loans by the Section 1705 program, in addition to the $51 billion authorized for Section 1703. 
Table 4.1 summarizes the loan guarantee programs, including differences pertaining to project 
eligibility and benefits. 

                                                 
54 Of the $2.3 billion in total awards to 183 projects, more than $1.0 billion went to 60 solar projects. See: 
http://www.whitehouse.gov/the-press-office/president-obama-awards-23-billion-new-clean-tech-manufacturing-jobs  
55 Only 12% of this benefit is attributable to the acceleration of the depreciation schedule; the remaining 14% would 
be realized even if the project were instead depreciated using a less-advantageous, 20-year straight-line schedule. 

http://www.energy.gov/recovery/48C.htm�
http://www.whitehouse.gov/the-press-office/president-obama-awards-23-billion-new-clean-tech-manufacturing-jobs�
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Table 4.1. DOE Loan Guarantee Programs 
Year FY 2007 FY 2008 FY 2009 Omnibus FY 2009 ARRA 
Amount $4.0 billion $38.5 billion $8.5 billion $40 billion (estimated) 

Authorization EPACT 2005, Title XVII, Section 1703 EPACT Section 1705,  
added by ARRA 

Uses New or significantly improved technologies Commercial and novel 
technologies 

Credit Subsidy Borrower pays $4.0 billion appropriated 

Term Available until used Projects must be started by 
September 30, 2011 

Carve-outs 
No carve-out 
stipulated by 
Congress 

• $10.0 billion for 
energy efficiency, 
renewable energy, and 
advanced transmission 
and distribution 
technologies 

• $18.5 billion for 
advanced nuclear 
power facilities 

• $2.0 billion for “front 
end” nuclear fuel cycle 
facilities 

• $6.0 billion for coal-
based power 
generation, industrial 
gasification, and 
carbon capture and 
sequestration 

• $2.0 billion for 
advanced coal 
gasification 

The FY 2009 
Omnibus Budget 
provides an 
additional 
$8.5 billion in loan 
authority for 
energy efficiency, 
renewable energy, 
and advanced 
transmission and 
distribution 
projects 

No carve-outs were 
stipulated, but three project 
categories were listed: 
• Renewable energy 

installations and 
manufacturing facilities 
for renewable energy 
components 

• Electric power 
transmission systems 

• Advanced biofuel 
projects 

U.S. DOE 2009c 
 
Projects eligible for the Section 1703 program include those that “avoid, reduce or sequester air 
pollutants or anthropogenic emissions of greenhouse gases; and employ new or significantly 
improved technologies as compared to commercial technologies,” including energy efficiency, 
renewable energy, and advanced transmission and distribution as well as advanced nuclear 
power, advanced coal-based power, and carbon capture and sequestration technologies. 
 
Section 1705 is limited to renewable energy installations and manufacturing facilities for 
renewable energy components, electric power transmission systems, and advanced biofuel 
projects and is targeted toward projects at the commercialization stage (though new or earlier 
stage technologies are still eligible). The Section 1705 program requires projects to commence 
construction by September 30, 2011, encouraging near-term deployment. Another difference is 
that the Section 1705 program provides for DOE to pay the cost of credit subsidies, required up-
front payments equal to about 10% of a loan guarantee's value, up to a total of $4 billion.56

 
  

There are currently two open solicitations, released by DOE in July 2009. The first solicitation is 
for "new or significantly improved" energy efficiency, renewable energy, and advanced 
transmission and distribution technologies. It combined the authorities of the Section 1703 and 

                                                 
56 The FY 2009 ARRA appropriation for the credit subsidy was originally $6 billion; however, $2 billion were 
transferred to the Car Allowance Rebate System (also known as the "Cash for Clunkers" program). 
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1705 programs; projects eligible for 1703 but not 1705 may still secure a loan guarantee, but 
may not receive 1705 appropriations to cover the credit subsidy cost. The $2.5 billion in 
1705 appropriations allocated to this solicitation include $2 billion for renewable energy and 
transmission projects and $0.5 billion for advanced biofuels. 
 
The second solicitation is for large transmission infrastructure projects using commercial 
technologies. The authority for the second solicitation is only under Section 1705, so all projects 
under this solicitation must commence construction by September 30, 2011. The second 
solicitation was allocated $750 million from Section 1705 appropriations to cover the credit 
subsidy fees. Combined, these two solicitations are estimated to result in about $30 billion in 
loan guarantees. 

The first of several loan guarantees was conditionally awarded on March 20, 2009, under the 
1703 solicitation and closed on September 4, 2009, in the amount of $535 million, for Solyndra, 
Inc., based in Freemont, California. The funds will support the construction of a manufacturing 
plant for its proprietary cylindrical solar PV panels, which are expected to provide systems with 
low installed cost and high solar electricity output (U.S. DOE 2009d). 
 
For more information on DOE loan guarantee program solicitations, see 
http://www.lgprogram.energy.gov/keydocs.html.  

4.1.6 Clean Renewable Energy Bonds 
 
Clean renewable energy bonds (CREBs) were established by EPACT 2005 to provide renewable 
project financing for non-taxable entities (governmental entities, electric cooperatives, and public 
power providers) that cannot directly use the ITC for solar facilities, production tax credits for 
other types of renewable energy facilities, or accelerated tax-depreciation benefits. CREBs are 
“tax credit bonds,” which means that the bond purchaser receives a federal income tax credit in 
lieu of interest payments. From the borrower’s perspective, CREBs are essentially the equivalent 
of a zero-interest loan, aside from the various transaction costs of bond issuance described 
below, which reportedly can be considerable (Cory et al. 2008). 

The CREB program received an initial allocation of $800 million in 2005 (round 1), which was 
then increased to $1.2 billion by legislation in 2006, providing a second allocation of about 
$400 million (round 2). The round 1 CREB allocation of $800 million was awarded in 2006. The 
round 2 CREB allocation of $477 million was awarded in 2008 (the extra $77 million was due to 
surrendered volume from the first allocation). Of the $1.2 billion CREB allocations, state and 
local governments were limited to $750 million or 62.5% of allocations, with the rest intended 
for municipal and cooperative electric companies (DSIRE 2010a).  

The Energy Improvement and Extension Act of 2008 authorized $800 million and the ARRA 
authorized an additional $1.6 billion for new CREBs, for a total allocation of $2.4 billion 
(round 3). In April 2009, the IRS opened a solicitation for the $2.4 billion allocation, which 
closed on August 4, 2009. In October 2009, $2.2 billion of CREBs applications were given 
issuing authority by the IRS for a period of 3 years. Round 3 CREBS funding was to be allocated 
as follows:  one-third for qualifying projects of state/local/tribal governments, one-third for 
public power providers, and one-third for electric cooperatives (DSIRE 2010a). 

http://www.lgprogram.energy.gov/keydocs.html�
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Figure 4.1. Distribution of round 1 and 2 CREB 

allocation, percent of projects by technology 
(IRS 2006, IRS 2007) 

 
Figure 4.2. Distribution of round 3 CREB 

allocation, percent of projects by technology  
(IRS 2009) 

 
Figures 4.1 and 4.2 capture the distribution of CREB allocations by technology. By number of 
projects, solar accounted for 62% of round 1 and 2 (year 2006-2008) allocations and 89% of 
round 3 (2009) allocations (IRS 2006, IRS 2007, IRS 2009).57 By funding amount, solar 
accounted for 21% or $84 million of round 2 allocations and 38% or $839 million of round 3 
allocations (IRS 2007, IRS 2009).58

4.1.7 Solar on Federal Property 

 

 
The EESA and ARRA together appropriated $5.5 billion to the Federal Buildings Fund for green 
building improvements including energy efficiency measures and the use of renewable energy 
sources such as solar. Of the total appropriation, $4.5 billion will be available to federal facilities 
managed by the General Services Administration (Cory et al. 2009, Prometheus 2009). 
  
4.1.8 State Energy Program 
 
Funding from DOE’s State Energy Program (SEP) goes to state energy offices in all states and 
U.S. territories. Under ARRA, SEP will distribute $3.1 billion to the states (U.S. DOE 2009e).  
Activities eligible for SEP funding include energy audits, building retrofits, education and 
training efforts, and new financing mechanisms to promote renewable energy investments. Many 
of the state governments will use part of these funds to support solar programs and installations. 

For every dollar of federal investment in SEP, the states estimate saving $7.22 in energy costs 
and also leveraging $10 of non-federal investment in energy projects, typically by cosponsoring 
energy projects with local and private partners (U.S. DOE 2009e). For more information on the 
DOE State Energy Program, see: http://apps1.eere.energy.gov/state_energy_program/. 

                                                 
57 The percentages for round 2 are based on data representing $405 million in initial funding for round 2. 
58 Detailed funding amounts for round 1 are not available. The percentages for round 2 are based on data 
representing $405 million in initial funding for round 2. 
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4.1.9 Energy Efficiency and Conservation Block Grant Program 
 
The Energy Efficiency and Conservation Block Grants (EECBG) Program, authorized in the 
Energy Independence and Security Act of 2007, was funded for the first time by the ARRA 
(DOE 2009a). Through formula59 and competitive grants, the U.S. DOE will distribute 
$3.2 billion to U.S. cities, counties, states, territories, and Indian tribes to develop, implement, 
and manage energy efficiency and conservation projects and programs (U.S. DOE 2009b). Local 
and state governments may utilize funds for solar installations on government buildings and 
engage in energy strategy development, which may include solar energy technology, along with 
energy efficiency and conservation. For more information on the DOE EECBG, see: 
www.eecbg.energy.gov. 

4.1.10 Renewable Energy Production Incentive 
 
The Renewable Energy Production Incentive (REPI), a federal incentive for  renewable energy 
systems, was implemented as part of the Energy Policy Act (EPACT) of 1992 and amended in 
EPACT 2005 to expand eligible facilities and authorize federal appropriations through 2026. 
Qualified facilities are categorized as Tier 1 (solar, wind, ocean, geothermal, closed-loop 
biomass) and Tier 2 (open-loop biomass such as landfill gas and livestock methane; municipal 
solid waste is excluded). The program originated to support facilities owned by public utilities 
and other nonprofit load-serving entities (LSEs), providing per kWh-based payments for the first 
10 years of operation. The actual payment amount is dependent on availability of federal budget 
appropriations each year (U.S. DOE 2008). Historically, the REPI program has been 
insufficiently funded and has not made full payments for the electricity generated by qualifying 
facilities since 1995.60

4.1.11 Additional Resources 
 

 With continued uncertainty over the funding appropriation from year to 
year, the REPI program is likely to serve only as a supplementary incentive program. 

For additional information, including how to apply for the benefits of the policies, see the 
following Web sites: 

• DOE Solar Energy Technologies Program Financial Opportunities 
(www.eere.energy.gov/solar/financial_opportunities.html) 
 

• DOE Energy Efficiency & Renewable Energy (EERE) Financial Opportunities 
(www.eere.energy.gov/financing/) 
 

• DOE EERE Recovery Act Web site (www.eere.energy.gov/recovery/) 
 

• U.S. Department of the Treasury, American Recovery and Reinvestment Act 
(www.treasury.gov/recovery) 
 

                                                 
59 More information on the formula methodology for EECBG can be found at: 
http://www.eecbg.energy.gov/downloads/EECBG_Federal_Register_Notice_04_15_09.pdf. 
60 For production year 2007, DOE paid out only $2.7 million of the $11.25 million in eligible funds to Tier 1 
projects and $1.8 million of the nearly $8 million in eligible funds to Tier 2 projects (U.S. DOE 2008). Only a small 
fraction of these funds have gone to solar projects; the average payment was about $900 for each of the 25 solar 
projects in 2007 (Cory et al. 2008). 

http://www.eecbg.energy.gov/�
http://www.eere.energy.gov/solar/financial_opportunities.html�
http://www.eere.energy.gov/financing/�
http://www.eere.energy.gov/recovery/�
http://www.treasury.gov/recovery�
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• U.S. Internal Revenue Service (IRS), Energy Provisions of the American Recovery and 
Reinvestment Act of 2009 (www.irs.gov/newsroom/article/0,,id=206871,00.html) 
 

• Solar Energy Industries Association (SEIA), Government Affairs & Advocacy 
(www.seia.org/cs/government_affairs_and_advocacy) 
 

• Database of State Incentives for Renewables & Efficiency (www.dsireusa.org) 
 
4.2 State and Local Policies, Incentives, and Rules and Regulations 
 
As outlined in the previous section, there are a number of federal-level financial incentives 
available to support the increased deployment of solar energy technologies. State and local 
policies work in parallel with these federal-level initiatives, but go beyond financial incentives to 
include renewable energy mandates and other mechanisms to further stimulate adoption of solar 
energy technologies. State legislators and utility commissioners hold primary responsibility for 
setting a state’s overarching energy policy and regulatory framework. How solar technologies 
are treated in this process will significantly affect how, or even if, a solar market develops in a 
state. Local governments also influence solar policies. In areas where the local government has 
jurisdiction over a utility, the government can directly influence solar rebate programs and 
renewable generation requirements. In areas served by investor-owned utilities or cooperatives, 
local governments can still play an important role in solar market development by streamlining 
permitting processes or developing innovative financing mechanisms. 
 
State and local policies in support of increased solar deployment are more prevalent than federal 
policies and have a well-established history of both successes and failures. As such, states and 
regions with stronger and longer-term policies and incentives, coupled with a favorable 
electricity market (e.g., higher than average electricity prices) and an adequate solar resource, 
have established pockets of wide-scale solar installations. In addition, because states are often 
innovation hubs, there is a continuous flow of new policies and approaches to driving solar 
development that bears watching. 
 
4.2.1 Planning and Permitting 
 
Planning is an effort by governments to ensure community land and resources are used in a 
beneficial manner. Permits are allowances issued by governments to ensure that activities 
undertaken within their jurisdictions meet established guidelines. Planning and permitting are 
important steps in the installation of solar technologies. Done properly, they ensure that a solar 
project meets necessary safety, operational, environmental, and community compatibility 
standards while not unduly hindering the project's completion. However, planning and permitting 
processes not well designed for solar applications can increase the cost and time requirements of 
a project substantially or even create enough delay and difficulty that the project is not 
completed.  
 
Section 2.4.5 describes some of the planning and permitting issues related to utility-scale solar 
installations. This section focuses on planning and permitting by local and state governments for 
smaller-scale, distributed PV installations. Installing a grid-connected PV system requires an 
electrical permit from the local government and, in some cases, a building permit followed by 
inspection of the installation (DOE 2009f). 

http://www.irs.gov/newsroom/article/0,,id=206871,00.html�
http://www.seia.org/cs/government_affairs_and_advocacy�
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Numerous planning and permitting barriers can hinder distributed PV system installation. The 
following have been identified as most significant (Pitt 2008): 
 

• Complex and unclear local permitting requirements 
• Inspectors and permitting authorities inexperienced with renewable energy systems 
• Permitting requirements that vary significantly across jurisdictions 
• Permit fees that are high enough to become a significant, additional project cost 
• Unfair and often illegal enforcement of restrictive housing covenants. 

 
Recommendations to local and state governments for overcoming planning and permitting 
barriers include the following (Pitt 2008, U.S. DOE 2009f): 
 

• Understand the entire permitting and inspection process for PV systems and the dynamics 
between all entities involved. 

• Establish a clear path for communication between code enforcement offices and the local 
utility provider to expedite the interconnection and inspection processes. 

• Remove barriers to PV systems from building and zoning codes. 
• Simplify PV permit application forms and review processes. 
• Allow over-the-counter building permits for standard roof-mounted systems that do not 

exceed the roof support capabilities of a structure meeting minimum building code 
requirements. 

• Adopt flat permit fees or fee waivers for PV systems. 
• Ease permitting processes by establishing statewide interconnection standards (see 

Section 4.2.2 below) and educating building and electrical inspectors about proper 
installation procedures for distributed renewable energy systems. 

• Adopt state-level legislation mandating consistent and appropriate permitting 
requirements for distributed renewable energy systems. 

 
A number of U.S. cities have led the way in modifying their planning and permitting policies to 
encourage solar energy development (U.S. DOE 2009f). For example, San Jose, California, 
grants electrical permits for PV systems over the counter and requires building permits only for 
rooftop installations that meet certain criteria. Portland, Oregon, allows residential PV installers 
to submit permit applications online and trains some permitting staff to be experts on solar 
installations. Madison, Wisconsin, amended city laws to comply with state statutes that make it 
illegal to forbid PV systems in historic districts. The Solar America Board for Codes and 
Standards released a model expedited permitting process in October 2009 (Brooks 2009). 
Continued efforts such as these will be necessary to expedite implementation of PV systems in 
communities nationwide. 
 
4.2.2 Interconnection 
 
Interconnection standards specify the technical, legal, and procedural requirements by which 
customers and utilities must abide when a customer wishes to connect a PV system to the grid 
(or electricity distribution system). State governments can authorize or require their state public 
utility commissions to develop comprehensive interconnection standards. Some state 
interconnection standards apply to all types of utilities (investor-owned utilities, municipal 
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utilities, and electric cooperatives); other states have chosen to specify standards only for 
investor-owned utilities. Although most utilities fall under the jurisdiction of state public utility 
commissions, cities with municipal utilities can have significant influence over interconnection 
standards in their territory.  
 
The aspects of interconnection standards that are most often debated are procedural, not 
technical, in nature. In setting technical interconnection standards, most regulatory bodies 
reference compliance with the Institute of Electrical and Electronics Engineers’ (IEEE’s) “1547 
Standard for Interconnecting Distributed Resources with Electric Power Systems,” which was 
adopted in 2003. The most debated procedural aspects of interconnection standards are: 
requirements for small inverter-based PV systems to have a utility external disconnect switch 
(UEDS), limitations placed on PV system size, technical screens for interconnection, and 
requirements for additional insurance (NNEC 2009). 
 
States continue to demonstrate a mix of approaches to these key aspects. Eight states and many 
major utility companies have recognized that safety devices and features already built into all 
code-compliant PV systems make the UEDS redundant in small systems (less than 10 kW) and 
have eliminated its requirement (Sheehan 2008).61 Many states leave the UEDS requirement to 
utility discretion. Interconnection standards with regard to PV system-size limitations also vary 
widely among states, ranging from 10 kW to no cap on system size. As of November 2009, 
seven states62

 

 and Puerto Rico specify no limit on system size (DSIRE 2009). The size of the PV 
system and complexity of the interconnection typically dictate the rigor and extent of the 
technical screens required before interconnection.  

States also differ in their approaches to the issue of insurance requirements. States and some 
utilities require owners of solar PV systems that are interconnecting to the grid to purchase 
additional liability insurance to mitigate the risks of potential personal injury (e.g., to utility workers) 
and property damage (NNEC 2009). Thirteen states plus Washington, D.C., and Puerto Rico 
require varying levels of insurance based on system size (IREC 2009).63 Other states, including 
Arizona, Indiana, Iowa, New Mexico, and Washington, leave the insurance requirement to utility 
discretion (IREC 2009). Twelve states64 do not require additional insurance and seven states65

 
Figure 4.3 shows that 37 states plus Washington, D.C., and Puerto Rico have adopted an 
interconnection policy. All of the states with robust solar markets have interconnection policies 
in place. Robust solar markets do not exist in any of the states without interconnection policies.  

 do 
not specify insurance as part of their interconnection standards (IREC 2009). 

                                                 
61 The eight states that have waived the UEDS requirement for small systems are Arkansas, Delaware, Florida, 
Nevada, New Jersey, New Hampshire, North Carolina, and Utah. Utilities that have waived the UEDS requirement 
for small systems include Pacific Gas and Electric (PG&E) and Sacramento Municipal Utility District (SMUD) in 
California and National Grid U.S.A. in the Northeast United States. 
62 California, Hawaii, Indiana, New Hampshire, North Carolina, Michigan, and Vermont do not have limits on the 
capacity of interconnected solar PV systems (DSIRE 2009). 
63 States with insurance requirements based on the size of the interconnected system are Colorado, Connecticut, 
Delaware, Florida, Illinois, Massachusetts, Michigan, Minnesota, Missouri, Oregon, South Dakota, Virginia, and 
Wisconsin.  
64 States that do not require additional insurance for interconnected solar PV systems are California, Georgia, 
Hawaii, Kentucky, Nevada, New Hampshire, New Jersey, New York, North Carolina, Pennsylvania, South 
Carolina, and Vermont. 
65 States that have not specified insurance requirements as part of their interconnection standards are Arkansas, 
Louisiana, Maryland, Montana, Ohio, Texas, and Wyoming.   
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Figure 4.3. Interconnection Standards, November 200966

(DSIRE 2010b) 
 

 
In the absence of a national interconnection standard, state regulators often consider the four 
leading interconnection models when developing such policies.67 These models include the 
Federal Energy Regulatory Commission’s Small Generator Interconnection Procedure (SGIP) 
and Small Generator Interconnection Agreement, California Rule 21, the Mid-Atlantic Demand 
Resource Initiative’s Model Interconnection Procedures, and the Interstate Renewable Energy 
Council’s (IREC’s) Model Interconnection Standards for Small Generator Facilities.68 All four 
procedures have comprehensive coverage of interconnection standards including specifications 
for interconnecting systems up to 10 MW, pro forma interconnection agreements, fast-track 
procedures for systems up to 2 MW, and a review process for interconnecting larger systems  
(typically greater than 10kW).69

  

 California Rule 21, which was approved in December 2000 and 
updated slightly based on utility tariff filings, is used for the interconnection of all solar and 
distributed generation (DG) systems in utility service territories in California, which constitute a 
majority of the solar installations in the United States (Keyes and Fox 2008).  

                                                 
66 Numbers for each state indicate system capacity limits in kW. Some state limits vary by utility, customer type 
(e.g., residential/non-residential), technology, and/or system application. “No limit” means that there is no stated 
maximum size for individual systems. Generally, state interconnection standards apply only to investor-owned 
utilities. For more detail on the interconnection standards for each state, see 
http://www.dsireusa.org/incentives/index.cfm?SearchType=Interconnection&&EE=0&RE=1. 
67 U.S. Representative Jay Inslee (D-Washington) introduced the Clean Energy Buy-Back Act in March 2008, which 
included federal interconnection standards. The bill did not pass. 
68 For more details on the four interconnection models, see: www.solarabcs.org/interconnection/ABCS-
07_studyreport.pdf. 
69 IREC and SGIP have simplified interconnection procedures for systems of 10 kW or less; California Rule 21 
prequalifies systems less than 11 kW for three of the eight necessary technical screens (Keyes and Fox 2008). 

State policy

* Standard only applies to net-metered systems

WA: 20,000

OR: 10,000

CA: no limit

MT: 50*

NV: 20,000

UT: 25/2,000*

NM: 80,000

WY: 25* 

HI: no limit

CO: 10,000

MN: 10,000

LA: 25/300*

AR: 25/300*

MI: no limit

WI: 15,000

MO: 100*

IN: no limit

IL: 10,000

FL: 2,000*

KY: 30*

OH: 20,000

NC: no limit

VT: no limit

NH: 100*

MA: no limit

37 states + 
DC & PR 

have adopted an 
interconnection 

policy

CT: 20,000 
PA: 5,000* NJ: 2,000*

DC: 10,000

MD: 10,000

NY: 2,000

VA: 20,000

SC: 20/100

GA: 10/100*

PR: no limit

TX: 10,000

NE: 25* 

KS: 25/200* 

SD: 10,000 

State policy

* Standard only applies to net-metered systems

WA: 20,000

OR: 10,000

CA: no limit

MT: 50*

NV: 20,000

UT: 25/2,000*

NM: 80,000

WY: 25* 

HI: no limit

CO: 10,000

MN: 10,000

LA: 25/300*

AR: 25/300*

MI: no limit

WI: 15,000

MO: 100*

IN: no limit

IL: 10,000

FL: 2,000*

KY: 30*

OH: 20,000

NC: no limit

VT: no limit

NH: 100*

MA: no limit

37 states + 
DC & PR 

have adopted an 
interconnection 

policy

CT: 20,000 
PA: 5,000* NJ: 2,000*

DC: 10,000

MD: 10,000

NY: 2,000

VA: 20,000

SC: 20/100

GA: 10/100*

PR: no limit

TX: 10,000

NE: 25* 

KS: 25/200* 

SD: 10,000 

http://www.dsireusa.org/incentives/index.cfm?SearchType=Interconnection&&EE=0&RE=1�
http://www.solarabcs.org/interconnection/ABCS-07_studyreport.pdf


 
89 

4.2.3 Net Metering 
 
Net metering is a policy that allows PV system owners to offset electricity purchases from the 
utility with every kilowatt-hour of solar electricity a PV system produces. As with 
interconnection standards, state governments can authorize or require their state public utilities 
commissions to develop comprehensive net metering rules, and cities with municipal utilities can 
have significant influence over net metering rules in their territory.  
 
Net metering is one of the most important policy drivers for distributed PV systems because it 
enables system owners to recover some of their investment through electricity bill savings 
(Coughlin and Cory 2009). Under the simplest implementation of net metering, a utility 
customer’s billing meter runs backward as solar electricity is generated and exported to the 
electricity grid and runs forward as electricity is consumed from the grid. At the end of a billing 
period, a utility customer receives a bill for the net electricity, which is the amount of electricity 
consumed less the amount of electricity produced and exported by the customer’s PV system.  
 
Figure 4.4 illustrates the variety of net-metering, system-size limitations across the United States. 
Currently, 42 states and Washington, D.C., have net metering policies in place. Net metering 
policies differ in several ways, including the eligibility of different technology types, customer 
classes, system sizes, the use of aggregate caps for DG contribution back to the grid, the 
treatment of customer net-excess generation, the types of affected utilities, and the issue of REC 
ownership (IREC and NCSC 2007). Detailed state-specific information regarding net-metering 
availability and regulation is available through the Web site for the Database of State Incentives 
for Renewables & Efficiency (DSIRE) (www.dsireusa.org/). 
 

 
Figure 4.4. Net Metering Policies, October 200970

(DSIRE 2009) 
 

                                                 
70 Numbers for each state indicate system capacity limits in kW. Some state limits vary by utility, customer type 
(e.g., residential/non-residential), technology, and/or system application. “No limit” means that there is no stated 
maximum size for individual systems. For more detail on the net metering standards for each state, see 
http://www.dsireusa.org/incentives/index.cfm?SearchType=Net&&EE=0&RE=1. 

RI: 1,650/2,250/3,500*

MA: 60/1,000/2,000*

PA: 50/3,000/5,000*

State policy

Voluntary utility program(s) only

* State policy applies to certain utility types only (e.g., investor-owned utilities)

WA: 100
MT: 50*

NV: 1,000*

UT: 25/2,000*

AZ: no limit*

ND: 100*

NM: 80,000*

WY: 25*

HI: 100
KIUC: 50

CO: no limit
co-ops & munis: 10/25

OK: 100*

MN: 40

LA: 25/300

AR: 25/300

MI: 150*

WI: 20*

MO: 100

IA: 500* IN: 10*

IL: 40*

FL: 2,000*

KY: 30*

OH: no limit*

GA: 10/100

WV: 25

NC: 1,000*

VT: 250

VA: 20/500*

NH: 100

CT: 2,000*
NY: 25/500/2,000*

NJ: 2,000*

DE: 25/500/2,000*

MD: 2,000

DC: 1,000

42 states + DC 
have adopted a  

net metering policy

NE: 25

KS: 25/200*

ME: 660, co-ops & munis: 100

PR: 25/1,000

OR: 25/2,000*

CA: 1,000*

http://www.dsireusa.org/�
http://www.dsireusa.org/incentives/index.cfm?SearchType=Net&&EE=0&RE=1�


 
90 

4.2.4 Direct Cash Incentive Programs 
 
Direct cash incentives give solar energy system owners cash back for a qualified solar 
installation. Qualified solar installations vary by state and may include solar electricity-
producing, water heating, and space heating and cooling technologies. Direct cash incentives 
include rebates, grants, and production- or performance-based incentives that complement other 
financial incentives such as tax credits. 
 
The manner and timing in which direct cash incentives are paid varies by location and program 
design. Rebate and grant amounts are often based on system size or system cost, and the funding 
is typically awarded at the time of installation. Performance or production-based incentives are 
distributed to project owners over several years based on the amount of energy the system 
produces. Expected performance rebates are based on solar system capacity as well as system 
rating, location, tilt and orientation, and shading. Expected performance rebates may be 
distributed in a lump sum, but are calculated based on the expected energy output of the system. 
Payments based on performance or expected performance instead of capital investments are 
gaining prominence among program administrators because they encourage optimized system 
design and installation. To avoid a boom-and-bust cycle that can disrupt solar energy markets, 
careful consideration should be given to incentive levels, program caps, and long-term funding 
mechanisms for direct cash incentive programs.  
 
California, the leading U.S. state in terms of installed PV capacity, provides an example of a 
direct cash incentive program. In January 2006, the California Public Utilities Commission 
launched the California Solar Initiative (CSI), a direct cash incentive program providing more 
than $3 billion for solar energy projects with the objective of installing 3,000 MW of solar 
capacity by 2016. CSI includes a transition to performance-based and expected performance-
based incentives (as opposed to up-front payments based only on system size), with the aim of 
maximizing system performance through effective system design and installation. CSI incentive 
levels will automatically be reduced over the duration of the program in ten steps based on the 
aggregate capacity of solar installed in each utility service area. The California Public Utility 
Commission designated funding sources for the CSI program for 10 years (2006–2016).  
 
Figure 4.5 shows the states in which direct cash incentives are available. 
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Figure 4.5. States that offer direct cash incentives for solar projects, September 2009 
(DSIRE 2009) 

 
States and utilities usually administer direct cash incentive programs, but some local 
governments also offer these incentives to consumers. Currently, approximately 24 states and 
more than 100 utilities offer direct incentives for solar installations. Direct cash incentives are 
often funded through a public or systems benefits fund, clean energy funds, a revolving loan 
fund, or the general fund. The incentives typically cover 20% to 50% of project costs and range 
from a few hundred to millions of dollars (U.S. DOE 2009f). 
 
4.2.5 Renewable Portfolio Standards and Solar Set-Asides 
 
A renewable portfolio standard (RPS) is a policy that requires utilities or load-serving entities 
(LSEs) to provide its customers with a certain amount of electricity generated from renewable 
resources. While an RPS is typically a mandate, it can also be a non-binding goal; it is almost 
always stated as a percentage of the total electricity provided to be reached by a predetermined 
future date (Bird and Lockey 2008). As indicated in Figure 4.6, 29 states plus the District of 
Columbia have renewable portfolio standards in place, and an additional 6 states have non-
binding renewable energy production goals.  
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Figure 4.6. State renewable portfolio standards and goals, October 2009 

(DSIRE 2009) 
 
In effect, two products are produced from renewable energy generation:  the environmental 
attributes sold in the form of renewable energy credits (RECs) and the actual electricity produced 
by the renewable generator. A REC typically represents the attributes of 1 MWh of electricity 
generated from renewable energy. An unbundled REC represents the environmental benefits 
without the actual energy, and bundled RECs include both the environmental benefits and the 
actual energy produced by a renewable source. Many states allow RECs to be bought unbundled 
from the associated electricity and used to fulfill RPS obligations (Holt and Wiser 2007).  
 
A growing number of states are incorporating a “set-aside” or “carve-out” within the RPS, 
stipulating that a portion of the required renewable energy percentage or overall retail sales be 
derived from solar or DG resources71

                                                 
71 Note that when solar PV is located on residential, business, or government property and not part of a large 
centralized power system, it is considered to be distributed generation. 

 (DSIRE 2009). Figure 4.7 shows 15 states along with 
Washington, D.C., that have these set-asides or carve-outs for solar electricity generation and 
solar water heating. In addition, Massachusetts legislation has established a DG set-aside, but 
specific targets have not yet been established. Only three states and Washington, D.C., allow 
solar water heating to count toward the solar set-aside requirements. Figure 4.7 illustrates that 
solar electricity demand based on existing RPS set-aside requirements alone would amount to the 
installation of more than 8 GW of cumulative installed solar capacity by 2025 (Wiser and 
Barbose 2008, Wiser and Barbose 2009). 

State renewable portfolio standard

State renewable portfolio goal

Solar water heating eligible *† 
Extra credit for solar or customer-sited renewables

Includes non-renewable alternative resources

WA: 15% by 2020*

☼ NV: 25% by 2025*

☼ AZ: 15% by 2025

☼ NM: 20% by 2020 (IOUs)
10% by 2020 (co-ops) 

HI: 40% by 2030

☼ Minimum solar or customer-sited requirement

TX: 5,880 MW by 2015

UT: 20% by 2025*

☼ CO: 20% by 2020 (IOUs)
10% by 2020 (co-ops & large 

munis)*

MT: 15% by 2015

ND: 10% by 2015

SD: 10% by 2015

IA: 105 MW

MN: 25% by 2025
(Xcel: 30% by 2020)

☼ MO: 15% by 2021

WI: Varies by utility; 
10% by 2015 goal

MI: 10% + 1,100 MW by 2015*

☼ OH: 25% by 2025†

ME: 30% by 2000
New RE: 10% by 2017 

☼ NH: 23.8% by 2025

☼ MA: 15% by 2020
+ 1% annual increase
(Class I Renewables)

RI: 16% by 2020

CT: 23% by 2020

☼ NY: 24% by 2013

☼ NJ: 22.5% by 2021

☼ PA: 18% by 2020†

☼ MD: 20% by 2022

☼ DE: 20% by 2019*

☼ DC: 20% by 2020

VA: 15% by 2025*

☼ NC: 12.5% by 2021 (IOUs)
10% by 2018 (co-ops & munis)

VT: (1) RE meets any increase in 
retail sales by 2012;

(2) 20% RE & CHP by 2017

29 states + DC 
have an RPS

6 states have goals

KS: 20% by 2020

☼ OR: 25% by 2025 (large utilities)*
5% - 10% by 2025 (smaller utilities)

☼ IL: 25% by 2025 WV: 25% by 2025*†CA: 33% by 2020
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Figure 4.7. Solar capacity to meet existing RPS solar set-aside requirements, November 2009 

(Wiser and Barbose 2009) 
 
As with the overall RPS requirements, to reach the goal of the solar set-aside, utilities or LSEs 
can either own the solar generation capacity or purchase bundled or unbundled solar RECs 
(SRECs) (Cory et al. 2008). One major difference between RECs and SRECs is their cost; 
SRECs typically generate more revenue than RECs, providing an additional financial incentive 
to install solar power systems. To create a value for RECs and SRECs, however, the RPS must 
include a penalty or alternative compliance mechanism that has a distinctly higher penalty for 
those not complying with the RPS or solar set-aside (Cory and Coughlin 2009).  
 
SRECs are one of the key elements that can make a third-party PV ownership project financially 
feasible, resulting in as much as 40% to 80% of revenues for third-party PV projects. Two states 
that have witnessed high revenues from SRECs are Colorado and New Jersey (where SREC 
prices have ranged from $160/MWh to $265/MWh). In New Jersey, SREC prices are expected to 
rise from $300/MWh to $711/MWh in 2009 as the up-front rebates are removed (Cory et al. 
2008).  
 
New Jersey announced its Solar Renewable Energy Credit Registration Program in August 2009, 
designed to incentivize solar development in the state. One SREC is issued for each MWh of 
electricity generated from a solar electric system. The SRECs represent all the clean energy 
benefits from the solar generation and are sold or traded separately from the power, providing 
solar system owners with a source of revenue to help offset the costs of installation. The New 
Jersey SREC Program is expected to almost entirely replace the state’s rebates, which fueled 
solar growth in the early years of the state’s solar program. 
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4.2.6 Clean Energy Funds 
 
In the mid- to late-1990s, a bevy of states introduced retail competition and with it concerns over 
continued funding for energy efficiency, renewable energy, and low-income energy assistance 
programs. To address those concerns, system (or public) benefit funds were established and 
supported through an additional charge to end-users’ electricity bills, either as a per-kWh charge 
or a flat fee. The fund is then dispersed in various forms, such as grants, loans, and rebates, to 
support investments in renewable energy, energy efficiency, and related improvements for low-
income housing. Eligibility to receive support from a system benefit fund is contingent on the 
recipient being an electricity ratepayer (Cory et al. 2008).  
 
As Figure 4.8 indicates, the systems benefits charges can amount to large funds in the aggregate. 
For example, California is expecting to raise more than $4 billion from 1998 to 2016, and New 
Jersey expects to raise $647 million from 2001 to 2012. Across the nation, an estimated 
$7.3 billion in 16 states and Washington, D.C., will have been collected by 2017. 
 
In subsequent years, a second generation of “clean energy funds” was created and supported 
through a variety of methods, including RPS alternative compliance payments, general fund 
obligations, and oil and gas severance tax payments. These clean energy funds typically support 
energy efficiency and renewable energy programs and represent a renewed interest by states in 
the deployment of clean energy technologies. These second-generation funds were established in 
Alaska, Colorado, Iowa, and Maryland. 
 

Figure 4.8. Estimated system benefit funds for renewables, May 2009 
(DSIRE 2009) 

 
The way in which these funds are dispersed varies from state to state. In California, for example, 
the system benefit fund supports the CSI outlined in Section 4.2.3. 

State PBF supported by voluntary contributions

* Fund does not have a specified 
expiration date
** The Oregon Energy Trust is scheduled 
to expire in 2025 

RI: $2.2M in 2009
$38M from 1997-2017*

MA: $25M in FY2009
$524M from 1998-2017*

NJ: $78.3M in FY2009
$647M from 2001-2012 

DE: $3.4M in 2009
$48M from 1999-2017*

CT: $28M in FY2009
$444M from 2000-2017*

VT: $5.2M in FY2009
$33M from 2004-2011

PA: $950,000 in 2009
$63M from 1999-2010

IL: $3.3M in FY2009
$97M from 1998-2015

NY: $15.7M in FY2009
$114M from 1999-2011

WI: $7.9M in 2009
$90M from 2001-2017*

MN: $19.5M in 2009
$327M from 1999-2017*

MT: $750,000 in 2009
$14M from 1999-2017*

OH: $3.2M in 2009
$63M from 2001-2010

MI: $6.7M in FY2009
$27M from 2001-2017*

ME: 2009 funding TBD
$580,300 from 2002-2009

DC: $2M in FY2009
$8.8M from 2004-2012

DC

OR: $13.8M in 2009 
$191M from 2001-2017**

CA: $363.7M in 2009
$4,566M from 1998-2016

State PBF

16 states + DC 
have public benefits 
funds ($7.3 billion 
collected by 2017).
ME has a voluntary 
public benefits fund
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It is important to note that the state funds have been instrumental in driving the installation of 
grid-connected PV systems; more than 75% of the grid-connected PV systems installed in the 
United States in 2007 were located in states with a clean energy fund. Moreover, the state funds 
have invested more than 75% of their available funding in PV projects (Clean Energy States 
Alliance 2009). 
 
4.2.7 Emerging Trends 
 
Several policy/financing mechanisms are emerging that have the potential to incite further solar 
market expansion through the establishment of widespread local and utility programs. The three 
topics discussed in this section are feed-in tariffs, property tax financing, and rate structures. 
 
A feed-in tariff (FIT) is a requirement for utilities to purchase electricity from eligible renewable 
systems at a guaranteed price over a fixed period. Alternatively, a FIT can consist of a fixed or 
variable premium above the market price. A FIT increases the rate of PV deployment by 
providing a more stable revenue stream from PV systems and improving the rate of return on PV 
investments. The payment level generally is designed to ensure that the systems are able to 
recover costs and provide a modest profit. In addition to offering guaranteed prices, FITs 
typically guarantee grid access, allowing both small and large projects to connect to the grid 
according to uniform interconnection standards. FITs have been used extensively in Europe and 
are starting to be implemented in the United States (Couture and Cory 2009). 
 
Municipalities and counties across the country are launching innovative public/private financing 
programs that allow property owners to spread the cost of renewable energy systems over the 
long term. For example, Berkeley, California, and Boulder, Colorado, have passed initiatives to 
allow homeowners and businesses the opportunity to finance PV systems through adjustments to 
their property taxes, thus taking advantage of the government entities’ tax-free financing 
capabilities to support expansion of these resources at the local level. Programs utilizing this 
financing approach are commonly referred to as property-assessed clean energy (PACE) 
programs and will be discussed in more detail in Section 4.3.3, along with other innovative 
financing mechanisms. 
 
As customer-sited generation and advanced metering technologies become more prevalent, there 
is an increased interest in developing alternative rate structures that reflect the resulting changes 
in electricity use. The majority of existing rate structures do not capture the actual value of time-
varying increases or decreases in demand for electricity, and therefore are unlikely to capture the 
value of energy produced by customer-sited generation including solar PV. This is because solar 
PV peak generation often correlates well with peak electricity demand. With the availability of 
more advanced metering, it is possible to create rate structures that better reflect the variances in 
the value of electricity as demand fluctuates. Appropriate rate structures for PV could enable 
better capture of the value of excess customer generation exported to the grid. While time-of-use 
rates and other emerging rate structures are still relatively uncommon, it is anticipated that they 
will become increasingly more prevalent and serve as a driver for solar market expansion. 

 

  



 
96 

4.3 Private Sector and Market-Based Developments to Facilitate Solar 
Deployment 
 
The financing of solar and other renewable energy technologies experienced significant changes 
in 2008 and early 2009. The passage of the ARRA in February 2009 greatly expanded the 
availability and usability of various tax credits, depreciation opportunities, loan guarantees, and 
other mechanisms designed to incent private and public investment in renewable energy and 
energy efficiency projects. The ARRA expanded and extended an array of incentives made 
available with passage of the EESA (and other earlier laws).  

In addition to the previously described support mechanisms, private sector and other solar market 
stakeholders, including states, counties, and municipalities, have developed mechanisms to 
support renewable energy financing by residents, businesses, and institutional and government 
consumers of energy. 

Three prominent financing mechanisms/programs for solar PV and CSP will be discussed in this 
section:  the third-party power purchase agreement (PPA), the solar lease, and property-assessed 
clean energy (PACE) programs. 

4.3.1 Third-Party Power Purchase Agreement Financing 
 
All sectors can use the third-party ownership PPA, including homeowners, businesses, utilities, 
and state and local governments. 

In a third-party ownership PPA model, one party hosts a PV system on his or her property and a 
solar developer purchases, installs, owns, operates, and maintains the system. In the residential 
sector, it is the homeowner that hosts and does not purchase or own the PV system, and instead 
buys the electricity produced by the PV system under a long-term PPA (see Figure 4.9). In 
exchange for signing the PPA, the homeowner avoids paying for the PV system up front and 
usually is not responsible for the operation and maintenance (O&M) of the system. The PPA 
provider receives the monthly cash flows in the form of power sales and the fully monetized 
federal tax benefits, including the investment tax credit and accelerated depreciation. An 
example of a PPA provider for the residential (and commercial) market is SolarCity, which 
offers a variety of lease structures, including a zero-down option; however, the higher the down 
payment, the lower the monthly lease payment (Coughlin and Cory 2009). 
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Figure 4.9. The residential power purchase agreement 

(NREL 2009b) 
 

The commercial PV market has witnessed a rapid proliferation of the use of the PPA-financing 
model of ownership. Greentech Media estimated that roughly 80% of the commercial market in 
2008 will have used a PPA for PV installations, an increase from previous levels of 50% in 2007 
and 10% in 2006 (Guice and King 2008). The benefits of the PPA method for financing PV 
deployment in the commercial sector are similar to those for customers in the residential sectors. 
Thus, a PPA provides the opportunity for a commercial owner to host rather than own a PV 
system. Instead of securing capital up front and being responsible for O&M, the business owner 
signs a long-term PPA to purchase the electricity generated by the system. The PPA is typically 
priced at or below the prevailing utility retail rate in the first year (with perhaps some escalation 
over the life of the contract).  The owner of the business avoids most, if not all, of the up-front 
purchase and installation costs, as well as O&M responsibilities. 

Utilities often rely on third parties to design, finance, manage construction of, and operate and 
maintain solar facilities. Development of these facilities requires the long-term procurement of 
the power output. Accordingly, utilities sign PPAs with the developers, allowing the developer to 
obtain lower-cost financing, passing on the savings through relatively lower power prices. PPAs 
can come in many forms and durations, but generally payments are made for both the plant 
capacity (maximum capable output) and energy production, and PPAs cover a 15- to 20-year 
period starting with a facility’s commercial operation. However, now that utilities can use the 
ITC directly, their use of third-party PPAs may be affected (see Section 4.3.5). 
 
Utilities benefit from PPAs as they are designed to leverage the technical expertise and 
experience of the solar developer. PPAs also allocate risks of cost overruns, plant availability, 
etc., to a pre-specified party, typically the plant developer. In return for accepting most 
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development and operating risks, the developer receives price certainty and marketability of its 
product. 
 
PPAs allow faster development of solar resources as utilities can leverage the capability of many 
developers simultaneously. For example, Pacific Gas & Electric has approximately 3 GW of 
large-scale CSP and PV solar facilities under development via its PPA counterparties, including 
such entities as BrightSource Energy, First Solar, Sun Power, Solel, and Solaren Corp. 
(Mendelsohn and Kreycik, forthcoming). 
  
State and local governments are also responding to the challenges of funding PV development on 
their buildings and land by using innovative finance structures such as the third-party-ownership 
PPA model. As with the residential and commercial sectors, the benefits of transferring the up-
front costs and O&M responsibilities to the owner/developer, maintaining steady electricity 
prices, and using federal tax benefits inherent to the PPA ownership model have made it an 
attractive option for state and local properties. 
 
Note that third-party PPA financing may face regulatory or legal challenges in some states, 
especially where the issue of utility commission regulation of third-party owned systems has not 
been specifically addressed (Kollins, forthcoming). 
 
4.3.2 Customer Solar Lease Financing 
 
The customer solar lease is similar to the residential or commercial PPA in that a property owner 
hosts, but does not own, a solar PV system. To take advantage of federal tax incentives, a third-
party lessor finances and owns the solar PV installation. However, distinct to a solar lease, the 
property owner (as lessee) pays to use the equipment instead of purchasing the generated power.  
Thus, the customer’s lease payment remains constant even if the system’s output fluctuates. If 
the system does not meet the customer’s entire energy needs, the customer purchases additional 
electricity from his/her utility. Any excess electricity generated by the system can be net 
metered, earning the customer cents/kWh credits on his/her electric utility bill. 
 
Similar to a third-party PPA, the solar lease transfers the high up-front costs to the system 
owner/developer, who can take advantage of valuable federal tax incentives. Some of the cost 
savings might be passed down to the customer in the form of lower payments. In states with 
complementary incentives, lease payments can be less than or equal to monthly utility savings.72

 

 
Also, like the third-party PPA, the lease may shift maintenance responsibilities to the developer. 

There are challenges associated with the solar lease. For example, the leasing company may not 
have as strong an incentive to maintain the system as it would under a third-party PPA contract, 
because the customer’s payments are fixed regardless of the system’s output. However, some 
companies will monitor the system’s output and will provide maintenance promptly, or will 
include a performance guarantee that ensures a minimum kWh output (Kollins et al., 
forthcoming). Also, as with the third-party PPA, the solar lease may face regulatory challenges 
in some states (Kollins et al., forthcoming). In addition, the traditional solar lease may not be 
available to non-taxable entities such as state and local governments because of uncertainty 

                                                 
72 For lease payments to nearly equal utility bill savings, the leasing company must have additional incentives, such 
as up-front rebates or performance based payments (Coughlin and Cory 2009). 
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about renewing contracts on a year-to-year basis. However, state and local governments may be 
able to use a tax-exempt lease where payments to the lessor are tax exempt (Bolinger 2009). 
 
4.3.3 Property-Assessed Clean Energy Programs 
 
In addition to private-sector financing mechanisms, local governments have also designed 
programs to fund energy efficiency and renewable energy development on private property, with 
a particular focus on funding PV installations. 
 
Several municipalities are assisting residential and commercial ownership of renewable energy 
systems through financing via property tax assessments.73

Property-assessed clean energy (PACE) assessments

 Piloted by the Berkeley FIRST 
program and replicated elsewhere, the property tax assessment model finances the cost of 
renewable energy and energy efficiency improvements through the creation of special tax 
districts (Coughlin and Cory 2009). Interested property owners may opt into the program and 
pay for an additional line item on their property tax bill. 

74 transform the high upfront costs into the 
equivalent of a moderate monthly payment75 and allow the property owner to transfer the 
assessment and capital improvement to new property owners in the event of a sale (Koenig and 
Speer, forthcoming).76

Figure 4.10 indicates active PACE programs in the United States, as well as states with current 
or pending PACE-enabling legislation. 

 Under a PACE program, a municipality provides the financing to pay for 
the up-front system costs for a renewable energy system through an additional property tax 
assessment. The municipality funds the assessments by public bond offerings, micro bonds, 
general funds, or municipal waste funds (Koenig and Speer, forthcoming). The property owner 
repays the cost of the system, plus interest and administrative fees, through additional 
assessments placed on his or her property tax bill, which are collected over a time period that 
reflects the useful life of the improvements. The property tax assessment model eliminates nearly 
all of the up-front costs of installation to the property owner with the exception of program 
administrative fees. Further, the renewable energy system and accompanying special property 
tax is fixed to the property and not the property owner. Thus, homeowners pay for benefits from 
the renewable energy system only while they own the property (Coughlin and Cory 2009; 
Koenig and Speer, forthcoming). 

 
 
 
  
 

                                                 
73 To date, only the Sonoma County (CA) program is open to commercial property owners. However, Boulder 
County (CO) will be opening up the ClimateSmart Loan program to business owners in 2010 with a new round of 
funding. 
74 Assessments are similar to loans in that they allow a property owner to pay off debt in installments over a long 
period of time. However, PACE assessments are not legally considered to be loans. 
75 Note that payments are typically made semi-annually. However, the semi-annual payment could be considered by 
the property owner as six moderate monthly installments. 
76 While property owners may be able to transfer the assessment to a new buyer, a buyer could require that all liens 
on the property (including the PACE assessment) be settled before the property is transferred. 
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Figure 4.10. Property-assessed clean energy programs, November 2009 
(DSIRE 2010b) 

 
4.3.4 Alternative Financing Structures:  Partnership Flips and Leases 
 
PPAs, solar leases, and SRECs are used between a customer and a developer to help finance 
solar project development. There are also several other financing mechanisms that are used 
between a project developer and a separate tax investor. These financing alternatives are 
designed to facilitate full and efficient use of federal and state tax benefits by transferring tax 
subsidies to tax-burdened investors. Examples of these financing structures include partnership 
flips and leases. 
 
In a partnership flip, ownership of a solar project is shared between a developer and a tax equity 
investor, who contributes project investment capital in exchange for federal and state tax benefits 
and some revenue. Once the tax equity investor reaches a specified rate of return, the project’s 
economic returns are redistributed, or “flipped,” between the developer and tax equity investor, 
with the developer typically receiving the majority of electricity sales revenue (Martin 2009). 
 
Solar developers and investors have also financed solar projects with various forms of equipment 
leases such as a sale-leaseback and an inverted pass-through. In a sale-leaseback, a developer 
sells a solar system and accompanying tax benefits to a tax equity investor, who in turn leases 
back the use and possession of the solar property to the same developer (Martin 2009). In an 
inverted pass-through lease, the roles of the developer and tax equity investor are effectively 
reversed (inverted). The developer makes an election to pass through the investment tax credit to 
the tax equity investor along with revenue from the system’s electricity sales. The developer 

PACE enabling legislation

Existing authority without new legislation

Active PACE Program
1. Babylon, NY
2. Berkeley, CA
3. Boulder County, CO
4. Palm Desert, CA
5. Sonoma County, CA

1

3

4

5

2

#
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receives fixed lease payments from the tax equity investor, as well as the tax benefit of 
accelerated depreciation (Jones and Lowman 2009). 
 
4.3.5 Increasing Utility Ownership of Solar Projects 
 
Recent federal legislation has also greatly increased the incentive for utilities to directly own 
solar projects themselves and not require a separate tax investor. In particular, the EESA 
contained three provisions that promote direct utility ownership of solar projects. First, the 
8-year investment tax credit extension provides long-term certainty regarding the availability of 
the credit. Second, utilities are permitted to take the investment tax credit directly, which was 
previously unavailable.77

 

 Third, the investment tax credit can also be applied to a renewable 
energy system owner’s alternative minimum tax―formerly a significant barrier to entry 
(Schwabe et al. 2009).  

The ARRA also provided an extension of the 50% bonus depreciation in year one in addition to 
MACRS, the five-year accelerated depreciation. However, public utilities may not be able to use 
MACRS unless their regulators allow them to include the solar property under a normalization 
method of accounting (SEPA 2009). Also, utility ownership enables utilities to count electricity 
generated toward state RPS requirements. 
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5. Investments and Future Outlook 

This chapter provides information on trends in private investment in solar energy (Section 5.1), a 
summary of DOE investment in solar energy and its role in the solar industry (Section 5.2), and a 
review of near-term forecasts for PV and CSP (Section 5.3). 
 
5.1 Private Investment in Solar Energy 
 
This section discusses private investment in solar energy including venture capital (VC), private 
equity (PE), debt, public equity, and mergers and acquisitions (M&A) (New Energy Finance 
2009).78

Figure 5.1 shows the tremendous rise of global investment in solar energy, particularly from 
2004 to 2008. Total annual investment from 2000 through 2003 was $66 million, $144 million, 
$110 million, and $417 million, sequentially, for a 3-year CAGR of 85%. This investment set the 
foundation for the rapid expansion of the industry in 2004, as generous incentive programs in 
Germany and Japan brought solar energy into the mainstream in both countries. Total investment 
in 2005 of $2.5 billion marked a 256% increase over the $702 million of investment in 2004. 
This was followed by increases of 183% to $7.08 billion in 2006, 75% to $12.38 billion in 2007, 
and 31% to $16.20 billion in 2008. 

 Private investment in solar energy grew rapidly from 2000 to 2008, with explosive 
growth occurring in the latter half of this period. From 2004 to 2008, global private-sector 
investment in solar energy increased by a factor of 25 plus. Moreover, the growth in investment 
has been widespread, occurring across sources, technologies, and regions. Each of the three 
major sources of new investment examined here, venture capital and private equity, debt, and 
public equity, grew at a compound annual growth rate (CAGR) of more than 67% from 2004 to 
2008. In addition, funding to solar companies increased dramatically for different technologies, 
including crystalline silicon PV, thin-film PV, and CPV, and in each of the three main regions, 
the United States, European Union, and Asia. 

                                                 
78 An NREL report summarizing private investment information through 2007 was published by NREL in 2008, but 
the analysis included in this section was updated by John Bartlett in 2009. The earlier report is: Jennings, C.E.; 
Margolis, R.M.; Bartlett, J.E. (2008). Historical Analysis of Investment in Solar Energy Technologies (2000-2007). 
National Renewable Energy Laboratory. www.nrel.gov/docs/fy09osti/43602.pdf. 

http://www.nrel.gov/docs/fy09osti/43602.pdf�


 
106 

 
Figure 5.1. Global capital investments in solar energy79

(New Energy Finance 2009) 
 

 
The role of debt in the solar industry, which totaled $104 million in 2005, $479 million in 2006, 
$1.63 billion in 2007, and $5.48 billion in 2008, has greatly increased as banks and other lenders 
have become involved in financing the operations and expansions of solar companies. Greater 
debt financing is a positive trend, suggesting that the perceived market and technology risks have 
decreased. Furthermore, increased debt financing allows industry participants to lower their cost 
of capital significantly. 

Public equity offerings of solar companies were extremely limited in 2004, but in 2005 
$1.74 billion of new equity was raised, followed by $4.83 billion and $7.92 billion in 2006 and 
2007, respectively. In addition, the number of solar public offerings grew rapidly, with 45, 64, 
and 88 offerings, sequentially, from 2005 to 2007. In 2008, the total value and number of public 
solar equity offerings fell to $6.11 billion and 39, respectively, as the financial crisis deepened.  
Nonetheless, the 2008 numbers still represent an enormous market expansion compared to 2004 
levels. 

Disclosed M&A deals raised new equity of $49.5 million, $13.8 million, $58.6 million, and 
$269.5 million from 2005 to 2008, sequentially. Mergers and acquisitions deal volume surpassed 
$5.3 billion in 2008, with large transactions such as Robert Bosch’s acquisition of ErSol Solar 
Energy for $1.79 billion and Schneider Electric’s acquisition of Xantrex Technology for 
$494 million. In M&A transactions, however, equity mostly is transferred between market 
participants, and thus M&A generates comparatively little new investment for the solar sector. 

                                                 
79 Excluding government R&D and project finance investment. 
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Global venture capital and private-equity investment in solar totaled $539 million in 2004 and 
$604 million in 2005; it then jumped to $1.76 billion in 2006, $2.78 billion in 2007, and 
$4.34 billion in 2008, for a 4-year CAGR of 68% and a 3-year CAGR of 93% through 2008. 

Figure 5.2 shows investments in solar energy in the United States. Following a pattern similar to 
that of worldwide investment, the chart presents investment during the period 2000–2004 
progressing from $77 million to $130 million, a CAGR of 14%. During the period from 2004 to 
2008, investment grew at a 4-year CAGR of 133%, expanding from $130 million to about 
$3.9 billion. Venture capital and private-equity investment grew fastest, from $61 million in 
2004 to $2.3 billion in 2008, corresponding to a 4-year CAGR of 148%. 

 
Figure 5.2. U.S. capital investments in solar energy80

(New Energy Finance 2009) 
 

 
A major theme in the recent history of solar investment is that regional differences in subsidy 
programs, policies, and regulations have produced significant differences in investment patterns. 
Figure 5.3 shows the value of private investment (both venture capital and private equity) in 
solar by year, region, and technology on the left axis and the number of transactions by year and 
region on the right axis. The regional differences in investment in solar technologies are striking. 

                                                 
80 Excluding government R&D and project finance investments. 
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Figure 5.3. Global venture capital and private-equity investments by solar technology 

(New Energy Finance 2009) 
 
Private investments in Asia, almost nonexistent until 2005, have remained focused mainly on the 
production of crystalline silicon PV. Private investments in Europe started somewhat earlier and 
have focused on crystalline silicon PV and polysilicon production, with additional interest in 
project developers and thin-film technologies in recent years. In contrast, U.S. private 
investments have been broadly diversified, with investments in nearly all areas of the solar 
industry and increasing interest in concentrating photovoltaics (CPV), next-generation PV, 
concentrating solar power (CSP), and project developers. Most importantly, of the $1.52 billion 
of global private investment that thin-film PV received in 2008, $1.11 billion went to U.S.-based 
companies. 

In terms of regional differences in private-equity versus venture-capital investments, private-
equity investment has been predominant in Europe. A great majority of private-equity 
investment in the solar industry has been to finance capacity expansions (often by means of 
constructing new factories), thus indicating that companies based in the European Union have 
been building a majority of these factories. In contrast, venture-capital investment has been 
predominant in the United States. Venture-capital investment is an indicator of new technologies 
or business models. Whereas generous subsidy programs in the European Union have spurred 
companies there to expand capacity rapidly, the market in the United States has not been 
sufficiently attractive to enable significant growth of incumbent products. Therefore more U.S. 
investment has been directed to innovative technologies with longer-term prospects. 
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5.2 U.S. Department of Energy Investment in Solar Energy 
 
The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP)81 plays a 
key role in accelerating the development of the U.S. solar industry and the advancement of solar 
technologies. SETP investments have helped foster a diverse set of technology pathways. 
SETP’s long-term objective is to achieve high market penetration of solar energy technologies 
with an interim goal of achieving cost parity with conventional forms of electricity by 2015 (U.S. 
DOE 2009).82

 

 SETP efforts are implemented through four subprograms: Photovoltaics (PV), 
Concentrating Solar Power (CSP), Systems Integration, and Market Transformation. The PV and 
CSP subprograms focus on lowering the levelized cost of solar energy through research and 
development. Systems Integration focuses on technologies, tools, and strategies to optimize the 
integration of solar energy into the grid. Market Transformation addresses non-R&D barriers to 
achieving high market penetration of solar energy technologies. 

Figure 5.4. DOE SETP budget history from FY 2001 to FY 2009 
 
DOE SETP FY 2007 and FY 2008 research and development budgets were $157 million and 
$164 million, respectively, with the FY 2007 budget representing an increase of approximately 
$75 million compared to FY 2006 (see Figure 5.4). Most of the budget increase for FY 2007, and 
continuing into FY 2008, was conveyed under the umbrella of the Solar America Initiative 
(SAI). In addition to increased funding for PV research and development (R&D), funding in 
FY 2007 and FY 2008 provided additional resources for CSP R&D, Systems Integration, and 
Market Transformation. In FY 2008, funding allocated to the four subprograms was $112 million 
for PV, $24 million for CSP, $12 million for Systems Integration, and $16 million for Market 
Transformation. In FY 2009, the SETP budget increased again, to $175 million, comprised of 
$125 million for PV, $24 million for CSP, $12 million for Systems Integration, and $14 million 
for Market Transformation. In addition, the American Recovery and Reinvestment Act of 2009 
                                                 
81 DOE SETP Web site: http://www.eere.energy.gov/solar/ 
82 DOE SETP FY 2008 Annual Report: http://www.nrel.gov/docs/fy09osti/43987.pdf. 

http://www.eere.energy.gov/solar/�
http://www.nrel.gov/docs/fy09osti/43987.pdf�


 
110 

provided nearly$118 million83

The majority of SETP funding is directed at cost-shared research, development, demonstration, 
and deployment efforts with national laboratories, states, industry, and university partners. For 
current, upcoming, and past funding opportunities in all research areas, see: 

 in additional funds to SETP, bringing the total FY 2009 budget to 
$293 million. Recovery Act funding in FY 2009, as allocated to the subprograms, was $52 
million for PV, $26 million for CSP, $26 million for Systems Integration, and $15 million for 
Market Transformation. 
 

http://www.eere.energy.gov/solar/financial_opportunities.html. 

The DOE SETP Photovoltaics subprogram84

The Concentrating Solar Power subprogram

 invests in technologies across the development 
pipeline that demonstrate progress toward minimizing the effective life-cycle cost of solar 
energy. The PV subprogram’s activities are organized into three focus areas: new devices and 
processes, prototype design and pilot production, and systems development and manufacturing. 
Highlights in FY 2008 were: 1) Awarded more than $65 million for 62 industry projects 
spanning early-stage to market development, addressing the challenges of scaling up novel,  
low-cost manufacturing for crystalline silicon, thin film, and concentrating PV technologies; and  
2) Achieved world-record efficiencies through applied research at the national laboratories, 
including a 20.0%-efficient CIGS thin-film PV device and a 40.8%-efficient inverted 
metamorphic multijunction solar cell. 

85

The Systems Integration subprogram

 has been ramping up R&D and deployment efforts 
in recent years, leveraging industry partners and the national laboratories. The CSP subprogram 
aims to increase U.S. deployment of CSP, achieve intermediate power market competitiveness 
by 2015, and develop advanced technologies to reduce system and storage costs, enabling base-
load power market competitiveness by 2020. R&D activities focus on linear concentrator 
systems such as parabolic troughs and linear Fresnel reflectors, dish-engine systems such as 
dish/Stirling engine systems, thermal storage systems and advanced heat transfer fluids, 
advanced concepts R&D, and CSP market transformation. Highlights in FY 2008 were:  
1) Established 15 partnerships with universities and CSP companies to support innovations in 
advanced high-temperature, heat-transfer fluids and thermal storage systems; and 2) Partnered 
with the Bureau of Land Management to initiate a Programmatic Environmental Impact 
Statement and conducted other joint activities necessary for the development of federal land in 
the Southwest for utility-scale solar projects (also see Section 2.4.5, Land and Transmission 
Constraints for Utility-Scale Solar). 

86

                                                 
83 The exact Recovery Act funding level was $117.6 million. 

 focuses on breaking down the regulatory, technical, and 
economic barriers to integrating solar electricity into the electric grid by developing technologies 
and strategies in partnership with utilities and the solar industry. Systems Integration R&D 
includes Solar System Technology Development, Advanced Systems Integration, System 
Testing and Demonstrations, Renewable Energy System Analysis, Solar Resource Assessment, 
and Codes, Standards and Regulatory Implementation. Highlights in FY 2008 were: 1) Awarded 
funds to 12 industry teams through the Solar Energy Grid Integration Systems project to develop 

84 DOE SETP PV subprogram Web site: http://www.eere.energy.gov/solar/photovoltaics_program.html 
85 DOE SETP CSP subprogram Web site: http://www.eere.energy.gov/solar/csp_program.html  
86 DOE SETP Systems Integration subprogram Web site: 
http://www.eere.energy.gov/solar/systems_integration_program.html. 
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new inverters and controllers with interfaces to energy-management systems; and 2) Established 
monitoring of large-scale PV performance at high-penetration sites in California, Colorado, and 
Hawaii to better understand how high levels of PV impact the grid and reduce installation costs. 

The Market Transformation subprogram87 promotes the commercialization of solar technologies 
by addressing non-R&D barriers to solar energy adoption. Activities include codes and standards 
development, outreach to state and utility decision makers, workforce development, solar 
installation technical assistance, and the Solar America Cities program. DOE partners with 
several organizations including the Solar America Board for Codes and Standards, the Solar 
Electric Power Association, the Interstate Renewable Energy Council, the National Association 
of Regulatory Utility Commissioners, the National Conference of State Legislatures, and the 
Clean Energy Group. Highlights in FY 2008 were: 1) Strengthened the responsiveness, 
effectiveness, and accessibility of PV codes and standards through the Solar America Board for 
Codes and Standards, including release of three studies on interconnection procedures for utility 
regulators, solar access laws, and external disconnect switches; and 2) Expanded the Solar 
America Cities program from 13 to 25 partnerships, to further accelerate deployment of solar 
energy technologies by providing financial and technical assistance to cities committed to 
making solar a mainstream energy source (Figure 5.5). 

 
 

Figure 5.5. 2007 and 2008 Solar America Cities 

 
  

                                                 
87 DOE SETP Market Transformation subprogram: 
http://www.eere.energy.gov/solar/market_transformation_program.html.  
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5.3 Solar Market Forecasts, PV and CSP 
 
5.3.1 PV Market Forecasts 
 
The recent expansion of the PV market has prompted numerous analysts from financial 
institutions and research and consulting firms to provide analysis and forecasts for the PV sector. 
This section analyzes these projections, both to identify the expected path of the industry and to 
recognize the substantial variance in market forecasts. Key trends and uncertainties for the PV 
market in the next several years also are discussed.  

The global economic crisis that became apparent in late 2008, and which is expected to diminish 
funds available for investments and reduce the demand for PV, caused some analysts to revise 
their forecasts substantially in reports released in early 2009 compared to forecasts released in 
mid-to-late 2008. This section focuses on the projections made in early 2009. For a detailed 
discussion about the effects of the economic crisis on PV forecasts, see the full report from 
which the data and discussion in this section have been extracted (Bartlett et al. 2009).88

Figure 5.6 illustrates the forecasted size and composition of PV production through 2012. For 
total production, the median estimate increases from 5.6 GW in 2008 to 21 GW in 2012, a 4-year 
CAGR of 40%. For both the c-Si and thin-film PV segments, the growth is expected to be 
greatest through 2010, with growth slowing somewhat in 2011 before accelerating again in 2012. 
In addition to the growth of the median estimate, the range of estimates is significant. In 2012, 
the high estimates for c-Si and thin film are roughly three times as great as the low estimates. 
These uncertainties are due to different opinions about the demand for PV modules, the ability to 
expand production sufficiently for each part of the PV supply chain, and the technological and 
cost improvements of c-Si. 

 

  

                                                 
88 The Effects of the Financial Crisis on Photovoltaics: An Analysis of Changes in Market Forecasts from 2008 to 
2009: www.nrel.gov/docs/fy10osti/46713.pdf  
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Figure 5.6. Global total PV module production forecasts 

(Mehta and Bradford 2009, Citi Investment Research 2009, Cowen & Co. 2009,  
Deutsche Bank 2009, Lazard 2009, Morgan Stanley 2009, Mints and Tomlinson 2008,  

Mints 2009, Chase et al. 2009, Thomas Weisel 2009) 
 
Regarding thin-film versus c-Si production, thin-film production is expected to grow faster than 
c-Si production during the next several years, with a forecasted 2008–2012 CAGR for thin-film 
PV of 52% versus 33% for c-Si PV. However, c-Si is still expected to be the dominant 
technology for the next several years, accounting for about 77% of total PV production in 2012. 
There is, however, considerable disagreement among analysts about the future PV market share 
of c-Si versus thin film; the 2012 c-Si market share estimates range from 66% to 84%. 

To better describe the thin-film sector, Figure 5.7 presents the projected rise in thin-film PV 
module production by technology through 2010. The range of supply estimates (i.e., the 
considerable uncertainty) for thin-film PV is reasonable given that thin film faces technology and 
scale-up risks in addition to overall PV market uncertainty. Despite the uncertainty, tremendous 
growth is implied by the median estimates, with 2008–2010 CAGRs of 70% for CdTe, 85% for 
a-Si, and 96% for CIGS production. 

For CdTe, First Solar accounts for virtually all the 2008 CdTe production of roughly 0.50 GW, 
and the company plans to have 1.1 GW of manufacturing capacity by the end of 2010. The 
uncertainty in the 2009 and 2010 production estimates might result from divergent opinions 
regarding the prospects of new CdTe entrants, such as PrimeStar Solar and Abound Solar, as 
well as uncertainty regarding the pace of First Solar’s expansion. 

For a-Si, there are established producers such as Energy Conversion Devices, Sharp, and 
Kaneka, as well as numerous new entrants, many of which have planned to enter the market 
through the purchase of turnkey systems from Applied Materials or Oerlikon. However, given 
the capital expenditures necessary for the purchase of turnkey production lines, expansion of a-Si 
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production from new entrants has been curtailed by the tight credit environment. In addition, as 
PV module prices have fallen faster than system prices over the past year, non-module costs have 
risen as a proportion of total system costs. Because non-module costs per watt rise as module 
efficiency declines, a-Si (which has the lowest efficiency of any of the principal PV 
technologies) has become less attractive. 

CIGS module production is starting from a very low base, a median 2008 estimate of just 
0.10 GW, but is expected to grow substantially in the near term. The median projection for 2010 
is 0.40 GW, with a low estimate of about 0.10 GW and a high estimate of about 1.0 GW. The 
enormous range reflects the substantial scale-up and technology risks as companies such as 
Miasole, Nanosolar, and Solyndra expand commercial production. 

 
Figure 5.7. Global thin-film PV module production forecasts 

(Mehta and Bradford 2009, Citi Investment Research 2009, Deutsche Bank 2009,  
Lux Research 2009) 

 
Figure 5.8 shows the demand projections for solar PV modules by location. Global demand is 
expected to grow from 5.8 GW in 2008 to 19 GW in 2012, a 4-year CAGR of approximately 
34%. Europe, with Germany continuing to be the dominant market in the continent, is expected 
to remain the largest region for solar power. However, the North American market is expected to 
grow the fastest. Four-year CAGRs are 14% for Europe, 87% for North America, 39% for Japan 
and South Korea, and 50% for the rest of the world (ROW). As with the production projections, 
there is tremendous range in the demand estimates resulting from the uncertainty about policy 
incentives, electricity prices, cost reductions of PV systems, and the price elasticity of PV 
demand. 

The United States is expected to account for a large majority of North American demand through 
2012. However, analysts also expect Canada to contribute meaningfully, particularly as a result 
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of Ontario’s enhanced feed-in tariff. Mexico and other North American countries are not 
expected to contribute substantially to PV demand in the near term. 

 
Figure 5.8. Global PV module demand forecasts 

(Barclays 2009, Citi Investment Research 2009, Cowen & Co. 2009, Lazard 2009,  
Morgan Stanley 2009, Oppenheimer 2009, Thomas Weisel 2009, UBS 2009) 

 
Figure 5.9 shows forecasted global module and system prices through 2010. Module prices are 
expected to decrease from $3.72/W in 2008 to $2.45/W in 2010, a 2-year CAGR of –18.8%. 
System prices are expected to decrease by a slightly smaller proportion, from $6.08/W in 2008 to 
$4.21/W in 2010, a 2-year CAGR of –16.8%. By comparison, the average U.S. PV system cost 
was $7.50/W in 2008. Although estimated non-module prices cannot be calculated directly from 
Figure 5.9 (some analysts forecast only system prices and others forecast only module prices), it 
is likely that the module prices are expected to decline faster than non-module prices through 
2010. This is not surprising given the previous supply shortages that have kept PV module prices 
from declining over the last few years despite cost improvements. Thus, there is significant room 
for price declines within the PV-module cost structure. 
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Figure 5.9. Global PV module and system price forecasts 

(Cowen & Co. 2009, Deutsche Bank 2009, Deutsche Bank 2009a, Lazard 2009,  
Lux Research 2009, Morgan Stanley 2009, UBS 2009) 

 
5.3.2 CSP Market Forecasts 
 
CSP differs markedly from PV with respect to history, installation size, permitting and 
construction duration, and technological readiness. Whereas PV has had a history of consistent 
annual installations, 350 MW of CSP were built in the 1980s with no subsequent installations in 
the United States until 2005. Installation sizes on the order of tens of megawatts, and up to 
4-year permitting and construction durations, contribute to the difference in deployment patterns 
between CSP and PV. Finally, only one CSP technology (parabolic troughs) has been 
demonstrated long term on a fully commercial scale. As of mid-2009, two power towers were 
grid-tied in Spain, but this technology type is still relatively new to the commercial market. In 
addition, dish-engine systems and linear Fresnel reflectors have not yet been deployed at a near-
commercial scale. For these reasons, the scope of CSP forecasting is more limited. 

Tables 5.1 and 5.2 list the amount and location of planned CSP installations through 2015; these 
include systems that have been commissioned, financed, under construction, announced, or 
proposed (Bullard and d’Avack 2009). Of the more than 12 GW in the CSP pipeline, more than 
50% is in the United States, 33% is in Spain, about 8% is in the Middle East and North Africa 
(MENA) region, and the remaining 8% is dispersed across Australasia, Europe, and the Republic 
of South Africa. It should be noted that the projects in the global pipeline are by no means 
guaranteed. Several major factors could prevent many of these projects from being completed, 
resulting in a pipeline that will likely be reshaped on a continual basis. 

Table 5.3 shows the U.S. CSP power purchase agreement (PPA) pipeline market shares by 
technology, based on about 4.3 GW of PPAs (two-thirds of the 6.5 GW in the U.S. pipeline 
shown in Table 5.1). In contrast to CSP installed and under construction (see Section 1.3), which 
is dominated by parabolic trough technology, troughs and towers are equally represented in the 
U.S. PPA pipeline. 
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Table 5.1. Global CSP Planned Projects, 
Capacity by Country, Through 2015 

Country Capacity 
(GW) 

United States 6.5 
Spain 4.2 
India 0.46 
Jordan 0.40 
Israel 0.40 
Italy 0.11 
China 0.10 
U.A.E 0.10 
South Africa 0.10 
Australia 0.083 
Greece 0.062 
Mexico 0.052 
Oman 0.050 
Egypt 0.030 
Algeria 0.025 
Morocco 0.020 
France 0.012 
Chile 0.010 
Total 12.7 

Bullard and d’Avack 2009 
 

Table 5.2. Global CSP Planned Projects, 
Market Share by Country, Through 2015 

Country Market Share 
United States 51% 
Spain  33% 
MENA 8% 
ROW  8% 

Bullard and d’Avack 2009 

 
Table 5.3. U.S. CSP Power Purchase 
Agreement Pipeline, Market Share by 

Technology, Through 2015 

Technology Capacity 
(GW) 

Market 
Share 

Parabolic trough 1.8 41% 
Tower 1.7 40% 
Dish-engine 0.83 19% 
Total 4.3  

Bullard and d’Avack 2009 
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