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addition, the changes in network structure were significantly correlated with
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potential importance of network Interactions Iin ecosystem functioning. ac02 82 126  3.07 2.94 0.4

Table 1. Summary of the network complexity of represented individual functional
genes involved in C, N, P and S cyclings.

Elucidating network Interactions In microbial communities and their
responses to environmental changes are fundamentally important for
research in microbial ecology, systems microbiology, and global change.

Fig. 2. Network interactions of microorganisms containing nifH genes under
eCO, (A) and aCO, (B). Microorganisms containing nifH genes formed complex

— Aigrcaze A\‘j;gze network interactions with other functional groups, and some nifH-containing
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