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Abstract

Modeling of laser-plasma wakefield accelerators in an optimal frame of refer-

ence [1] is shown to produce orders of magnitude speed-up of calculations

from first principles. Obtaining these speedups requires mitigation of a

high-frequency instability that otherwise limits effectiveness in addition to

solutions for handling data input and output in a relativistically boosted

frame of reference. The observed high-frequency instability is mitigated us-

ing methods including an electromagnetic solver with tunable coefficients, its

extension to accomodate Perfectly Matched Layers and Friedman’s damping

algorithms, as well as an efficient large bandwidth digital filter. It is shown

that choosing the frame of the wake as the frame of reference allows for

higher levels of filtering and damping than is possible in other frames for the

same accuracy. Detailed testing also revealed serendipitously the existence

of a singular time step at which the instability level is minimized, indepen-

dently of numerical dispersion, thus indicating that the observed instability

may not be due primarily to Numerical Cerenkov as has been conjectured.

The techniques developed for Cerenkov mitigation prove nonetheless to be

very efficient at controlling the instability. Using these techniques, agreement
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at the percentage level is demonstrated between simulations using different

frames of reference, with speedups reaching two orders of magnitude for a

0.1 GeV class stages. The method then allows direct and efficient full-scale

modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first

time, verifying the scaling of plasma accelerators to very high energies. Over

4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10

GeV, 100 GeV and 1 TeV class stages, respectively.

Keywords: laser wakefield acceleration, particle-in-cell, plasma simulation,

special relativity, frame of reference, boosted frame

1. Introduction1

Laser driven plasma waves offer orders of magnitude increases in accel-2

erating gradient over standard accelerating structures [2] (which are limited3

by electrical breakdown), thus holding the promise of much shorter particle4

accelerators [3]. High quality electron beams of energy up-to 1 GeV have5

been produced in just a few centimeters [4, 5, 6, 7], with 10 GeV stages6

being planned as modules of a high energy collider [8].7

As the laser propagates through a plasma, it displaces electrons while8

ions remain essentially static, creating a pocket of positive charges that the9

displaced electrons rush to fill. The resulting coherent periodic motion of10

the electrons oscillating around their original position creates a wake with11

periodic structure following the laser. The alternate concentration of posi-12

tive and negative charges in the wake creates very intense electric fields. An13

electron (or positron) beam injected with the right phase can be accelerated14

by those fields to high energy in a much shorter distance than is possible in15
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conventional particle accelerators. The efficiency and quality of the acceler-16

ation is governed by several factors which require precise three-dimensional17

shaping of the plasma column, as well as the laser and particle beams, and18

understanding of their evolution.19

Computer simulations have had a profound impact on the design and20

understanding of past and present experiments [9], with accurate modeling21

of the wake formation and beam acceleration requiring fully kinetic meth-22

ods (usually Particle-In-Cell) with large computational resources due to the23

wide range of space and time scales involved [10, 11]. For example, modeling24

10 GeV stages for the LOASIS (LBNL) BELLA proposal [12] demanded as25

many as 5,000 processor hours for a one-dimension simulation on a NERSC26

supercomputer [13]. Various reduced models have been developed to allow27

multidimensional simulations at manageable computational costs: fluid ap-28

proximation [14], quasistatic approximation [15, 16, 17], laser envelope mod-29

els [16], scaled parameters [18, 19]. However, the various approximations30

that they require result in a narrower range of applicability. As a result,31

even using several models concurrently does not usually provide a complete32

description. For example, scaled simulations of 10 GeV LPA stages do not33

capture correctly some essential transverse physics, e.g. the laser and beam34

betatron motion, which can lead to inaccurate beam emittance (a measure35

of the beam quality). An envelope description can capture these effects cor-36

rectly at full scale for the early propagation through the plasma but can37

fail as the laser spectrum broadens due to energy depletion as it propagates38

further in the plasma.39

An alternative approach allows for orders of magnitude speedup of simu-40
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lations, whether at full or reduced scale, via the proper choice of a reference41

frame moving near the speed of light in the direction of the laser [1]. It42

does so without alteration to the fundamental equations of particle motion43

or electrodynamics, provided that the high-frequency part of the light emit-44

ted counter to the direction of propagation of the beam can be neglected.45

This approach exploits the properties of space and time dilation and con-46

traction associated with the Lorentz transformation. As shown in [1], the47

ratio of longest to shortest space and time scales of a system of two or more48

components crossing at relativistic velocities is not invariant under such a49

transformation (a laser crossing a plasma is just such a relativistic crossing).50

Since the number of computer operations (e.g., time steps), for simulations51

based on formulations from first principles, is proportional to the ratio of52

the longest to shortest time scale of interest, it follows that such simulations53

will eventually have different computer runtimes, yet equivalent accuracy,54

depending solely upon the choice of frame of reference.55

The procedure appears straightforward: identify the frame of reference56

which will minimize the range of space and/or time scales and perform the57

calculation in this frame. However, several practical complications arise.58

First, the input and output data are usually known from, or compared to,59

experimental data. Thus, calculating in a frame other than the laboratory60

entails transformations of the data between the calculation frame and the lab-61

oratory frame. Second, while the fundamental equations of electrodynamics62

and particle motion are written in a covariant form, the numerical algorithms63

that are derived from them may not retain this property, and calculations in64

frames moving at different velocities may not be successfully conducted with65
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the use of the exact same algorithms. For example, it was shown in [20] that66

calculating the propagation of ultra-relativistic charged particle beams in an67

accelerator using standard Particle-In-Cell techniques lead to large numerical68

errors, which were fixed by developing a new particle pusher. The modeling69

of a laser plasma accelerator (LPA) stage in a boosted frame involves the70

fully electromagnetic modeling of a plasma propagating at near the speed of71

light, for which Numerical Cerenkov [21, 22] is a potential issue. Third, elec-72

tromagnetic calculations that include wave propagation will include waves73

propagating forward and backward in any direction. For a frame of reference74

moving in the direction of the accelerated beam (or equivalently the wake of75

the laser), waves emitted by the plasma in the forward direction expand while76

the ones emitted in the backward direction contract, following the proper-77

ties of the Lorentz transformation. If one is to resolve both forward and78

backward propagating waves emitted from the plasma, there is no gain in79

selecting a frame different from the laboratory frame. However, the physics80

of interest for a laser wakefield is the laser driving the wake, the wake, and81

the accelerated beam. Backscatter is weak in the short-pulse regime, and82

does not interact as strongly with the beam as do the forward propagating83

waves which stay in phase for a long period. It is thus often assumed that84

the backward propagating waves can be neglected in the modeling of LPA85

stages. The accuracy of this assumption is shown by comparison between86

explicit codes which include both forward and backward waves and envelope87

or quasistatic codes which neglect backward waves [10, 19, 23].88

After the idea and basic scaling for performing simulations of LPA in a89

Lorentz boosted frame were published in [1], there have been several reports90
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of the application of the technique to various regimes of LPA [13, 24, 25,91

26, 11, 27, 28]. Speedups varying between several to a few thousands were92

reported with various levels of accuracy in agreement between simulations93

performed in a Lorentz boosted frames and in a laboratory frame. High-94

frequency instabilities were reported to develop in 2D or 3D calculations,95

that were limiting the velocity of the boosted frame and thus the attainable96

speedup [29, 27, 28].97

In this paper, we present numerical techniques that were implemented in98

the Particle-In-Cell code Warp [30] for mitigating the numerical Cerenkov99

instability, including a solver with tunable coefficients, and show that these100

techniques are effective for suppressing the high frequency instability ob-101

served in boosted frame simulations. A detailed study of the application102

of these techniques to the simulations of downscaled LPA stages reveals103

that choosing the frame of the wakefield as the reference frame allows for104

more aggressive application of the standard techniques mitigating numerical105

Cerenkov, than is possible in laboratory frame simulations. It is shown that106

the instability that develops with high-boost frames is well controlled, allow-107

ing for the first time 2D and 3D simulations of LPA in the wakefield frame,108

for 100 GeV and 1 TeV class stages, achieving the maximum theoretical109

speedups of over 105 and 106 respectively.110

This paper is organized as follows. The theoretical speedup expected for111

performing the modeling of a LPA stage in a boosted frame is derived in112

Section 2. Section 3 addresses the issue of input and output of data in a113

boosted frame. High frequency instability issues and remedies are presented114

in Section 4. These techniques enable accurate modeling of 0.1 GeV-1 TeV115
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LPA stages. Stage modeling results are presented in section 5, and observed116

speedup is contrasted to the theoretical speedup of section 2.117

2. Theoretical speedup dependency with the frame boost118

The obtainable speedup is derived as an extension of the formula that119

was derived in [1], taking in addition into account the group velocity of the120

laser as it traverses the plasma. In [1], the laser was assumed to propagate121

at the velocity of light in vacuum during the entire process, which is a good122

approximation when the relativistic factor of the frame boost γ is small123

compared to the relativistic factor of the laser wake γw in the plasma. The124

expression is generalized here to higher values of γ, for which the actual group125

velocity of the wake in the plasma must be taken into account. We shall show126

that for a 10 GeV class LPA stage, the maximum attainable speedup is above127

four orders of magnitude.128

Assuming that the simulation box is a fixed number of plasma periods129

long, which implies the use (which is standard) of a moving window following130

the wake and accelerated beam, the speedup is given by the ratio of the time131

taken by the laser pulse and the plasma to cross each other, divided by132

the shortest time scale of interest, that is the laser period. Assuming for133

simplicity that the wake propagates at the group velocity of plane waves in134

a uniform plasma of density ne, the group velocity of the wake is given by135

vw/c = βw =

(

1 +
ω2

p

ω2

)−1/2

(1)

where ωp =
√

(nee2)(ǫ0me) is the plasma frequency, ω = 2πc/λ is the136

laser frequency, ǫ0 is the permittivity of vacuum, c is the speed of light in137
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vacuum, and e and me are respectively the charge and mass of the electron.138

In the simulations presented herein, the runs are stopped when the last139

electron beam macro-particle exits the plasma, and a measure of the total140

time of the simulation is given by141

T =
L+ ηλp

vw − vp
(2)

where λp ≈ 2πc/ωp is the wake wavelength, L is the plasma length, vw and142

vp = βpc are respectively the velocity of the wake and of the plasma relative143

to the frame of reference, and η is an adjustable parameter for taking into144

account the fraction of the wake which exited the plasma at the end of the145

simulation. The numerical cost Rt scales as the ratio of the total time to the146

shortest timescale of interest, which is the inverse of the laser frequency, and147

is thus given by148

Rt =
Tc

λ
=

(L+ ηλp)

(βw − βp)λ
(3)

In the laboratory, vp = 0 and the expression simplifies to149

Rlab =
Tc

λ
=

(L+ ηλp)

βwλ
(4)

In a frame moving at βc, the quantities become150

λ∗p = λp/ [γ (1 − βwβ)] (5)

L∗ = L/γ (6)

λ∗ = γ (1 + β)λ (7)

β∗

w = (βw − β) / (1 − βwβ) (8)

v∗p = −βc (9)
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T ∗ =
L∗ + ηλ∗p
v∗w − v∗p

(10)

R∗

t =
T ∗c

λ∗
=

(

L∗ + ηλ∗p
)

(β∗
w + β)λ∗

(11)

where γ = 1/
√

1 − β2.151

The expected speedup from performing the simulation in a boosted frame152

is given by the ratio of Rlab and R∗

t153

S =
Rlab

R∗
t

=
(1 + β) (L+ ηλp)

(1 − ββw)L+ ηλp
(12)

Assuming that γ << γw, and that βw ≈ 1 (which is a valid approximation154

for most practical cases of interest), this expression is consistent with the ex-155

pression derived in [1] for the LPA case which states that R∗

t = αRt/ (1 + β)156

with α = (1 − β + l/L) / (1 + l/L), where l is the laser length which is gen-157

erally proportional to ηλp, and S = Rt/R
∗

T .158

The linear theory predicts that for the intense lasers (a&1) typically used159

for acceleration, the laser depletes its energy over approximately the same160

length Ld = λ3
p/2λ

2 over which the particles dephase from the wake [2].161

Acceleration is compromised beyond Ld and in practice, the plasma length is162

proportional to the dephasing length, i.e. L = ξLd. In most cases, γ2
w >> 1,163

which allows the approximations βw ≈ 1 − λ2/2λ2
p, and L = ξλ3

p/2λ
2 ≈164

ξγ2
wλp/2 >> ηλp, so that Eq.(12) becomes165

S = (1 + β)2 γ2 ξγ2
w

ξγ2
w + (1 + β) γ2 (ξβ/2 + 2η)

(13)

For low values of γ, i.e. when γ << γw, Eq.(13) reduces to166

Sγ<<γw
= (1 + β)2 γ2 (14)
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Conversely, if γ → ∞, Eq.(13) becomes167

Sγ→∞ =
4

1 + 4η/ξ
γ2

w (15)

Finally, in the frame of the wake, i.e. when γ = γw, assuming that βw ≈ 1,168

Eq.(13) gives169

Sγ=γw
≈ 2

1 + 2η/ξ
γ2

w (16)

Since η and ξ are of order unity, and the practical regimes of most interest170

satisfy γ2
w >> 1, the speedup that is obtained by using the frame of the wake171

will be near the maximum obtainable value given by Eq.(15).172

Note that without the use of a moving window, the relativistic effects that173

are at play in the time domain would also be at play in the spatial domain,174

as shown in [1], and the γ2 scaling would transform to γ4. In the frame175

of the wake, there is no need of the moving window, thus simplifying the176

procedure, while in a frame traveling faster than the wake in the laboratory,177

a moving window propagating in the backward direction is needed. However,178

the scaling shows that there would be very little gain in doing the latter.179

2.1. Estimated speedup for 0.1-100 GeV stages180

Formula (13) is used to estimate the speedup for the calculations of 100181

MeV, 1 GeV, 10 GeV and 100 GeV class stages, assuming a laser wavelength182

λ = 0.8µm. Using parameters and scaling laws from [18], the corresponding183

initial plasma densities ne are respectively 1019cc, 1018cc, 1017cc and 1016cc,184

while the plasma lengths L are 1.5 mm, 4.74 cm, 1.5 m, and 47.4 m, with185

ξ ≈ 1.63. For these values, the wake wavelengths λp are respectively 10.6µm,186
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33.4µm, 106.µm, 334.µm, and relativistic factors γw are 13.2, 41.7, 132 and187

417. In the simulations presented in this paper, the beam is injected near the188

end of the wake period (first ”bucket”). In first approximation, the beam189

has propagated through about half a wake period to reach full acceleration,190

and we set η ≈ 0.5. For a beam injected into the nth bucket, η would be set191

to n− 1/2. If positrons were considered, they would be injected half a wake192

period ahead of the location of the electrons injection position for a given193

period, and one would have η = n− 1. For the parameters considered here,194

L ≈ λp/γ
2
w, and (15) gives Sγ→∞ ≈ 2γ2

w.195

Figure 1: Speedup versus relativistic factor of the boosted frame from Eq.(13) for 100

MeV - 100 GeV LPA class stages.

The speedup versus the relativistic factor of the boosted frame γ is plotted196

in Fig. 1. As expected, for low values of γ, the speedup scales as (14), and197

asymptotes to a value slightly lower than 2γ2
w for large values of γ. It is of198

interest to note that the qualitative behavior is identical to the one obtained199

in [1] (see Fig. 1 and accompanying analysis) in the analysis of the crossing200
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of two rigid identical beams, confirming the generality of the generic analysis201

presented in [1]. For a 100 GeV class stage, the maximum estimated speedup202

is as large as 300,000.203

3. Input and output to and from a boosted frame simulation204

This section describes the procedures that have been implemented in the205

Particle-In-Cell framework Warp [30] to handle the input and output of data206

between the frame of calculation and the laboratory frame. Simultaneity of207

events between two frames is valid only for a plane that is perpendicular208

to the relative motion of the frame. As a result, the input/output processes209

involve the input of data (particles or fields) through a plane, as well as output210

through a series of planes, all of which are perpendicular to the direction of211

the relative velocity between the frame of calculation and the other frame of212

choice.213

3.1. Input214

3.1.1. Particles215

Particles are launched through a plane using a technique which applies216

to many calculations in a boosted frame, including LPA, and is illustrated217

using the case of a positively charged particle beam propagating through a218

background of cold electrons in an assumed continuous transverse focusing219

system, leading to a growing transverse instability [1]. In the laboratory220

frame, the electron background is initially at rest and a moving window is221

used to follow the beam progression. Traditionally, the beam macropar-222

ticles are initialized all at once in the window, while background electron223
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macroparticles are created continuously in front of the beam on a plane that224

is perpendicular to the beam velocity. In a frame moving at some fraction225

of the beam velocity in the laboratory frame, the beam initial conditions at226

a given time in the calculation frame are generally unknown and one must227

initialize the beam differently. However, it can be taken advantage of the228

fact that the beam initial conditions are often known for a given plane in the229

laboratory, either directly, or via simple calculation or projection from the230

conditions at a given time. Given the position and velocity {x, y, z, vx, vy, vz}231

for each beam macroparticle at time t = 0 for a beam moving at the aver-232

age velocity vb = βbc (where c is the speed of light) in the laboratory, and233

using the standard synchronization (z = z′ = 0 at t = t′ = 0) between the234

laboratory and the calculation frames, the procedure for transforming the235

beam quantities for injection in a boosted frame moving at velocity βc in the236

laboratory is as follows (the superscript ′ relates to quantities known in the237

boosted frame while the superscript ∗ relates to quantities that are know at238

a given longitudinal position z∗ but different times of arrival):239

1. project positions at z∗ = 0 assuming ballistic propagation240

t∗ = (z − z̄) /vz (17)

x∗ = x− vxt
∗ (18)

y∗ = y − vyt
∗ (19)

z∗ = 0 (20)

the velocity components being left unchanged,241

2. apply Lorentz transformation from laboratory frame to boosted frame242

t′∗ = −γt∗ (21)
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x′∗ = x∗ (22)

y′∗ = y∗ (23)

z′∗ = γβct∗ (24)

v′∗x =
v∗x

γ (1 − ββb)
(25)

v′∗y =
v∗y

γ (1 − ββb)
(26)

v′∗z =
v∗z − βc

1 − ββb

(27)

where γ = 1/
√

1 − β2. With the knowledge of the time at which each243

beam macroparticle crosses the plane into consideration, one can inject244

each beam macroparticle in the simulation at the appropriate location245

and time.246

3. synchronize macroparticles in boosted frame, obtaining their positions247

at a fixed t′(= 0) which is before any particle is injected248

z′ = z′∗ − v̄′∗z t
′∗ (28)

This additional step is needed for setting the electrostatic or electro-249

magnetic fields at the plane of injection. In a Particle-In-Cell code, the250

three-dimensional fields are calculated by solving the Maxwell equa-251

tions (or static approximation like Poisson, Darwin or other [20]) on252

a grid on which the source term is obtained from the macroparticles253

distribution. This requires generation of a three-dimensional represen-254

tation of the beam distribution of macroparticles at a given time before255

they cross the injection plane at z′∗. This is accomplished by expand-256

ing the beam distribution longitudinally such that all macroparticles257

(so far known at different times of arrival at the injection plane) are258
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synchronized to the same time in the boosted frame. To keep the beam259

shape constant, the particles are ”frozen” until they cross that plane:260

the three velocity components and the two position components per-261

pendicular to the boosted frame velocity are fixed, while the remaining262

position component is advanced at the average beam velocity. As parti-263

cles cross the plane of injection, they become regular ”active” particles264

with full 6-D dynamics.265

Figure 2: (top) Snapshot of a particle beam “frozen” (grey spheres) and “active” (colored

spheres) macroparticles traversing the injection plane (red rectangle). (bottom) Snapshot

of the beam macroparticles (colored spheres) passing through the background of electrons

(dark brown streamlines) and the diagnostic stations (red rectangles). The electrons, the

injection plane and the diagnostic stations are fixed in the laboratory plane, and are thus

counterpropagating to the beam in a boosted frame.

Figure 2 (top) shows a snapshot of a beam that has passed partly through266

the injection plane. As the frozen beam macroparticles pass through the267
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injection plane (which moves opposite to the beam in the boosted frame),268

they are converted to “active” macroparticles. The charge or current density269

is accumulated from the active and the frozen particles, thus ensuring that270

the fields at the plane of injection are consistent.271

3.1.2. Laser272

Similarly to the particle beam, the laser is injected as an electric field273

E⊥ through a plane perpendicular to the axis of propagation of the laser (by274

default z), using the formula275

E⊥ (x, y, t) = E0f (x, y, t) sin [ωt+ φ (x, y, ω)] (29)

where E0 is the amplitude of the laser electric field, f (x, y, t) is the laser276

envelope, ω is the laser frequency, φ (x, y, ω) is a phase function to account277

for focusing, defocusing or injection at an angle, and t is time. By default,278

the laser envelope is a three dimensional gaussian of the form279

f (x, y, t) = e−(x2/2σ2
x+y2/2σ2

y+c2t2/2σ2
z) (30)

where σx, σy and σz are the dimensions of the laser pulse; or it can be defined280

arbitrarily by the user at runtime. If φ (x, y, ω) = 1, the laser is injected at281

a waist and parallel to the axis z.282

If, for convenience, the injection plane is moving at constant velocity βsc,283

the formula is modified to take the Doppler effect on frequency and amplitude284

into account and becomes285

E⊥ (x, y, t) = (1 − βs)E0f (x, y, t) sin [(1 − βs)ωt+ φ (x, y, ω)] . (31)

The laser field is added to the transverse electric field components as286

Ex (x, y, z) = Ex (x, y, z) + ζ (z, t)
cδt

δz
cos (ψ)E⊥ (32)
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Ey (x, y, z) = Ey (x, y, z) + ζ (z, t)
cδt

δz
sin (ψ)E⊥ (33)

where ψ accounts for polarization and ζ (z, t) is an interpolation function.287

The latter is necessary since βscδt 6= δz in general, and the plane of injec-288

tion may not coincide with a grid plane; or to provide smoothing of high289

frequencies if needed (see discussion in section 4.2 below).290

The injection of a laser of frequency ω is considered for a simulation using291

a boosted frame moving at βc with respect to the laboratory. Assuming that292

the laser is injected at a plane that is fixed in the laboratory, and thus moving293

at βs = −β in the boosted frame, the injection in the boosted frame is given294

by295

E⊥ (x′, y′, t′) = (1 − βs)E
′

0f (x′, y′, t′) sin [(1 − βs)ω
′t′ + φ (x′, y′, ω′)](34)

= (E0/γ) f (x′, y′, t′) sin [ωt′/γ + φ (x′, y′, ω′)] (35)

since E ′

0/E0 = ω′/ω = 1/ (1 + β) γ.296

The technique implemented in Warp presents several advantage over other297

procedures that have been proposed elsewhere [13, 28]. In [28], the laser298

beam is initialized entirely in the computational box, leading to larger boxes299

transversely in a boosted frame, as the Rayleigh length of the laser shortens300

and the overall laser pulse radius rises, eventually offsetting the benefits of301

the boosted frame. The transverse broadening of the box is avoided in [13]302

at the cost of a more complicated injection scheme, requiring to launch the303

laser from all but one faces of the simulation box. The method presented here304

avoids the caveat of the broadening and retains simplicity with a standard305

injection technique through one plane.306
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3.2. Output307

Some quantities, e.g. charge, are Lorentz invariant, while others, like di-308

mensions perpendicular to the boost velocity, are the same in the laboratory309

frame. Those quantities are thus readily available from standard diagnostics310

in the boosted frame calculations. Quantities which do not fall in this cat-311

egory are recorded at a number of regularly spaced “stations”, immobile in312

the laboratory frame, at a succession of time intervals to record data history,313

or averaged over time. A visual example is given on Fig. 2 (bottom). Since314

the space-time locations of the diagnostic grids in the laboratory frame gen-315

erally do not coincide with the space-time positions of the macroparticles and316

grid nodes used for the calculation in a boosted frame, some interpolation is317

performed at runtime during the data collection process. As a complement318

or an alternative, selected particle or field quantities are dumped at regu-319

lar interval for post-processing. The choice of the methods depends on the320

requirements of the diagnostics and particular implementations.321

4. High frequency instability and Numerical Cerenkov322

As reported in [27] and [28], for simulations using a boosted frame at323

γ ≥ 10 − 20 (depending on parameters), a fast growing short wavelength324

instability was observed developing at the front of the plasma (see Fig. 3).325

The presence and growth rate of the instability was observed to be very sen-326

sitive to the resolution (slower growth rate at higher resolution), choice of327

field solver, and to the amount of damping of high frequencies and smoothing328

of short wavelengths. The instability is always propagating at some angle329

from the longitudinal axis, and is observed in 2D and 3D runs but was never330
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Figure 3: Snapshot of a surface plot of the longitudinal field from a 2-1/2D simulation of

a full scale 10GeV LPA in a boosted frame at γ = 130 (elevation is proportional to the

magnitude of the electric field). The laser is propagating from left to right and the plasma

from right to left. A fast growing short wavelength instability is developing at the front

of the plasma.

observed in any of the 1D runs performed by the authors. When modeling331

an LPA setup in a relativistically boosted frame, the background plasma is332

traveling near the speed of light and it has been conjectured [28] that he333

observed instability might be caused by numerical Cerenkov. We investigate334

in this paper whether the instability that is observed in boosted frame sim-335

ulations of LPA is indeed of numerical Cerenkov type and if the cures aimed336

at mitigating numerical Cerenkov are effective.337

Due to spatial and time discretization of the Maxwell equations, numerical338

light waves may travel faster or slower on the computational grid than the339

actual speed of light in vacuum c, with the magnitude of the effect being340

larger at short wavelength, where discretization errors are the largest. When341

the numerical speed is lower than c, it is possible for fast macro-particles342

to travel faster than the wave modes, leading to numerical Cerenkov effects343

that may result in instabilities [21, 22, 31, 32, 33]. The effect was studied344
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analytically and numerically in detail for one-dimensional systems in [31,345

32]. Several solutions were proposed: smoothing the current deposited by346

the macro-particles [21, 31], damping the electromagnetic field [33, 34, 35],347

solving the Maxwell equations in Fourier space [22], or using a field solver348

with a larger stencil to provide lower numerical dispersion [33].349

Several of the abovementioned techniques to mitigate numerical Cerenkov350

and high frequency errors have been implemented in Warp. All the simula-351

tions presented in this paper employed cubic splines for current deposition352

and electromagnetic force gathering between the macro-particles and the353

grid [36], whose beneficial effects on standard LPA PIC simulations have354

been demonstrated in [37]. In addition, a Maxwell solver with tunable coef-355

ficients was implemented, as well as a damping scheme, and filtering of the356

deposited current and gathered electromagnetic fields, which are described357

in this section. The use of Fourier based Maxwell solvers is not considered358

in this paper.359
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4.1. Wideband lowpass digital filtering360

It is common practice to apply digital filtering to the charge or current361

density in Particle-In-Cell simulations, for smoothing or compensation pur-362

pose [46]. The most commonly used filter is the three points filter363

φf
j = αφj + (1 − α)

φj−1 + φj+1

2
(36)

where φf is the filtered quantity. This filter is called a binomial filter when364

α = 0.5. Assuming φ = ejkx and φf = g (α, k) ejkx, where g is the filter gain,365

which is function of the filtering coefficient α and the wavenumber k, we find366

from (36) that367

g (α, k) = α + (1 − α) cos (kδx) (37)

≈ 1 − (1 − α)
(kδx)2

2
+O

(

k4
)

(38)

For n successive applications of filters of coefficients α1...αn, the total atten-368

uation G is given by369

G =

n
∏

i=1

g (αi, k) (39)

≈ 1 −
(

n−
n
∑

i=1

αi

)

(kδx)2

2
+O

(

k4
)

(40)

If αn = n −
∑n−1

i=1
αi then G ≈ 1 + O (k4), providing a sharper cutoff in k370

space. Such step is called a compensation step [46]. For the bilinear filter371

(α = 1/2), the compensation factor is αc = 2 − 1/2 = 3/2. For a succession372

of n applications of the bilinear factor, it is αc = n/2 + 1. The gain versus373

wavelength is plotted in Fig. 4 for the bilinear filter without compensation374
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(G = g(1/2, k)), with compensation (G = g(1/2, k) · g(3/2, k)), and four n-375

pass bilinear filters with compensation (G = g(1/2, k)n · g(3/2, k)) for n = 4,376

20, 50 and 80.

Figure 4: Gain versus wavelength for the bilinear filter without compensation (g =

g(1/2, k)), with compensation (g · c3/2 = g(1/2, k) · g(3/2, k)), and n-pass bilinear filters

with compensation (gn · cαc
= g(1/2, k)n · g(αc, k)) for n = 4, 20, 50 and 80.

377

The bilinear filter provides complete suppression of the signal at the grid378

Nyquist wavelength (twice the grid cell size). Suppression of the signal at379

integers of the Nyquist wavelength can be obtained by using a stride s in the380

filter381

φf
j = αφj + (1 − α)

φj−s + φj+s

2
(41)

for which the gain is given by382

g (s, α, k) = α+ (1 − α) cos (skδx) (42)

≈ 1 − (1 − α)
(skδx)2

2
+O

(

k4
)

(43)

The gain is plotted in Fig. 5 (top) for four passes bilinear filters with383

compensation (G = g(s, 1/2, k)4 · g(s, 3/2, k)) for strides s=1 to 4. For a384
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Figure 5: (top) gain for four passes bilinear filters with compensation (Gs = g(s, 1/2, k)4 ·
g(s, 3/2, k)) for strides s=1 to 4 linear with (left) linear ordinate (right) logarithmic or-

dinate; (bottom) gain for four low pass filters combining the G1 to G4 filters with (left)

linear ordinate (right) logarithmic ordinate.

given stride, the gain is given by the gain of the bilinear filter shifted in385

k space, with the pole g = 0 shifted from λ = 2/δx to λ = 2s/δx, with386

additional poles, as given by387

skδx = arccos

(

α

α− 1

)

(mod 2π) (44)

The resulting filter is pass band between the poles, but since the poles are388

spread at different integer values in k space, a wide band low pass filter can389

be constructed by combining filters at different strides. Examples are given390

in Fig. 5 (bottom) for combinations of the filter with stride 1 to 4.391

The combined filters with strides 2, 3 and 4 have nearly equivalent fall-392
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Figure 6: Comparison between filters with stride and filter s20-80 with (left) linear ordinate

(right) logarithmic ordinate.

offs in gain (in linear scale) to the 20, 50 and 80 passes of the bilinear filter393

(see Fig. 6). Yet, the filters with stride need respectively 10, 15 and 15394

passes of a three-point filter while the n-pass bilinear filer need respectively395

21, 51 and 81 passes, giving gains of respectively 2.1, 3.4 and 5.4 in number396

of operations in favor of the filters with stride.397
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4.2. Tunable solver398

In [38] and [39], Cole introduced an implementation of the source-free399

Maxwell’s wave equations for narrow-band applications based on non-standard400

finite-differences (NSFD). In [40], Karkkainen et al adapted it for wideband401

applications. At the Courant limit for the time step and for a given set of402

parameters, the stencil proposed in [40] has no numerical dispersion along the403

principal axes, provided that the cell size is the same along each dimension404

(i.e. cubic cells in 3D). The solver from [40] was modified to be consistent405

with the Particle-In-Cell methodology and implemented in the code Warp,406

with the ability given to the user of setting the solver adjustable coefficients,407

providing tunability of the numerical properties of the solver to better fit the408

requirements of a particular application.409

The ”Cole-Karkkainnen”’s solver [40] uses a non-standard finite difference410

formulation (extended stencil) of the Maxwell-Ampere equation. For imple-411

mentation into a Particle-In-Cell code, the formulation must introduce the412

source term into Cole-Karkkainen’s source free formulation in a consistent413

manner. However, modifying the NSFD formulation of the Maxwell-Ampere414

equation so that it includes the source term in a way that is consistent with415

the current deposition scheme is challenging. To circumvent this problem,416

Warp implementation departs from Karkkainen’s by applying the enlarged417

stencil on the Maxwell-Faraday equations, which does not contain any source418

term but is formally equivalent to the source-free Maxwell-Ampere equation.419

Consequently, in Warp’s implementation, the discretized Maxwell-Ampere420

equation is the same as in the Yee scheme, and the discretized Maxwell’s421
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equations read:422

∆tB = −∇∗ ×E (45)

∆tE = c2∇× B − J

ǫ0
(46)

∇ · E =
ρ

ǫ0
(47)

∇∗ · B = 0 (48)

where ǫ0 is the permittivity of vacuum, and Eq. 47 and 48 not being solved423

explicitly but verified via appropriate initial conditions and current deposi-424

tion procedure. The differential operators are defined as425

∇ = ∆xx̂ + ∆yŷ + ∆zẑ (49)

∇∗ = ∆∗

xx̂ + ∆∗

yŷ + ∆∗

zẑ, (50)

the finite differences and sums operators being426

∆tG|ni,j,k =
G|n+1/2

i,j,k −G|n−1/2

i,j,k

δt
(51)

∆xG|ni,j,k =
G|ni+1/2,j,k −G|ni−1/2,j,k

δx
(52)

∆∗

x =
(

α + βS1

x + γS2

x

)

∆x (53)

with427

S1

xG|ni,j,k = G|ni,j+1/2,k +G|ni,j−1/2,k

+ G|ni,j,k+1/2 +G|ni,j,k−1/2 (54)

S2

xG|ni,j,k = G|ni,j+1/2,k+1/2 +G|ni,j−1/2,k+1/2

+ G|ni,j+1/2,k−1/2 +G|ni,j−1/2,k−1/2 (55)

The quantity G is a sample vector component, δt and δx are respectively428

the time step and the grid cell size along x, while α, β and γ are constant429
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scalars verifying α + 4β + 4γ = 1. The operators along y and z, i.e. ∆y,430

∆z, ∆∗

y, ∆∗

z, S
1
y , S

1
z , S

2
y , and S2

z , are obtained by circular permutation of the431

indices.432

In 2D, assuming the plane (x, z), the enlarged finite operators simplify to433

∆∗

x =
(

α + βS1
x

)

∆x (56)

S1

xG|ni,j,k = G|ni,j+1/2,k +G|ni,j−1/2,k. (57)

An extension of this algorithm for non-cubic cells provided by Cowan in434

[42] is not considered in this paper. However, all considerations given here435

for the solver implemented in Warp apply readily to the solver developed by436

Cowan.437

438

4.2.1. Numerical dispersion439

The dispersion relation of the solver is given by440

(

sin ωδt
2

cδt

)2

= Cx

(

sin kxδx
2

δx

)2

+ Cy

(

sin kyδy
2

δy

)2

+ Cz

(

sin kzδz
2

δz

)2

(58)

with441

Cx = α+ 2β(cy + cz) + 4γcycz (59)

Cy = α+ 2β(cz + cx) + 4γczcx (60)

Cz = α+ 2β(cx + cy) + 4γcxcy (61)

and442

cx = cos (kxδx) (62)

cy = cos (kyδy) (63)

cz = cos (kzδz) (64)
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The Courant-Friedrichs-Lewy condition (CFL) is given by443

cδtc ≤ min[δx, δy, δz,

1/
√

(α− 4γ)max [κx + κy, κx + κz, κy + κz],

1/
√

(α− 4β + 4γ) (κx + κy + κz)] (65)

where κx = 1/δx2, κy = 1/δy2 and κz = 1/δz2.444

Assuming cubic cells (δx = δy = δz), the coefficients given in [40] (α =445

7/12, β = 1/12 and γ = 1/48) allow cδt = δx, and thus no dispersion along446

the principal axes.447

It is of interest to note that (58) can be rewritten448

(

sin ωδt
2

cδt

)2

=
(

s2
x + s2

y + s2
z

)

+ β ′
(

s2
xs

2
y + s2

xs
2
z + s2

ys
2
z

)

+ γ′
(

s2
xs

2
ys

2
z

)

(66)

with sx = sin (kxδx/2), sy = sin (kyδy/2), sz = sin (kzδz/2), β ′ = −8β − 16γ449

and γ′ = 48γ, for which the coefficients from [40] take the nice values β ′ = −1450

and γ′ = 1.451

Sets of possible coefficients and the corresponding CFL condition, assum-452

ing cubic cells, are given in Table 1. The numerical dispersion using those453

coefficients are plotted in figure 7 along the principal axes and diagonals for454

cubic cells (δx = δy = δz) and contrasted with the one of the Yee solver (all455

taken at each solver’s CFL time step limit). At the CFL limit, the Yee al-456

gorithm offers no numerical dispersion along the 3D diagonal, but relatively457

large numerical dispersion at the Nyquist frequency along the main axes.458

Conversely, the Cole-Karkkainen solver (CK) offers no numerical dispersion459

along the main axes but significant dispersion along the diagonals. The CK460
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Yee CK CK2 CK3 CK4 CK5

β ′ 0 −1 −1/2 0 −1/2 −9/10

γ′ 0 1 1/2 −1 0 9/10

α 1 7/12 19/24 11/12 3/4 5/8

β 0 1/12 1/24 1/24 1/16 3/40

γ 0 1/48 1/96 −1/48 0 3/160

cδt/δx 1/
√

3 1 1/
√

2 1/
√

2
√

2/
√

3
√

5/
√

6

Table 1: List of coefficients

solver also allows larger time steps than the Yee solver by almost a factor461

of two in 3D. The solver labeled ”CK2” offers numerical dispersion that is462

intermediate between the Yee solver and the CK solver along the main axes463

and the 3D diagonal, but slightly degraded along the 2D diagonal. Con-464

versely, while solver CK3 also offers intermediate numerical dispersion along465

the main axes and the 3D diagonal, it offers no numerical dispersion along the466

2D diagonal. Solver CK4 improves slightly the numerical dispersion along467

the main axes over CK2 and CK3 at the expense of the dispersion along the468

diagonals. Finally, CK5 offers the highest level of isotropy. The CFL time469

steps of solvers CK2, 3, 4 and 5 are intermediate between the Yee and the CK470

CFL time steps. This provides solvers with a range of numerical dispersion471

among which some may be more favorable with regard to the mitigation of472

numerical instabilities for a given application.473

To reduce numerical dispersion to its lowest level, it is desirable to operate474

the CK solver as close as possible to the CFL limit cδt = δx. However, an475

instability (other than numerical Cerenkov) arises at the Nyquist frequency476
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in such a case. The analysis is given in 1D in Appendix I, as well as its477

mitigation using digital filtering. Since for the CK solver, the CFL limit is478

independent of dimensionality, the analysis and mitigation apply readily to479

2D and 3D simulations.480

For absorption of outgoing waves at the computational box boundaries,481

the extension of the solver to a Perfectly Matched Layer [43] is given in482

Appendix II.483
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Yee CK

CK2 CK3

CK4 CK5

Figure 7: Numerical dispersion along the principal axis and diagonals for cubic cells (δx =

δy = δz) at the Courant limit for the solver with adjustable numerical dispersion using

the parameters from Table 1.
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4.2.2. Current deposition and Gauss’ Law484

In most applications, it is essential to prevent accumulations of errors to485

the discretized Gauss’ Law. This is accomplished by providing a method486

for depositing the current from the particles to the grid which is compatible487

with the discretized Gauss’ Law, or by providing a mechanism for ”divergence488

cleaning” [46, 47, 48, 49]. For the former, schemes which allow a deposition489

of the current that is exact when combined with the Yee solver is given in490

[50] for linear form factors and in [51] for higher order form factors. Since the491

discretized Gauss’ Law and Maxwell-Faraday equation are the same in our492

implementation as in the Yee solver, charge conservation is readily verified493

using the current deposition procedures from [50] and [51], and this was494

verified numerically. Hence divergence cleaning is not necessary.495

4.3. Friedman adjustable damping496

The tunable damping scheme developed by Friedman [35] was shown to497

be the most potent practical method for mitigating the numerical Cerenkov498

instability in [33], among the selected methods that were considered. It is499

readily applicable to the solver presented above by modifying (45) to500

Bn+3/2 = Bn+1/2 − δt∇∗ ×
[(

1 +
θ

4

)

En+1 − 1

2
En +

(

1

2
− θ

4

)

Ēn−1

]

(67)

with501

Ēn−1 =

(

1 − θ

2

)

En +
θ

2
Ēn−2 (68)

where 0 ≤ θ ≤ 1 is the damping factor. The numerical dispersion becomes502

(

sin ωδt
2

cδt

)2

= FΩ2 (69)
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where503

F = 1 − 2θ sin2 (ωδt/2)

2e−iωδt − θ
(70)

and504

Ω2 =



Cx

(

sin kxδx
2

δx

)2

+ Cy

(

sin kyδy
2

δy

)2

+ Cz

(

sin kzδz
2

δz

)2


 (71)

The CFL is given by505

cδt∗c = cδtc

√

2 + θ

2 + 3θ
(72)

where δtc is the critical time step of the numerical scheme without damping506

(θ = 0), as given by (65).507

The numerical dispersion of the Cole-Karkkainen-Friedman (CKF) solver508

(using the coefficients from the CK solver in Table 1) is plotted in figure 8509

along the principal axis and diagonals for cubic cells (δx = δy = δz) and510

contrasted with the one of the Yee-Friedman (YF) solver (both taken at the511

Courant time step limit). The amount of phase error rises with the value512

of the damping parameter θ (partly due to the slightly more constraining513

limit on the critical time step). However, it was shown in [33] that the514

amount of damping provided by the YF solver was sufficient to counteract515

the slight degradation of numerical dispersion with raising θ, reducing the516

numerical Cerenkov effects to an acceptable level for the problem that was517

considered. The damping is very isotropic with the CKF solver but not with518

the YF one. The YF implementation offers a higher level of damping of519

the shortest wavelengths along the 3D diagonals, while the CKF offers more520

damping along the axes, and the amount of damping along the 2D diagonals521

are similar. In summary, the YF implementation delivers respectively the522
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highest/lowest level of damping in the direction of lowest/highest numerical523

dispersion, while the CKF implementation delivers a proportionally higher524

level of dispersion than the YF implementation along the direction of highest525

numerical dispersion. Thus it may be expected that the CKF implementation526

will be more efficient in reducing numerical Cerenkov effects.527
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Yee-Friedman Cole-Karkkainen-Friedman

Figure 8: Numerical dispersion along the principal axis and diagonals for cubic cells

(δx = δy = δz) at the Courant limit for: (left) the Yee-Friedman solver; (right) the

Cole-Karkkainen-Friedman solver. The real part (phase) and the imaginary part (ampli-

tude) are plotted respectively in the top and bottom rows.
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5. Application to the modeling of laser wakefield acceleration528

This section presents applications of the methods to the modeling of 10529

GeV LPA stages at full scale in 2-1/2D and 3D, which has not been done530

fully self-consistently with other methods. It has been shown that many531

parameters of high energy LPA stages can be accurately simulated at reduced532

cost by simulating stages of lower energy gain, with higher density and shorter533

acceleration distance, by scaling the physical quantities relative to the plasma534

wavelength, and this has been applied to design of 10 GeV LPA stages [18,535

19]. The number of oscillations of a mismatched laser pulse in the plasma536

channel however depends on stage energy and does not scale, though this537

effect is minimized for a channel guided stage as considered in [18, 19]. The538

number of betatron oscillations of the trapped electron bunch will also depend539

on the stage energy, and may affect quantities like the emittance of the beam.540

For these reasons, and to prove validity of scaled designs of other parameters,541

it is necessary to perform full scale simulations, which is only possible by542

using reduced models or simulations in the boosted frame.543

As a benchmarking exercise, we first perform scaled simulations similar544

to the ones performed in [18], at a density of ne = 1019 cm−3, using various545

values of the boosted frame relativistic factor γ to show the accuracy and con-546

vergence of the technique. These stages were shown to efficiently accelerate547

both electrons and positrons with low energy spread, and the scaled simula-548

tions predicted acceleration of hundreds of pC to 10 GeV energies using a 40549

J laser. The accuracy of the technique is evaluated by modeling scaled stages550

[18, 19] at 0.1 GeV, which allows for a detailed comparison of simulations551

using a reference frame ranging from the laboratory frame to the frame of the552
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wake. Excellent agreement is obtained on wakefield histories on axis, beam553

average energy history and momentum spread at peak energy, with speedup554

over a hundred, in agreement with the theoretical estimates from Section555

2. The downscaled simulations are also used for an in-depth exploration of556

the effects of the methods presented in Sections 3 and 4, and evaluation of557

which techniques are required to permit maximum γ boost while maintaining558

high accuracy. We then apply the boosted frame technique to provide full559

scale simulation of high efficiency quasilinear LPA stages at higher energy,560

verifying the scaling laws in the 10 GeV-1 TeV range.561

5.1. Scaled 10 GeV stages562

The parameters were chosen to be close (though not identical) to the563

case where kpL = 2 in [18] where kp is the plasma wavenumber and L is564

the laser pulse length. In the cases considered in this paper, the beam is565

composed of test particles only, with the goal of testing the fidelity of the566

algorithm in modeling laser propagation and wake generation. The results567

from simulations of LPA in a boosted frame where beam loading is present568

will be presented elsewhere. These simulations are scaled replicas of 10 GeV569

stages that would operate at actual densities of 1017 cm−3 [18, 19] and allow570

short run times to permit effective benchmarking between the algorithms.571

The main physical and numerical parameters of the simulation are given in572

Table 2. Unless noted otherwise, in all the simulations presented herein, the573

field is gathered from the grid onto the particles directly from the Yee mesh574

locations, i.e. using the ’energy conserving’ procedure (see [46], chapter 10).575

37



Figure 9: Colored surface rendering of the transverse electric field from a 2-1/2D Warp

simulation of a laser wakefield acceleration stage in the laboratory frame (top) and a

boosted frame at γ = 13 (bottom), with the beam (white) in its early phase of acceleration.

The laser and the beam are propagating from left to right.

5.1.1. Using standard numerical techniques576

These runs were done using the standard Yee solver with no damping, and577

with the 4-pass stride-1 filter plus compensation, similarly to the simulations578

reported in [18]. No signs of detrimental numerical instabilities were observed579

at the resolutions reported here with these settings.580

The approximate relativistic factor of the wake that is formed by the581

laser traveling in the plasma is given, according to linear theory, by γw =582

2πc/λωp where ωp =
√

nee2/ǫ0me is the electron plasma frequency. For the583

given parameters, γw ≈ 13.2. Thus, Warp simulations were performed using584

reference frames moving between γ = 1 (laboratory frame) and 13. For a585

boosted frame associated with a value of γ approaching γw in the laboratory,586
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Figure 10: Colored surface rendering of the longitudinal electric field from a 2-1/2D Warp

simulation of a laser wakefield acceleration stage in the laboratory frame (top) and a

boosted frame at γ = 13 (bottom), with the beam (white) in its early phase of acceleration.

The laser and the beam are propagating from left to right.

the wake is expected to travel at low velocity in this boosted frame, and the587

physics to appear somewhat different from the one observed in the laboratory588

frame, in accordance to the properties of the Lorentz transformation. Figure589

9 and 10 show surface renderings of the transverse and longitudinal electric590

fields respectively, as the beam enters its early stage of acceleration by the591

plasma wake, from a calculation in the laboratory frame and another in the592

frame at γ = 13. The two snapshots offer strikingly different views of the593

same physical processes: in the laboratory frame, the wake is fully formed594

before the beam undergoes any significant acceleration and the imprint of595

the laser is clearly visible ahead of the wake; while in the boosted frame596

calculation, the beam is accelerated as the plasma wake develops, and the597
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laser imprint is not visible on the snapshot. Close examination reveals that598

the short spatial variations which make the laser imprint in front of the wake599

are transformed into time variations in the boosted frame of γ = 13.600

2-1/2D 3-D

Figure 11: History of transverse electric field at the position x = y = 0, z = 0.3 mm and

z = 1.05 mm (in the laboratory frame) from simulations in the laboratory frame (γ = 1)

and boosted frames at γ = 2, 5, 10 and 13.

Histories of the perpendicular and longitudinal electric fields recorded at a601

number of stations at fixed locations in the laboratory offer direct comparison602

between the simulations in the laboratory frame (γ = 1) and boosted frames603

at γ = 2, 5, 10 and 13. Figure 11 and 12 show respectively the transverse604

and longitudinal electric fields collected at the positions z = 0.3 mm and605

z = 1.05 mm (in the laboratory frame) on axis (x = y = 0). The agreement606

is excellent and confirms that despite the apparent differences from snap-607

40



shots taken from simulations in different reference frames, the same physics608

was recovered. This is further confirmed by the plot of the average scaled609

beam energy gain as a function of position in the laboratory frame, and of610

relative longitudinal momentum dispersion at peak energy (Fig. 13). The611

small differences observed on the mean beam energy histories and on the lon-612

gitudinal momentum spread are attributed to a lack of convergence at the613

resolution that was chosen. The beam was launched with the same phase in614

the 2-1/2D and the 3D simulations, resulting in lower energy gain in 3D, due615

to proportionally larger laser depletion effects in 3D than in 2-1/2D.616

The CPU time recorded as a function of the average beam position in617

the laboratory frame (Fig. 13-middle) indicates that the simulation in the618

frame of γ = 13 took ≈ 25 s in 2-1/2D and ≈ 150 s in 3D versus ≈ 5, 000619

s in 2-1/2D and ≈ 20, 000 s in 3D in the laboratory frame, demonstrating620

speedups of ≈ 200 in 2-1/2D and ≈ 130 in 3D, between calculations in a621

boosted frame at γ = 13 and the laboratory frame.622

All the simulations presented so far in this section were using the Yee623

solver, for which the Courant condition is given by cδt < (1/δx2 + 1/δz2)
−1/2

624

in 2D and cδt < (1/δx2 + 1/δy2 + 1/δz2)
−1/2

in 3D where δt is the time step625

and δx, δy and δz are the computational grid cell sizes in x, y and z. As γ626

was varied, the transverse resolution was kept constant, while the longitudinal627

resolution was kept at a constant fraction of the incident laser wavelength628

δz = ζλ, such that in a boosted frame, δz∗ = ζλ∗ = ζ (1 + β) γλ. As a result,629

the speedup becomes, when using the Yee solver630

Syee2D = S
δz
√

1/δx2 + 1/δz2

δ∗z
√

1/δx2 + 1/δz∗2
(73)
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in 2D and631

Syee3D = S
δz
√

1/δx2 + 1/δy2 + 1/δz2

δ∗z
√

1/δx2 + 1/δy2 + 1/δz∗2
(74)

in 3D where S is given by Eq. (13).632

The speedup versus relativistic factor of the reference frame is plotted in633

Fig. 14, from (13), (73) and (74), and contrasted with measured speedups634

from 1D, 2-1/2D and 3D Warp simulations, confirming the scaling obtained635

analytically.636
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Table 2: List of parameters for scaled 10GeV class LPA stage simulation.

beam radius Rb 82.5 nm

beam length Lb 85. nm

beam transverse profile exp (−r2/8R2
b)

beam longitudinal profile exp (−z2/2L2
b)

laser wavelength λ 0.8 µm

laser length (FWHM) L 10.08 µm

normalized vector potential a0 1

laser longitudinal profile sin (πz/L)

plasma density on axis ne 1019 cm−3

plasma longitudinal profile flat

plasma length L 1.5 mm

plasma entrance ramp profile half sinus

plasma entrance ramp length 4 µm

number of cells in x Nx 75

number of cells in z Nz 860 (γ = 13)-1691 (γ = 1)

cell size in x δx 0.65µm

cell size in z δz λ/32

time step δt at CFL limit

particle deposition order cubic

# of plasma particles/cell 1 macro-e−+1 macro-p+
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2-1/2D 3-D

Figure 12: History of longitudinal electric field at the position x = y = 0, z = 0.3 mm and

z = 1.05 mm (in the laboratory frame) from simulations in the laboratory frame (γ = 1)

and boosted frames at γ = 2, 5, 10 and 13.
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2-1/2D 3-D

Figure 13: (top) Average scaled beam energy gain and (middle) CPU time, versus longitu-

dinal position in the laboratory frame from simulations; (bottom) distribution of relative

longitudinal momentum dispersion at peak energy, in the laboratory frame (γ = 1) and

boosted frames at γ = 2, 5, 10 and 13.
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Figure 14: Speedup versus relativistic factor of the boosted frame from Eq. (13), (73),

(74), and Warp simulations.
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5.1.2. Effect of filtering, solver with adjustable dispersion and damping637

The modeling of full scale stages, which allow for higher values of γ for638

the reference frame, is more prone to the high frequency instability that was639

mentioned in a previous section, as we will show below. In anticipation of640

the application of the method presented above to mitigate the instability,641

simulations of the scaled stage were conducted using the Yee solver with642

digital filter S(1:2:4) as described above (Fig. 15), the Cole-Karkkainen solver643

(Fig. 16) or the Yee-Friedman solver (Fig. 17).644

Smoothing with the wideband filter S(1:2:4) did not produce significant645

degradations for the calculation in the wake frame (γ = 13) but did otherwise.646

The calculations with the Yee solver and the Cole-Karkkainen solver gave647

identical results, validating our implementation of the CK solver. Despite the648

more expensive stencil, the run with the CK solver was almost 40% faster,649

due to a time step larger by
√

2. Similarly to filtering, damping aggressively650

did not degrade the result in the range 10 ≤ γ ≤ 13 but did significantly in651

the range 1 ≤ γ ≤ 5. Comparing the timings with those of Fig. 13 (middle-652

left) shows that the smoothing and the damping added less than a factor of653

two of total runtime to the simulations.654

Those results lead to several observations: (i) while the grid dimensions655

and number of cells were chosen such that square cells were obtained for656

γ = 13, meaning a larger dispersion in the longitudinal direction with the Yee657

solver than with the Cole-Karkkainen solver, both gave the same result. This658

is significant since for simulations of LPA in the laboratory frame reported659

in the literature, the need to have nearly perfect numerical dispersion in the660

longitudinal direction imposes a constraint on the cell aspect ratio and thus661
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Figure 15: ( (left) Average scaled beam energy gain and (right) CPU time, versus longi-

tudinal position in the laboratory frame from simulations in the laboratory frame (γ = 1)

and boosted frames at γ = 2, 5, 10 and 13, using the Yee solver with digital filter S(1:2:4)

(grey cross is reference from run with filter S(1)).

on resolution [44, 45]. This constraint is removed when simulating in the662

frame of the wake (γ = 13 ≈ γw); (ii) damping of high frequencies with663

the Yee-Friedman solver or wideband smoothing of short wavelength have a664

negligible effect on accuracy for simulations in the frame of the wake, but665

degrade the accuracy very significantly for slower moving reference frames.666

The dependency of the effect of damping and smoothing with γ boost has667

two causes. First, simulations with a boost γ ≈ γw require fewer time steps668

than simulations using a lower value of γ. Thus, for a given value of the669

damping coefficient θ, the integrated amount of damping will be lower for670

the simulations with γ ≈ γw. Second, as mentioned above in the discussion671

of the surface renderings shown in Fig. 9 and 10, a large fraction of the short672

wavelength content that is present in the simulations in the laboratory frame673

is transformed into time oscillations in simulations in the wake frame. Hence,674

filtering short wavelength has less effect on the physics when calculating in675
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Figure 16: ( (left) Average scaled beam energy gain and (right) CPU time, versus longi-

tudinal position in the laboratory frame from simulations in the laboratory frame (γ = 1)

and boosted frames at γ = 2, 5, 10 and 13, using the Cole-Karkkainen solver with filter

S(1) (red curve is reference from calculation with Yee solver and filter S(1)).

the wake frame than when calculating in the laboratory frame; (iii) the cost676

of using even the most aggressive damping or smoothing is low, especially677

considering that the simulations presented here were using only two plasma678

macro-particles per cell.679

In summary, calculating in a boosted frame near the frame following the680

wake (γ ≈ γw) relaxes the constraint on the numerical dispersion in the681

direction of propagation of the laser (which is essential in simulations in the682

laboratory frame), and allows for more aggressive damping of high frequencies683

and smoothing of short wavelengths than is possible in standard laboratory684

frame calculations.685

5.2. Full scale 10 GeV class stages686

As noted in [13], full scale simulations using the laboratory frame of 10687

GeV stages at plasma densities of 1017 cm−3 are not practical on present688

computers in 2D and 3D. At this density, the wake relativistic factor γw ≈689
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Figure 17: ( (left) Average scaled beam energy gain and (right) CPU time, versus longi-

tudinal position in the laboratory frame from simulations in the laboratory frame (γ = 1)

and boosted frames at γ = 2, 5, 10 and 13, using the Yee-Friedman solver with θ = 1

(grey cross is reference from run with no damping).

132, and 2-1/2D and 3D simulations were done in boosted frames up to690

γ = 130.691

5.2.1. Simulations in 2-1/2D692

Fig. 18 shows the average beam energy gain versus longitudinal position693

and the averaged Fourier Transform of the longitudinal electric field taken694

at t=40 ps, from 2D-1/2 simulations of a full scale 10GeV LPA in a boosted695

frame at γ = 130, using the Yee solver and various smoothing kernels. Fig.696

19 shows the average beam energy gain versus longitudinal position from697

simulations in boosted frames at γ = 30, 60 and 130. All runs gave the698

same beam energy history within a few percents, and no sign of instability699

is detected in the Fourier transform plot of the longitudinal electric field.700

The average energy gain peaks around 8 GeV, in agreement with the scaled701

simulations (see Fig. 13).702
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Figure 18: (left) Average beam energy gain versus longitudinal position (in the laboratory

frame), (right) Fourier Transform of the longitudinal electric field at t=40 ps, averaged

over whole domain, from 2D-1/2 simulations of a full scale 10GeV LPA in a boosted

frame at γ = 130, using the Yee solver and various digital filter kernels. Square cells

(δx = δz = 6.5µm) and the CFL time step (cδt/δz = 1/
√

2) were used.

5.2.2. Simulations in 3D703

In 3D, all simulations at γ = 130 using the Yee solver (using cubic704

cells and a time step at the CFL limit) developed the instability and loss705

of the beam, regardless of the amount of filtering or damping that has been706

tried. The failure of the 3D simulations using the Yee solver motivated use of707

the Cole-Karkkainen-Friedman (CKF) solver, with various levels of filtering708

and damping. Data from 3D simulations using the CKF solver and various709

smoothing kernels are plotted in Fig. 20. Stability is attained when using a710

sufficient level of filtering. Damping is detrimental to stability at low levels711

(θ = 0.1) but is beneficial at a higher level (θ = 0.5).712

Next, simulations using the solver coefficients CK2-5 from Table 1 were713

performed, with the time step set at their respective CFL limit. The best714

results were obtained using solvers CK2 and CK3, while CK4 and CK5 did715

not offer substantial improvement over the CK solver. The results from the716
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Figure 19: Average beam energy gain versus longitudinal position (in the laboratory frame)

from 2D-1/2 simulations of a full scale 10GeV LPA in a boosted frame at γ = 30, 60 and

130, using the Yee solver.

runs using CK2 and CK3 were nearly identical and hence only thoses from717

CK2 are reported in Fig. 21, which show very consistent beam energy gain718

histories, and no sign of instability in the Fourier Transform plot of the719

longitudinal electric field at t=40 ps (closer inspection revealed that when720

using the lowest level of filtering S(1), a mild instability was developing but721

it was not affecting the average beam energy gain history). As shown on Fig.722

22, those results are in good agreement with runs at γ = 30 and 60 using the723

Yee solver, and with the maximum energy gain predicted around 5.7 GeV by724

the scaled simulations shown on Fig. 13 (top-right).725

In summary, the full scale 6-7 GeV simulations using the frame of the726

wake performed in this subsection show: (i) 2-1/2D simulations using the727

Yee solver at the CFL limit (with square cells) were free of instability; (ii)728

3D simulations using the CK solver developed moderately strong instabilities729

that were mitigated using moderate to high levels of damping and/or filtering,730

the latter being the most effective; (iii) 3D simulations using the CK2 (or731
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CK3) solver developed very mild instabilities that were mitigated with a low732

level of filtering.733
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θ = 0

θ = 0.1

θ = 0.5

Figure 20: (left) Average beam energy gain versus longitudinal position (in the laboratory

frame); (right) Fourier Transform of the longitudinal electric field at t=40 ps, averaged

over plane on axis perpendicular to laser polarization, from 3D simulations of a full scale

10GeV LPA in a boosted frame at γ = 130, using the Cole-Karkkainen-Friedman solver and

various smoothing kernels, with (top) no numerical damping (θ = 0), (middle) damping

with θ = 0.1 and (bottom) θ = 0.5.
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Figure 21: (left) Average beam energy gain versus longitudinal position (in the laboratory

frame), (right) Fourier Transform of the longitudinal electric field at t=40 ps, averaged

over whole domain, from 3D simulations of a full scale 10GeV LPA in a boosted frame at

γ = 130, using the CK2 solver and various digital filter kernels.

Figure 22: Average beam energy gain versus longitudinal position (in the laboratory frame)

from 3D simulations of a full scale 10GeV LPA in a boosted frame at γ = 30, 60 and 130,

using the Yee solver (γ = 30 and 60) and the CK2 solver (γ = 130), with digital filter S(1)

and with the time step set by cδt/δz = 1/
√

2 for stability (see discussion below) .
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5.3. Effects of numerical parameters on the observed instability734

Figure 23: Fourier Transform of the longitudinal electric field at t=40 ps, averaged over

plane on axis perpendicular to laser polarization, from (left) 3D and (right) 2D-1/2 simu-

lations of a full scale 10GeV LPA in a boosted frame at γ = 130, using the Yee solver and

various smoothing kernels. The same time step at the 3D CFL limit cδt = δx/
√

3 was

used for both simulations.

The Fourier transform of the longitudinal electric field averaged over the735

whole domain at t=40 ps, from 3D simulations using the Yee solver, is given736

in Fig. 23 (left). It is contrasted to the same data taken from 2-1/2D737

simulations (right). Both simulations used the same time step at the 3D738

CFL limit cδt = δz/
√

3. The similarity of the two plots indicates that the739

degradation of the numerical dispersion that resulted from going from the740

2D to the 3D CFL limit is the cause of the failure of the 3D runs using the741

Yee solver. Taking advantage of this observation, we study in this section742

the instability arising in 2-1/2D simulations using a time step at the 3D CFL743

limit.744

5.3.1. Effects of spatial resolution745

Snapshots of the longitudinal electric field at the front of the plasma taken746

at t = 12.5 ps, and their corresponding Fourier transform, are given in Fig.747
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24, from 2-1/2D simulations using the Yee solver with the time step at the748

3D CFL limit cδt = δz/
√

3. Three resolutions were considered: (a) δx =749

δz = 13µm, (b) δx = δz = 6.5µm, and (c) δx = δz = 3.25µm. The amplitude750

of the instability is roughly inversely proportional to the resolution. For this751

configuration, the instability exhibits two primary modes at various relative752

levels, both at a fixed number of grid cells in the longitudinal direction, but753

at a fixed absolute length in the transverse direction. This indicates that754

the transverse part of the modes is governed by the physical geometry of the755

problem while the longitudinal part is governed by numerical resolution.756

Results from 2-1/2D simulation using the CK solver at the 3D CFL limit757

cδt/δz = 1/
√

3 at the resolution δx = δz = 6.5µ m are given in Fig. 25.758

The same two modes that were observed in the plots from the equivalent759

simulation using the Yee solver (see Fig. 24-middle), are present, and the760

overall amplitude of the instability is similar. These similarities on the details761

of the instability between the Yee and CK solvers indicate that the differences762

in numerical dispersion of the solvers do not constitute a key factor affecting763

the instability.764

5.3.2. Effects of time step765

It is striking that all the solvers that lead to the lowest levels of instability766

had the same CFL time step cδtCFL = δz/
√

2. For checking whether this is767

coincidental, simulations were performed using the CK solver, scanning the768

time step between cδt/δz = 0.5 and cδt/δz = 1. The Fourier Transform of769

the longitudinal field averaged over the entire domain taken at t = 40 ps,770

is given in Fig. 26, exhibiting a sharp reduction of the instability level in a771

narrow band around cδt = δz/
√

2. Since the numerical dispersion degrades772
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in all directions when the time step diminishes, this indicates that the value773

of the time step value is of more importance than the numerical dispersion774

of the solver being used.775

Simulations using the Yee or the CK solver with the singular time step776

cδt = δz/
√

2 were performed and produced levels of instabilities that were777

much reduced (and delayed) compared to the 3D CFL time step (not shown).778

The snapshot of the electric field and its Fourier Transform taken at t = 49779

ps are given in Fig. 27. The Fourier spectrum is very similar in each case,780

although the instability is slightly stronger with the CK solver than with the781

Yee solver. In both cases, the instability is easily removed by using the S(1:2)782

filter (see Fig. 28).783

As mentioned in the previous section, the solvers CK, CK4 and CK5,784

which all have a CFL time step above the singular time step cδt = δz/
√

2,785

produced significant levels of instability when run at their CFL limit. It was786

verified that using those solvers in 3D at the time step cδt = δz/
√

2 resulted787

in greatly reduced levels of instability. It was also observed that running788

the Yee solver using non-cubic cells, e.g. with lower resolution transversely789

such as δx = 2δz at γ = 130, or δx = 2.6δz at γ = 50, produced the same790

pattern: a significant instability was present when using the CFL time step791

and was greatly reduced by using cδt = δz/
√

2. Hence for the suppression of792

the instability, the choice of the solver seems to depends solely on whether793

its CFL condition allows stability at the special time step cδt = δz/
√

2 for a794

given grid cell aspect ratio, but not significantly on its numerical dispersion795

nor on the value of the grid cell aspect ratio.796
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5.3.3. Effects of field gathering procedure797

The scan of time step was repeated using the ’momentum conserving’798

procedure [46] , in which the field values are interpolated at the grid nodes799

before being gathered onto the particles. The result is given in Fig. 29. With800

the momentum conserving procedure, the level of instability is consistently801

high and independent of the time step. Since the numerical dispersion of the802

solver varies substantially with the time step, this result supports the con-803

clusion that the instability may not be of numerical Cerenkov nature. The804

identification of the nature of the instability and the explanation of the sin-805

gular time step cδtS call for a multidimensional (no instability was observed806

in 1D regardless of the field gathering method) analysis of the discretized807

Vlasov algorithm that was employed, which is left for future work.808

The results that were obtained lead to the following conclusions: (i) the809

time step cδtS = δz/
√

2 consistently produces the lowest levels of instability,810

regardless of dimensionality (2D vs 3D), the field solver being used, reso-811

lution, aspect ratio of cells (within the range of the finite number of cases812

that were experimented); (ii) the main advantage of the tunable field solver813

resides in allowing access to the singular time step cδtS rather than pro-814

viding improved numerical dispersion, which consequently do not appear to815

be a primary driver of the instability; (iii) the instability is not completely816

removed at cδtS and filtering is still needed, albeit at lower levels; (iv) the817

field gathering procedure is key, as the existence of a singular time step at818

which the instability is greatly reduced is observed using an ’energy conserv-819

ing’ procedure, but not using a ’momentum conserving’ procedure. These820

results indicate that the instability that is being observed may not be a type821
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of numerical Cerenkov instability, as originally conjectured.822
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E// FFTE//

Figure 24: (left) Snapshot of the longitudinal electric field (E//) at the front of the plasma

at t = 12.5 ps; (right) Fourier Transform of the longitudinal electric field, from 2-1/2D

simulations of a full scale 10GeV LPA in a boosted frame at γ = 130, using the Yee solver,

for (top) δx = δz = 13µm; (middle) δx = δz = 6.5µm; (bottom) δx = δz = 3.25µm. The

time step at the 3D CFL limit cδt = δz/
√

3 was used for all three simulations.
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Figure 25: (left) Snapshot of the longitudinal electric field (E//) at the front of the plasma

at t = 12.5 ps; (right) Fourier Transform of the longitudinal electric field, from 2-1/2D

simulations of a full scale 10GeV LPA in a boosted frame at γ = 130, with the CK solver,

using δx = δz = 6.5µm, and the time step at the 3D CFL limit cδt = δx/
√

3.

Figure 26: Fourier Transform of the longitudinal electric field at t=40 ps, averaged over

the whole domain, from 2-1/2D simulations of a full scale 10GeV LPA in a boosted frame

at γ = 130, using the CK solver, for time steps between cδt/δz = 0.5 and cδt/δz = 1,

versus λ/δz (left) and at λ/δz = 4 (right).
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Figure 27: (left) Snapshot of the longitudinal electric field (E//) at the front of the plasma

at t = 49 ps; (right) Fourier Transform of the longitudinal electric field, from 2-1/2D

simulations of a full scale 10GeV LPA in a boosted frame at γ = 130, using δx = δz =

6.5µm, and the time step at the 2D CFL limit cδt = δz/
√

2, for (top) the Yee solver;

(bottom) the CK solver.
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Figure 28: Snapshot of the longitudinal electric field (E//) at the front of the plasma

at t = 49 ps from 2-1/2D simulations of a full scale 10GeV LPA in a boosted frame at

γ = 130, using δx = δz = 6.5µm, and the time step at the 2D CFL limit cδt = δz/
√

2,

for (left) the Yee solver; (right) the CK solver. The filter S(1:2) was used to remove the

instability that is visible in Fig. 27. The remaining feature is the wake.

Figure 29: Fourier Transform of the longitudinal electric field at t=40 ps, averaged over

the whole domain, from 2-1/2D simulations of a full scale 10GeV LPA in a boosted frame

at γ = 130, using the CK solver, for time steps between cδt/δz = 0.5 and cδt/δz = 1,

using a ’momentum conserving’ field gathering scheme.
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5.4. Full scale 100 GeV - 1 TeV class stages823

Figure 30: Average beam energy gain versus longitudinal position (in the laboratory frame)

for simulations at ne = 1019 cc down to 1015 cc, using frames of reference between γ = 13

and γ = 1300, in 2-1/2D (left) and 3D (right).

Using the knowledge acquired from the 10 GeV class study, simulations824

of stages in the range of 0.1 GeV-1 TeV were performed in 2-1/2D and in825

the range of 0.1-100 GeV in 3D. The plasma density ne scales inversely to826

the energy gain, from 1019 cc down to 1015 cc in the 0.1 GeV-1 TeV range.827

These simulations used the parameters given in Table 2 scaled appropriately,828

and used the high speed of the boosted simulations to allow fast-turnaround829

improvement of the stage design [18, 19]. Scaled energy gain was increased830

by adjusting the phase of the beam injection behind the laser by ∼ 12%831

in 3D and 7% in 2D, with respect to the results presented in the preceding832

section. The 5% level difference between the 2D and 3D beam phases is833

likely due to small differences in wake structure, laser depletion, and the small834

number of betatron oscillations of the laser. To minimize beam loss, the beam835

dimensions were reduced by a factor of 3 in each dimension. Simulations836

showing performance of this design in 2-1/2D were performed using the Yee837
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solver with filter S(1) for the 0.1-10 GeV runs, S(1:2) for the 100 GeV and838

S(1:2:3) for the 1 TeV ones. The 3D simulations were performed using the839

CK2 solver with filter S(1) for the 0.1-1 GeV runs, and S(1:2) for the 10-100840

GeV ones. The average beam energy gain history is plotted in Fig. 30, scaling841

the 0.1-100 GeV runs to the 1 TeV range in 2-1/2D, and the 0.1-10 GeV runs842

to the 100 GeV range in 3D. The results exhibit an excellent agreement on843

the peak scaled beam energy gain between 0.1-100 GeV runs, and on the844

scaled beam energy gain histories between the 1-100 GeV runs. A higher845

level of smoothing was needed for the 1TeV case, explaining the deviation846

past 1 km. This deviation is of little importance in practice, where one is847

mostly interested in the beam evolution up-to the peak energy point. The848

differences at 1019 on the scaled beam energy gain history can be attributed849

to the effects from having only a few laser oscillations per pulse.850

Using (13), the speedup of the full scale 100 GeV class run, which used851

a boosted frame of γ = 400 as frame of reference, is estimated to be over852

100,000, as compared to a run using the laboratory frame. Assuming the853

use of a few thousands of CPUs, a simulation that would require several854

decades to complete using standard PIC techniques in the laboratory frame,855

was completed in four hours using 2016 CPUs of the Cray system at NERSC.856

With the same analysis, the speedup of the 2-1/2D 1 TeV stage is estimated857

to be over a million.858
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6. Conclusion and outlook859

The technique proposed in [1] was applied successfully to speedup by860

orders of magnitude calculations of laser-plasma accelerators from first prin-861

ciples. The theoretical speedup estimate from [1] was improved, while com-862

plications associated with the handling of input and output data between a863

boosted frame and the laboratory frame were discussed. Practical solutions864

were presented, including a technique for injecting the laser that is simpler865

and more efficient than methods proposed previously.866

Control of an instability that was limiting the speedup of such calcula-867

tions in previous work is demonstrated, via the use of a field solver with868

tunable coefficients and digital filtering. The tunable solver was shown to be869

compatible with existing ”exact” current deposition techniques for conserva-870

tion of Gauss Law, and accommodates Perfectly Matched Layers for efficient871

absorption of outgoing waves.872

Extensive testing of the methods presented for numerical Cerenkov miti-873

gation reveals that choosing the frame of the wake as the frame of reference874

allows for higher levels of filtering and damping than is possible in other875

frames with the same accuracy. It also revealed that there exists a singu-876

lar time step for which the level of instability is minimal, independently of877

other numerical parameters, especially the numerical dispersion of the solver.878

This indicates that the observed instability may not be caused by numerical879

Cerenkov effects. Analysis of the nature of the instability is underway, but880

regardless of cause, the methods presented mitigate it effectively. The tun-881

ability of the field solver is key in providing stability in 3D at the singular882

time step, which is not attainable by the standard Yee solver.883
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The use of those techniques permitted the first calculations in the opti-884

mal frame of 10 GeV, 100 GeV and 1 TeV class stages, with speedups over885

4, 5 and 6 orders of magnitude respectively over what would be required886

by ”standard” laboratory frame calculations, which are impractical for such887

stages due to computational requirements.888

These results show that the technique can be applied to the modeling of 10889

GeV stages, and future work will include the effects of beam loading, plasma890

density ramps, as well as particle trapping in the near future. Future work891

on the numerical methods include a comprehensive analysis of the instability892

and the existence of a singular time step under certain conditions, as well as893

the local application of filtering, smoothing and/or mesh refinement [57, 58]894

around the front of the plasma, where the instability develops. The latter is895

expected to provide mitigation of the instability while preserving accuracy896

in the core of the simulation.897

7. Appendix I: One dimensional analysis of the CK solver898

Although the most interesting applications of the CK solver require two or899

three dimensions, analysis of the method in one dimension reveals a potential900

issue when cδt = δx. In one dimension (choosing x), Equations (45)-(46)901

reduce to902

By|n+1/2

i+1/2
= By|n−1/2

i+1/2
+
δt

δx

(

Ez|ni+1 − Ez|ni
)

(75)

Ez|n+1

i = Ez|ni +
c2δt

δx

(

By|n+1/2

i+1/2
− By|n+1/2

i−1/2

)

− Jn
i

ǫ0
(76)

Due to uniform time discretization and linearity, the response of the sys-903

tem (75)-(76) to arbitrary distributions and evolutions of sources (i.e. macro-904
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Heaviside step excitation oscillatory excitation

Figure 31: (top) time history (in time steps) of the current source for (left) a Heaviside step

(right) a heaviside step modulated by a sinusoidal oscillation at the Nyquist frequency;

(middle) response of the system of equations (75)-(76) via a snapshot of the electric field

after 10 time steps, without filtering of the source term; (bottom) response of the system

of equations (75)-(76) with application of bilinear digital filter of the source term in space.

A time step of cδt = δx was used in all runs and scaled constants c = ǫ0 = 1 were assumed.

particles) can be written as the sum of its response to the excitation from a905

Heaviside function in time, at one location in the grid. Assuming a source906

term of the form J |ni = H(t) where H is the Heaviside function, and setting907

the time step at the Courant limit cδt = δx, the system (75)-(76) produces a908

spurious ”odd-even” oscillations at the Nyquist frequency, as shown in Fig.909

31 (middle-left). If a sinusoidal signal oscillating at the Nyquist frequency is910

added to the source term, the amplitude of the spurious oscillation grows lin-911
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early with time, as shown in Fig. 31 (middle-right). The spurious oscillation912

is effectively suppressed in both cases by the application of a ”1-2-1” bilinear913

digital filter, as shown in Fig. 31 (bottom) . These types of filtering are of914

common use in Particle-In-Cell codes, often repeated a prescribed number of915

times and followed by a compensation stage to avoid excessive damping of916

long wavelengths [46].917

No filtering bilinear filtering

Figure 32: Snapshots from transverse electric field (normalized to maximum laser ampli-

tude E0) and plasma electrons longitudinal phase space projection, from a 1D simulation

of a laser wakefield acceleration stage the CFL limits (cδt = δx) with (left) no filtering of

current density; (right) application of a bilinear digital filter to the current density.

The impact of the spurious oscillations and the effectiveness of the bi-918

linear filtering at suppressing it in actual simulations was tested on a 1D919

simulation of a scaled wakefield acceleration stage. The physical and nu-920

merical parameters of the simulation are given in table 3. Snapshots of the921

transverse electric field (aligned with the laser polarization) and the plasma922
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electron phase space, taken once the laser has propagated about half way923

through the plasma (after ∼20,000 time steps) are given in Fig. 32. Without924

filtering of the current density, an instability develops at the grid Nyquist925

frequency, severely disrupting the plasma wake, despite the fact that cubic926

splines were used to deposit current from macro-particles to the grid and927

gather the electromagnetic field from the grid to the macro-particles. One928

application of the bilinear filtering (without compensation) is sufficient to929

suppress the spurious instability and produce a steady and clean wake.930

8. Appendix II: Perfectly Matched Layer931

The split form of Perfectly Matched Layer (PML) [52] framework applies932

readily to Eqs (45)-(46). The equations on the component along z of the933

magnetic field are given by934

(∆t + σx)Bzx = −∆∗

xEy (77)

(∆t + σy)Bzy = ∆∗

yEx (78)

(∆t + σx)Ey = −c2∆x (Bzx +Bzy) (79)

(∆t + σy)Ex = c2∆y (Bzx +Bzy) (80)

where σx and σy are the absorbing layer coefficients along x and y respectively.935

The equations for the other components of the magnetic field and for the936

electric field are obtained similarly, applying the standard difference operator937

on the spatial derivatives of the electric field and the enlarged difference938

operator on the spatial derivatives of the magnetic field. The formula to939

update the fields is obtained by solving the finite-difference equations or by940

71



integrating over one time step, giving941

Bzx|n+1/2

i+1/2,j+1/2,k = ξxBzx|n−1/2

i+1/2,j+1/2,k −
1 − ξx
σx

∆∗

xEy|ni+1/2,j+1/2,k (81)

Bzy|n+1/2

i+1/2,j+1/2,k = ξyBzy|n−1/2

i+1/2,j+1/2,k +
1 − ξy
σy

∆∗

yEx|ni+1/2,j+1/2,k (82)

Ey|n+1

i,j+1/2,k = ξxEy|ni,j+1/2,k − c2
1 − ξx
σx

∆x (Bzx +Bzy) |n+1/2

i,j+1/2,k (83)

Ex|n+1

i+1/2,j,k = ξyEx|ni+1/2,j,k + c2
1 − ξy
σy

∆y (Bzx +Bzy) |n+1/2

i+1/2,j,k (84)

where ξ = (1 − σδt/2) / (1 + σδt/2) via direct solve, or ξ = e−σδt via time in-942

tegration (note that in our tests, both implementations gave nearly identical943

results).944
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Figure 33: Reflected signal (in dB) from a PML layer using the Yee or the Cole-Karkkainen

solver. Each simulation was run for the time step set at the Courant limit.

The PML using the stencil given by (84) was tested and compared to945

the standard Yee implementation in 2D and 3D. Fig. 33 snapshots from 2D946
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simulations of the reflected residue from a PML layer of a pulse with ampli-947

tude given by the Harris function (10− 15 ∗ cos(2πct/L) + 6 ∗ cos(4πct/L)−948

cos(6πct/L))/32 where t is time, c is the speed of light and L = 50δx is the949

pulse length in cell size units. A grid of 400x400 cells was used with δx = δy.950

The absorbing layer was 8 cells deep and the dependency of the PML co-951

efficients with the index position i in the layer was σi = σm (iδx/∆)n with952

σm = 4/δx, ∆ = 5δx and n = 2. The alternative prescription for the coeffi-953

cients given in [53, 54], which reads σ∗

i =
(

ξi+1/2 − 1/ξi
)

/δx with ξi = e−σiδt
954

and σi = σm (iδx/∆)n, was also tested.955

For the generic test case that has been considered, the new implementa-956

tion exhibited a very low residue of reflections from the PML layer, which are957

qualitatively and quantitatively very similar to the residue obtained with a958

standard PML implementation. In agreement with results from [53, 54], the959

use of the modified coefficients σ∗ led to an order of magnitude improvement960

over the use of the standard coefficients.961

The 3D tests gave similar absorption efficiency between the Yee and the962

new solver implementations of the PML, for all the CK solver coefficients963

given in Table 1.964

It was shown in [53, 54] that the efficiency of the layer can be improved965

further for the standard PML by augmenting the equations with additional966

terms. However, a similar extension may not be readily available when using967

the Cole-Karkkainen stencil and is not considered here.968

73



9. Acknowledgments969

We are thankful to D. L. Bruhwiler, J. R. Cary, B. Cowan, E. Esarey, A.970

Friedman, C. Huang, S. F. Martins, W. B. Mori, B. A. Shadwick, and C. B.971

Schroeder for insightful discussions.972

[1] J.-L. Vay, Phys. Rev. Lett. 98 (2007) 130405.973

[2] T. Tajima, J. M. Dawson, Phys. Rev. Lett., 43 (1979) 267.974

[3] E. Esarey, et al., Rev. Modern Phys. 81, 252 (2009) 1229.975

[4] C. G. R. Geddes, et al., Nature 431, 538 (2004).976

[5] S. P. D. Mangles, et al., Nature 431, 535 (2004).977

[6] J. Faure, et al., Nature 431, 541 (2004).978

[7] W. P. Leemans, et al., Nature Physics 2, 696 (2006).979

[8] C. B. Schroeder, et al. Proc. 13th Advanced Accelerator Concepts Work-980

shop, Santa Cruz, CA (2008) 208.981

[9] C. G. R. Geddes, et al., ”Laser Plasma Particle Accelerators: Large982

Fields for Smaller Facility Sources,” SciDAC Review 13 (2009) 13.983

[10] C. G. R. Geddes et al., J. Phys. Conf. Series V 125 (2008) 12002/1-11.984

[11] C. Huang et al., J. Phys. Conf. Series 180 (2009) 12005985

[12] http://loasis.lbl.gov986

74



[13] D. L Bruhwiler et al., Proc. 13th Advanced Accelerator Concepts Work-987

shop, Santa Cruz, CA (2008) 29.988

[14] B. A Shadwick, C. B. Schroeder, E. Esarey, Phys. Plasmas 16 (2009)989

056704990

[15] P. Sprangle, E. Esarey, and A. Ting, Phys. Rev. Letters 64 (1990) 2011-991

2014.992

[16] C. Huang et al., J. of Comput. Phys. 217 (2006) 658-679.993

[17] B. Feng, C. Huang, V. Decyk, W.B. Mori, P. Muggli, T. Katsouleas, J.994

Comput. Phys. 228 (2009) 5340.995

[18] E. Cormier-Michel, et al. Proc. 13th Advanced Accelerator Concepts996

Workshop, Santa Cruz, CA (2008) 297.997

[19] C. G. R. Geddes et al., Proc. Particle Accelerator Conference, Vancou-998

ver, Canada (2009) WE6RFP075.999

[20] J.-L. Vay, Phys. Plasmas, 15 (2008) 056701.1000

[21] J. P. Boris, J. Comput. Phys. 12 (1973) 131-136.1001

[22] I. Haber, R. Lee, H. H. Klein, J. P. Boris, Proc. Sixth Conf. Num. Sim.1002

Plasmas, Berkeley, CA (1973) 46-48.1003

[23] B. Cowan, et al. Proc. 13th Advanced Accelerator Concepts Workshop,1004

Santa Cruz, CA (2008) 309.1005

[24] J.-L. Vay et al., Proc. Particle Accelerator Conference, Vancouver,1006

Canada (2009) TU1PBI04.1007

75



[25] S. F. Martins, Proc. Particle Accelerator Conference, Vancouver,1008

Canada (2009) TH4GBC05.1009

[26] J.-L. Vay et al., J. Phys. Conf. Series 180 (2009) 120061010

[27] J. -L. Vay, W. M. Fawley, C. G. Geddes, E. Cormier-Michel, D. P. Grote,1011

arXiv:0909.5603 (Sept. 2009)1012

[28] S. F. Martins, R. A. Fonseca, L. O. Silva, W. Lu, W. B. Mori, Comput.1013

Phys. Comm. 182 (2010) 869-875.1014

[29] D. L. Bruhwiler, Private Communication.1015

[30] D. P. Grote, A. Friedman, J.-L. Vay, I. Haber, AIP Conf. Proc. 7491016

(2005) 55.1017

[31] B. B. Godfrey, J. Comput. Phys. 15 (1974) 504-521.1018

[32] B. B. Godfrey, J. Comput. Phys. 19 (1975) 58-76.1019

[33] A. D. Greenwood, K. L. Cartwright, J. W. Luginsland, E. A. Baca, J.1020

Comp. Phys. 201 (2004) 665-684.1021

[34] B. B. Godfrey, Proc. Ninth Conf. on Num. Sim. of Plasmas (1980).1022

[35] A. Friedman, J. Comput. Phys. 90 (1990) 292.1023

[36] H. Abe, N. Sakairi, R. Itatani, H. Okuda, J. Comput. Phys. 63 (1986)1024

247-267.1025

[37] E. Cormier-Michel, B. A. Shadwick, C. G. R. Geddes, E. Esarey, C. B.1026

Schroeder, W. P. Leemans, Phys. Rev. E 78 (2008) 016404.1027

76



[38] J. B. Cole, IEEE Trans. Microw. Theory Tech., 45 (1997) 991996.1028

[39] J. B. Cole, IEEE Trans. Antennas Prop., 50 (2002) 11851191.1029

[40] M. Karkkainen, E. Gjonaj, T. Lau, T. Weiland, Proc. International1030

Computational Accelerator Physics Conference, Chamonix, France1031

(2006).1032

[41] K. S. Yee, IEEE Trans. Ant. Prop. 14 (1966) 302-3071033

[42] B. Cowan, Proc. 10th Internat. Comput. Accel. Phys. Conf., San Fran-1034

cisco, CA (2009).1035
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Table 3: List of parameters for scaled 10GeV class LPA stage simulation.

beam length Lb 85 nm

beam peak density nb 1014 cm−3

beam longitudinal profile exp (−z2/2L2
b)

laser wavelength λ 0.8 µm

laser length (FWHM) L 10.08 µm

normalized vector potential a0 1

laser longitudinal profile sin (πz/L)

plasma density on axis ne 1019 cm−3

plasma longitudinal profile flat

plasma length L 1.5 mm

plasma entrance ramp profile half sinus

plasma entrance ramp length 4 µm

number of cells Nz 952

cell size δz λ/24

time step δt δz/c

particle deposition order cubic

# of plasma particles/cell 10
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