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Executive Summary

A Model Predictive Control algorithm was developed for the UC Merced campus chilled water
plant. Model predictive control (MPC) is an advanced control technology that has proven
successful in the chemical process industry and other industries [1-3]. The main goal of the
research was to demonstrate the practical and commercial viability of MPC for optimization of
building energy systems. The control algorithms were developed and implemented in MATLAB,
allowing for rapid development, performance, and robustness assessment.

The UC Merced chilled water plant includes three water-cooled chillers and a two million gallon
chilled water storage tank. The tank is charged during the night to minimize on-peak electricity
consumption and take advantage of the lower ambient wet bulb temperature. The control
algorithms determined the optimal chilled water plant operation including chilled water supply
(CHWS) temperature set-point, condenser water supply (CWS) temperature set-point and the
charging start and stop times to minimize a cost function that includes energy consumption and
peak electrical demand over a 3-day prediction horizon.

A detailed model of the chilled water plant and simplified models of the buildings served by the
plant were developed using the equation-based modeling language Modelica. Steady state
models of the chillers, cooling towers and pumps were developed, based on manufacturers’
performance data, and calibrated using measured data collected and archived by the control
system. A detailed dynamic model of the chilled water storage tank was also developed and
calibrated. Simple, semi-empirical models were developed to predict the temperature and flow
rate of the chilled water returning to the plant from the buildings. These models were then
combined and simplified for use in a model predictive control algorithm that determines the
optimal chiller start and stop times and set-points for the condenser water temperature and the
chilled water supply temperature. The report describes the development and testing of the
algorithm and evaluates the resulting performance, concluding with a discussion of next steps
in further research.

The experimental results show a small improvement in COP over the baseline policy but it is
difficult to draw any strong conclusions about the energy savings potential for MPC with this
system only four days of suitable experimental data were obtained once correct operation of
the MPC system had been achieved. These data show an improvement in COP of 3.1% +2.2%
relative to a baseline established immediately prior to the period when the MPC was run in its
final form. This baseline includes control policy improvements that the plant operators learned
by observing the earlier implementations of MPC, including increasing the temperature of the
water supplied to the chiller condensers from the cooling towers.

The process of data collection and model development, necessary for any MPC project, resulted
in the team uncovering various problems with the chilled water system. Although it is difficult
to quantify the energy savings resulting from these problems being remedied, they were likely
on the same order as the energy savings from the MPC itself. Although the types of problems



uncovered and the level of energy savings may differ significantly from other projects, some of
the benefits of detecting and diagnosing problems are expected from the use of MPC for any
chilled water plant.

The degree of chiller loading was found to be a key factor for efficiency. It is more efficient to
operate the chillers at or near full load. In order to maximize the chiller load, one would
maximize the temperature difference across chillers and the chilled water flow rate through the
chillers. Thus, the CHWS set-point and the chilled water flow-rate can be used to limit the chiller
loading to prevent chiller surging. Since the flow rate has an upper bound and the CHWS set
point has a lower bound, the chiller loading is constrained and often determined by the chilled
water return temperature (CHWR). The CHWR temperature is primarily comprised of warm
water from the top of the TES tank. The CHWR temperature falls substantially as the
thermocline approaches the top of the tank, which reduces the chiller loading. As a result, it has
been determined that overcharging the TES tank can be detrimental to the chilled water plant
efficiency. The resulting MPC policy differs from the current practice of fully charging the TES
tank. A heuristic rule could possible avoid this problem without using predictive control.
Similarly, the COP improvements from the change in CWS set-point were largely captured by a
static set-point change by the operators. Further research is required to determine how much
of the MPC savings could be garnered through simplified rules (based on the MPC study), with
and without prediction.

The UC Merced campus is currently only a fraction of its future planned size and the TES tank is
sized for a substantially larger campus cooling load. Consequently, an upcoming extension of
the research is to further characterize via simulations the advantages of MPC scheme to chilled
water systems similar to UC Merced with different storage capacity, cooling loads and climate.

An implementation approach has been developed that is less intensive computationally than
the approach used for the initial implementation and testing described in the rest of this report.
The goal was to produce an implementation of MPC that could be used on a routine basis by
the building operators without assistance from the research team and could also be used to
reduce the computational effort required for the assessment of the performance and benefits
of MPC in different scenarios, such as the building out of the campus. The approach will be
tested in the summer of 2010, taking advantage of the repairs and enhancements to the
instrumentation of the chilled water plant and distribution system implemented by the UC
Merced Facilities staff in the first half of 2010. As discussed in the report, problems with chilled
water flow rate measurements, in particular, limited both the performance and the assessment
of the MPC algorithm in 2009.
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1 Introduction

1.1 Project Description, Goals and Objectives

Technologies for energy efficiency improvement in buildings are central to the development of
marketable design approaches for net zero energy commercial buildings by 2025 which is a
strategic goal of the DOE Buildings Technologies Program. Heating, ventilation, and air
conditioning (HVAC) account for 27% of the energy consumption and 45% of peak electrical
demand in commercial buildings [4], and 5% of the floor area of US commercial buildings is
cooled by central chillers or district chilled water plants [5]. Studies on several central plants
indicate that substantial energy savings (up to 60% in some cases where the operation is poor)
are possible with properly deployed optimized system level controls and variable speed
technology [6].
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1 ey Tower Set Point
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Figure 1.1: Chilled water plant with model predictive control and parameter estimator

If thermal energy storage (TES) is effectively used in conjunction with weather and cooling load
forecasting, TES can be used to reduce eletricity costs by managing energy consumption and
peak loads [7]. Peak demand charges alone account for about 40% of commercial building
electricity costs [4]. The utilization of weather and cooling load forecasting enables extreme
cooling loads to be shifted by generating and storing chilled water more efficiently when the
weather and electriciy rates are advantageous. Currently, weather or cooling load forecasting
are not commonly used to dynamically manage the chilled water storage. Instead, static,
heuristic policies are typically employed.

For example, the TES tank at University of California Merced is completely charged on nights
when the charge level is observed to below 50% full capacity. As a result, the chillers at the UC
Merced chilled water plant (CWP) are operated on a nightly/semi-nightly basis to charge the
thermal energy storage (TES) tank. Based on work performed during the this project, up to 5%
energy savings can be achieved by adjusting the CWS temperature set point. Additional savings
are possible by leveraging cooling load and weather forecasts to charge the TES tank on the



coolest nights and to optimize temperature profile of the TES tank. In order for current ECMS
technology to realize the most of the above potential savings, heuristic control logic that far
exceeds typical complexity must be skillfully and laboriously coded, monitored, and maintained.

The current state of control technology within building systems is a collection of logic-based
rules and single-input-single-output feedback loops regulating set-points Error! Reference
source not found.. The best industry practices define rules to accommodate for the diverse
modes of operation encountered during hourly, daily, weekly, and seasonal operation. Rules
can also play a role in coordinating set-points among separate subsystems, such as scheduling
the leaving cooling tower set point according to the chiller full load amps percentage.
Consequently, the degree of optimality of the resulting ECMS is dependent on the expertise of
the control designer, a thorough understanding of the system, persistent monitoring for
changes in subsystem behavior and performance, and frequently updating the rules to reflect
any changes in the subsystems.

Model predictive control is an advanced control technology that has proven successful in the
chemical process industry. It is a promising technology for building energy control and the main
goal of the proposed program is to demonstrate the practical and commercial viability of model
predictive control algorithms for optimization of building energy systems. The scope of the
project entails developing algorithms that reduce total and peak energy consumption and
manage thermal energy storage tank utilization in a campus chilled water plant.

1.1.1 Goal and Objectives

The goal of the project was to contribute to the assessment of the potential of advanced
control methods to improve the energy performance of buildings by investigating the benefits
of applying Model Predictive Control (MPC) to chilled water plants with thermal storage. The
project objectives were:

e To implement and test Model Predictive Control (MPC) of the UC Merced chilled water plant
and measure the energy savings and peak demand reduction.

e To estimate the energy savings and peak demand reduction potential of HVAC systems with
active thermal storage systems in commercial buildings, based on simulation.

1.1.2 Project Context

The work reported here was a collaboration between Lawrence Berkeley National Laboratory
(LBNL), United Technologies Research Center (UTRC), and the University of California Berkeley
that was funded by the US Department of Energy and the California Energy Commission. It was
one of a set of three linked projects to implement, test, and demonstrate enhanced energy
performance through improved control and visualization, based on real-time modeling.



The field testing and demonstration activities in all three projects were performed on the
campus of the University of California, Merced. Aggressive energy performance and
sustainability goals have resulted in two campus buildings and the central plant each achieving
LEED Gold ratings. The campus was also designed to be a ‘living laboratory’ and has a
significantly enhanced level of instrumentation in order to support the development and
demonstration of energy-efficient technologies and practices. Faculty members with expertise
in energy technologies have been selectively recruited to UC Merced and energy-oriented
undergraduate and graduate curricula are under development.

The UC Merced chilled water system consists of a chiller plant (three chillers redundantly
configured as two in series, one backup in parallel), a two million gallon chilled water tank, a
primary distribution system and secondary distribution loops serving each building. The two
series chillers are operated each night to recharge the storage tank, which meets campus
cooling demand the following day. Because thermal energy is stored actively within the water
tank and passively within the building fabric, minimizing energy consumption is a dynamic
optimal control problem, i.e. the optimal value of a set-point at any point in time depends on
the future thermodynamic state trajectories, which in turn depend on the future values of
disturbances such as coil loads and weather.

1.1.3 Technical Challenges

The main technical challenge being addressed by this work is the synthesis of robust optimal
supervisory control of HVAC systems with thermal storage. Modulation of operational
set-points and modification of sequences of operation (equipment start/stop logic for example)
is fundamentally a dynamic optimization problem whose solution depends on the future
evolution of a nonlinear and large scale system. The key enablers are the use of
computationally efficient, equation-based models that can be used in conjunction with
nonlinear programming algorithms [9,10], thereby allowing the application of optimal control
theory for large scale systems [11], and enterprise-scale web-enabled networked control
systems. Beyond this demonstration, model-based methods and computational tools must be
developed for design and analysis of robust optimal control algorithms, reducing the impact of
uncertainty in models and disturbances and enabling the use of optimal control on a routine
basis.



1.2 Background

Chilled water plants serving large commercial buildings or groups of buildings typically consist
of several centrifugal, vapor compression chillers, several open cycle, evaporative cooling
towers, and circulation pumps. Various chilled water piping schemes are possible, with the
primary/secondary configuration, in which the primary loop through the chillers is coupled to a
secondary loop serving the air handling unit cooling coils, is most common in existing buildings.
Primary/secondary/tertiary schemes are commonly used for campuses, with the secondary loop
circulating water between the central plant and the buildings and the tertiary loops circulating
water between the secondary loop and the air handling unit cooling coils. Chilled water plants
may also incorporate thermal storage in the form of a tank that either contains ice or chilled
water, the purpose being to shift load from the period of high demand in the afternoons to the
night time, when utility costs are lower and/or the lower ambient wet bulb temperature allows
more efficient chiller operation.

One common operational problem in chilled water plants is ‘low delta-T’, a relatively small
difference between the temperature of the chilled water supplied by the plant and the
temperature of the chilled water returning to the plant. This may be caused by poor design
and/or poor operation, including undersized cooling coils and excessive chilled water flow rates.
More generally, the power consumption of a chilled water plant is the sum of the chiller power,
cooling tower fan power and circulation pump power, and minimization of this power typically
involves the use of variable speed fans and pumps, and possibly variable speed chillers, and an
operational strategy that produces an optimal, or near-optimal, trade-off between the various
speeds. Near-optimal operation may be obtained through the implementation of carefully
designed ‘reset’ strategies for the chilled water and condenser water temperature set-points
and heuristic ‘dispatch’ strategies that specify the combination of chillers and cooling tower
cells to be used at each operating point. Formal optimal control may be achieved by the use of
an algorithm that minimizes a cost function, typically utility cost, while satisfying constraints
designed to ensure adequate comfort in the occupied spaces. The use of thermal storage
systems turns the static optimization problem into a dynamic operation problem in which the
objective is to minimize a cost function over time.

1.2.1 Model Predictive Control

Model Predictive Control (MPC) is one of several methods to compute an optimal control
solution. MPC employs a real-time dynamic simulation model to predict critical thermodynamic
states and system power consumption as a function of forecasted disturbances and set-points.
The model is used to evaluate a cost function over the prediction horizon and an optimizer is
used to compute set-point trajectories to minimize the cost. A variety of computational
methods exist to compute the optimal control including sensitivity methods, adjoint-based
methods and dynamic programming, each of which may take advantage of a particular
structure of the problem and model. The cost function used in this demonstration is a weighted



sum of peak electrical demand and energy consumption over the time horizon; the weights can
be adjusted so that the cost function reflects the actual utility cost. Constraints are included in
the model and optimization to ensure that the set-point trajectories respect zonal comfort
(especially humidity) and equipment constraints. MPC has not been widely applied in buildings
to date; a simulation-based assessment of MPC applied to buildings is presented in [12].

1.2.2 Modelica

Modelica is an equation-based modeling language that is well positioned to become the
de-facto open standard for modeling multi-physics dynamical systems. It already has a
successful track record in many industrial-scale multi-physics applications (see also
http://www.modelica.org/publications). The previous experience of the team in using this
language showed that it allows the analysis of innovative building systems and the dynamic
behavior of controls that are outside the scope of existing building simulation programs [13,
14]. Such a modeling paradigm requires that each component only sees the boundary
conditions that a real object would interact with (such as a temperature and heat flux boundary
conditions or a data bus). This makes the integration of system models for different physical
domains possible on the mathematical modeling layer (by linking model equations). The
implications are that developing new component models and integrating these models into a
system model can be done much more rapidly compared to the prevailing modeling approach
that is used by the buildings industry, which is largely based on procedural FORTRAN code.

The Modelica language was used to rapidly develop equation-based models. Dymola [15] was
utilized as a compiler for the Modelica language, which allowed the model development to
focus on the mathematical description of the physical phenomena rather than the solution of
simultaneous equations. This approach provided increased flexibility in integrating models for
various components of the chilled water plant. For control purposes, the Modelica models were
either recoded in MATLAB [16] and C or sampled to provide look up tables for the rapid
calculations required by the MPC algorithm.

1.3 Project Overview

The control algorithms were developed and implemented in MATLAB, allowing for rapid
development, performance, and robustness assessment. Detailed dynamic models of the chilled
water piping system and a simplified dynamic model of the buildings at UC Merced were
developed in the Modelica language, and used as the basis of MATLAB models or lookup tables
for use within the controller. The control algorithms determine the optimal chilled water plant
set-points including leaving chilled water temperature (LWT), tower return temperature and
the charging start and stop times to minimize a cost function that includes energy consumption
and peak electrical demand over a 3-day prediction horizon.

In comparison, the existing controls at UC Merced maintain a 39°F chilled water supply



temperature, and the chillers are sequenced manually in a manner that is heuristically
optimized for full load. Although the storage tank enables load shifting to off-peak hours to
reduce peak demand, the lack of optimized automatic control results in conservative
over-charging of the tank, which results in a lower return temperature due to the significant
thickness of the thermocline, which then results in reduced efficiency.

Two weeks of MPC experiments were carried out to demonstrate and test the real-time
implementation of the MPC controller at the Merced campus. The first week was in early June
2009. This week allowed the research team to debug the models, the controller, and the overall
process. It produced a number of positive side effects, such as the identification of a chiller
surging problem and a broken flow rate sensor in one of the campus buildings that was causing
increased pump energy at that building and keeping the campus return temperature lower than
it should have been, thus making the system COP lower than it should have been. However,
because of errors in the MPC implementation, this experiment week did not produce any
energy savings when compared with the facility’s standard control practices. The system
operators, however, did learn from this implementation that their condenser water
temperature set-point should be increased, and thus changed their standard practice to
produce higher system COPs. In September 2009, a separate short experiment was carried out
on campus to empirically test the impacts of changing the supply water temperature, the
results of which was used to validate and better calibrate the model representing the effect of
the building loads on the chilled water system. The second week of MPC experimental
implementation was in early October 2009. With re-calibrated models and adjustments in the
MPC configuration, this second week proved much more successful than the first, even with its
significantly cooler weather.

The following is an overview of the research process that was carried out, the details of which
are covered in the following three sections.

e Model development
0 System component models were developed in Modelica and Matlab.
0 These models were calibrated and verified using measured data from the
campus control system.
e MPC development
0 The models were integrated into an MPC controller in MATLAB. Lookup tables
derived from off-line component simulations were used for some of the
components to produce a faster on-line model within the controller. Available
MATLAB toolboxes were used to solve the optimization problem.
0 Scripts were used to obtain local weather forecasts and to pull data from the
campus control system as needed to update system states in the online model.
The optimized set-points were communicated verbally to the operators. This was
done in order to allow the operators to build up confidence in the MPC.
Automated communication between the MPC system and the campus control
system should be implemented and tested as part of any follow-on work.
e Experiments



0 The first MPC experimental implementation: This week allowed the research
team to debug the models, the controller, and the overall process.

0 A short experiment was performed to test the impacts of increasing the
temperature of the chilled water supplied to the campus.

0 The second experimental implementation: This week demonstrated significant
energy savings through the use of MPC.

A discussion of the identification of the baseline performance models is presented in
Appendix 1



2 Detailed Model of the Chilled Water Plant

2.1 Introduction

This section describes the main components used to generate and store thermal energy at the
UC Merced campus — shown in Figure 2.1. The energy management and control system (EMCS)
provides the supervisory control that coordinates two electric chillers, cooling towers, and
multiple pumps in the overnight charging of a 7,600 cubic meter (2 million gallon) chilled water
storage tank. The thermal energy storage allows the chilled water plant to take advantage of
nighttime electricity rates and lower ambient temperature when charging the thermal energy
storage, and the chilled water is pumped from the tank and distributed throughout the campus

the following day.

8' ’4"“'4 e[ RUlE

< Towsret A
- [ S

g ;Coollng Tower

%FLA
o Ccws Tows CWR
: | BN
(@) < BT . -
— ‘.Jq_iﬁ‘“-ﬂ! ‘.J! :“‘-d—
Wit LTI

g sposd Chiller 1" ; Chiller 2°

o TCH\NSCH1 ref

_' TCHWRCH'] TCHWSCH2

> Primary ; ““““““ [Rulg Jagemem St e
@ CHWR W? E—

g e Rule freeeemeeees Flowers ' Primary
o Tenn CHWS

>
}r
{

o

9 <«
o

-

E‘ I

3 Secondary | Secondary
S CHWR CHWS
o

o)

N

speed
o ﬁ

OP bridge ref

Pigge B

csccsscscedd

{ e

TcHwsCH2ref

Figure 2.1: Diagram of chilled water plant using the baseline policy



The chilled water system consists of a condenser loop, a primary loop, a secondary (campus)
loop, and several tertiary (building) loops. The chilled water is generated via chillers and cooling
towers within the primary and condenser loops. The chilled water is stored in a stratified
thermal energy storage tank, and distributed to the buildings throughout campus via the
secondary loop. The tertiary loop uses pumps and valves within each building to distribute the
chilled water for consumption by the fan coils and air handling units (AHUs). The chilled water is
warmed by the air-side cooling load of the buildings and returned to the secondary loop.

The thermal energy storage tank holds approximately 7,600 cubic meters (2 million gallon) of
chilled water. The storage chilled water can easily meet the current campus cooling loads for
more than a day. Thus, any decision made with respect to quantity and temperature of the
chilled water stored in the storage tank affects the performance of the entire system over a
relatively long time horizon. In contrast, the chilled water plant components—such as the
chillers, cooling towers, and pumps—have very short time constants in comparison. In fact, the
15 minute sampling interval of the energy management control system generally results in
undersampling of the transients in these components. As a result, the model presented in
proceeding discussion focuses on the dominant dynamics of the thermal energy storage tank
and the campus cooling load generated by the buildings, and the operation of the much shorter
time constant system components is treated as quasi-static.

Lower-level controllers modulate the operation of the chillers and cooling towers in order to

achieve a desired condenser water supply temperature produced by cooling towers, T, ,

mass flow rate of chilled water through the chillers, n% .., and chilled water supply

temperature, T . The dynamics of the chillers and cooling towers are neglected and it is

chws, ref

assumed that there is no tracking error between the controlled variables and their set-points,
i.e. Tcws :Tcws,ref 4 r8511w = rSéhw,ref ’ and Tchws :Tchws,ref :

What follows is a mathematical description of the individual components comprising the UC
Merced chilled water plant, shown in Figure 2.1. The objective is to develop a simplified yet
transparent model that can be used for real time optimization in a MPC scheme.

In order to represent the energy flow associated with fluid flow in either direction, the following

function is defined:
fh, if &>0

K= semilineatn& h, , h,) = {rﬂhz e 0 (2.1)

The models use a constant pressure approximation for the enthalpy of the water in the chilled
water and condenser loops, i.e. h= CpT . Consequently, internal energy is treated as

independent of pressure, i.e. U =mh.



notation  description

specific enthalpy [J/kg]
enthalpy flow rate [W]
mass flow rate [kg/s]
pressure [Pa]

power [W]

heat flow rate [W]

internal energy [J]
Temperature [K]
fluid density [kg/m?]

DNACUTT RRT

2.2  Electrically Driven Centrifugal Chiller

The UC Merced chilled water plant rotates among three chillers, using two chillers at any one
time. The evaporators of the two operational chillers are piped in series in order to generate a
larger temperature difference between the chilled water return and chilled water supply
temperatures. Each of the three chillers is a Carrier 19XR chiller. As a result of the series
configuration, the compressors and heat exchangers of each of the chillers were tuned for
either mid-range chilled water supply temperatures or the lower chilled water supply
temperatures.

2.2.1 Model

The centrifugal chiller model was formulated based on the DOE-2.1 regression-based chiller
model detailed in [10]. The chiller model uses polynomial curve fits in order to predict the
chiller capacity and coefficient of performance. As shown in
Figure 2.3, the polynomial curve fits are a function of entering condenser water temperature,
leaving evaporator water temperature, and cooling load.

CWR

C D rﬁf)hw (Tchwr _Tchws ) Chiller

Tenws —| Regression — Py,
Tos —> Model

Figure 2.2: Chiller piping labels Figure 2.3: Chiller function block diagram



The energy balances across the evaporator and the condenser heat exchangers are respectively
represented as

0= @hw(hchws - hchwr) - é;‘vap 0= I‘Ré\/ap (hchws - hchwr) - Qevap . (2.13, 22b)

Rather than using an detailed physical model based on the thermodynamic vapor compression
cycle, several empirical functions are used to relate the boundary conditions and cooling load of
the chiller to the power consumed. The cooling capcity of the chiller is a predicted by the

biquadratic function
(§L (§Lcap|: ( chws ! cws) (22)

where
+a;T, +a,T2 +aT,T (2.3)

cwr cwr © chws *

CapF ( chws ! cws) a +a’1 chws_'-a'T2

chws

The part load ratio (PLR) is calculated as the fraction of the cooling capacity used by the cooling
load.

PLR = max(PLR ;,, &, /&) (2.4)

subject to the constraint 0<PLR<1. The two energy input ratio (EIR) functions,
EIRF; (T, Tos) @nd EIRF, (PLR), represent the ratios of power consumed versus the

cooling load. The first EIR function is a biquadratic function of the form

EIRF ( chws ? cws) b +b1 chws—’_bT2

chws

+bT  +bT2 +bT T (2.5)

cwr cwr ' chws

and the second EIR function is a cubic function of the form

EIRF,;(PLR) =, +¢,PLR+c,PLR? + ¢,PLR® (2.6)

The chiller power consumption is calculated as

P =&, EIRF, (T, )EIRF,,(PLR) / COP, (2.7)

chws ! cws

where COP, is the nominal coefficient of performance of the chiller.

In terms of control-oriented modeling, the chiller has number of constraints. As mentioned
above,



notation  description
CapF, : biquadratic chiller capacity ratio temperature curve [W/W]

COP,: nominal coefficient of performance [W/W]
EIRF, : biquadratic energy input ratio temperature curve [W/W]
EIRF, : quadratic energy input ratio PLR curve [W/W]

P: compressor power [W]
PLR: power load ratio [W/W]
CCR: chiller cycling ratio
@‘: nominal chiller cooling capacity [W]

Q. chiller cooling capacity [W]

.+ evaporator
evap

.+ condenserinlet
CwWs

wr: condenser outlet

oy . €Vaporator inlet

evaporator outlet

“chws *

2.2.2 Model Calibration

The following chiller calibration follows the procedure outlined in [11]. The
temperature-dependent cooling capacity function CapF, and the temperature-dependent

energy input ratio function EIRFT must be calibrated using data from the chiller at its maximum
cooling capacity. However, chillers are not normally operated at their maximum cooling
capacity, thus a large excursion from nominal chilled water plant policies would be required to
obtain the maximum cooling capacity data. Furthermore, the maximum cooling capacity data is
required for a broader range of operating conditions than is experienced under normal
operation of the chilled water plant. For example, the chilled water supply set-point for the
second chiller is set to 3.9°C (39°F) under typical operations. As a result, it would prove quite
difficult to obtain sufficient maximum cooling capacity data for a broad range of operating
conditions using only historical data from the UC Merced chilled water plant. Instead, software
used by the chiller vendors was used to assess the performance of the chillers according to
manufacturer specifications.

A least squares regression fit was used to fit the parameters of CapF. and EIRF; to the

manufacturer curves. The results of the Chiller #1 model calibration are shown in Figure 2.4 and
Figure 2.5. Chiller #2 and Chiller #3 have the same compressor and heat exchanger
configurations; thus only a single set of parameters is identified for the CapF, and EIRF;

curves. The results of the Chiller #2 calibration are shown in Figure 2.6 and Figure 2.7. As shown



in Figure 2.6, Figure 2.7, and Figure 2.8, the regression-based model is able to capture the
dominant performance characteristics of Chiller #2. As shown in Figure 2.9, the model is
capable of predicting the chiller coefficient of performance reasonably well. As suggested by
the model error observed in Figure 2.8, the error could be potentially further reduced by
making EIRF, ; a function of T, as well [18].

TCWS (€l TCHWS [

Figure 2.4: Chiller 1 maximum capacity fraction Figure 2.5: Chiller 1 energy input ratio as a
function of temperature

OPUTH
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Figure 2.6: Chiller 2 maximum capacity fraction Figure 2.7: Chiller 2 energy input ratio as a
function of temperature



0.3

0.2

Figure 2.8: Chiller 2 energy input ratio as a
function of PLR (blue dots manufacturer data,

F

o
N
o
~
o
[«)]
o
o)
N

dashed red line model prediction)

igure 2.10 and

Part Load Ratio

Figure 2.9: Chiller 2 coefficient of performance as
a function of PLR (blue dots manufacturer data,

dashed red line model prediction)

Figure 2.11 compare the measured power consumption of Chiller #2 and Chiller #3 to the
regression-based models calibrated to the manufacturer curves. Although there were a number
of deterioration issues, such as (pH1jbmh2ifouling of the shell and tube heat exchangers, the
models calibrated using the manufacturer performance curves predicted power consumption
within 10%. The data shown in

F

igure 2.10 and

Figure 2.11 were collected for over a one year period. Note there are a number of outliers,
which may be attributed to startup transients and other anomalies that were not completely
filtered from the original data set. Figure 2.12 and Figure 2.13 show that the catalog data
predict the chiller power and COP reasonably well over a 10 day period.
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Figure 2.10: Chiller #2 comparison of predicted Figure 2.11: Chiller #3 comparison of predicted
catalog power to measured chiller power catalog power to measured chiller power
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Figure 2.12: Comparison of measured Chiller #2 Figure 2.13: Comparison of measured Chiller #3
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Table 2.1: Calibrated parameter values for Chiller #1

Name Value Name Value Name Value

ao -7.9872x10™ bo 8.5044x10™ 1 2.2303x10"
a; 4.8241x10° by -1.3754x10 c 6.2412x10"
a, -1.3588x10° b, 6.6912x10™ Cs 3.1339x10*"
as 2.9323x10° bs 7.7426x10° Q, 4.8703x10°
as -1.3382x10° ba 2.2261x10™ COP, 8.1172x10°
as 1.6090%10°3 bs -4.7382x10™

Table 2.2: Calibrated parameter values for Chiller #2 and Chiller #3

Name Value Name Value Name Value
ao 8.5669x10™ bo 9.6335x10™* C 1.9881x10"
a; 1.5732x107 by -4.4336%x107 C, 5.8152x10"

a, -6.4089x10™ b, 1.7183%x107 Cs 2.1191x10*



a3 1.1555%10° bs 2.0931x107 Q, 4.8703x10°
ay -6.8540x10™ bs -3.1604x10™ COP, 8.1172x10°
as 9.7662x10™ bs 1.9195x10™

2.3 Primary Pump

The variable speed primary pump determines the flow-rate through the evaporators of the
chillers. Consequently, it plays a key role in determining the cooling load placed on the chillers,
and the resulting chiller COP.

2.3.1 Model

The pump pressure rise, also know as pump head, for a nominal pump speed Ny is modeled as a
guadratic function

Apy(0) = @, +a,0, +a,0;, (2.8)

where (, is the nominal volumetric flow-rate and Ap,is the nominal pressure across the

pump. Similarly, the efficiency curve of the pump for a nominal pump speed is modeled as a
guadratic function

7(ds) =y +b,d, +b,0g. (2.9)

In order to adress variable speed operation of the pump, the following affinity laws are used to
scale the pressure and efficiency curves

g N Ap N?

4 2 (2.10)
g N, Ap, N¢

where the ratio of pump speed N to nominal pump speed is denoted as R. If we take NO to be
the maximum pump speed, then 0< R <1.The general pump pressure curve takes the form

Ap=R*-Ap,(q/R), (2.11)

where Ap = p, — p;, and the pump power is calculated as
AD-
-_2pq (2.12)
n(a/R)
Note that the efficiency of the variable speed drive (VSD) power electronics is not explicity
parameterized. Generally, the efficiency curve of variable speed drives are known to be
relatively flat for normal pump torque and speed operating conditions. Consequently, the
efficiency of the VSD has been lumped into the pump efficiency in (2.12). Assuming the variable
speed drive and pump motor reject their heat to the ambient mechanical spacelrH3), the energy



balance between the inlet and outlet of the pump is

0=r8h —h,).

notation

description

coefficients for quadratic pressure difference curve
coefficients for quadratic efficiency curve

pump motor speed
pump power [W]

volumetric flow rate [m?/s]
ratio of drive speed to nominal speed [rpm/rpm]

fluid density [kg/m?]

pump inlet

pump outlet

2.3.2 Model Calibration

(2.13)

Figure 2.14 illustrates the trimmed pump curves for chiller pump 1. The pumps models are
based on a quadratic curve relating flow rate to head and efficiency and on the pump affinity
laws. Several flow-rates were selected as calibration points for the quadratic curves, and a least
squares fit was used to choose the parameters for the quadratic curves. Figure 2.15 illustrates
the quality of the curve fit for a select pump. Given that the pump curves for each of the three
chiller pumps are similar, separate pump curves were not calibrated.
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Figure 2.14: Chiller pump 1 curves after trimming
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Figure 2.15: Pump model fit based on calibration points

Much like the pump curve, the system curve Ap =c,+C,q +C2q2, represents the pressure loss

as a function of the flow-rate. The system curve from the design specifications, shown in Figure
2.14, was deemed unreliable, because the primary pumps were unable to achieve the 221 kg/s
(3500 gpm) flow-rate. Instead, the primary pumps were only able to achieve 183 kg/s (2900
gpm) before adjusting the pump balancing valve and 196 kg/s (3100 gpm) after adjusting the
pump balancing valve. Consequently, system curve was fit using a data set possessing a limited
number of points with the pump at less than full speed. The pressure drops across the
evaporator of each chiller, specified by the design specifications, were used to calculate the
turbulent pressure losses as quadratic terms. Conversely, the pressure loss in the primary loop
piping was modeled as a linear function of flow-rate, and the coefficient ¢; was tuned to in
order to fit the measured flow-rates data given pump speed.

Table 2.3: Calibrated parameter values for chiller pump 1

Name Value Name Value Name Value

ao 2.5324%10°(pHa) bo 8.5797x10° Co 0.0x10°

a1 1.1587x10° b, 6.6896x10° a1 6.1792%x10°
a, -1.8391x10° b, -1.4247x10" G 3.6610x10°

2.4Secondary Pump

2.4.1 Model

The secondary (campus) loop pump pressurizes the chilled water for distribution to the tertiary
(building) loops. Unlike the primary loop pump, the secondary loop pump speed is modulated
to track a differential pressure set-point measured across the secondary loop. In order to obtain
the differential pressure set-point, the EMCS employs a type of pressure-reset algorithm. The
basic objective is to supply sufficient pressure to outlying buildings to achieve adequate



flow-rates at the buildings, while minimizing over-pressurization which results in increased
throttling losses over valves in the tertiary loops. For example, if a tertiary pump in a building is
unable to meet the building flow-rate, a cooling request is sent to the secondary loop causing
the differential pressure to be incremented. However, there are many buildings and many
components (e.g. pumps and valves) inside the tertiary loop contributing to chilled water
demands; therefore, it was deemed impractical to construct models detailed enough to predict
the cooling requests from each building.

Unlike the primary pump, there was a substantial set of data for a range of flow-rates available
for the secondary pump, see Figure 2.16. As a result, historical data was used to calibrate the
secondary pump power model. The secondary pump power was fit to the multivariate
polynomial

P=a,+a0 +38,0"+a0’+a,Ap (2.14)

2.4.2 Model Calibration and Validation

A simple least squares regression was used to fit the parameters ag;. Figure 2.16 illustrates the
guality of the secondary pump power prediction given the flow-rate and pressure differential.
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Figure 2.16: Secondary pump power model validation

As aforementioned, the pressure differential was deemed too difficult to predict accurately
using first principles. Noting the maximum pressure differential for the pump is limited to 103.4
kPa (15 psi), an approximate upper bound on the power estimate was provided by setting
Ap =103.4 kPa. As shown in Figure 2.17, the model approximately predicts an upper bound for

the power consumed by the secondary pump.
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Figure 2.17: Approximate secondary pump power upperbound

Table 2.4: Calibrated secondary pump parameters

Name Value Name Value Name Value
ao 1.4291x10° a, 1.3662x10" a, 1.4764x10°
as 4.2472%10 as 1.2408x10° Ap 1.034x10° Pa

2.5Thermal Energy Storage Tank
2.5.1 Model

A new TES tank model was developed in the work reported here. During tank charging, cool
water from the chillers enters the bottom of the tank and warm water from the top of the tank
is returned to the chillers. During tank discharging, cool water from the bottom of the tank is
supplied to the campus, and warm from the campus is returned to the top of the tank. The
objective of the TES tank model is to capture three essential aspects:

1. The total stored cooling capacity,
2. The temperature of the water supplied to the campus,
3. The temperature of the water returned to the chiller.

These three aspects of interest are effectively embedded in the temperature profile of the
stratified tank. In the detailed model (used in the MPC algorithm development and in
determining the terminal constraints on the optimization, noted below), the temperature
profile in the tank is modeled by discretizing the tank into a number of layers. However, the
discretization introduces many dynamic states, which results in a considerable computational



burden for the optimization algorithm. For the MPC online optimization, a low-order model was
developed in an effort to capture the primary aspects of the TES tank temperature distribution
without using a large number of states. The thermocline between the warm and cool masses of
water is treated as a natural moving boundary (treating the steep measured gradient between
hot and cold, see Figure 2.19, as a step change in temperature). The cool and warm water are
treated as lumped masses, thus requiring only three dynamic states for the tank model, i.e. one
for the position of the thermocline and the temperature of each lumped mass. That is, the mass
flow rate into (out of) the top port is equal to the mass flow rate out of (into) the bottom port,
thereby eliminating one state associated with the mass of water. As a result, the low-order
model represents an approximation of the three essential aspects of the TES tank.
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Figure 2.18: Tank flow Figure 2.19: lllustration of finite element model versus moving
diagram boundary model

The energy balances for the cool and warm masses are

Be= s

a amb,a + b,a?’ (215)

LﬁbL = I-% +§:mb,b _§bL,a’ (216)

where U, is the internal energy of the warm water mass, U, is the internal energy of the
cool water mass, (§;‘me& =k, (27Rz,)(T,,, —T,) is the heat transfer from the ambient to the
warm water mass, @, =k (27Rz,)(T,,, —T,) is the heat transfer from the ambeint to the

cool water mass, and (§;a =k,A (T, —T,) isthe heat transfer across the thermocline,



M = semilinear (&, h,,, ,h,) (2.17)
is the enthalpy flow rate into the warm water mass, and
M = semilinear(n&, h,, ., h,) (2.18)

is the enthalpy flow rate into the cool water mass.

Since the University of California Merced chilled water loop is a closed system,
&, =% =—18%. Thus the water height in the tank is also constant z,, =z, +z,. Since the

tank has uniform cross-sectional area, the internal energy of the warm and cool masses of
water is calcuated as U, = (pA.z,)h, and U, =(pA.z,)h,, respectively. Last, the mass fraction

differential equation is

%‘: r&ank /mtank' (219)

where m,, = A pZ,, is the mass of water in the tank, x,=m_, ,/m is the

tank,a tank

=z,12

tank

mass fraction of cool water, x, =m,_, ,/m

o ! Miare = 2 | Zia i the mass fraction of warm water,

and X, +x, =1.

notation  description
A : area of tank cross section

k : heat transfer coefficient to ambient [W/K/m?]

k,: heat transfer coefficient between cool and warm mass
of water [W/K/ m?]

R: radius of cylindrical tank

ambient temperature [K]

X: mass fraction of water
Z: height of water [m]
warm mass of water above thermocline

cool mass of water below thermocline

2.5.2 Model Valdiation

The proposed model is validated by using data collected from May 22nd to May 29th, 2007. The
historical inputs were applied to the tank model and the output of the model [z,,z,,T,,T,] is

compared with the measurements.

In Figure 2.20a, the thin solid lines indicate the measurements of the 44 temperature sensors



evenly spaced along the height of the storage tank, and the thick black (pus)(red) dotted lines
ibmheishow the temperature of the cool (warm) water. Due to relatively low cooling loads, Figure
2.20 shows the tank was only charged every other night. Around hours 60 and 160 a second
thermocline is observed to have formed. The second thermocline was formed by an influx of
warm water from the campus after relatively cooler water returned from the campus at night,
thereby cooling the warm mass of water above the thermocline.
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Figure 2.20: Thermal energy storage tank validation

The proposed tank model reflects the temperature dynamics of the top (bottom) layer of the
tank water that exits (enters) the tank. However, the model is only capable of capturing the
average temperatures of the cool and warm masses of water. As a result, the model does not
predict the temperature of the water above the second thermocline. Instead, the model
predicts the average temperature of the water above the first and second thermoclines. A
higher order model could overcome this limitation, but a higher order model would cause

greater computational complexity, which is of primary concern for real-time model predictive
control.

Figure 2.20b depicts the tank water height validation results. The red dotted line is the
measurement of the height of the thermocline, and the black solid line is the corresponding

output of the tank model. The tank model successfully captures the dynamics of the
thermocline in the tank.

2.6 Cooling Tower

2.6.1 Model

The following steady-state cooling tower model employs a CoolTools/York regression-based

model of the cooling tower approach temperature Tapp =T, —T,- The cooling tower uses

variable speed fans to track a leaving water temperature set-point and reject the effects of



changing wetbulb temperature. The polynomial formula is a function of the water flow rate, fan
power, wet bulb temperature and cooling range.
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Figure 2.21: Cooling tower diagram Figure 2.22: Cooling tower functional block

diagram

The polynomial regression for the approach temperature

Tapp = fCT (Raw'wa 'TR) @ao + alwa + aZTvib + aSTr + a4waTr + aﬁTvibTr + a7Tr2 + aSTWbTr2

+a9Tv$bTr2 + alO Raw + allwa Raw + alZTwzb Raw + alSTr Raw + a14TWbTr Raw + alSTV\?bTr Raw (2 20)
+a16Tr2 Raw + a17wa-|-r2 I:\)aw + a18-|-\/\$b-|-r2 I:\)aw + a19 RZ + aZOT R2 + a22Tr ij .

aw wh " “aw

2 2 2 2p2 2p2 2T2p2
+a23TWbT R + a‘24wa-|- R + aZSTr Raw + aZGwaTr Raw + a27wa-|-r Raw

r-aw r-aw

is a function of the air to water ratio R, = (%, /n%, )/ (N, /N, ,), the range temperature

Ts =T — T and the wet bulb temperature T,,. The power consumed by the fan drive is

represented by a cubic function P, = Pfanvo(Nfan I'N o )3.

notation  description

N.,: fanspeed (rpm)
Nino:  design fanspeed (rpm)
P.,: fanpower (kW)
r‘g&v,o . design water mass flow rate
R, : airto water ratio
T. . approach temperature [C]

app -
T;: rangetemperature [C]

T

wb:

wet bulb temperature [C]

wr . COOling tower inlet

‘s . cCooling tower outlet




2.6.2 Model Validation

The cooling tower at the University of California Merced Central Plant consists of five identical
cells, with each cell possessing its own variable speed fan to regulate the exiting condenser
water supply temperature. For the purpose of calibration, all five cell towers were treated as a
single cooling tower by averaging the fan speeds of the five cell towers.

Initially, the parameters for the cooling tower calculation were calibrated using nearly two years
of historical data from the University of California Merced. Since the condenser loop has
constant speed pumps the water mass fraction is constant, n%, /n& , =1, and a leastsquares

fit was used to determine parameters g, However, it was observed that approximately the
same quality of fit could be achieved by adjusting the ratio n%, /n% ,and employing the

parameters g; specified in [17]. Thus the former, more thoroughly documented, case was used
for our purposes. As shown in Figure 2.23, the calibrated cooling tower model is capable of
predicting the leaving cooling tower temperature within £1K. The quality of the model
prediction over a five nights of operation is shown in Figure 2.25.

Table 2.5: Calibrated cooling tower parameters

Name Value Name Value Name Value
%, /1%,, 155 Ngno 100% Pao 95 kW
a, 3.5974x10* ao 2.8476 ao -6.5376x1072
a, -5.5053%107 an -1.2176x10™ a2 -2.2781x107
as 2.3850%107 an 1.4599x107 an 2.5002x10™
as 1.7392x10™ ans 1.6804 a» -9.1056%10
as -2.4847%x107° au -1.6692x10 a3 3.1817x107°
as 4.8430%10" as -7.1905x10™ au 3.8621x107
as -5.58984%10° ame -2.5485x10° as -3.4285%10°
as 5.7700x10" ay 4.8749x10” a%% 8.5658x10°
as -1.3424%10° ams 2.7192x10°® a7 -1.5168%10°®
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Figure 2.23: Measured versus model predicted Figure 2.24: Validation of cubic relationship
leaving water temperature between fan speed and power
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Figure 2.25: Five day time plot of measured versus predicted approach temperature

2.7 Campus Load Model

2.7.1 Model Description

The objective of the campus load model is to predict the campus cooling load based on the
ambient conditions, time of day, day of the week, and time of year. The building load model has
two main sub-components: a Gains component and a BuildingThermalLoad component.
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Figure 2.26: Building load model
notation  description
occDayStart: hour of the day when the daytime internal load
starts
occDayEnd: hour of the day when the daytime internal load

QintBaseline:
QintOccupied:
QintOccupiedSaturday:
QintOccupiedSunday:

bldgSolarOutsideQperExtratHoriz:

bldgSolarinsideQperExtratHoriz:

cloudCover:

ends

a constant load independent of occupancy, ie.
the overnight load

increase in internal load during occupied times
on weekdays

increase in internal load during occupied times
on Saturdays

increase in internal load during occupied times
on Sundays

a building-geometry parameter, solar gain on
the outer wall mass per unit of clear-sky
horizontal radiation

a building-geometry parameter, solar gain on
the inner wall mass per unit of clear-sky
horizontal radiation

impact of cloud cover (l1=clear sky, O=solar
radition completely blocked)




GainsConverter component

The GainsConverter component takes the time of day, day of week, day of year and cloud cover
as its inputs and outputs a solar load and an internal load. The model currently has 12
parameters whose values are determined by calibration (listed as follows), and one parameter
(site latitude =37.302° for Merced) that is specified by the user. The internal load is essentially
just a scheduled heat addition to the space, representing the heat gains from people, lights and
equipment, with different values for nighttime, daytime during the week and daytime on
Saturday and daytime on Sunday. The internal gain is parameterized by occDayStart,
occDayEnd, QintBaseine, QintOccupied, QintOccupiedSaturday, and Qint Occupied Saturday.

The solar load is determined by first calculating the extraterrestrial horizontal radiation (an
atmospheric-independent value which is a function of the time of day and day of year), and
then using the cloud cover and two parameters for the building's solar gain succeptibility to
calculate the inside and outside solar gain values. The solar gain is parameterized by
bldgSolarOutsideQperExtratHoriz, bldgSolarinsideQperExtratHoriz, and cloudCover.

The inside and outside solar gain are calculated as follows

QsolarOutside = cloudImpact - extraterrHorizSolar - bldgSolarOutsideQperExtratHoriz
QsolarlInside = cloudImpact - extraterrHorizSolar - bldgSolarinsideQperExtratHoriz

where
solarHour = (TimeOfDay —-12) -15°
0. (DayOfYear + 10)]
365
extraterrHorizSolar = max (0, cos(solarHour) cos(solarDec) cos(latitude) +sin(solarDec) sin(latitude) )

solarDec = —23.45°. 005(36

BuildingThermalLoad component

The BuildingThermalLoad component is based on the thermal resistance and capacitance model
shown in Figure 12. (Various lumped parameter models like this have been developed and used
in the literature. See Lee and Braun (2004) for a good example and further references.) As

inputs, it takes the ambient temperature (6, ), the outside solar load (0,0, ) the inside

solar load (0, ), the internal load (s ) @nd the indoor temperature set-point. It outputs

the cooling load (Q,,,), and stores the temperature state of the thermal mass (T, ..). The

mass
1 1 1

component has six parameters: UAeff_inst (:a), UAc_outside (:R—), UAc_inside (:R—),
2 4

), and WallCapOutside (=C

massin massOut )

UAc_middle (= Ri ), WallCaplnside (=C

3



Figure 2.27: Thermal resistance and capacitance model

1 1
qload = max (0' qinternal +— (Tmassln - Tzone) +— (Tamb - Tzone )]
R, R,
1 1
~ Osotarin ES (TmassOut _Tmassln) + R74 (Tzone _Tmassln)
massin Cmassm
1 1
_ Osotarout T Riz (ramb _TmassOut ) + Ea (Tmassln _TmassOut)
massOut C

massOut

Overall inputs, outputs and parameters

The model has the following inputs, outputs and parameters:

Inputs

e T,,, ambient temperature,in °C

e CloudCover, a value between 0 (clear) and fully overcast (1)

e DayOfYear

e DayOfWeek , with Monday = 1

e TimeOfDay, hour of day

e T, temperature set-point for the building, in °C (held constant)
Outputs

* Q. the cooling load for the building, in W

(2.21)

(2.22)

(2.23)



Parameters
¢ Internal Gain
- occDayStart, occDayEnd

- QintBaseline, QintOccupied, QintOccupiedSaturday, QintOccupiedSunday

e Building Thermal Properties

- UAeff_inst, UAc_outside, UAc_inside, UAc_middle

- WallCapOutside, WallCaplnside

2.7.2 Model Calibration

The model was calibrated with annual data during pre-experiment development, then
re-calibrated right before each experiment with the two previous weeks to ensure that it was up to
date with any changes in occupancy or other attributes. The following shows the calibrated
parameter values and performance for the first experimental period.

Table 2.5: Campus load model calibrated parameter values

Name Value Name Value
cloudCover.fewClouds 0.175 QintOccupiedSaturday 250000
cloudCover.scatteredClouds 0.4 QintOccupiedSunday 125000
cloudCover.brokenClouds 0.6 QintBaseline 527000
cloudCover.overcast 0.8 UA inst 66200
bldgSolarOutsideQperExtratHoriz 400000 UAcOut 100000
bldgSolarinsideQperExtratHoriz 400000 UAcin 100000
occDayStart 7 UAcMiddle 99600
occDayEnd 20 WallCaplnside 5000012800
QintOccupied 500000 WallCapOutside 500000000
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Figure 2.28: Campus cooling load, Mayl16-Jun2, 2009

2.8 Modeling the Campus Chilled Water Return Temperature

2.8.1 Model Description

The interaction of the campus buildings with the chilled water system is divided into two parts.
The load is modeled as a function of weather and occupancy disturbances, as discussed in the
next section. It is not dependent on any other models for its input values, and thus may be
treated as a separate disturbance model whose values can be pre-calculated at each controller
time step and does not need to be repeated iteratively within the online optimization. The flow
rate and return temperature from the campus is a function of this load and the ambient
temperature, but is also a function of the chilled water supply temperature, which is a control
variable, so the return temperature must be modeled separately and must be included in the
online system model.
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Figure 2.269: Model Context

notation description

n% : water mass flow rate [kg/s]
C§§ad . cooling load from building model [W]
T

airReturn *

T.: mixed air temperature [K]

average return air temperature [K]

T,,: ambientairtemperature [K]
T,: average supply air temperature [K]
T, : Wwater supply temperature [K]

T : return water temperature [K]

UA: heat transfer effectiveness [W/K]
a,, a,:. curve fit parameters for steady state UA

p: curve fit parameter for UA decrease at low
loads due to control instability
y: outside air fraction
£(-): building-specific function for control instability
as a function of load (C§f)ad )




Table 2.6: Campus equivalent cooling coil model calibrated parameter values

Constants c. =1012 W/kg.K, c, =4181.3 W/kg.K

Pa Pw

Equations Explicit:
T Taereturn 7/ (Tamb _TairReturn)

r8§ = éjf)ad /(Cpa (Tai _Tao))
¢=(1+8)"
C§|§ad = %pr (Two _Twi)

G| T T T +T
G =0T, = (e )| T T T
IO ao wi
| Tai_Two

Model Principles

The model is used to predict the return water temperature from the campus. It must be
calibrated to fit the measured data for the campus, but must also have a reasoned basis in
order to predict the effects of operating conditions outside of the historical data, particularly in
terms of changes in the supply water temperature. The historical data, which is predominantly
with supply water temperatures close to 4°C (39°F), shows the following trends: the return
temperature tends to reduce and become more scattered as the load decreases.
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Figure 2.30: Measured Return Temp, Aug23-Sep4 2009 for the Classroom and Office Building and for
the entire Campus



The first-principle equations used as the basis for this model are

(§Load = r&focpw (Two _Tvvi )

(2.25)
&, =UAAT, (2.26)

where the Log Mean Temperature Difference, AT, is defined as follows
AT = Tao i _Twi +TW0 (2247)




Variation of UA as a function of flow rates and load

A constant UA does not properly explain the behaviour shown in Figure 2.30. Based on the work
of Holmes [19], the following relationship of the overall UA to the air and water flow rates is
used, where a; and o are calibration parameters:

-n.x.-",) -1

i

. —0.85 P
UA.I'.!J'{‘U'I'{'LF:('H.! = (“"r”'l‘-u‘ ) + agm (228)

This provides a physical basis for the model, but it does not adequately capture the reduction in
UA at low loads, and thus cannot be calibrated to fit the data very well. As shown in Figure 2.31,
a model based only on these equations, regardless of its calibration, tends to produce a
relatively constant return temperature.
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Figure 2.31: UA vs water and air flow rates (left), and Return Temp vs Load (right)

An Empirical Addition to the Model to Account for the Reduction in UA at Low Loads
There are various possible reasons why the actual UA is lower at low loads than predicted by
these equations. One such reason is discussed in the next subsection: greater flow rate
fluctuations around set-points are found in the building heat exchangers at lower loads, and
since the UA vs flow rate curve is concave, this could cause the effective (average across
fluctuations) UA to be lower than the theoretical, as well as possibly causing various transient
effects that may also decrease the effective UA. Further analysis of this and other possible
causes is currently underway as a follow-up to this research, but for the purpose of this MPC
case study, a simplified semi-empirical model with fast run-times is what was required, so an
empirical calibration factor was added to the model to account for the observed UA reduction
at low loads. This addition, shown below, was designed to retain the first-principles basis of the
model as much as possible, while still allowing for a better fit to the empirical data.

UA= C (UAtheorﬁt-ical) (2.29)



¢=(1+pen)”
(2.30)

The variable £ is an empirically-defined logarithmic curve. For the MPC experiment, the curve used

and its rationale is described in the following subsection. The variable / is a calibration parameter

between 0 and 1 that determines the magnitude of the deviation from the theoretical. With this
adjustment, the UA at low loads can be decreased, as shown in the left part of

Figure 2. 3232, and the model can be calibrated to fit the measured data much more accurately (as
shown in the right part of

Figure 2. 3232).
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Figure 2. 32: UA vs water and air flow rates (left), and Return Temp vs Load (right), after empicical UA
reduction factor added to model

Temperature Oscillations at Building Heat Exchangers at Low Loads [bmh7)

Error! Reference source not found.2.33 shows the difference between the supply air
temperature and the set-point versus load for the Classroom and Office Building. The 15-minute
sampled data in Error! Reference source not found.2.33 exhibit substantial fluctuations of the
supply air temperature about its set-point at low load, whereas the two-hour averaged data
(bottom graph) show much smaller fluctuations, suggesting a control stability problem at low
loads. The outliers with large negative errors were from a two-week problem in May and June,
2009, provisionally attributed to a valve fault.
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Figure 2.33: Supply Air Temperature control error, 15-minute samples (top), 2-hr averages (bottom)

The supply air temperature oscillations at low cooling loads are likely caused by the feedback
control. The supply air temperature is regulated by modulating the chilled water flow rate
through the cooling coil via a control valve. A proportional integral (Pl) controller adjusts the
control valve based on the measured error between the supply air temperature and its set
point. There are two key differences in the cooling coil and valve behavior at low loads versus
higher loads. First, the valve is nearly closed. As a result of non-linearities in the valve
characteristic, small increments in the valve opening cause larger changes in flow rate than
when the valve is more open. Second, a small variation in the T, has a larger impact on the log



mean temperature difference as T,; approaches T,,. Those two differences effectively change
the gain of the system, causing oscillations in the feedback loop tuned for higher cooling loads.

As noted above, this oscilation at low loads is one of the possible causes of the lower than expected
UA at low loads. The magnitude of these oscilations was used in creating the empirical curve for &.

The following equation provides a relationship between the oscilations (absolute value of the error)
and the load, as shown in

Figure 2.27, and is of a form that can readily be used in the empirical UA modification equation
above. (Adding 1 inside the logarithm keeps it well-defined for all positive loads, and
normalizing it between 0 and 1 within the operating range makes it easier to deal with.)

_ —0.9074In(1+ @& ,)+12.329-0.3
12.329-0.3

4 (2.31)

Equation 2.31 was used in the model for the MPC. Its relationship with a potential physical
cause of the UA reduction was seen as beneficial, but the main reason for its selection is the
ability of the model to capture the observed return temperature behavior when this equation is
used. (Note that, in hindsight, the authors acknowledge that even though useful, this approach
is somewhat intellectually unsatisfying, and that future iterations of the model should either
have a more direct link between physical UA-reduction causes and the model equations, or it
should use a more transparent empirical approach to ¢ (and &, if still applicable).)
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Figure 2.27: Absolute Error vs Load



2.8.2 Model Calibration

The four model parameters, a1, o, B and y, were calibrated as follows, using approximately one
month of 15-minute data:

1. Determine Taireturn and Too as averages of measured data. Fit y using the determined
value of Tairreturn and the data for Tamp and the mixed air temp Tya.

2. Fit the parameters o and o, with =0 and only using points where the load is greater
than some heuristically-determined value (1.5MW for the campus)

3. Fit the parameter B3 using the o,; and a; values from step 2 and all of the data

Table 2.7shows the calibrated values for the model, and

Figure 2. 32b (above) compares the model to measured data under normal operation. Appendix
3 describes a slight variation that was made to the model after a campus supply water
temperature experiment. This experiment and variation did significantly not affect the model or
the controller, but may be of interest in future model development and thus is described in
detail in the appendix.

Table 2.7: Calibrated Parameter Values for the Merced Campus

TairReturn =296.66 K vy = 0.13551
T, =284.84K B =56.025
o, =7.3443e-05 a, =1.5464e-04

2.9 Interconnection of Detailed Models

The following discusses the interconnection of the detailed component models discussed
preceding this subsection. Specifically, the following details the implicit mass and energy
balances for the chilled water plant illustrated in Figure 2.1. As aforementioned, the chilled
water plant rotates among the three chillers, and the evaporators of the two operational
chillers are piped in series. Consequently, the two operational chillers will be differentiated by
referring to each chiller as either the upstream or downstream chiller. Beginning with the
condenser loop, as shown in Figure 2.1, the condenser water mass balance is

%, =M%, o + %, 02 (2.25)

the return condenser water energy balance is

r~8€\l\/hcwr = Ife&v,chlhcwr,chl + r85\/\/,ch2hcwr,ch2 ’ (226)

and the supply condenser water specific enthalpy is



N, =h

cWs cws,chl —

h (2.27)

cwr,ch2 7

where n%, .. and n&, ., are flow rates through the upstream and downstream chillers,

respectively. Two fixed speed pumps supply condenser water to a common header, and the
common header supplies condenser water to the two chiller condenser also piped in parallel. As
confirmed by individual condenser flow-rate measurements, the flow-rates through each
condenser are approximately equal, i.e. n%, .. ~n% .. .As observed from EMCS data, the flow

rate through each condenser was approximately 3800 gpm (240 kg/s). The pumps run at fixed
speed and the pressures losses should be constant due to the static configuration of the
condenser loop. Based on the pump specification sheets, each condenser pump is modeled as
consuming 60 kW when the chillers are operational.

The primary chilled water loop is formed as the circuit between the chiller and the chilled water
storage tank. As shown in Figure 2.1, the chilled water plant operates with the evaporators of
two chillers piped in series, thereby vyielding the specific enthalpy and mass flow-rate
relationships

hchws,chl = hchwr,chz ’ rSéhw = rSéhw,chl = rSénw,chz . (2'288' 230b)

As shown in Figure 2.1, the chilled water supplied to the chillers is a blend of water from the
thermal energy storage tank and the secondary (campus) chilled water loop, thus the mass
balance is

@‘nw = rﬁ%nk + r.8<(,‘ampus (229)
and the energy balance is
rSé‘hwhchwr,chl = r&ank ha + ampus hchwr,campus : (230)

Similarly, the chilled water supplied to the campus is a blend of water from the chillers and the
thermal energy storage tank, thus the mass balance is

r‘Bé‘ampus = Ifgé’hw - r&ank (231)

and the energy balance is
r.8é‘ampus hchvvs,campus = r.8éhwhchws,ch2 - r&ank hb . (232)
Note the reason why (2.29) and (2.32) represent the same relationship is because chilled

water plant consists of closed chilled water loops. For example, the combined mass of water in



the thermal energy storage tank is constant and the flow supplied to the secondary (campus)
chilled water loop is the same as the flow-rate returning from the secondary (campus) chilled
water loop.

2.10 Baseline Policy Model

The baseline control policy constitutes the control logic and operation procedures typically
followed by the central plant staff while operating the chilled water plant. Two baseline policies
will be detailed in the following discussion. Baseline policy #1 describes the policy as observed
prior to the first experimental implementation of the MPC algorithm in June 2009, whereas
baseline policy #2 describes the policy after the first MPC experiment.

As represented by the numerous Kp, blocks in Figure 2.1, a number of proportional-integral (PI)
controllers are implemented in the energy management control system software. The function
of these blocks is to ensure tracking of set-points specified in the EMCS software. Since the
dynamic responses of the control loops are significantly faster than the dynamics of interest in
the study, the control loops are modeled as ideal, i.e. perfect set-point following subject to
capacity limitations.

The chilled water temperature supply set-point for chiller 2 was set at 3.9°C (39°F), the
temperature at which water has its maximum density, in order to maximize buoyancy driven
stratification in the thermal storage capacity of the tank. In order to distribute the cooling load
equally between the two chillers, the chilled water supply temperature set-point for chiller 1
Tehws,ch1 1S the average of the temperature of the water entering the first chiller, Tehwrch1, and the
temperature of the water leaving the second chiller, Tehws,ch2-

The primary loop chilled water flow-rate set-point rﬁ’éh is scheduled based on the chilled

ref
water return temperature entering the first chiller Tepwr.cn1. When Tepwrcn1 is above 18.3°C (65°F),
the pump speed is modulated to maintain the minimum flow-rate at 145 kg/s (2310 gpm).
Conversely, when Tepurcn1 is less than 12.8°C (55°F), the pump speed is modulated to attain the
maximum design flow-rate of 220 kg/s (3500 gpm). The objective of scheduling the flow-rate
based on the chilled water return temperature is two-fold. First, the flow-rate through the
chillers is reduced in response to increases in Tcywrcn1 in order to avoid exceeding the cooling
capacity of the chillers. Conversely, the flow-rate through the chillers is increased in response to
a decrease in Tchwrcn1 in order to maintain loading on the chillers. As shown using the calibrated
chiller curves, see Figure 2.9, maintaining ideal part loading on the chillers is critical for chiller
efficiency. The maximum physically attainable flow-rate was 183 kg/s (2900 gpm) before June
2009. After advising the plant operators that this limitation in the flow-rate had significantly
reduced the chilled water plant COP, the pump balancing valves were adjusted to obtain a
maximum of 201 kg/s (3200 gpm) after the first MPC experiment.

The cooling tower set-point Tewsrer is scheduled to increase with the current drawn by the
chillers, expressed as a percentage of the full load amps (%FLA). As discussed in the cooling



tower model, the fan speed of the cooling tower is modulated to track the set-point Teys ref.
According to the control logic for the EMCS, T.wsr=58°F when %FLA is less than 50% and
Tews re/=60°F when average %FLA is greater than 90% for baseline policy #1. In contrast, the
original sequence of operations specified T.ys=68°F when the average %FLA is greater than
90%. In the first MPC experiment, it was observed that it was advantageous to increase Teysref
beyond the [pHo]60°F limit prescribed by baseline #1. Subsequently, the operators increased the
upper-limit to 68°F in baseline #2.

2.10.1 Weather Forecasts

In order to obtain weather forecasts for use by the model predictive control algorithm, the
National Digital Forecast Database (NDFD) was utilized. A Simple Object Access Protocol request
was used to query the NDFD and parse and pass the weather forecast for the University of
California Merced to the model predictive control algorithm. At this stage, only the forecasted
dry bulb temperature and relative humidity were used. In the future additional forecasted
variables, such as sky cover, could be correlated with the campus cooling load prediction.
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Figure 2.28: Sample dry bulb temperature and relative humidity forecast

2.10.2 Energy Pricing

UC Merced is currently enrolled in a special plan, electric schedule E-20. The customer's
monthly charge for the service under Schedule E-20 is the sum of a customer charge and energy
charges, and all the unit price varies depending on the period of time.



Table 2.8: Definition of time periods

SUMMER Period A (May 1st though Oct. 31st)
Peak except holidays
12:00--18:00
Partial-peak 8:30--12:00  except holidays
AND
18:00--9:30
Off-peak 21:30--8:30  Mon. through Fri.
ALL DAY Sat., Sun, and holidays
WINTER Period B (Nov. 1st though Apr. 30st)
Partial-peak 8:30--21:30  except holidays
Off-peak 21:30--8:30  Mon. through Fri.
ALL DAY Sat., Sun, and holidays

Table 2.9 shows the definition of the time periods. The unit electricity prices defined in Table
2.9 are denoted by the function C(t). There are no demand (kW) charges.

Table 2.9: Total Energy Rates

Period Rates (S/kWh)
Peak Summer $0.13593
Part-Peak Summer $ 0.09204
Off-Peak Summer $0.07392
Part-Peak Winter $0.08155

Off-Peak Winter $0.07118




3 Model Predictive Control Development

This section presents the design of a MPC controller whose objective is to find the optimal
control sequence that satisfies the required cooling load and minimizes electricity usage.

For complex constrained multivariable control problems, MPC has become the accepted
standard in the process industries [20] its success is largely due to its unique ability to handle,
systematically, simply and effectively, constraints on control and states. The scheme of the
proposed MPC is depicted in Figure 3.1.
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Figure 3.1 MPC Scheme

The idea of the proposed MPC scheme is to use the simplified models of the cooling plant and
of the campus presented in the previous sections in order to predict the future evolution of the
system. At each sampling time, starting at the current state and using weather predictions, an
open-loop optimal control problem is solved over a finite horizon. The optimal command signal
is applied to the process only during the following sampling interval. At the next time step a
new optimal control problem based on new measurements of the state is solved over a shifted
horizon. A typical open-loop finite time optimization problem is formulated as follows (details
will be give in the next section)

N-—

1
J*= min P(Xt+N|t)+ZL(Xt+k|t1uk+t|t’k) (3.1)

Utt+N|t k=0
subj. to X = 9K Uoger K D) VK =0,1,..,N =1
X €2, Vk=1,2,..,N
U,p €Y,vk=01,.,N-1

where u are the controlled inputs (condensed water supply temperature, chilled water supply
temperature and the chilled water supply mass flow rate) and X represent the system states
(temperature and height of the cool water and warm water respectively) and d represent the



external disturbances (ambient temperature and campus load). P(x) is the terminal cost and
L(x,u,t,d) is the stage cost. They are both used to capture the performance objective to be
minimized (such as the electricity bill or the coefficient of performance (COP) of the central
plant). The function g(x,u,t,d) is a compact representation of the state update dynamic
equation which describes the cooling plant and buildings. The control inputs U and the states
X are subject to operational constraints which avoid system malfunctioning (such as chillers
surging) and ensure that the campus cooling demand is satisfied over the prediction horizon. All
variables use the following time indexing: X, denotes the state vector at time t+Kk

predicted at time t obtained by starting from the current state Xx(t) and applying the input

sequence, U and disturbance prediction, d (weather and campus load) to the

to>t+N|t 7 t>t+NJt 7

system model.

The proposed MPC scheme minimizes a nominal performance index subject to a nominal model
and constraints. It is not robust in the sense that neither input uncertainties nor model error are
taken into account. This could be addressed by designing a robust MPC scheme [21]. A typical
robust MPC scheme involves solving a min-max problem to optimize robust performance (the
minimum over the control input of the maximum over the disturbance) while enforcing input
and state constraints for all possible admissible bounded disturbances. Also, the proposed MPC
in Equation 3.1 does not consider system faults. Robustness to faults can be indirectly obtained
by detuning the controller (reducing the weights) at the price of a reduced performance or can
be systematically and easily taken into accounts by switching to a different model g(x,u,t,d)
and constraints X and U when a fault is identified. The finite time optimization problem
solved at UC Merced is detailed in the next section.

3.1 MPC details

The finite time optimization problem solved by the MPC is formulated by the following
optimization problem:

JE(X(t),1) = ~min i{[@ (t+IAL) E(Xipyer Uiy age T4 +E[iAt|tEr[u} (3.2)

Uit A U gt ts ot =1
s.t.
Yiage € Y, vi=12A N

Upp €Y, Vi=0,1LA ,N-1

Ynae € Vs (t)

E (Xiager Ugigyage) = POWET (Xiyges Ugi_gyage JAL

[UonlvA ’u(N—l)At|tl]’ =B® Im[aonliA ’OM—:L]tI]

Xoormane = T Keager Uagr Prage KAL), vk =0,1,A N -1
Yiatt = 9Kt Uenyaer Crearer KAL), VK =1,2,A N

where W, (t) is the terminal constraint set; C(t) is the energy price defined in section 2.10.2;



At=1 hour; S is the weight on the energy consumption; R, is the weight of the control
inputs; Power(x,u) is the function to calculate the total power consumption of the central
plant including the chillers and cooling towers.

Let UliNh :{uuzt,A ,u,%lt} be the optimal solution of Problem at time t, and JX(x(t)) the

corresponding value function. Then, the first element of UliNn is implemented to the system

u(t) =ug (3.3)

N
The optimization problem JZ(X(t),t):A min Z{I(]:(t+iAt)E(XiAtlt,u(i_l)mlt)lg+lt[imli,[u}

Ut A Um e ts ot i=1
(3.2) is repeated at time t+1, with the updated new state X, = X(t+1), yielding a moving or

receding horizon control strategy. The control sampling time is one day, and prediction horizon
is set to 72h (one day).

The proposed MPC controller uses a move blocking strategy to reduce the computational time
required for its real time implementation and a time varying terminal cost to ensure that the
energy stored in the tank will be able to satisfy the capus cooling demand even in the worst
case. Both startegies are deteined in the next sections.

3.2 Move Blocking Strategy

The prediction horizon of the proposed MPC controller is 24 hours, and the control sampling
time is one hour. As a result, there are a total of 72 optimization variables, since the control
input dimension is 3. It is common practice to reduce the degrees of freedom by fixing the input
or its derivatives to be constant over several time steps [22]. Here, the Moving Window
Blocking approach proposed in [23] is used. The following definitions are needed before
providing the algorithm used.

Definition 1 (Admissible Blocking Matrix) A matrix B €{0,1}"" is an admissible blocking

matrix if M <N, and one entry in each row of B is equal to 1, the elements of the matrix are
arranged in an "upper staircase'’ form, i.e. if the column in which a 1 occurs in the i'th row is

i*():={jlB,; =1}
then j>(i+1)> j*(i) for all ie{1,2,A ,N—1}. Where B,; denotes the element of i'th row

and j'th column of matrix B.

Definition 2 (Blocking Length Vector) Given an admissible blocking matrix B €{0,1}"", the
blocking length vector L(B) is defined as the columnwise summation of the matrix B. An
admissible block vector corresponds to a unique blocking length matrix.



The following algorithm is in the proposed MPC.

Algorithm 1 (Moving Window Blocking) Given an initial blocking length matrix L,;
1. let i=0;
2. let L, =[L,,0];
3. if L()>1, L,:=L; L,1):=L@)-1; L,(end):=L (end)+1.
if (1)=1, L :=[L(2:end-1),L (end)+1,0].
4. L, :=L_i+1(1l:end-1)if L_i+1(end) = O£L_i+1 otherwise.
5. if L, =L,, stop. Otherwise, go to next step;
6. let i:=i+1, and go to step 3.

In Algorithm 1 L;(end) is the last element of L,, and I:i is the auxiliary vector.

Algorithm 1 assumes that the system period is T =N and generates a sequence of blocking
length vectors L,,, =L, which are obtained by properly shifting an initial choice L, at each

time step in order guarantee persistent feasibility [6]. For instance, in this simple example,
starting with L, =[3,1] yields L =[2,1,1], L, =[1,1,2], L, =[1,3], L, =[3,1] andsoon.

Choosing L, =[2,2,18,1,1] with Algorithm 1 gives

L, =[1,2,18,1,1,1]
L, =[2,18,1,1, 2]
L, =[1,18,1,1,2,1]
L, =[18,1,1,2, 2]

JAN
L,, =[2,2,18,1,1].

3.3 Terminal Constraints

It is known that stability and feasibility are not ensured by the MPC law without terminal cost or
terminal constraints. Usually the problem is augmented with a terminal cost and a terminal
constraint set ¥, . Typically ¥; is a robust control invariant set which guarantees that if

Problem J*(x(t),t) = ~ min i{rq:(t+iAt)E(XiAt|t’u(i—l)At|t)lg +E[im|tli,[u} (3.2) is

Ut A Um e ts ot i=1

feasible for a given X, then it is always feasible for t>0.

The formal definition for invariant set can be found in [24, 25]. A treatment of sufficient
conditions which guarantees persistent feasibility of MPC problems goes beyond the scope of
this work and can be found in the surveys [26].
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Figure 3.2 Campus Loadplots historical daily campus load during September 2008, and it is
observed that the load has a period of one day. It is reasonable to model the admissible campus
load as a periodic disturbance with periodic envelope constraints (the bounds are represented
with thicker lines).
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Figure 3.2 Campus Load

Since the disturbance is periodic, the idea proposed by F. Blanchini and W. Ukovich in [27] can
be applied to the proposed MPC controller. The invariant sets, if it exists, will be time variant
and periodic with the same period as the disturbances. In order to guarantee that the tank has
enough cold water to satisfy the demand, the algorithm proposed in [27] is used to calculate
the CPI (Controlled Periodic Invariant) set for the system described in Equation 2.20. The system
for calculating the CPI set is a simple buffer plant subject to the periodic disturbance shown in
Figure 5.6.

The algorithm proposed in [27] was implemented and Figure 3.3 Campus Load Lower bound of
the Controlled Periodic Invariant set plots the lower bound b(t) of the computed periodic

set'P, (t):
Wi (t) ={z,(t) :b(t) < z,(t) <z, } (3.4)

If the height of the cooler water in the tank is greater than the lower bounds, b(t) , there exists a

feedback control law that will satisfy any disturbance belonging to the envelope in Figure 3.3
Campus Load Lower bound of the Controlled Periodic Invariant set without violating the states
and inputs constraint.
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Figure 3.3 Campus Load Lower bound of the Controlled Periodic Invariant set



4 Experiments

The simulation-based estimated performance of predictive algorithms was planned to be
demonstrated through an experiment performed in coordination with UC Merced facility staff
during the warmer part of the year. During the execution of a three-week experiment in June
2009, referred to as Experiment | in this document, and after data analysis, the team learnt that
malfunctions of the plant operation and some of the algorithm constraints affected critically the
plant operation and resulted in lower performance than the routine manual operation. The
unexpected lower performance and its causes, described in Appendix 2, motivated the team to
improve both the model and the optimization algorithm and execute a second experiment.

After Experiment |, the performance-critical aspects were reconsidered and several
modifications were made regarding model validation and algorithm improvements. For
validating the cooling load model, which is critical for tank capacity estimation and therefore
overall performance, another experiment was performed in September 2009 with a slightly
higher leaving chiller water temperature. The resulting week-long data set was used to validate
the model over a wide range of chilled water supply temperatures and in order to ensure that
potential savings with higher temperature set-points are explored by the optimization
algorithm. This chilled water supply temperature experiment is described in Appendix 3.

Analysis of Experiment | results also revealed that the length of the tank charging window has a
critical effect on plant efficiency, and in consequence the optimization algorithm was improved
to include the charging time in the optimization variable set.

Comparison of Experiment | data with regular schedule data also revealed that simultaneous
variations in ambient conditions (exogenous inputs) and plant controllable inputs introduced
significant uncertainty in the estimate of the performance improvement generated by the
predictive algorithm. Instead of using week-by-week comparisons between the experiment
weeks, a regression model capturing average performance as a function of ambient and some
controllable inputs was developed using historical data collected over several months. Although
the regression model was only partially validated, it is expected that comparison against this
model will provide a more realistic performance improvement of the predictive algorithm.

The model and control algorithm improvements referred to above were included in the
optimization algorithm used in Experiment Il in October 2009. Section 4.1 provides a general
description and rationale for the experiment. Section 4.2 describes procedural details. Section
4.3 presents the experimental results.



4.1 Experiment Description and Rationale

The chiller plant control was realized through three set-points: chilled water mass flow rate,
chilled water leaving water temperature and leaving cooling tower water temperature. To
ensure consistency of experimental data, the chilled water plant control was implemented such
that the levels of the thermocline in the chilled water tank at the beginning and end of each of
the experiment time intervals were approximately equal. The three control set-points
generated by the optimization algorithm are the reference values for the local control loops for
each respective feedback controller, as illustrated in

Figure 4.1.
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Figure 4.1 Signal flow from MPC algorithm to chiller plant local controllers

The work targeted efficiency improvements in three areas:

a) More efficient trade-off between cooling tower and chiller powers, a trade-off that is
affected both by the T¢ysset-point and the chiller Part-Load Ratio.

b) More efficient chiller operation by increasing the chiller PLR through manipulation of the
pump flow rate and chilled water leaving temperature set-points, as well as decreased
return temperature from the storage tank.

c¢) More efficient storage tank operation by reducing the tank chilled water levels, but
sufficient for rejecting predicted thermal loads based on weather forecasts. Whenbio
the chilled water volume stored in the tank exceeds a certain threshold (determined by
the thermocline position and height), the temperature of the water above the
thermocline decreases and this in turn reduces the chillers Part-Load Ratio, thereby
decreasing their efficiencies.



The challenges in the optimization algorithm are a result of the strong coupling between the
subsystem efficiencies. As described above, the coupling is a result of the influence of each of
the controllable set-points on the performance of the other subsystems.

The overall chillers—thermal storage—campus efficiency for chilled water generation, storage,

distribution and consumption depends on both external (exogenous) and controllable inputs
and can be written

Noveranr = Noverats (T s L cmmws: Memesr Tow: Teuwn) (4.1)
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This overall efficiency can be divided into three components as illustrated in Figure 4.2:

(i) efficiency from generation - storage;
(ii) storage efficiency, and
(iii) storage - campus:

Howeratt = Wpiout " Mreorage " Meempus (4.2)
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Figure 4.2: lllustration of electrical and thermal power flows for efficiency definitions for chiller,
storage tank, and campus

The performance estimation reported here is limited to the first two efficiency components
estimation. The third component, #zgmgus, represents the ratio between the thermal energy
delivered to the campus by HVAC system and the thermal energy delivered by thermal storage
unit. The only control input, out of the three, that can affect this efficiency is the leaving-chiller
water temperature. Although a new value (different from the baseline) of the chiller supply



water temperature set-point may influence the HVAC system efficiency through the campus
supply water temperature, this efficiency difference is not accounted for in this report since
control of the campus building HVAC system was not within the scope of the work reported
here. The second component of the overall efficiency, #szsrag¢, is computed as the ratio of
the thermal energy delivered to the campus, which depends on the mass flow rate to the
campus and the campus supply and return temperatures, and the thermal energy delivered by
chillers, which depends on the chiller flow rate and the chiller supply and return temperatures.
The value of this efficiency was calculated to be close to 1, after the problem with the flow rate
measurement had been identified and corrected.

4.2 Experimental Procedures

The second experiment was carried out during the week of October 5-11, 2009. This was not an
ideal experimental week, as the cooling load was much lower than during the summer. On the
first night (the night of October 5, a holiday), for example, the tank was already nearly fully
charged since there was so little load during the preceding day, so the MPC determined that no
charging should occur that night (which was the same decision that the standard operator
control would have made). Various other problems were encountered during the week ranging
from tracking problems to chiller malfunctions. The charging period during the night of October
7 was discarded from consideration in the COP results because of a chiller malfunction, and the
charging period during the night of October 11 was also discarded because of another chiller
malfunction.

4.2.1 Execution of Experiment II

Experiment Il was performed similarly to Experiment |, see description in the Appendix 9.2, and
consisted of the sequence of activities of Figure 4.3.

Figure 4.3 Sequence of charging-window activities during MPC experiment Il week

The activities mentioned above are detailed below:

1. Data collection: the following data were extracted and used as input for the MPC
algorithm



a. WebCTRL data: stratified storage tank temperatures; chiller return water
temperature
b. NOAA forecast data for the following three days: ambient temperature,
humidity.
The data were manually extracted into Excel spreadsheets with specific data structures.
2. Optimal set-points generation: the data collected at the previous step is used as input
for the  optimization  algorithm  that generates optimal set-points:

T‘-’EWF-HJ"’meWFrFEf’TfWFﬂf. These values are optimal set-points computed over a
72h-long predicted horizon.

3. Set-point communication and implementation: the reference set-points computed for
the next step were generated as text in the Matlab environment and communicated
verbally to the operator who then updated them in ALC interface.

Based on the conclusions of Experiment | described in Appendix 2, two aspects of the
experimental procedure and MPC algorithm were improved:

a) The chiller start time and end time were treated as continuous variables and optimized
to achieve the best operation efficiency. (For Experiment | these were set based on
operators’ experience).

b) The control sampling time was set to be one day so that the control set-points were kept
constant over the charging period of time. (For Experiment | the sampling time was 1
hour.)

The optimal set-points, and chiller start and stop times and were generated once per charging
window by running the optimization algorithm at 8:00PM every evening. The choice of the
algorithm execution time was made based on the historical time intervals over which the wet
bulb temperature has its lowest values (occurring after 8:00PM), and therefore presents the
largest potential for high operating efficiency.

4.2.2 Performance Criteria

This section focuses on estimation of the instantaneous (cumulative) plant efficiency, "rtans,
defined as the ratio of the thermal power (energy) delivered by chillers to the electrical power
(energy); this ratio is known as the Coefficient of Performance and represents the thermal
energy generated per kWh of electrical energy consumed:
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These performance metrics characterize the MPC policy impact on the chiller plant
performance for the following reasons:

All the optimized set-points affect directly only the central plant’s operation efficiency.
The three control inputs are coordinated for maximizing the chillers, pumps and cooling
towers efficiencies, which can be quantified directly, as illustrated in Figure 2 and above
formulae.

The tertiary HVAC system local control loops are all lumped into a model that predicts
the secondary chilled water flow rate, i.e. the flow rate to/from the campus, and the
chilled water return temperature.

For calculating the above efficiencies, we make the following assumptions and use the following
formulae:

4.3

For ‘:ﬂfﬁﬁgzmw we consider only time intervals for which the initial and final values
of the tank capacities are approximately equal. There are two reasons for this
constraint. At the beginning and the end of the experiment, the tank level is constrained
by the baseline control schedule operation. The second reason is consistency of
performance estimation; a difference between initial and final values of the stored
water energy can artificially affect the performance estimate, and compensation for this
difference would introduce additional uncertainty.
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Experiment II Data Analysis and MPC Performance Results

Experiment Il was executed from October 5t through October 11" 2009. Compared to
Experiment |, executed in June, the lower temperature and cooling load during Experiment |l
sometimes generated a different tank management strategy. Unfortunately, there were also a
few occasions when the chillers and/or cooling towers malfunctioned and the resulted lack of
data reduced the statistical significance of the MPC algorithm benefits estimates.

The main control set-points: condenser leaving water temperature, chilled water supply
temperature, supply flow rate and chiller start and stop times, are illustrated in Figures 4.4-4.6.

With the exceptions of the two nights when the chiller plant malfunctioned, the supply flow
rate set-point tracking performance is within the expected accuracy. However, the figures
illustrate a larger tracking error for the condenser leaving water temperature set-point, during
the nights of October 7™, 8™ and 12", and for the chilled water supply temperature set-point,

during the nights of October 9"—12

th
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Figure 4.5. Chilled water supply temperature set-point (solid, blue) and actual values (dashed, black)
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Figure 4.6. Chilled water supply mass flow rate set-point (solid, blue) and actual values (dashed, black)

Figure 4.7 shows the variation in condenser water temperature set-points over different
charging periods, as well as the variation in the charging period length specified by the MPC.
The details of October 6, 8, 9 and 10, are shown in Figures 4.8, 4.9, 4.10 and 4.11 respectively.
The measured average overnight COP for each of the four nights is compared with the two
baselines in Figure 4.12.
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Figure 4.7: Condenser water temperature set-points and measured data, October 6-10 charging

periods



The charging period during the night of October 6 was the most successful, in comparison to the two
baselines, as shown in

Figure 4.8 below. The charging start time, however, was not much different than the standard
start time, and the condenser water temperature was lower than that specified by the MPC and
by Baseline #2, which we would expect to be a penalty. The lower than desired flow rate for the
first half of the charging period would also be expected to be a COP penalty. However, October
6 was the only day where the chilled water supply temperature tracked our desired set-point of
38°F — this may have increased the COP by increasing the load on the chillers, causing them to
operate at a higher COP. It is difficult to draw any conclusions from this single data point, but it
is perhaps worth the operators considering decreasing the standard set-point for the chilled
water supply temperature.
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Figure 4.8: Details of MPC operation, charging period on the night of October 6, 2009



During the charging period over the night of October 8, the MPC elected to start charging later
in the night than the standard control would have, taking advantage of the lower ambient wet
bulb temperature. It is curious, however, that it did not choose to start charging even later in
the night, as the ambient temperature continued to decrease. The chilled water supply
temperature was tracking the standard set-point rather than the MPC set-point, and the flow
rate and condenser water set-point tracking were both rather poor. The measured COP was
higher than both the Baseline #1 and Baseline #2 COPs.
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Figure 4.9: Details of MPC operation, charging period on the night of October 8, 2009



The MPC set-points and tracking on the night of October 9 were similar to those on the night of

October 8, and the COP results relative to baseline were also similar.

Primary loop flow rate
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Figure 4.10: Details of MPC operation, charging period on the night of October 9, 2009



The charging period over the night of October 10 seems to have been the most successful of the
nights, in terms of the apparent optimality of the charging period (relative to the ambient
temperature) and the set-point tracking of the flow rate and condenser water temperature
set-point. However, the measured COP for this night was significantly lower than the other MPC
nights, and was actually lower than the Baseline #2 COP.
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Figure 4.11: Details of MPC operation, charging period on the night of October 10, 2009



Figure 4.12 compares the measured COP during the experiment with the two baselines. The
average measured COP was 3.2 + 2.2% higher than Baseline #2 (where 2.2% is one standard
deviation in the accuracy of the baseline regression model), and 4.6 + 2.4% higher than Baseline
#1.
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Figure 4.12: Average charging period COP, measured vs. baselines



5 Discussion

The process of data collection and model development, necessary for any MPC project, resulted
in the team uncovering various problems with the chilled water system. This is discussed in
Section 5.1: Chilled Water Plant Operational Problems ldentified. Although it is difficult to
guantify the energy savings resulting from these diagnostics, they were likely on the same order
as the energy savings from the MPC itself. And although the types of problems uncovered and
the amount of energy savings may differ significantly from project to project, some benefits of
diagnostics are expected with the use of MPC for any chilled water plant.

Although saving energy at the UC Merced campus is a worthwhile goal in itself, this research
project was intended as a demonstration of what is possible for any such system. This is
discussed in Section 5.2: Applicability of Results.

The final subsection, Section 5.3: Challenges for Commercial Feasibility, notes implementation
challenges that were encountered during the project along with a general discussion of
challenges such as model calibration and controller robustness that will need to be addressed in
order for MPC to see significant market penetration.

5.1 Chilled Water Plant Operational Problems Identified

5.1.1 Primary Loop Flow-Rate Sensor

In the process of identifying the parameters of the chiller models, the chilled water flow rate
sensor was determined to be unreliable. The chiller cooling load, the rate at which heat is
removed from the primary chilled water loop by the chiller, is calculated as

@‘ =C (T —T, ). Using an energy balance on the chiller condenser, the quantity of
load p w \ " chwr chws
. » Should satisfy(§‘cond = (§gad + P, . Given

(§C‘0nd and P, , the condenser energy balance yields an estimate of the chiller cooling load

heat rejected to the condenser loop of the chiIIer.(§‘CO

C§|§ad = C§C‘0nd —P . As shown in Figure 5.2, the cooling load measured for Chiller #3 calculated via

the flow-rate measurement agrees poorly with the cooling load estimated using the condenser
energy balance. In contrast, the cooling load measured for Chiller #2 matches the cooling load
estimated using the condenser energy balance, see Figure 5.3. The flow-rate sensor is placed
just downstream of a point where the flow from Chiller #3 emerges from a right angle bend
whereas the flow from Chiller #2 is straight for a sufficient number of pipe diameters to provide
a reasonable measurement point. Thus, it was determined that the flow-rate sensor would be
significantly more accurate when Chiller #2 was the second Chiller, as opposed to Chiller #3.
Consequently, the experiments were only executed with Chiller #2 as the second chiller.



‘_
._.
P .u-" .

1 1.5 2 2.5 3 3.5 4 4.5
Quoad measured load [MW]

Figure 5.1: Power and heat flow Figure 5.2: Chiller #3 comparison of estimated cooling load
diagram for chiller versus measured cooling load

T estimatedload 32
w

estimatedload =

1 2 3 4 5
measured load [MW]

Figure 5.3: Chiller #2 comparison of estimated cooling load versus measured cooling load

5.1.2 Secondary and Tertiary Loop Flow-Rate Sensors

The secondary loop flow-rate sensor located at chilled water plant was determined to be
completely unreliable due to its placement relative to pipe fittings; therefore, the sum of the
flow-rate sensors located in each tertiary (building) loop was used to calculate the secondary
loop flow-rate. However, it was found the tertiary loop flow-rate measurements were also
suspect immediately prior to the first experiment in June 2009.

The first check was based on an energy balance. That is, the chilled water return temperature coming
from the campus was compared with the mass weighted chilled water return temperatures of the
tertiary loops. The chilled water return temperature coming from the campus was significantly lower
than the chilled water return temperature predicted by the mass-weighted value, thereby suggesting



that one or more flow-rate meters were reading incorrectly.

Figure 5.4 compares the weighted chilled water return temperatures of the tertiary loops with
the centrally measured campus return temperature, alongside a temperature measurement
from near the top of the tank, which corroborates the central return temperature
measurement.
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Figure 5.4: Comparison of return temperatures measured centrally, in the tank, and the return
temperatures from the buildings weighted by their measured flow rates

Figure 5.5 compares the daily load on the chillers to the daily campus load as calculated at the
buildings level and the daily campus load as calculated centrally using the measured return
temperature and the sum of the measured flow rates. This analysis strengthened the
suggestion that some of the chilled water flow was not being accounted for, that the missing
flow rate was significant, and that the campus return temperature was being underestimated as
a consequence. This problem was not only making the modeling task difficult, since it was
difficult to know which data to trust in calibrating models, but also likely decreasing the
efficiency of the chilled water system itself.
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The second check was based on a mass balance. The position of the thermocline in the tank was
used as a means of estimating the flow-rate. As shown in Figure 5.6, the flow-rate sensor
consistently under-predicted the flow rate of chilled water from the thermal energy storage
tank. As a result, the mass balance confirms that the tertiary loop flow-rate measurements
underestimated the total secondary flow-rate.
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Figure 5.6: Comparison of measured and estimated tank levels



The problem was remedied during June 2009 when the UC Merced HVAC technicians
recalibrated several suspect tertiary flow meters. The fix increased the campus return
temperature, thus increasing the central system’s COP, and also significantly decreased the
pump power consumption at one of the buildings, where the pump was being controlled with a
faulty sensor and was thus running at full capacity most of the time.

5.1.3 Chiller Surging Prediction

An energy balance [pH11jwas used to provide the corrected flow rate used for the chiller
calibration. The corrected flow-rate measurements and calibrated chiller maps were used to
analyze chiller surging phenomena reported by UC-Merced. Figure 5.7 shows that when Chiller
#2 was unable to maintain its 38°F(pr12) chilled water supply set-point, the adjusted part load
ratio (PLR) predicted by the model was greater than 1. That is, the model is able to predict when
the duty demanded of the chiller exceeds its capacity.

The UC Merced central plant manager noted that chiller surging had been observed to be a
problem during particularly hot summer conditions. In fact, hot ambient conditions do not
completely characterize the occurrence of chiller surging. Chiller surging depends on the chiller
loading, which depends on the cooling demand, evaporator temperature and condenser
temperature, rather than only one of the boundary conditions. Currently, the leaving chiller
temperature set-point is kept constant and the pump flow-rate is regulated to maintain an
approximately constant cooling load as the chilled water return temperature varies. It is
hypothesized that chiller surging occurs whenever the demand on the chiller is greater than its
capacity at the current condenser and evaporator temperatures:

r‘Eé‘hwc p (Tchwr - Tchws,ref ) > Qcap (Tcws 'Tchws)' (5 1)

This quantity may also be captured in terms of the adjusted part load
I:>LRadj = r‘Eéhwcp (Tchwr _Tchws,ref )/Qcap < 1 (52)

Figure 5.7: Chiller #2 surging captured by PLRadj>1, start day is Aug. 20, 2008; (blue chw = chwr.ch2;
green chw = chws.ch2; blue cw = cwr.ch2; green cw = cws.ch2)

Figure 5.7 shows more than 60 days of the summer of 2008., The surging condition resulted in
Chiller #2 being unable to maintain its 38°F set-point. The times when Chiller #2 was unable to
maintain its set-point coincides with the times when PLR,q;>1. Figure 5.7 strongly suggests that
PLRagj>1 can be used to predict chiller surging conditions.
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Figure 5.7: Chiller #2 surging captured by PLRadj>1, start day is Aug. 20, 2008; (blue chw = chwr.ch2;
green chw = chws.ch2; blue cw = cwr.ch2; green cw = cws.ch2)

5.1.4 Ambient Humidity Sensor

It was observed the ambient humidity sensor located at the University of California Merced
indicated very small variations in relative humidity. The weather records for the Merced
Municipal Airport weather station were downloaded for comparison. Although the dry bulb
temperature records for Merced Municipal Airport closely agree with the UC Merced records,
the Merced Municipal Airport records indicated significant variation in the relative humidity,
see Figure 5.8. As shown in Figure 5.9, the cooling tower model calibrated with the suspect
relative humidity sensor was of poor quality. Consequently, the airport measurements were
used in place of the campus measurements for calibrating the cooling tower model, and the
issue was brought to the attention of the UC Merced facility staff. As shown in Figure 2.23, the
quality of the model fit was significantly improved by using the airport relative humidity sensor.
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Figure 5.9: Comparison of predicted and modeled condenser water supply temperature using model
calibrated from UC Merced relative humidity sensor.

5.1.5 Degraded Cooling Tower Performance

The measured performance of the cooling towers was compared to data from the manufacturer,
Baltimore Aircoil Company, who provided the performance curves shown in

Figure 5.10. Data from the cooling towers at UC Merced are plotted against the manufacturer’s
curves in Figure 5.11. Based on the data, the leaving cooling tower temperature is



approximately 2.5 K (4.5°F) higher than predicted by the manufacturer’s curves. Besides the
actual hardware not meeting specifications, this discrepancy could be caused by a number of
installation-related problems. For example, the cooling towers are located on top of the chilled
water plant and architectural screening is used to hide the equipment. The screening and other
factors may lead to the recirculation of the high humidity air exiting the cooling towers back
into the cooling towers. The reason for the substantially lower cooling tower performance is

under investigation in a separate project, and the impact on overall chilled water plant power
consumption will be quantified.
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Figure 5.10: Cooling tower performance curves provided by Baltimore Aircoil Company
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5.1.6 Chilled Water Storage Tank Operation

In addition to the commissioning benefits discussed above, the MPC development and testing
process was also able to identify simple ways to improve the heuristic control policy currently
used by the operators. It was found that operating the chillers near full load was a key factor in
maximizing system efficiency. In order to maximize the chiller load, one must maximize the
temperature difference across chillers and the chilled water flow rate through the chillers.
However, the admissible chilled water supply temperature and flow rates are bounded, so the
chiller loading is constrained and often determined by the temperature of the primary loop
chilled water return, which is primarily a function of the temperature near the top of the TES
tank. This temperature falls substantially as the thermocline approaches the top of the tank,
reducing the available chiller loading. Thus, overcharging the storage tank can be detrimental to
the chilled water plant efficiency and should be avoided. It is also expected that additional
savings are available by concentrating low loads on a single chiller rather than spreading it
across multiple chillers. As noted earlier, the plant operators learned from the MPC set-points
in this first experiment that the system COP can be increased by increasing the standard
condenser water set-point range. Further research is required to determine how much energy
could be saved through the addition of simple rules like these to the existing policy, based on
the lessons learned in the MPC study.

5.2 Applicability of Results

The UC Merced campus is currently only a fraction of its future planned size and the storage
tank is sized for a substantially larger campus cooling load than currently occurs. In particular,
the capacity of the tank is always sufficient to meet the cooling load for the next day and there
is no need to operate the chillers during the day, which simplifies the control problem. In order
to assess the performance of the MPC approach implemented in the project under more typical
conditions, a follow-on simulation study will be performed to investigate the expected
performance as the load from the campus increases.

5.3 Challenges for Commercial Feasibility

Many challenges remain for commercial feasibility of model predictive control of chilled water
plants with thermal energy storage. Further development of the MPC algorithms is only a small
aspect to the challenges requiring a comprehensive platform that also includes modeling,
calibration, controller interface, and fault detection and diagnostics.

For similarly configured chilled water plants it is expected only minor modifications would be
required to employ the same modeling approach detailed above. However, the calibration
process was found to be quite labor intensive. First, it was not possible to rely on design
specifications and manufacturer specifications, because the performance of many chilled water
plant components failed to meet design specifications, e.g. the primary pump flow-rate and the



cooling towers. Second, care is needed to ensure that historical data used to calibrate models
cover the operating envelope of the component in question. Third, the performance of
components was subject to change after maintenance and failures. For example, the primary
pump balancing valve adjustment affected the system curve and it was discovered prior to the
first MPC experiment one of the cooling tower cells was inoperable.

Additional measures can be taken to make the model predictive control algorithm more robust
to such model discrepancies. Such measures take the form of worst case analysis to ensure the
chilled water plant requirements are met for the entire set of model uncertainties of concern.
Nevertheless, the overall chilled water plant efficiency will undoubtedly suffer if the model is
not immediately adjusted for such discrepancies. Consequently, a model-based fault detection
and diagnostics is one potential way of detecting and reacting to discrepancies in the chilled
water plant performance. Many of the faults discovered in the process of executing the project
were ‘soft’ faults that are not detected by the alarm capabilities of current control systems and
hence did not halt the operation of the chilled water plant. However, these faults significantly
degraded the COP of the chilled water plant and compromised any subsequent attempts to
optimize its efficiency. Furthermore, current building control systems tend to inundate the
operators with alarms, many of which are false alarms. As result, most faults go unheeded by
the operators given that the operators are without a reliable fault detection mechanism and a
way of prioritizing the significances of faults



6 Conclusions and Recommendations

A Model Predictive Control (MPC) scheme was successfully developed and implemented for the
UC Merced chilled water system. The energy savings relative to the previous manual operation
were 4.6 £ 2.4%. The operators modified their manual operation procedures in the light of the
results of the first MPC test and the MPC savings relative to this new baseline were 3.1+2.2%.

Two experimental tests of the MPC were carried out. The first test revealed flaws in the initial
implementation, which were subsequently fixed. However, as a result of the first experiment,
the system operators learned that a higher condenser water temperature set-point would
improve performance and changed their operating procedures accordingly, complicating the
establishment of a baseline. After the first experiment, a primary pump was also fixed, which
increased the system COP slightly. A faulty flow sensor in one of the buildings was also found as
a result of our MPC development and implementation (the ‘bypass’ problem), and was fixed
just after the first experiment, also causing an increase in COP because of the higher return
temperatures. A second MPC experiment (October 2009) was then carried out with the
corrected MPC controller.

Two different regression-based baselines were used for comparison of the primary system COP
during the second MPC experiment against the COP under normal operation. “Baseline 1” is
based on the system performance before the first experiment, and thus estimates what the
COP would have been if there had been no intervention at all by the MPC research team.
“Baseline 2” is based on the system performance between the first experiment and the second
experiment, and thus represents good system operation with near-optimal conventional control
with static set-points. The measured COP during the MPC experiment was higher than Baseline
1 by 4.6% +/- a standard deviation of 2.7%, and higher than Baseline 2 by 3.1% +/- a standard
deviation of 2.2%.

In the course of the MPC project, various problems with the chilled water system operation
were discovered, largely as a part of modeling process. The flow-rate measurements were the
most susceptible to significant measurement errors. The first inaccurate flow meter was located
on the primary chilled water loop and the second inaccurate flow meter was found on one of
the tertiary (building) chilled water loops. The latter also revealed a fault in one of the building
air handling units. It was determined the cooling towers failed to meet manufacturer
specifications. Prior to the experiments, it was found that one of the interconnects for a cooling
tower cell fan had failed, and the fan had been inoperable for weeks if not months. Many of the
problems are typified as a soft fault. That is, the problems did not cause the system to fail, and
there were no overt signs in the status of what is a complex system.



6.1 Future Work

The UC Merced campus is currently only a fraction of its future planned size and the TES tank is
sized for a substantially larger campus cooling load. Consequently, an upcoming extension of
the research is to further characterize via simulations the advantages of MPC scheme to chilled
water systems similar to UC Merced with different storage capacity, cooling loads and climate.

The above-described MPC implementation is not robust in the sense that neither input
uncertainties nor model error are taken into account. This could be addressed by designing a
robust MPC scheme [19, 20, 27] (Borrelli 2003; Witsenhausen 1968; Bemporad, Borrelli &
Morari 2003). A typical robust MPC scheme involves solving a min-max problem to optimize
robust performance (the minimum over the control input of the maximum over the
disturbance) while enforcing input and state constraints for all possible admissible bounded
disturbances. Also, the MPC implementation does not consider system faults. Robustness to
faults can be indirectly obtained by detuning the controller (reducing the weights) at the price
of a reduced performance or can be systematically and easily taken into accounts by switching
to a different model g(x,u,t,d) and constraints X and U when a fault is identified. Given
the uncertainties and system faults apparent in this case study, and their prevalence in building
systems in general, future research on robust MPC for buildings applications is recommended.

In order for the approach to be commercially viable, the time and expertise intensity required
for the development and testing of the MPC implementation must be greatly reduced.
Ultimately, a streamlined tool chain for the development and implementation of model-based
building control and commissioning is needed to address part of these challenges. As discussed,
MPC development and fault diagnostics can be two mutually reinforcing activities. In order to
facilitate such activities, the development and dissemination of controls-oriented models for
building system components, such as those developed during this project, is a first step. The
complexity of building systems calls for methods that enable detailed component models to be
aggregated into lower-order models for coordination at higher levels. In addition, the
configuration of advanced control and monitoring techniques should ultimately be transparent
to the installers and operators in order to facilitate communication and understanding and to
save energy.

A first step towards a commercially viable implementation is described in Appendix 4. The
approach will be tested in the summer of 2010, taking advantage of the repairs and
enhancements to the instrumentation of the chilled water plant and distribution system
implemented by the UC Merced Facilities staff in the first half of 2010. As discussed above,
problems with chilled water flow rate measurements, in particular, limited both the
performance and the assessment of the MPC algorithm in 2009.
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9 Appendices
9.1 Appendix 1: Identification of a Baseline Performance Model

The objective is to quantify the improvement in the Coefficient of Performance (COP) for the
chilled water system obtained with Model Predictive Controller (MPC) as compared to the
standard way of operating the system. This is not a straightforward task. One possible approach
is to use the model of the chilled water system that was developed for the project driven by the
heuristic control logics used by the operators prior to the project. However, we can reduce the
error if we use the following approach, which is to identify a baseline COP prediction model by
fitting a fourth order polynomial to measured data using linear regression
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(9.1)

where, @HWS is the average mass flow rate produced by the chillers during the charging time
(kg/s), 'FCHWR'cmp is the mass-weighted average of the campus chilled water return temperature

for one day preceding start of charging (F), and 'Iwa is the average overnight wet bulb

temperature during charging (F). There are two sets of data to be fitted. Note that these models
can only be used for validation purposes.

* Baselinel (B1) is from Dec. 2nd, 2008 to Jun. 1st, 2009. The central plant is operated
manually according the policy generated by plant managers.

® Baseline2 (B2) is from Jun. 7th, 2009 to Oct. 6th, 2009. This is the period of time following
the first MPC experiment. The central plant operators took advantage of Experiment | by
reducing the set-points for the condenser water supply temperature.

We denote the regression model fitted by data from B1 and B2 as model COP1 and model
COP2, respectively. The coefficients of COP1 and COP2 models are listed in
Table 9.3.

Table 9.3. Coefficient of Performance regression model coefficients

Aono A0 Qoo Aoy (271 Q9 2T (20PN
B1 5.9666 1.7624 6.3583 -8.3794 0.2222 -0.6516 -0.8134 1.0281
B2 1.1227 13.5040 15.0881 14.6085 0.3785 -4.2457 -0.4187 3.4655

Ao Ay o0, 2IPN Oy Qg Aoz Ao
B1 -0.0018 0.0022 0.0059 0.0027 0.0062 -0.0069 -0.0126 -0.0115
B2 -0.0016 0.0089 -0.0024 0.0717 -0.0181 0.0215 -0.0502 -0.1988

A g0 31 O3y Oy Oo1n Ay A3y 2PN




Bl 4.83e-6 -1.06e-5 -1.81e-5 1.99e-5 1.97e-5 2.27e-5 -3.14e-5 -9.30e-5

B2 4.53e-6 -2.69e-5 -1.11e-5 -2.84e-5 1.37e-4 1.40e-5 -5.74e-5 3.10e-4
Aoag Ayzy Ay Ap13 Qoog Qo1 Aoy Qp1n

B1 5.56e-5 1.29e-4 7.22e-5 4.66e-5 1.86e-5 0.4905 1.3608 -0.0091

B2 -2.80e-6 0.0026 -0.0020 0.0012 -1.15e-4 5.2524 -1.4676 0.0925
Ay Qo3 Qo3

B1 -3.03e-5 3.83e-6 -0.0070

B2 -5.23e-4 -2.21e-6 -0.0321

Figure 9.12 presents the results of the linear regression. The dots are the measured COP and
the crosses are COP predicted by the regression model.

Validation result for COP Baselinel model
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Figure 9.12. COP linear regression validation results




The absolute errors of the COP1 and COP2 regression models are plotted in Figure 9.13, and a
statistical characterization of the model errors is presented in Table 9.4, which shows that the
prediction COP regression models COP1 and COP2 have r.m.s. errors of 0.15 and 0.14,
respectively.

Table 9.4. Error statistics for linear regression models

Error Max Min Standard Mean

Statistics Deviation [*10°°]
B1 0.45 -0.36 0.15 3.86
B2 0.33 -0.62 0.14 -1.61

Absolute error for COP Baselinel linear regression model
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9.2 Appendix 2: MPC Experiment I

For validating the simulation-based estimated energy savings, Experiment | was conducted
in coordination with UC Merced facility staff over a three-week time interval from Sunday, May
24th, 9:00PM, through Sunday, June 14th, 9:00PM. For ensuring consistent ambient conditions
and occupancy patterns, and thus generating consistent experimental results and meaningful
analysis, the plant was operated with baseline set-points—schedules that operator use on a
daily basis—during the first and third experiment weeks. The Model-Based Predictive Control
(MPC) algorithm generated set-points that were implemented during the second week.
Although efforts were made to ensure the desired consistency, changes in ambient conditions,
practical aspects of the plant operation, and occasional lack of coordination between the MPC
and the plant technical teams have resulted in temporarily operational deviations from the
planned three-week experiment schedule.

9.2.1 Execution of Experiment I

9.2.1.1 MPC-Based Set-points Generation and Implementation Procedure

During the MPC policy experimentation week (second experiment week), the plant set-points
were generated on line, with an one hour sampling interval, during the storage tank charging
window using the optimization algorithm with updated actual measurements from The building
control system and weather forecast from NOAA server. Once computed, the set-points were
communicated to the operator who updated them accordingly using the ALC interface. Figure
9.29 illustrates the sequence of activities during the tank-charging windows of the MPC week.

Figure 9.29. Sequence of charging-window activities during MPC experiment week

The activities mentioned above are detailed below:

1. Data collection: the following data is extracted and used as input for the MPC algorithm
a. WebCTRL data: stratified storage tank temperatures; chiller return water
temperature
b. NOAA forecast data for the following three days: ambient temperature,
humidity.
The data was manually extracted into Excel spreadsheets with specific data



structure. These files were updated accordingly into the optimization algorithm
folder.

2. Optimal set-points generation: the data collected at the previous step is used as input

for the  optimization algorithm  that generates optimal set-points:

T‘-’EWF-HJ"’meWFrFEf’TfWFﬂf. These values are optimal set-points computed over a
24h-long predicted horizon.

3. Set-point communication and implementation: the reference set-points computed for
the next step were generated as text in the Matlab environment and communicated
verbally to the operator who then updated them in ALC interface.

9.2.1.2 Baseline Week 1

The first (out of three) week of the experiment was used as a baseline for estimating energy
saving benefits. In addition to ensuring ambient conditions consistency with the MPC week, the
data and information collected on-site during this week were used to:
e Integrate the overall on-line algorithm consisting of all components and subsystem
models, weather forecast data extraction function, cooling load prediction
e Test off-line the newly integrated algorithm and estimate its performance in a
simulation environment.
e Perform additional model re-calibration and validation
e Investigate optimization algorithm performance sensitivity with respect to algorithm
parameters

Prior to Week 1, earlier versions of the optimization algorithm were used to provide initial
estimates of performance improvements; these versions used off-line load estimation. During
Week 1 all the algorithms for data extraction, filtering, load estimation, and optimization were
integrated for automatic generation of set-points based on input data files. The integration
consisted in implementing the data transfer between various subroutines generated with
various tools: Excel, Dymola, Matlab, and Simulink, and ensuring the consistency of
input/output variables, type and format, and of assumptions used by all subroutines.

The re-calibration activities were focused on updating the cooling load models based on the
out-of-season occupancy pattern and on what initially appeared to be, and later was confirmed
by the energy manager to be, either a short circuit in the campus chiller water loop or a
malfunctioning flow meter. It was later confirmed, in the third experiment week, that there was
a short circuit in the water loop caused by a failure in a building recently added to campus
chilled water loop (Common Terrace building). For the MPC week, the coil and campus load
models were based on a bypass model whose accuracy is illustrated in earlier sections of this
report.

The baseline week 1 measurement data were also used for offline study of the optimization
algorithm performance and for fine tuning of several parameters: sampling rate, number of
optimization steps, charging window length. The performance estimation for the baseline



schedule during this week was affected by the deviation from normal chiller plant operation
due to two events:

e Chiller #1 surged unexpectedly and had to be restarted manually. During the 0.5 hours
long re-start process there was no chiller water flow and the efficiency decreased. The
chiller’s surge cause was not identified.

e Cooling tower cell did not operate for a few nights and had to be repaired.

e Pumps operated at flow rates below typical values and this resulted in smaller efficiency
and an unrealistic performance reference value. The pump capacity was restored during
the MPC policy week (Week 2).

The performance estimation for baseline Week 1 did not compensate for these two anomalies.

9.2.1.3 Model Predictive Policy (Experiment Week 2)

The prediction-based algorithm was implemented during the 2nd week following the steps
mentioned briefly in Section 9.2.1.1. These activities are detailed in the following script used by
the team for coordination during this week:

1. 1PM : Daily policy preview for upcoming night
a. Extract data from ALC for initialization (tank state and cooling load model)
b. Run MPC algorithm to generate preview of policy for upcoming night
i. Policy generates information and plots for following step
c. MPC Team: review and iterate on policy
i. Analyze control sequence and compare to previous policies.
ii. Constraint violation: chiller, cooling tower, tank, campus pump flow-rate
iii. Break down of energy usage
iv. Review reduced-order model tank states
d. Archive data and policy for post-analysis
2. 3PM : Team briefing with plant operations
a. Previous night’s performance
b. Policy preview
c. Gather recommendations and concerns from plant operators
d. Implement critical mitigation actions
3. 5PM: Send out daily update
4. 8PM —6AM : Hourly Implementation Procedure
a. hh:00 Collect data from ALC to initialize MPC
b. hh:10 Generate policy
c. hh:30 Check policy via predefined metrics. Constraints are satisfied. Is there a
large gap when compared to policy preview? If policy fails check, implement
backup policy.
d. hh:45 Archive data from current step
e. hh:60 Operator implements new set-points



5. 9am : Daily post-analysis
a. Extract data from previous day from ALC
b. Collect MPC input generated over night
c. Simulate model response with data from ALC and implemented MPC
i. Compare to preview and actual policy
ii. ldentify constraint violation: chiller, cooling tower, tank, campus pump
flow-rate
iii. Compare actual and simulated chilled water plant performance via break
down of energy usage
iv. Compare actual and simulated tank states
d. Archive data and policy for post-analysis
6. Mid-week review: course correction
a. Review model predictions versus actual performance (from ALC)
b. Verify admissible process variables: tank level, temperature, power break down,
chiller operation, cooling load met (critical AHU supply air temperatures, tertiary
pump speeds, secondary pump speeds, fan power)

Two main operational aspects, with an unknown influence on final performance, deviated from
the initially planned MPC experiment: testing of the boiler performance and a gradual change in
condenser set-point constraint. The boiler test temporarily increased the cooling load for a
maximum of one hour. It is expected that this load was relatively small compared to the campus
daily load, and its effect on overall performance is within normal operational variability. This
latter effect is addressed in the “Analysis of Experiment” section. The overall performance was
affected significantly by the incremental change in the leaving condenser water set-point. From
the beginning through the middle of the testing week, the upper bound constraint on the
condenser leaving water set-point was gradually increased to the optimized value originally
recommended by the MPC policy. This was a conservative approach for avoiding chiller surging
under new operational constraints. However, the influence of the new set-point on the overall
performance was difficult to estimate (reference the “Analysis of Experiment” section) due to
oscillatory response of the local condenser control loop. During the third week this behavior
was corrected in the Energy Management Control System (EMCS).

9.2.1.4 Baseline Week 3

To ensure consistency in the ambient conditions, the week following implementation of the
MPC policy was considered part of Experiment |. However, the condenser water set-point was
not reset to its regular operation (prior to MPC policy week) and this improved the reference
performance value used as baseline. In addition, the re-tuning of the condenser PID gains
improved the tracking of the set-point, which is generated by the optimization algorithm,
illustrating to a larger extent than in Week 2 the influence of an increase in the leaving
condenser water set-point on the overall performance.



9.2.2 Model Validation with Experiment Data

9.2.2.1 Validity of Models

This section discusses validity of models for cooling water generation, storage, and
consumption based on comparison between experimental and simulation data for the Week 2
of Experiment 1 (the MPC policy week). The simulation data are generated with the same
inputs—extracted from the building control system—that were realized for the plant as
illustrated in Figure 9.15, which illustrates the data flow between several subroutines used to
extract, simulate, and generate comparison plots for model validation.

—»

Figure 9.15. Data flow for chiller plant model validation

The implemented values of the three control variables W eges: Temws: Taws  over the entire
MPC policy week are illustrated in Figure 9.5. The plotted values are the output of the closed
loop systems illustrated in Figure 4.1 (Section 4.1) that have as references the optimal
set-points generated by the MPC algorithm. These plots illustrate:

The optimal set-point for the chiller water supply temperature, 1st subplot, is
practically the same as the regular schedule implemented at UC Merced, approximately
3.3°C (38°F);

The pump flow, 2nd subplot, is lower than maximum and this significantly decreased the
chiller Partial Load Ratio leading to lower than targeted COP values. As mentioned
previously this low pump flow values are a result of the fixed optimization interval
window length (with variable starting time) and constraints on the tank capacity (a
result of robust invariant set constraints driven by the campus load estimates bounds).
By comparing the pump flow plot of this figure with the wet bulb temperature in Figure
9.17, one observes a non-intuitive miscorrelation between them: when the wet bulb
temperature decreases, the pump flow decreases too without using efficiently the
ambient conditions. This miscorrelation was corrected in the second half of the MPC
policy week by increasing the number of iterations for the optimization algorithm and
therefore generating an approximating solution closer to, and more representative of,
the true optimal policy.



The leaving condenser water actual values, 3rd subplot of Figure 9.60, illustrate an
increase of the set-point value from 18.9°C (66°F) to 20°C (68°F). Although the optimal
value generated by the MPC algorithm was higher than 20°C (68°F), the team decided to
conservatively increase this value to avoid chiller surging conditions that were
experienced previously with Chiller 1. The subplot also illustrates higher frequency

oscillations around higher Tows (in the 2nd half of the week)—a result of mistuned PID
gains for this newer values. These gains have been retuned during the 3rd week of
Experiment 1. The impact of this re-tuning on the performance analysis is discussed in
the next section.
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Figure 9.60. Plots of actual values of the control variables during the MPC policy implementation week

of Experiment 1
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Figure 9.17. Plots of wet bulb temperature and tank capacity during the MPC policy implementation
week of Experiment 1
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Figure 9.62. Plots of the ambient temperature, chiller water return temperature and actual cooling
load during MPC policy implementation week of Experiment 1

Two of the most critical states of the model used by the optimization algorithm, and that have a



direct influence on COP, are tank capacity and chiller water return temperature plotted in
Figure 9.17 and Figure 9.62, respectively. The comparisons of the model-based simulations
against actual data suggest a maximum error of approximately 10% in tank capacity model and
a relatively accurate average chiller water return temperature. The primary factor for the
simulation-vs-measurements tank capacity mismatch is the inaccuracy in the flow rate
measurements. Another factor is the reduced order model that lumps the warm and cold water
stratified temperatures into only two temperature states, above and below the thermocline.
The comparison illustrates higher actual charging and discharging rates than actual during the
first 5 days of the MPC policy week. The error in the chiller water return temperature is
relatively small during the charging window, as illustrated by the highlighted intervals of the
second plot in Figure 9.62. During the last two days, the MPC policy lower bound constraints on
tank capacity were increased to meet the 100% terminal constraint at the end of the
implementation week.
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Figure 9.63 Plots of total electrical and thermal powers, and coefficient of performance during the
MPC policy implementation week of Experiment 1

The coefficient of performance (COP) estimate defined previously as the thermal power
(energy) produced per unit of electrical power (energy) consumed is plotted in Figure 9.63
against the actual COP determined based on time series data available from the building control
system. Although Figure 9.63 illustrates instantaneous differences of up to 0.5, the average
model-based estimate is a good approximation of the actual average COP. Figure 64 shows the
small relative differences between total generated and consumed energies and week-long
cumulative COPs. Based on these comparisons, it may be concluded that the models offer good
correlation with actual plant performance, and therefore they can be used for on-line



optimization to generate optimal set-points.
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Figure 64.9. Plots of actual and simulated total electrical and thermal energies, and
cumulative COP for the Experiment 1 MPC policy week

9.2.3 Performance Estimation

This section presents the time series data for all relevant signals—inputs, states, performance
metrics—and discusses the differences between the MPC and baseline (regular chiller
operational schedule) policies, together with their implications. This section focuses on
comparison of the performance under MPC with the performance under the policy
implemented during the 3" week of Experiment 1, when the standard set-points were expected
to be implemented in the building control system. This 3" week policy is referred to as Baseline
2 or ‘adjusted baseline policy,” due to the use of a value for the leaving condenser water
set-point that was equal the MPC policy set-point, although the experiment plan was to use the

original regular operation schedule.

4.9

4.8




9.2.3.1 Performance Estimation for Baseline and Experiment Weeks

The three control set-points for both MPC and Baseline 2 policies are illustrated in Figure 9.65.
The three notable differences correspond to: pump mass flow rate, condenser leaving water
set-point, and charging window.
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Figure 9.65. Plots of set-points values for chiller water supply temperature and flow rate for

Experiment 1 MPC and Baseline week 2

The effects of these control variables, plotted in Figure 9.65, on the expected efficiency
improvements mentioned in Section 4.1 are summarized below:

Higher T;u-s set-point values resulted in lower cooling tower power consumption as
initially predicted. This is illustrated by correlating the subplot 3 of Figure 9.65,
illustrating the higher T;s set-point for the Baseline 2 week, with subplot 1 of Error!
Reference source not found., illustrating lower cooling tower powers for Baseline 2
week. The trend is apparent during the first two days of the respective experiment
weeks. However, due to a conservative increase in the Iy during the MPC week, this
improvement was not fully demonstrated during this week. The adjusted baseline
schedule, used during Baseline 2 week, benefited to a larger extent from the higher
Tewes values.

Lower chilled water flow rates resulted in lower chiller efficiency for similar chiller water
return temperatures. During the MPC week, the optimization algorithm used a charging
window with a fixed and a priori optimized length. The consequence of the fixed



[b14]

charging window was a chilled water flow rate lower than the normal schedule flow rate
(subplot 2 of Figure 9.65). As illustrated in Section 8.2.3.2., this lower set-point
generated a low Part-Load Ratio that decreased the chiller efficiency.

e The lower-thermocline tank management strategy did not result in expected efficiency

improvements. As discussed in Section 6.1, the smaller fraction of chilled water volume
in tank was predicted to generate higher chiller return temperature, and in turn
increase PLR and chiller efficiency. During the second parts of the two weeks, Subplot 3
of Error! Reference source not found. shows similar levels of chiller return temperature,
for similar ambient temperature and loads, but with significantly different tank warm
water volume.
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Figure 9.66. Plots of ambient temperature, tank capacity, chiller water return temperature, and
cooling loads for Experiment 1 MPC and Baseline week 2
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9.2.3.2 Performance Comparison and Limits to Savings

The overall results for each of the three weeks of Experiment 1 are summarized in Table 9.5 and
Figure 9.68, where the average and standard deviation values of the main variables are also
presented. A correlation between these averages and the COP final values confirms
gualitatively the initial chiller and tank energy performance improvements control strategy:
higher Teger and higher #gzgwy , While meeting the critical constraint PLR<1, result in lower
average electrical energy consumption per 1kJ of generated thermal energy.

Table 9.5. Summary and comparison of main control, state, and performance variables for
Experiment 1 weeks (the numbers [m s] represent average and STD, respectively)

WEEK 3
i WEEK 1 WEEK 2 -
Scenario Context (Baseline) (MPC) (Adju s_ted
Baseline)
T_Ambient
Weather & [[avg,std] [F] [77,12] [68,10] [69,10]
Campus T_CHWR chiller
i lavg,std] [F] [49,3] [48, 2] [48,2]
T CWS actual
[avg std]a[(lé]ua [66,4] [67,2] [68,1]
Plant Mdot_ CHWS
Operation  [actual [av,std] [2456, 204] ||[ 2660, 260 ]| [2898, 27 |
[GPM]
T_CHWS actual
[avg,std] [F] ) [38,1] [38,1] [38, 0.1]
e oty | 175260 | 116,389 | 105,045
Energy = F;h I
e | ssse21 | 557024 | 536,632
Coefficient of
Performance (. a7 4.79 5.11
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Figurepis) 9.68. Performance comparison between baseline and MPC policy weeks. Remarks:
(i) the color code is: blue for experiment weeks, and green for various other weeks; (ii) the
relative size circles represents the relative size of the COP magnitudes [pH16][b17]

Based on comparisons between Experiment | COP values from Table 9.5 and Figure 9.68, it can
be concluded that is) the performance sensitivity with respect to exogenous inputs,
dependent on ambient conditions and/or campus load, is significantly higher than the
performance sensitivity with respect to some of the controllable inputs. [pH19This is illustrated
by the comparison between COP values for Baseline 1 and MPC week, and likewise between
Baseline 2 and Baseline for the 05/18 week. For example, for approximately the same COP
values, a decrease of only 1F in Teywg, from 9.4°C (49°F) to 8.9°C (48°F), is compensated by an
increase in the pump flow from 154 kg/s (2450 GPM) to 166 kg/s (2650 GPM). [pH20]

In conclusion, the MPC algorithm performance for Experiment | was approx. 6% lower than the
adjusted baseline schedule performance, for similar average ambient temperature and
humidity. To a large extent this lower performance is due to the lower values of the chilled
water flow rate set-point generated by the predictive algorithm (MPC week average is 167 kg/s
(2660 GPM) and Baseline 2 week average is 182 kg/s (2898 GPM). To a smaller extent the lower
performance is due to conservative values of the condenser leaving water set-point during MPC

week. This new, higher, Tows value is a result of the optimization algorithm and it was used
consistently during the Baseline 2 week.



This first set of experiments provided insights into the model capability to predict critical
process variables and into the optimization algorithm parameters influence on these variables.
These insights were used to design the chiller water supply temperature experiment and to

improve the optimization algorithm, improvements demonstrated during Experiment Il
discussed in Section 4.3.



9.3 Appendix 3: Chilled Water Supply Temperature Experiment

9.3.1 Motivations for Experiment

The campus return temperature model (Section 2.8) produces the somewhat non-intuitive
result shown in Figure 9.69: instead of always producing a higher return temperature, an
increased supply temperature produces a higher return temperature at low loads, but a lower
return temperature at high loads.
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Figure 9.69: Return temperature vs load

As noted in Section 2.8, the model is solving the following two equations for T, and n& (all
other variables are parameters or inputs or calculated explicitly from them):

(§I?)ad = %pr (Two _Twi)

(9.2)
| T -T.-T . +T
.y 2URAT, = ¢ (™ ™) | T a T
|Og ao wi
Tai _Two
(9.3)

Equation 9.2 suggests that the return temperature would always increase with an increase in
the supply temperature, and for a given water flow rate and load, this is what happens with this
equation. However, for that same given flow rate and load, Equation 9.3 calculates a lower
return temperature, for the following two reasons: (a) for given mass and air flow rates, the UA
is given, thus the LMTD is a given; (b) to maintain a given LMTD when the inlet water



temperature is increased, the outlet water temperature must be decreased, as illustrated in
Error! Reference source not found..
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Figure 9.70: Maintaining a Log Mean Temperature Difference

So the effect of increasing the supply water temperature is to push the solution towards higher
water flow rates, and the new intersection between the two equations may result in either a
higher or lower return water temperature. At high loads (Error! Reference source not found.),
the effect is to decrease the return temperature, whereas at low loads (Error! Reference source
not found.), it increases the return temperature. A possible rationale for this: at lower loads the
slope of the UA vs % curve is steeper than it is at higher loads, and thus the slope of the

second equation is steeper at lower loads than at higher loads. Note that this result is highly
sensitive to the values of the calibrated «; and «, values - at some combinations of these
values the effect of increasing T, is always to increase (or decrease) the solution value for
T

wo *
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Figure 9.72: Effect of increasing T, atLoad = 0.5MW
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Figure 9.73: Effect of increasing T, atLoad = 1.0MW

9.3.2 Design of Experiment

The objective of the experiment was to evaluate the effect of a small increase in the chilled
water supply temperature on the return temperature and flow rate from the campus. Because
the standard operation of the chillers maintains a constant supply water temperature, there
were no empirical data available to verify or calibrate the campus return temperature model
outputs when supply water temperature was higher.

Before the experiment, the desired outcomes were noted as follows:

e Validate and further calibrate the campus return temperature model.

e Contribute to a more complete understanding of how chilled water supply temperature
affects energy consumption of chilled water plant, pumps and AHU fans.

e Work towards the longer-term objective of identifying potential scenarios where it may
be advantageous to increase the chilled water supply temperature.

The experimental procedure was as follows:

e Day 1 (9/5/2009): Fully charge tank with chilled water such that chilled water stored in
the tank is 42°F. Note buoyancy of the water will facilitate mixing of water up to the
level containing 42°F water.

e Day 2 (9/6/2009): Monitor critical loads. Load monitoring shall consist of monitoring
indicators such as supply air temperature set-point tracking and combined cooling coil
valve, pump, and fan saturation. Reduce chilled water supply temperature appropriately



if cooling loads unexpected go unmet.

e Day 3 (9/7/2009): Continue monitoring critical loads. Collect data for cooling coils
subject to reduced loads.

e Day 4-6 (9/8-10/2009): Continue to monitor critical loads. Collect three days of data for
cooling coils subject to typical summer loads.

9.3.3 Execution of Experiment

The experiment was carried out as planned. Critical loads were monitored throughout the
experiment to ensure that no problems arose. The chilled water tank reached a stable and
well-mixed temperature of 5.6°C (42°F) faster than expected. Data collection occurred without
any problems.

9.3.4 Experimental Results and Analysis

9.3.4.1 Results: Campus Level

Figure 9.74 shows that there was in fact a higher supply temperature to the campus during the

experiment week. (The spread in the previous week is interesting. Various possible causes were

identified in discussion with the operators, but no definite conclusions were reached.) The return
temperatures to the central plant were higher than expected (

Figure 9.75). The coil model was predicting that the return temperatures during the experiment week
would be very similar to the previous week, with just a very slight rotation so that the return temps
would be very slightly higher at low loads and slightly (about 1F) lower at high loads (

Figure 9.76).

The graph of flow rate versus load (Figure 9.77) shows something quite unexpected - the flow
rates at low loads were actually lower than they were during the previous week. Why this is so
unexpected is discussed in more detail in the Analysis subsection below, but the basic reason
for surprise is that for a given small load, the water side delta T was higher during the
experiment week than it was during the previous week, even though flow rate (and thus, one
would expect, the UA) was lower during the experiment week. The model principles suggest
that an increase in supply water temperature should always result in an increase in water flow
rate, but this was not happening during the experiment week.
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Figure 9.74. Campus supply temperature (pre-experiment in blue, experiment week in red)
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Figure 9.75. Return chilled water temperatures to central plant (pre-experiment in blue,
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Figure 9.76. Return temps to central plant (model prediction in light blue, experiment week in
red)

100

a0

an

0

&0

50

40

Campus Flow Rate (kg/s)

30

20 - measured (Aug29-Seps), ~39F supply temp

10 * measured (Sepb-Sep9), ~42F supply temp

0 0.5 | 1.5 2 2.5 3 3.5 4 4.5 s
Campus Load (MW)

Figure 9.77. Total campus flow rates (pre-experiment in blue, experiment week in red)



Because the results are so unexpected, the details of each building's response is of interest, to
see if this effect is found throughout or if there are some buildings that might be showing
particularly unusual results.

9.3.4.2 Results: Individual buildings

In the results for individual buildings, the spreads in the graphs tend to be bigger, but trends are
usually still visible. The chilled water return temperature model was originally developed by
considering the Classroom and Office Building in detail, because it has just one air-handling unit.
As shown in Figure 9.78, this building's behavior over the two weeks is similar to what we was
expected: the return temperatures during the experiment week were nearly equal to the
previous weeks, and on average possibly slightly higher at low loads and slightly lower at high
loads.
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Figure 9.78. Classroom and Office Building: Return temps (pre-experiment in blue,
experiment week in red)

The corresponding flow rates were as expected (Figure 9.79), with the experiment week flow
rates always being slightly higher than the pre-experiment week, and showing a slightly steeper
slope.
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Figure 9.79. Classroom and Office Building: chilled water flow rates

The behavior of the Library Building (Figure 9.80) was also as expected, as was the Recreation
Building (Figure 9.81).
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Figure 9.80. Library Building: return chilled water temperatures
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Figure 9.81. Recreation Building: return chilled water temperatures

The behavior of Sierra Terraces (Figure 9.82) was generally as expected, except at high loads.
This building’s data also shows recirculation at high loads, which might explain the results
below, and which suggests that the bridge flow controls are set up poorly for this building and
that it is not meeting set-points at high loads. It is likely not, however, affecting the general
results of this experiment very much because this load is relatively small.
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Figure 9.82. Sierra Terraces: return temperatures

The dormatory buildings are controlled differently than the rest of campus. Supply chilled water
is recirculated at the bridge to maintain a desired return temperature. Although there is some

minor variation from building to building, the graphs shown here for the Kings Dorm building
(Figure 9.83 and Figure 9.84) are typical.
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Figure 9.83. Kings Dorm: return temperatures
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Figure 9.84. Kings Dorm: Supply temperatures after recirculation

So most of the buildings were behaving as expected and/or were producing very similar return
temperatures during the experiment week as during the week prior. But there were a few that
were not, including the Science and Engineering Building, which represents 25-30% of the
campus load. Figure 9.85 shows the return temperatures for this building. This might be the
main source of difference in the campus return temperatures between the two weeks. Various
possible causes of this unexpected behavior have were discussed during the project, but further
is required to fully explain it.
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Figure 9.85. Science and Engineering Building: Return temperatures

The flow rates (Figure 9.86) at the Science and Engineering Building did not, however, seem to
drop lower during the experiment week than during the previous week (unless there is
something unusual happening with that second mode at low loads). On average, the loads were
lower all across campus during the experiment week, but the decrease in loads was more
pronounced at this building - this may have caused some of the measured effects at the
aggregate level, and/or it may be pointing to something strange happening in the bridge
controls for this building.
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Figure 9.86. Science and Engineering Building: Flow rates



An upwards offset in the chilled water return temperature was also observed in three smaller
buildings, each of which is a bit unusual in some way. The Dining Building (Figure 9.87), at about
8% of the campus load, is likely also having a significant effect on the aggregate return
temperature difference. The other two are the Commons Building (Figure 9.88), at about 2% of
the campus load, and the Facilities Building (Figure 9.89), at 2-3% of the campus load.
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Figure 9.87. Dining Building: return temperatures
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Figure 9.88. Commons Building: return temperatures



300

295 |

M
wa
=}

Return Temp (K}

A
F | T
B % - measured (Aug29-Sepd}, ~39F supply temp

+ measured (Sep6-Sepll), ~42F supply temp

o 0.05 0.1 0.15 0.2 0.25
Load (MW)

Figure 9.89. Facilities Building: return temperatures

In general, most of the buildings behaved as expected, but the Science and Engineering Building
and the Dining Building are showing an upward offset in the return temperature, and their
loads are big enough to possibly explain the offset for the campus loop as a whole. Further
analysis is required to explain the causes of this behavior. However, for the purposes of the
second MPC experiment, the campus return temperature model had to be modified to fit the
empirical data. This modification process is described below.



9.3.4.3 Analysis: Model modifications to fit data before second MPC experiment

Figure 9.90 shows the measured data for the week before the chilled water experiment
and from the week of the experiment. This is the data that the coil model was required to fit.
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Figure 9.90. Measured Data from Experiment

The first attempt was to stretch the model to see if it could be made to fit this new data. If there
was a significant weather difference during the experiment week that was not captured by the
model, then the model might be able to capture the data by changing the » parameter for the

outside air fraction. Otherwise, the «,, @, and S parameters could be modified to try to
capture the new data.

Figure 9.91 shows the outdoor temperature vs load for the experiment week (red) and the
week before (blue). The y (average outdoor air ratio the AHUs) parameter generally captures
the spread in the return temp vs load graph (e.g. Figure 9.16), but it was conjectured that if
there was a difference in weather between the two weeks, a higher y value may also help to
explain some of the increase in return water temperature during the experiment week. This
seems a reasonable possibility, since the buildings that showed the increase in return
temperature (e.g. the SciEng building) were ones which generally have more outdoor air
requirements. By using a linear fit between the load and the outdoor temperature, and ignoring
the spread, we can see if any trend change could have the speculated impact on the model.
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Figure 9.91. Measured outdoor air temperature vs campus load

Using the linearized T, vs Load relationship for the two different weeks, Figure 9.92 shows
the effects of changing y . In this graph and the ones that follow, like colors show the model

results with the same set of parameters, with solid lines showing the results with the lower
supply temperature and dashed lines showing the results with higher supply temperature. The
figure shows that changing » can change the shape of the curve between the two weeks, but
cannot significantly affect the relationship between the results with the two different supply
temperatures.
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Since y itself was unable to account for the bulk of the difference, the next step was to see if it
could be accounted for by changes to o; and «, (involved in the relationship between UA
and the water flow rate and air flow rate respectively) and/or changes to £ (which scales the

empirical relationship between UA and Load that was added earlier to account for the dropoff
in UA at low loads presumably due to less smooth control at the bridges and AHUs at these
loads). Figure 9.93 shows the impact of changing £ - it can have some difference at low loads,

but not at medium or high loads, and any changes to it greatly affect the shape of the resulting
curves. So S alone cannot account for the change, but it may have some impact.
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Increasing ¢, and decreasing «, does, however, go some way to explaining the results. This
changes the relative sensitivity of the UA to changes in the water and air mass flow rates:
increasing «; and decreasing «, makes smaller increases in the water mass flow rate
produce the same increase in UA, which allows the water side delta T and the air-water LMTD
to be higher in the converged solution. Figure 9.94 shows the model stretched to its limits, with
a, much larger than «, (this much difference makes the impact of the water flow rate very
much outweigh the impact of the air flow rate), y increased, and £ made as high as possible
without disfiguring the curve too much.
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Figure 9.94. Fully stretched model (red) vs the model as configured before experiment (blue)

The fully stretched model looks like it might work, but when compared with the experimental
data, it still does not produce enough of an offset between the experimental week and the
week before. This result is interesting. In looking at the difference between the two weeks in
red in Figure 9.94, there is a ~1-1.5 K (~1.8-2.7°F) offset at low loads, and the offset generally
decreases as the load increases. This ~1-1.5 K (~1.8-2.7°F) offset is essentially the same as the
change in the supply temperature. At its limit, the model is only able to produce a change in
return temperature less than or equal to the change in the supply temperature. This makes
sense from first principles, as an increase in water side delta T (i.e T,,—T,;) and an unchanged

load would imply a decrease in water flow rate, but if the air side remains unchanged this
increase in water side delta T would require an increase in UA, which would require an increase
in flow rate (according to the relationship described above). So as long as the air side values are
equal between the two cases, the model must always converge to a solution where any
increase in T, coincides with a smaller increase (or potentially a decrease) in T,,. Or phrased

differently, the water side delta T (T,, — T, ) must always decrease given any increase in supply

temperature. And the relative size of this decrease is dependent on the flow rates, and thus on
the load - at higher flow loads, the UA is less sensitive to changes in the flow rates, so the
decrease in delta T would be greater at higher loads.



But the measured data is not behaving this way. Figure 9.95 shows the water side deltaT
(T, —T,i) vs load for the experiment week (red) and the week before it (blue). At low loads the

delta T is actually greater during the experiment week than it was during the pre-experiment.
And even at medium loads the delta T is equal in both cases, and the difference at high loads is
not nearly as large as would be expected.
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Figure 9.95. Water side delta T vs Load

By assuming values (as done in the model) for the return air temperature, supply air
temperature and outside air fraction (7 =0.3 in the figures below), along with the measured
loads, outside air temperature and water side data, we can compute the LMTD and UA. (Note
that although these are based on those three assumed values, the results are not very sensitive
to them as long as they are within reasonable ranges.) The resulting graph of UA vs Load for the
two weeks is shown in Figure 9.96. The offset is intriguing. And the graphs of UA vs water flow
rate (Figure 9.97) and air flow vs water flow (Figure 9.98) are instructive - there seems to be an
upwards offset in the graph of UA vs water flow during the experiment week, particularly at low
loads, which does not seem to be explained by differences on the air side. This may be because
of smoother control at the bridges and AHUs when the supply temperature is higher.
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With this in mind, and for the purpose of having a functional empirical model in time for the
second MPC experiment, an empirical factor was added to the model that scales the UA linearly
with the supply water temperature between 3.9°C and 5.6°C (39'42°F), with the added model
parameter c. With this added factor, the model is able to more accurately replicate the data,
as shown in

Figure 9.99 and Figure 9.100.
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Figure 9.99. Measured data (top) vs model outputs (bottom)
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This modified model was then used to re-calculate the lookup table for the chilled water return
temperature model in the online model for the second MPC experiment. In the end, it did not
affect the results of the MPC experiment because at almost all campus load levels, the decrease
in campus delta T with the higher supply temperature had a greater negative impact on system
COP than the positive impact resulting from the higher supply temperature, so the MPC was
always pushing the supply water temperature towards its lower bound regardless.



9.4 Appendix 4: Development of an Implementation Based on Look-Up
Tables

An implementation approach has been developed that is less intensive computationally than
the approach used for the initial implementation and testing described in the rest of this report.
The goal was to produce an implementation that could be used on a routine basis by the
building operators without assistance from the research team and could also be used to reduce
the computational effort required for the assessment of the performance and benefits of MPC
in different scenarios, such as the building out of the campus. The implementation will be
tested in follow-on work

9.4.1 Description of Approach

Figure 9.43 provides a highly abstracted view of the MPC implementation at UC Merced. This
calculation is carried out every night at before 10pm, and the results are supplied to the
operators for use that night.

current thermocline height,
tank warm and cold temps ——

overnight Tcws, Tchws,

charge start time and
charge length

predicted Tamb,Twb __{ MPC

predicted campus load
(based on Tamb and schedule) ———

Figure 9.43: Top-level block diagram of MPC implementation

The experimental implementation performed this function each evening by solving a detailed
optimization problem using the system model in Matlab and using Tomlab as the optimizer (a
proprietary nonlinear optimization solver), which required about 20 minutes of computing time
on a standard laptop. With this computing time requirement, an annual simulation of the MPC
implementation would take approximately 5 days to run. In addition, the use of proprietary
software makes it difficult to hand over a tool to the operators that they can use for long term
implementation. The goal of the work described below is to decrease the online computation
time requirement and to provide a program for long term implementation by simplifying the
problem through some approximations and performing offline optimizations to produce a
lookup table for a sub-problem, reducing the overall problem to a much simpler online
optimization that can be solved quickly with non-proprietary solvers.

9.4.2 Problem Decomposition

The MPC system model (Figure 9.44) contains just three state variables: the tank thermocline
height and the temperatures of the hot and cold nodes in the tank. The rest of the model is
treated as pseudo-static. (The campus load model is dynamic, but it is external to the system
model.)
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Figure 9.44: System model, overview

The MPC optimization problem can be rewritten in such a way to decouple the parts of the
optimization that rely only on the cooling plant model from the parts that rely on the tank
model as well. This allows for the offline creation of a lookup table of solutions to a
sub-problem involving only the cooling plant model.

Consider the divisions of days and nights over the prediction horizon shown in Figure 9.45. Note
that tank charging can only occur during the night period. This allows for a number of
simplifications, such as the fact that the load from the campus during each day period can be
treated as a single lump volume of water (m.) added to the tank between 8am and 10pm at a
given average temperature (T.4), and since the T,, prediction is only required during the

charging period, it only needs to be input for the overnight periods.

night 1 day 1

thermocline height (illustration)

night 3

day 3

10pm 8am

8am

10pm

8am

Figure 9.45: Days and nights over the prediction horizon

The MPC must determine the charge length for each night in the prediction horizon, the
charging start time for each night, and the T.,sand Ty for each night. Consider the following
way of approaching this optimization:

(1) A higher level optimization problem determines a charge length and T, for each night

over the horizon

(2) For each night, given the charge length and T s a lower level optimization determines
the optimal value of the start time and T, for that night, and returns the least-energy

solution to the higher level algorithm.



Note that the solution of the sub-problem (Equation 9.4) for each night is independent of the
solution for the other nights, and is dependent only on the given values of charge length and
Tenws, the predicted overnight T, values, and the overnight values of the hot node in the tank.
Since the solution of the higher level optimization problem depends on testing different values
for the charge length and T.,s for each night, the sub-problem may be called many times in the
course of solving the whole problem. The solution of this sub-problem requires only the cooling
plant portion of the system model (Figure 9.44), which is fast running and free of state
variables. This makes the sub-problem amenable to offline solution over a grid of possible
conditions, resulting in a lookup table that may be used in place of online optimization.

The sub-problem is as shown in the following equation. Various approximations allow a lookup
table of its solutions to be of a reasonably small number of dimensions.

(9.4)
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9.4.3 Input Approximations

The primary approximation that must be made is a parameterization of the predicted values of
the ambient wet bulb temperature, T,,. The experimental MPC implementation used 1-hr
predictions. Using 1 hr predictions would require 10 dimensions in the lookup table for T,,. This
can be decreased by using just Twsmin and Twp range as the basis for approximating the hourly
predictions, or by using Twbnin, TWbrange and the time of the min as the basis. For the first pass
discussed below, the two-parameter approximation was used. The three-parameter version will
likely be used for greater refinement.

The parameterization by Ty, min @and Ty, range IS described in Figures 9.46-9.48. Figure 9.46 shows
the overnight T,,, values for a typical year. Figure 9.47 shows these same data with each night
normalized by its minimum and maximum values: the colored lines are for each night, the
dashed black line is the hourly average of the curves, and the solid black line is the normalized
version of the dashed black line. This normalized curve is used to approximate the hourly T,
predictions given the predicted min and range. Annual values of the min and range for a typical
year are shown in Figure 9.49.



Twhb, normalized

30

25

Figure 9.46: Overnight T, values, derived from EnergyPlus TMY file for Merced

(Apr 1 to Nov 1, midnight to 8am, only 1 in 4 days shown for clarity)

e
in

Q
'S

hour of day

Figure 9.47: Normalized overnight T, values
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The other necessary approximations relate to the overnight temperatures of the hot and cold
nodes in the tank. For the first pass discussed below, Tcuus is assumed to be kept at a constant
39°F (as it was during the experiments). And, although it is a very rough approximation that will
be the first to undergo refinement, the hot node in the tank (T,) is assumed to be kept at a
constant temperature. To capture the T, temperature profile as accurately as the online MPC
does, hourly predictions for the campus return flow and temperature would be required.
However, it may be approximated by using an initial value for T, and assuming a constant
overnight flow rate (m.,) and temperature (T,) from the campus. Or, a parameterization
similar to that used for the T, prediction may be used. Measured campus flow rates for Sept 21
— Oct 7, 2009 are shown in Figure 9.49, and measured campus return temperatures for the
same period are shown in Figure 9.50. Their influence on the temperature of the warm node in
the tank is shown in Figure 9.51.



1400

1200 +

1000
Value Axis
800
E
o
o
600
400
200
o o o o o O o © 9 g g o o o g o o o g g g g o o
o o o o g o 2 o g 9o 0 0o o o 9 o 0o o o o 9o g o 9
®w o0 o —+H ™N M < W oY ~ o0 o000 - oo m o o ~N M s 1N w0~
— — — Lo L — — — — ™~ o~ o~ ~

Figure 9.49: Measured campus return flow rates
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Figure 9.51: Tank temperature prediction (from one of the experiment #2 daily reports)

9.4.4 AFirstPass at Approach Implementation - Lookup table creation

The approach outlined above is amenable to iteration, starting with rough approximations for
the inputs and a relatively course gridding for the lookup table, then testing and refining the
implementation over time. For a first pass, the two-parameter parameterization of the
overnight T, prediction is used, along with the assumption of constant T.,,s and Tch,r values.
The original Modelica model of the chilled water plant was used for successive GenOpt
optimizations over the grid of conditions shown in Table 9.4. The constraints on charging start
time and Tcws in the Matlab implementation were also used in these optimizations.



Table 9.4: Grid of conditions for sub-problem solution lookup table

Parameter Min Max Number of steps
Charge length (hrs) 1 10 10
TWbmin (F) 32 64.4 10
Twbyange (F) 1.8 18 10

Solving the sub-problem over this grid required 1000 optimizations, which took about 12 hours
with one processor on a laptop. For each grid point, the solution vector contains a value for
start time, T.s and overnight energy consumption. Some slices through the resulting
3-dimensional conditions grids are shown in Figures 9.52-9.53. Figure 9.52 shows the optimal
value of Tys as a function of the T, min. The scatter in this graph is because the optimal value of
Tews is also dependent on the values of Ty range and the charge length. On the other hand, Figure
9.53 shows no scatter except a few outliers (perhaps because of local minima or the T
constraints?), suggesting that the charging start time is dependent only on the charge length. (It
is also interesting to note that the relationship is very nearly linear.) This makes sense because
our first pass T, prediction parameterization assumes the time of T, to be held constant,
which will change in future iterations. Figure 9.54 shows another way of slicing the data for T,s.
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Figure 9.52: Optimal T,,, values vs minimum T,,, values
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9.4.5 First Pass at Approach Implementation - Online solution using lookup table

Given the lookup table of solutions to this sub-problem, the online MPC problem is simply to
determine the charge length and T,,s for each night over the prediction horizon. (In this first
pass, Tenws is held constant at 39°F, so the problem is just to optimize the charge lengths.) A
horizon of 3 days (as used in the physical experiments) was used in this first pass, but this can
easily be extended.

The objective function was coded in java, using linear interpolation over the lookup table. The
table is currently small enough to be used in flat text file format, but SQLite is being considered
for the next iteration. Penalty functions are used to enforce the thermocline height constraint.
The java program takes as input a text file containing values of the following for each night over
the horizon: the specified charge length, Tumin, Twhrange, @and the number of charge hours
required to stay above the minimum thermocline height (which is calculated externally based
on the initial thermocline height and the projected campus loads). The program outputs the
total energy consumption plus any penalties for violating constraints, along with the optimal
Tows values and charging start times from the lookup table. This objective function program is
called iteratively by GenOpt to find the optimal charge lengths.

This implementation has been tested using a couple of weeks of measured campus load and
Tamb (Twp @approximated as Tymp -10 K) from September 2009. The results are shown in Figure
9.55, with the charge length in red and T, in blue. Note that the approximate MPC algorithm is
charging more on cooler nights, as expected.
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Figure 9.55: Results of first-pass test with online GenOpt solution using lookup table



9.4.6 Next Steps

The inputs for each night were manually fed to the tool in this test. For full annual simulation of
this first pass and for future iterations, the Building Controls Virtual Test Bed (BCVTB) will be
used to couple the original Modelica model and the approximate MPC algorithm, as shown in
Figure 9.56.
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Figure 9.56: Screenshot of BCVTB set-up in progress

The annual performance of the approximated MPC algorithm will be compared with the
baseline heuristic control algorithm, and selected weeks will be compared with the full MPC
algorithm. The annual simulations will be run for various scenarios, such as an increase in
campus load (commensurate with the upcoming build-out of campus) and for the same
configuration in different climates.

The next refinement in the algorithm will be to include a more detailed treatment of the hot
node temperature in the storage tank. This will require the addition of 2 or 4 more dimensions
to the lookup table.! The final iteration will include the 3 parameter approximation of T, and a
modifiable T, requiring 2 more dimensions in the lookup table. Calculating these higher
dimension lookup tables will require many more processor hours and/or faster optimizations.
To speed up the optimizations and to make the process more amenable to cloud computing,
the Modelica cooling plant model will be gridded (similar to how it was gridded for use in the

! The 2 parameter approximation would use just Ta10pm @nd Tasiopes ignoring the effects of different charge start times
and the shape of the T, profile. The 4 parameter approximation would include this effect, using T, 10om, the thermocline
height, hiopm, and the weighted averages of the overnight campus return flow rate and campus return temperature.



Matlab MPC implementation), creating an interpolation lookup table equivalent to the
Modelica model that can be run faster and without requiring Dymola licenses for multiple
processors. The computation of the optimization lookup table could also be sped up by
intelligently setting starting points for the optimizations based on previous solutions (e.g. start
by solving for the corners of the lookup table, then interpolate to find optimization starting
points for points in between).



