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Abstract:  In the mature chorion, one of the membranes that exist during pregnancy 

between the developing fetus and mother, human placental cells form highly specialized 

tissues composed of mesenchyme and floating or anchoring villi. Using fluorescence in situ 

hybridization, we found that human invasive cytotrophoblasts isolated from anchoring villi or 

the uterine wall had gained individual chromosomes; however, chromosome losses were 

detected infrequently. With chromosomes gained in what appeared to be a chromosome-

specific manner, more than half of the invasive cytotrophoblasts in normal pregnancies were 

found to be hyperdiploid. Interestingly, the rates of hyperdiploid cells depended not only on 

gestational age, but were strongly associated with the extraembryonic compartment at the 

fetal-maternal interface from which they were isolated. Since hyperdiploid cells showed 

drastically reduced DNA replication as measured by bromodeoxyuridine incorporation, we 

conclude that aneuploidy is a part of the normal process of placentation potentially limiting the 

proliferative capabilities of invasive cytotrophoblasts. Thus, under the special circumstances of 

human reproduction, somatic genomic variations may exert a beneficial, anti-neoplastic effect 

on the organism. 
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INTRODUCTION 

With an incidence of one in every 5-6 clinically recognized pregnancies, spontaneous 

abortions (SABs) during the first trimester are the most frequent and often severe pregnancy 

complication in women [1]. Causes of SABs have been identified as chromosomal 

abnormalities, uterine defects, immunological problems, hormonal imbalance and infection [2-

6].  While more than half of all first trimester SABs are associated with chromosomal 

abnormalities, nearly 40% remain unexplained [6]. With no apparent association between 

placental villous morphology and fetal chromosomal abnormalities, SABs with either euploid 

or aneuploid conceptuses demonstrated incomplete cytotrophoblast (CTB) differentiation and 

compromised invasion [7-9]. These observations prompted our studies of the chromosomal 

make-up of extra-embryonic cells at materno-embryonic and fetal-maternal interfaces, i.e., the 

human placenta and the uterine wall.  

Today, all non-placental species of Eutheria are extinct. The development of eutherian 

embryos thus depends on the placenta, a transient, but vital organ; thus, the name ‘Placentalia’ 

[10,11]. The critical role of the placenta in demonstrating an embryo’s ability to generate 

lineages of differentiative capacity is illustrated strikingly by the placental abnormalities 

discovered first in genetically engineered mice [12,13]. During early human development, 

cells of the blastocyst are allocated to either the inner cell mass, which later becomes the fetus, 

or the trophoblast lineage, which forms the outer layer of the chorion and gives rise to the 

placenta. Soon, specialized functional adaptations of the trophoblast cells will emerge. The 

chorionic villi are at first small and non-vascular, and consist of the trophoblast only. But soon 

they increase in size and branch out, whereas the mesoderm carrying branches of the umbilical 

vessels grows into them and, in this way, vascularizes the villi [14]. To build floating villi, 
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cytotrophoblast cells (CTBs) fuse to form multinucleated syncytial coverings. These villi are 

attached to the placenta at only one end. The remainder of the floating villus remains 

immersed in maternal blood to optimize the exchange of gases, nutrients and waste between 

the mother and fetus (Fig. 1). In the process of building anchoring villi, CTBs detach from the 

basement membrane and form columns of mononuclear cells that grow rapidly and invade the 

uterus. Attached to the fetal portion of the placenta at one end and to the uterine basal plate at 

the other end, these villi provide anchors of the embryo to the uterine wall. Also of major 

functional importance, invasive CTBs (iCTBs) rapidly traverse most of the uterine 

parenchyma. Then, extravillous trophoblasts breach the uterine veins and arteries, and remodel 

the spiral arteries by replacing the endothelium with cytotrophoblasts, and thereby diverting 

uterine blood flow to the floating villi [15-19]. 

 

[Figure 1 here] 

In human reproduction, CTBs seem to fulfill several important functions and one would not 

expect much tolerance of chromosome abnormalities. The cells’ expression of functionally 

relevant molecules is precisely modulated as they invade the uterine wall or the extracellular 

matrix [20,21], and some of the key molecular aspects of CTB differentiation and invasion are 

known [12,13]. Except for the fact that invasion is limited to the inner third of the 

myometrium [19](Fig. 1), this process resembles more tumorigenesis than organ development. 

Remarkably, months of rapid placental growth and CTB invasion will bring large numbers of 

CTB cells into the myometrium [17,19]. Yet, in most pregnancies, the uterus contracts after 

labor and delivery, and progressively resumes normal size, shape and function without any 

signs of unscheduled cellular growth, presence of fetal cells or neoplasm. 
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Ontogenetic Aspects and Cytogenetics underlying Cytotrophoblast Function in the Normal 

Pregnancy  

In most pregnancies, the fetus and the placenta have the same chromosomal complement, 

because both structures are descendants of the same zygote. The known exceptions are mosaics 

caused by chromosomal instability [22]. However, in one to two percent of viable pregnancies, 

chorionic villus sampling around 10 to 12 weeks of gestation reveals a numerical chromosome 

abnormality, most often trisomy, confined to the placenta [22,23]. Confined placental mosaicism 

(CPM), as it has been termed, can occur as a result of postzygotic errors in mitosis, in which case 

the conceptus often retains a normal karyotype. Alternatively, a trisomic blastocyst may be 

rescued by chromosome loss within the embryo, leaving the extraembryonic lineages and thus 

the placenta trisomic [24-26]. Approximately 20% of pregnancies complicated by idiopathic 

intrauterine growth restriction are associated with CPM [27-29]. About 5% of conceptions with 

trisomy 13 or 18 develop trophoblast-confined mosaicism and continue their intrauterine 

development into the third trimester [30]. Placentae from non-mosaic newborns with trisomy 13 

or 18 or stillborns have shown trophoblast-confined diploid/trisomy mosaicism [31]. Thus, the 

process of ‘trisomic zygote rescue’ might allow some trisomic conceptuses to acquire a partially 

functional placenta and survive into the third trimester, if not to term. These observations 

emphasize the important issue that fetal survival and maternal health are not always dependent 

on the fetal karyotype. Proper function of extra-embryonic tissues such as the placenta or 

chorionic villi, are needed for embryonic/fetal survival, and genetic or morphological 

abnormalities in these tissues might adversely affect fetal development [19]. 

In many instances, the level of mosaicism detected by chorionic villus sampling does not 

properly reflect the level in the term placenta as a whole, which may vary considerably [32]. To 
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date, most genetic studies have examined cells in the floating villi including the trophoblast 

populations. On the other hand, very little is known about the karyotypes of human CTBs that 

arise from anchoring villi and subsequently invade the uterine wall. Interestingly, the analogous 

population of invasive trophoblasts in mice is believed to undergo endoreduplication [33,34]. A 

few additional reports partly based on cytometry results suggested the possibility that human 

iCTBs have an elevated ploidy level (hypertetraploid and hyperoctaploid) [35-37].  

In our studies of uncomplicated pregnancies, we did find that a majority of iCTBs identified 

as human leukocyte antigen – G (HLA-G) positive cells [21] were chromosomally abnormal [38-

40]. Please note that this population is rarely studied by any means, because of the difficulty of 

obtaining these samples.  Thus, it is not surprising that this phenomenon was not described 

earlier. Our work showed that in the CTB differentiation pathway, fate specification and cell 

cycle entry are tightly coordinated.  Specifically, CTBs undergo a final mitotic cycle as they 

enter the cell columns (Fig. 1), i.e., the structures that bridge the gap between the chorionic villi 

and decidua. Subsequently, uterine invasion is coordinated with permanent withdrawal from the 

cell cycle [41,42]. 

 
Multicolor FISH and Karyotype Analysis of Interphase Cells  

We have found that a subset of freshly isolated CTBs from normal pregnancies have 

numerical chromosomal abnormalities [39]. In our experiments, we applied a variety of non-

isotopically labeled DNA either prepared in-house [43-47] or obtained commercially (Abbott 

Molecular, Downers Grove, IL). With few exceptions, probes used in our studies were either 

DNA repeat probes or locus-specific DNA probes [48-51]. When cells obtained from patients 

with uncomplicated pregnancies were hybridized with three chromosome enumerator probes 

(CEPs) specific for the X- and Y-chromosomes and chromosome 16 (CEP X, CEP Y, and CEP 
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16, respectively) or chromosomes 13, 18 and 21, we observed that many CTBs displayed a 

continuum of CEP X signals that ranged from closely spaced pairs to widely separated CEP X 

signals (Fig. 2)[39,40].  

[Figure 2 here] 

In most cells, the copy number of X-chromosome was greater than the copy number of 

chromosome 16 or 18, but we did not observe significant differences between the fraction of 

hypersomic cells isolated from either unselected placentae or the basal plate (Fig. 3). Since the 

subpopulation of replicating, presumably diploid, CTB progenitors is rapidly depleted after the 

first trimester of pregnancy, we also analyzed aneuploidy as a function of gestational age. The 

CTBs isolated from first-trimester and term placentas had the lowest and highest mean rates of 

aneuploidy, respectively (22.2 ± 8.5% vs. 40.5 ± 9.0%), whereas second-trimester cells had an 

intermediate value (35.8 ± 12.5%) [39]. Furthermore, we studied the chromosomal make-up of 

CTBs in situ. Frozen tissue sections from three gestational ages were studies, and three cell types 

were scored: mesenchymal cells in the central cores of the chorionic villi, multinucleated 

syncytiotrophoblasts that cover these villi, and CTBs within the uterine wall (Fig. 4). The 

average rate of hyperdiploidy among mesenchymal cells was 11.6 ± 5.4%, 15.3 ± 8.3%, and 19.3 

± 9.3% in tissue sections of first-trimester, second-trimester and term placentas, respectively.  In 

comparison, syncytiotrophoblasts showed a higher rate that increased with advancing gestational 

age (8.2 ± 6.1%, first trimester; 22.0 ± 5.7%, second trimester; and 30.4 ± 11.7% at term).  Of all 

the cells that were scored, CTBs in the uterine wall were more likely to be hyperdiploid: 38.1 ± 

7.0% of cells in the second trimester and 42.6 ± 13.8% of cells at term had extra chromosomes.  

Finally, analysis of tissue sections (not shown) showed that the spatial distribution of the 

aneuploid trophoblasts appeared to be random, suggesting that the cells acquire aneusomies 
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sporadically as opposed to clonal expansion of an aneuploid CTB subset. 

[Figure 3 here] 

[Figure 4 here] 

We also have shown that the aneuploid cells, which fail to incorporate bromodeoxyuridine 

(BrdU), are HLA-G positive [39]. Additionally, the fraction of hyperdiploid cells increased with 

gestational age (Fig. 4), most likely reflecting the fact that the population of progenitor cells is 

largely depleted by mid-second trimester as a result of their differentiation to syncytio-

trophoblasts or iCTBs. Together these findings suggest that the aberrations in chromosome 

number in iCTBs arise during the last mitotic cycle, a conclusion that is bolstered by our in situ 

analyses. The sequestration of the aneuploid cells within the uterine wall provides a likely 

explanation why hyperdiploid CTBs are not found by chorionic villus sampling.  

Most SABs are sporadic and while chromosomal errors are their most prominent cause, the 

exact mechanism of the abortion event is still in dispute. Qumsiyeh et al. [52] suggested a 

mechanism for aneuploid SAB: increased apoptosis and decreased cell proliferation in 

chromosomally abnormal placental cells. These investigators found a higher fraction of apoptotic 

cells among the stromal cells from chromosomally abnormal villi compared to those from 

chromosomally normal villi. But apoptotic fractions were no different among trophoblastic cells 

from either type of villus. Moreover, in blood vessel walls, chromosomally abnormal villi had a 

lower number of proliferative cells than chromosomally normal villi. The authors suggested that 

apoptosis of stromal cells and cell proliferation in both blood vessels and stromal cell 

compartments play an important role in the differentiation and function of villi.  An abnormal 

chromosome complement may lead to decreased cell proliferation of both vascular smooth 

muscle and stromal cells, however there is still no explanation for euploid SABs. 
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CONCLUDING REMARKS 

The human embryo/fetus cannot develop autonomously. The various portions of the placenta 

connect the conceptus in many ways to the mother, all of which are critical to the outcome of the 

pregnancy. Proper formation of the materno-fetal interface, i.e., the placenta and villous 

structures, is essential to ensure normal embryonic growth and fetal development. The results of 

our studies suggest that chromosomal abnormalities, such as the gain or loss of chromosomes, 

have functional consequences on the establishment of vasculature and fetal development. We 

have determined that human CTBs acquire aneuploidies as they differentiate to an invasive 

phenotype suggesting that aneuploidy is an important component of normal placentation, likely 

to limit the proliferative and invasive potential of CTBs [39,40]. It will be very interesting to 

know, if similar alterations of the genotype of CTBs happen in SABs, which are known to be 

associated with incomplete CTB differentiation and invasion. 

Aneuploid CTBs have been found in large numbers in the placentae and chorionic villi 

associated with triploid conceptuses as well as in normal, uncomplicated pregnancies [38,39]. In 

both instances, the fraction of aneuploid CTBs increases with gestational age, but does not 

appear to exert a detrimental effect on the organism. This is in contrast to reports of genomic 

variations in other organs such as the reproductive system, the human brain or in hematological 

disorders [44, 53-56], where an association between aneuploidy and disease could be established 

[54,56-58]. While it seems that all human tissues are affected by somatic genomic variations 

[59], albeit to a greatly varying extent, aneuploidy might be missed when present in rare cells 

[60,61].  This low frequency of genomic variants marks a demand for highly sensitive 

technologies-of-scale that offer the high throughput necessary to detect such rare events. The 

application of improved methods for interphase cell analysis the [62-64] and novel genomic and 



Weier et al.:  Placental aneuploidy  page - 10 - 

proteomic technology platforms that have been developed in recent years promise to meet this 

need [65]. 

 

 

 

ABBREVIATIONS 

BrdU – bromodeoxyuridine 

CEP - chromosome enumerator probe 

CPM - confined placental mosaicism 

CTB - cytotrophoblast 

iCTB - invasive cytotrophoblast 

HLA-G  - human leukocyte antigen – G  

SAB - spontaneous abortions  
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FIGURES 

Fig. (1). The different cell types at the fetal-maternal interface around 10-12 weeks of 

gestation. Depicted is a diagram of a longitudinal section of an anchoring chorionic villus at the 

fetal-maternal interface midway through human pregnancy. The anchoring villus functions as a 

bridge between the fetal and maternal compartments, whereas floating villi are suspended in the 

intervillous space and are immersed in maternal blood. Cytotrophoblasts in anchoring villi form 

cell columns and invade the uterine interstitium and maternal blood vessels, thereby anchoring 

the fetus to the mother and accessing the maternal circulation. (Reprinted from Developmental 

Biology, vol. 279, JF Weier et al., Human cytotrophoblasts acquire aneuploidies as they 

differentiate to an invasive phenotype, pages 420-432, Copyright 2005, with permission from 

Elsevier.) 

Fig. (2). FISH analysis of isolated CTBs reveal numerical chromosome aberrations.  The six 

cell nuclei shown in this panel were hybridized with a triple probe combination and 

counterstained with DAPI. The probes used were CEP 16 (Spectrum Green), CEP X (Spectrum 

Orange) and CEP Y (Spectrum Aqua, blue)(Abbott, Inc.). Since these CTBs were isolated from 

extraembryonic tissue of a female conceptus, the nuclei did not show any blue signals. The 

panels show the DAPI, CEP X and CEP 16 signals in panels (A), (B), and (C), respectively. The 

composite image is shown in panel (D). The arrows point at an aneuploid nucleus showing 4 red 

and 4 green signals. Please see Weier et al. [39] for further examples. 

Fig. (3). FISH analysis of isolated CTBs obtained from women with normal pregnancies. 

For most of the  chromosomes, the average fraction hypersomic cells of isolated from the 

placenta is slightly lower than that of cells from the basal plate (i.e., uterine wall). Six 
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chromosomes (13,16,18,21,X-chromosome,Y-chromosome) were scored. Due to the mix of 

female and male samples, the Y-chromosome data was excluded from analysis.  

Fig. (4). FISH analysis of invasive CTBs in at the fetal-maternal interface. Analysis 

of tissue sections allowed calculation of the percentage of hyperdiploid cells in the 

various placental compartments during the first and second trimesters and at term. 

Samples of CTBs embedded in the uterine wall could not be obtained during the first 

trimester. During the second trimester, hyperdiploid cells were found more often within 

the uterine wall than in association with the floating villi (* p < 0.002). 
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