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Homologous recombination mediated by the RAD51 recombinase helps eliminate 
chromosomal lesions, such as DNA double-stranded breaks induced by radiation or 
arising from injured DNA replication forks. The tumor suppressors BRCA2 and 
PALB2 act together to deliver RAD51 to chromosomal lesions to initiate repair. 
Here we document a new function of PALB2 in the enhancement of RAD51’s ability 
to form the D-loop. We show that PALB2 binds DNA and physically interacts with 
RAD51. Importantly, while PALB2 alone stimulates D-loop formation, a co-
operative effect is seen with RAD51AP1, an enhancer of RAD51. This stimulation 
stems from PALB2’s ability to function with RAD51 and RAD51AP1 to assemble 
the synaptic complex. Our results help unveil a multi-faceted role of PALB2 in 
chromosome damage repair. Since PALB2 mutations can cause breast and other 
tumors or lead to Fanconi anemia, our findings are important for understanding the 
mechanism of tumor suppression in humans.  
 
BRCA2 protein plays a key role in mediating homologous recombination (HR) and the 
repair of damaged chromosomes via HR1 in humans. BRCA2 fulfills these biological 
roles by regulating the function of the RAD51 recombinase protein2,3. Recently, a novel 
protein called PALB2 (Partner and Localizer of BRCA2) was found to associate with 
BRCA2. Importantly, BRCA2 and PALB2 mutations lead to destabilization of the 
genome4-6 and engender cancer risk. While monoallelic mutations predispose affected 
individuals to breast, pancreatic and other cancers7,8, biallellic mutations cause Fanconi 
anemia subtypes -N and -D1 respectively9-11. PALB2 is thought to stabilize BRCA2 by 
promoting its chromatin association. Recent studies have also demonstrated an 
architectural function of PALB2 in linking BRCA2 with the BRCA1 tumor 
suppressor12,13.  
 
To better understand the biological functions of PALB2, we have purified full length 
PALB2 and several PALB2 fragments and subjected them to a series of biochemical 
analysis. We demonstrate that PALB2 binds DNA and associates with the RAD51 
recombinase in a species-specific fashion. Importantly, PALB2 exerts a stimulatory effect 
on the ability of RAD51 to make D-loops. Moreover, PALB2 physically interacts with 
RAD51AP1, a key accessory factor of RAD5114,15, and functionally co-operates with 
RAD51AP1 in the enhancement of RAD51’s recombinase attribute. These results help 
define the multi-faceted role that PALB2 protein fulfills in HR and chromosome damage 
repair. 
 
RESULTS 
Purification of PALB2 and protein fragments 
To obtain highly purified PALB2 and protein fragments for functional analyses, full-
length GST-tagged PALB2 and PALB2 fragments were expressed in insect cells with the 
use of recombinant bacculoviruses or in the bacterium Escherichia coli (E. coli). All the 
PALB2 species were found to be soluble, and multi-step procedures were devised for 
purifying them to near homogeneity (Fig. 1a,b and Supplementary Fig. 1a,b).  
 
Demonstration of PALB2’s DNA binding function 



Since PALB2 mediates the chromatin association of BRCA2 in cells5, we were interested 
in testing whether it has DNA binding activity. A DNA electrophoretic mobility shift 
assay with 32P-labeled ssDNA, dsDNA, or D-loop as substrate (Fig. 2a) was therefore 
used to test various purified PALB2 species. Full length PALB2 bound all three species 
of DNA with the following preference: D-loop > dsDNA > ssDNA (Fig. 2b). 
Importantly, while the PALB2 amino-terminal fragment encompassing residues 1-579 
also bound DNA with the same preference and a similar affinity as the full length protein 
(Fig. 2c), the PALB2 fragment that harbors residues 611-764 or the C-terminal region 
(residue 850-1186) did not shift any of the DNA substrates tested (Supplementary Fig. 
1c and data not shown).  
 
In order to establish the DNA binding specificity of PALB2 more definitively, we 
conducted a series of competition experiments wherein a preformed nucleoprotein 
complex of either full length PALB2 or PALB2 1-579 with radiolabeled dsDNA was 
challenged with increasing amounts of unlabeled ssDNA, dsDNA, or D-loop. The results 
revealed that, with either PALB2 species, the D-loop was the most effective competitor, 
followed by dsDNA (Fig. 2d,e). By contrast, ssDNA was less able to reduce the level of 
the preformed radiolabeled nucleoprotein complex (Fig. 2d,e).  
 
Taken together, the results from the experiments documented herein have helped 
establish that (1) PALB2 is a DNA binding protein, (2) the N-terminal half of PALB2 
harbors a DNA binding domain, and (3) both full length PALB2 and the isolated N-
terminal DNA binding domain bind the D-loop avidly. PALB2 clearly also binds dsDNA, 
and we note that results reported by Jean Yves Masson’s group (Buisson et al; personal 
communication) suggest that PALB2 has high affinity for certain sequences or secondary 
structures in ssDNA as well. 
 
Association of purified PALB2 with RAD51 
Since PALB2 affects RAD51-mediated chromosome damage repair in cells5, we 
employed an affinity pulldown assay to query whether PALB2 directly interacts with 
RAD51. For this, purified PALB2 and RAD51 were incubated together, followed by the 
capture of the assembled protein complex via the GST tag on PALB2 using glutathione 
Sepharose beads, elution of proteins by SDS treatment, and SDS-PAGE analysis. The 
results clearly showed an association of RAD51 with PALB2 (Fig. 3a, (i)). As expected, 
RAD51 did not associate with purified GST (Fig. 3a, (i)). Importantly, no interaction of 
PALB2 with the budding yeast Saccharomyces cerevisiae Rad51 (ScRad51) was 
observed (Fig. 3a, (ii)), indicating that the PALB2-RAD51 complex is species-specific. 
By testing purified GST-tagged fragments of PALB2 that encompass different portions of 
the protein (Fig. 1b, (ii)), we were able to map the RAD51 interaction domain to residues 
101-184 of PALB2 (Fig. 3a, (iii)). Again, no interaction of the PALB2 1-184 fragment 
with ScRad51 was seen (Fig. 3a, (iii)).  
 
Enhancement of RAD51 activity by PALB2 and RAD51AP1 
We noted that the DNA binding properties of PALB2 are reminiscent of RAD51AP114,15, 
which interacts with and enhances the ability of RAD51 to make D-loops14,15. Given this, 
and the fact that PALB2 associates with RAD51, we wanted to test whether PALB2, 



alone or in combination with RAD51AP1, would enhance the recombinase function of 
RAD51. A well-established D-loop assay (Fig. 3b, (i)) was used for this purpose. The 
addition of PALB2 alone to the D-loop reaction increased the level of product several 
fold, from a barely detectable amount in PALB2’s absence to ~5-8% of D-loop with 
PALB2 being present (Fig. 3b, (ii) and (iii), and Supplementary Fig. 2a). The increase 
in D-loop formation stemmed from a stimulation of the RAD51 recombinase activity by 
PALB2, as PALB2 alone was not capable of D-loop formation (Fig. 3b, (ii) and (iii)). As 
expected14,15, the efficiency of the D-loop reaction could be enhanced by RAD51AP1 
alone (Fig. 3b, (ii) and (iii), and Supplementary Fig. 2b). We then conducted an 
extensive series of experiments in which we tested a wide range of reactant 
concentrations to ask whether PALB2 and RAD51AP1 would synergize in the promotion 
of D-loop formation. Importantly, at PALB2 and RAD51AP1 concentrations that are 
suboptimal on their own, a clear synergy was seen (Fig. 3b, (ii) and (iii)). ATP was 
always required for D-loop formation, regardless of whether PALB2, RAD51AP1, or the 
combination of these two recombinase co-factors was used (Fig. 3b, (ii) and (iii), and 
data not shown). We note that the stimulatory effect of PALB2 and RAD51AP1 on 
RAD51 is specific, as we did not find any enhancement of the D-loop reaction catalyzed 
by ScRad51 by PALB2 or RAD51AP1 alone or the two factors in combination 
(Supplementary Fig. 3).  
 
Interactions of PALB2 with RAD51AP1 
Based on the observed synergy between PALB2 and RAD51AP1 in the D-loop reaction 
(Fig. 3b), we wished to determine whether these two HR factors physically interact. With 
the aid of affinity pulldown using either the GST-tag on PALB2 and glutathione resin, or 
the MBP-tag on RAD51AP1 and amylose resin, we were able to show a direct interaction 
of PALB2 with RAD51AP1 (Fig. 3c). The PALB2-RAD51AP1 complex is destabilized 
by KCl concentrations above 100 mM (data not shown). To further map this interaction, 
we used an N-terminally truncated variant of RAD51AP1, N∆120 that lacks the first 120 
residues of the protein. With the aid of MBP-pulldown by amylose resin, we observed 
that MBP-tagged RAD51AP1 NΔ120 is deficient in PALB2 interaction (Supplementary 
Fig. 4a, (i)). We note that, since the RAD51 interaction domain resides within the 
extreme C-terminus of RAD51AP114,15, the RAD51AP1 N∆120 variant retains the ability 
to interact with RAD51 (Supplementary Fig. 4a, (ii)). Importantly, while RAD51AP1 
N∆120 could enhance the RAD51-mediated D-loop reaction, it failed to synergize with 
PALB2 in this regard (Supplementary Fig. 4b). Thus, it appears that the interaction 
between PALB2 and RAD51AP1 is required for their functional synergy in the 
enhancement of the D-loop reaction. 
 
To investigate the functional relationship between PALB2 and RAD51AP1 in vivo, we 
analyzed protein foci formation in HeLa and U2OS cells after DNA damaging treatment. 
Whereas mock-treated cells showed dispersed nuclear staining of RAD51AP1 and 
PALB2 but no significant co-localization (Supplementary Fig. 5a,b and i,j), exposure to 
ionizing radiation induced distinct PALB2 and RAD51AP1 foci in both HeLa 
(Supplementary Fig. 5e,f) and U2OS cells (Supplementary Fig. 5m,n) that frequently 
co-localized (Supplementary Fig. 5g,o, for HeLa and U2OS cells respectively). Similar 
results were obtained in U2OS cells with mitomycin C (MMC) treatment (data not 



shown). Interestingly, we found that even though PALB2 deficient fibroblasts express 
RAD51AP1 protein (Fig. 4a), they are unable to assemble RAD51AP1 foci upon 
treatment with MMC (Fig. 4b). As expected, complementation of these cells with 
PALB2 restored the ability to form RAD51AP1 foci in response to MMC (Fig. 4b), and 
siRNA treatment against RAD51AP1 could diminish these foci (Fig.4b,c). These results 
indicate that PALB2, either directly or through an intermediary, such as RAD51, plays a 
key role in the recruitment of RAD51AP1 to DNA damage.  
 
In co-immunoprecipitation experiments using anti-PALB2 and anti-RAD51AP1 
antibodies, only a negligible amount of PALB2 and RAD51AP1 could be co-precipitated 
from cell extracts before and after treatment of cells with camptothecin (data not shown). 
Considering that the PALB2-RAD51 complex is salt-sensitive, the failure to co-
immunoprecipitate these proteins could stem from the relatively high concentration of 
salt (120 mM) and extensive washing steps designed to reduce non-specific protein 
binding to the anti-mouse or anti-rabbit IgG resin. Alternatively, or in addition, the 
antibodies used might have a destabilizing effect on any PALB2-RAD51AP1 complex 
present in the extracts. 
 
Enhancement of synaptic complex assembly by PALB2-RAD51AP1  
In the RAD51-mediated D-loop reaction, the presynaptic filament captures the duplex 
DNA partner, followed by a DNA homology search process that leads to the formation of 
a nucleoprotein intermediate, the synaptic complex, in which the DNA molecules are 
homologously aligned and base switching has occurred16,17.  
We employed two separate assay systems to verify whether PALB2 and RAD51AP1 
promote the formation of the synaptic complex with the RAD51 presynaptic filament. 
First, the duplex capture step (Fig. 5a, (i)) was examined by mixing the RAD51 
presynaptic filaments assembled on ssDNA linked to magnetic beads with a radiolabeled 
duplex in the presence of PALB2, RAD51AP1, or both of these recombinase cofactors. 
As had been reported before, the RAD51 presynaptic filament alone exhibited only a 
weak ability to engage dsDNA18. PALB2 alone enhanced the ability of the presynaptic 
filament to capture duplex DNA (Fig. 5a, (ii)). RAD51AP1 also worked with the RAD51 
presynaptic filament in duplex capture (Fig. 5a, (ii)). Then, we tested PALB2 and 
RAD51AP1 together to see if they would act synergistically in the duplex capture 
reaction. Numerous reactant concentrations were examined in this endeavor. As in the D-
loop reaction, at certain PALB2 and RAD51AP1 concentrations, these two factors clearly 
synergized in duplex capture in a manner that required the RAD51 presynaptic filament 
and ATP (Fig. 5a, (ii)). As expected, no dsDNA capture occurred when magnetic beads 
without ssDNA were first incubated with RAD51, PALB2, and RAD51AP1 and then 
with the radiolabeled dsDNA (Supplementary Fig. 6a). Importantly, the combination of 
PALB2, RAD51AP1, and the RAD51 presynaptic filament failed to capture ssDNA 
(Supplementary Fig. 6b).  
 
We next used protection of linear dsDNA against digestion by the restriction enzyme 
SspI (Fig. 5b, (i)) to directly examine synaptic complex formation19. The results from 
testing numerous reactant concentrations again provided clear evidence for an 
enhancement of RAD51-dependent synaptic complex formation by PALB2 and 



RAD51AP1 individually, and for a co-operative action of these recombinase co-factors 
(Fig. 5b, (ii)). Again, the reaction mediated by PALB2 and RAD51AP1 in conjunction 
with the RAD51 presynaptic filament showed a strict dependence on ATP (Fig. 5b, (ii)).  
 
DISCUSSION  
In cells, ssDNA arising from the nucleolytic processing of DSBs and other chromosomal 
lesions is first bound by RPA. The utilization of the RPA-bound ssDNA as substrate for 
HR necessitates RPA’s replacement by RAD51, which is promoted by the BRCA2 
protein1,20. This attribute of the BRCA2 protein qualifies it as a recombination mediator1. 
Recent work5 has shown that the proper localization of BRCA2 and the targeting of 
BRCA2 to damaged chromosomes are dependent on PALB2. Thus, in PALB2-deficient 
cells, as in BRCA2-deficient cells21, the assembly of DNA damage-induced RAD51 foci 
is impaired5. Based on these properties of PALB2, it has been generally assumed that its 
primary function is to help promote the delivery of RAD51 to DNA lesions via BRCA25 
(Supplementary Fig. 7a). Here, our biochemical studies and those reported by Buisson 
et al (personal communication) have revealed a direct interaction of PALB2 with RAD51 
and the RAD51 presynaptic filament. Importantly, our results have shown that PALB2 
binds D-loop and also dsDNA, and the results of Buisson et al (personal communication) 
suggest that PALB2 also has high affinity for certain sequences or secondary structures in 
ssDNA.  These DNA binding properties distinguish PALB2 from the isolated DNA 
binding domain of the human or mouse BRCA2 protein described until now, which 
appear to have little affinity for dsDNA3,20. We have carried out biochemical analyses to 
test the hypothesis that PALB2 functions with RAD51 after presynaptic filament 
assembly. The results have provided evidence for an ability of PALB2 to synergize with 
the RAD51AP1 protein in the promotion of D-loop formation by RAD51 
(Supplementary Fig. 7a,b). In addition to facilitating the assembly of the synaptic 
complex, given the affinity of PALB2 (personal communication from Buisson et al and 
this work) and RAD51AP114 for the D-loop structure, they could also stabilize the 
nascent D-loop made by RAD51. We note that since RAD51AP1 plays little or no role in 
the assembly of DNA damage-induced RAD51 foci in cells14,15, its function in HR is 
probably limited to the DNA strand invasion stage of the HR reaction. 
 
Like BRCA2, PALB2 is indispensable for genome maintenance and cancer suppression 
in humans7,9,10,22,23. Our results showing an ability of PALB2 to stimulate the RAD51-
mediated D-loop reaction speak to the multi-faceted role that this tumor suppressor 
fulfills in DNA homology-directed chromosome damage repair and should be valuable 
for understanding the tumor suppressor attribute of this recombinase accessory factor.  
 
FIGURE LEGENDS 
Figure 1. PALB2 purification. (a) Schematic summarizing the known features of 
PALB2 and the PALB2 species used in this work. (b) Protein purification procedures and 
SDS-PAGE analysis of the purified PALB2 species (1 µg each in (i) and 2 µg each in 
(ii)).  
 
Figure 2. DNA binding by PALB2.  (a) The DNA substrates used. The prefix denotes 
the identity of the oligonucleotide. (b) Full length PALB2 (5, 50, 100, 200, and 300 nM) 



or (c) PALB2 1-579 (5, 20, 50, 100, 200, and 300 nM) was incubated with different DNA 
substrates (30 nM) and then analyzed (i, ii, and iii). The results were quantified and 
graphed (iv). (d) and (e) PALB2 (150 nM) or PALB2 1-579 (200 nM) was incubated 
with radiolabeled dsDNA (30 nM) and then the nucleoprotein complex was challenged 
with an increasing concentration of unlabeled ssDNA, dsDNA, or D-loop (30, 60, 90, and 
120 nM), as indicated. The reaction mixtures were analyzed (i), and the levels of 
radiolabeled nucleoprotein complex were quantified and graphed (ii). Error bars represent 
the standard deviation (±s.d.) calculated based on at least three independent experiments. 
 
Figure 3.  Enhancement of the RAD51-mediated D-loop reaction by PALB2 and 
RAD51AP1. (a) In (i), GST-PALB2 or GST (2 µg) was incubated with RAD51 (3 µg) 
and the PALB2-RAD51 complex was captured on glutathione resin and analyzed. In (ii), 
ScRad51 (3 µg) was used in place of hRAD51. In (iii), the indicated GST-tagged PALB2 
fragments (4 µg) were examined for complex formation with RAD51 or ScRad51 (3 µg). 
S: supernatant containing unbound proteins; W: wash; E: SDS eluate of the glutathione 
resin.(b) Schematic of the D-loop assay is shown in (i). Panel (ii) shows D-loop reactions 
conducted with RAD51, PALB2, RAD51AP1, or combinations of them. ATP was 
omitted from the reaction in lane 11. The results were quantified and graphed in (iii). 
Error bars represent the standard deviation (±s.d.) calculated based on at least three 
independent experiments. (c) In panel (i) GST-tagged PALB2 or GST (2 µg) was 
incubated with MBP-RAD51AP1 (2 µg), and the PALB2-RAD51AP1 complex was 
captured on glutathione resin. In panel (ii), MBP-tagged RAD51AP1 (2 µg) or MBP was 
incubated with GST-tagged PALB2 and the PALB2-RAD51AP complex was captured on 
amylose resin. Elution of the protein complex from the affinity resin and subsequent 
analysis were conducted as in (a).   
 
Figure 4. Effect of PALB2 on DNA damage-induced RAD51AP1 foci formation.(a) 
Western blots of nuclear extracts from PALB2-deficient fibroblasts (-) transduced with 
empty pOZC vector or with PALB2-expressing pOZC vector (+PALB2). (b) Western 
blots to show RAD51AP1 knockdown in the PALB2-complemented EUFA1341 cells. 
The signal for QM serves as a loading control. (c) Shown are representative micrographs 
obtained by superimposing the RAD51AP1 signal (red) of PALB2-deficient (i-ii) and 
PALB2-complemented (iii-vi) EUFA1341 fibroblasts onto the DAPI counter stain (blue). 
PALB2-deficient EUFA1341 fibroblasts are greatly impaired in RAD51AP1 foci 
formation after MMC treatment (i, ii), whereas PALB2-complemented EUFA1341 cells 
form RAD51AP1 foci (iii, iv) in response to MMC. RAD51AP1 foci can be abrogated in 
PALB2-complemented EUFA1341 cells by treatment with RAD51AP1 siRNA (v, vi).  
 
 
Figure 5. PALB2 enhances synaptic complex assembly. (a) Shown in (i) is the 
schematic of the duplex capture assay18. Panel (ii) shows reactions carried out with the 
RAD51 presynaptic filament, RAD51AP1, PALB2, or their combinations. ATP was 
omitted from the reaction in lane 12. The results were quantified and graphed.(b) The 
basis for the protection against restriction digest is explained in (i)19. Panel (ii) shows 
reactions carried out with the RAD51 presynaptic filament, RAD51AP1, PALB2, or their 
combinations. No restriction enzyme was added to the reaction in lane 1, and ATP was 



omitted from the reaction in lane 10. The results were quantified and graphed; the 
background of 5% (lane 2) had been subtracted from all the values. Error bars represent 
the standard deviation (±s.d.) calculated based on at least three independent experiments. 
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METHODS 
DNA binding assays. PALB2 was incubated with the indicated radiolabeled DNA 
substrate (30 nM each) and amounts of PALB2 or PALB2 fragment in 5 µl buffer (50 
mM Tris-HCl, pH 7.5, 100 mM KCl, 1 mM MgCl2, 1 mM DTT, 100 µg.ml-1 BSA) at 
37°C for 10 min. The reaction mixtures were resolved in 4% polyacrylamide gels in Tris-
Glycine buffer (12.5 mM Tris-HCl, 100 mM glycine pH 8.0). For the competition 
experiments in Fig. 2, d & e, dsDNA (30 nM) was incubated with 150 nM of PALB2 or 
200 nM of PALB2 1-579 at 37°C for 10 min. The preformed nucleoprotein complex was 
then challenged with the indicated concentrations of unlabeled DNA competitor (added 
in 1 µl) for 5 min at 37°C. The reaction mixtures were analyzed as above. 
 
Affinity pulldown. The indicated GST-tagged, MBP-tagged, or untagged protein species 
were incubated in 30 µl of buffer (25 mM Tris-HCl, pH 7.5, 0.01% Igepal, 1 mM 2-
mercaptoethanol) containing 100 mM KCl for 30 min at 4°C and then mixed with 7 µl 
glutathione resin (GE Healthcare) or amylose resin (New England Biolabs) for 30 min at 
4°C to capture the tagged protein and its partner. The resin was washed three times with 
30 µl of buffer containing 70 mM KCl and then treated with 20 µl of 2% SDS to elute 
proteins. The supernatant (S), last wash (W), and SDS eluate (E) were analyzed by SDS-
PAGE.     
 
D-loop reaction. The 32P-labeled 90-mer oligonucleotide substrate (2.4 µM nucleotides) 
was incubated for 5 min at 37°C with RAD51 (0.8 µM) in 10.5 µl buffer (35 mM Tris-
HCl, pH 7.5, 1 mM DTT, 50 mM KCl, 2 mM MgCl2, 2 mM ATP), followed by the 



addition of PALB2 (200 or 300 nM), RAD51AP1 (50 nM), or the combination of the two 
proteins in 1 µl and a 5-min incubation at 37°C. pBlueScript replicative form I DNA (35 
µM base pairs) was then incorporated in 1 µl, and the reactions were incubated for 12 min 
at 37°C and analyzed.  
 
Duplex DNA capture. Streptavidin magnetic beads (4 µl; Roche) containing 5’-
biotinylated 83-mer oligo dT (9 µM nucleotides) were incubated with RAD51 (3 µM) in 
20 µl buffer (35 mM Tris-HCl, pH 7.5, 1 mM DTT, 100 µg.ml-1 BSA, 50 mM KCl, 2 
mM MgCl2, 2 mM ATP) for 5 min at 37°C. The beads were captured with a magnet, 
washed with 20 µl buffer, and then resuspended in 19 µl buffer. Following the 
incorporation of PALB2 (200 or 400 nM), RAD51AP1 (300 nM), or the combination of 
the two proteins in 1 µl and a 5-min incubation at 37°C, the beads were again captured, 
washed with 20 µl buffer, and resuspended in 19 µl buffer. The reaction was completed 
by adding radiolabeled 80-mer dsDNA (4 µM base pairs) in 1 µl. After a 10-min 
incubation at 37°C, the beads were captured, and the supernatant was set aside. After 
washing the beads twice with 20 µl buffer, 20 µl 2% SDS was used to elute bound 
proteins and radiolabeled DNA, followed by analysis of the supernatant and eluate. 
 
Synaptic assay. RAD51 (4 µM) was incubated with a 60-mer oligonucleotide (12 µM 
nucleotides) homologous to the region of pUC19 DNA spanning positions 2471 to 2531 
(that covers the SspI restriction site and serves as the homologous DNA substrate) or 
positions 776 to 836 (that covers the AflIII restriction site and serves as the heterologous 
control) in 8 µl buffer (35 mM Tris-HCl, pH 7.5, 1 mM DTT, 2 mM MgCl2, 50 mM KCl, 
2 mM ATP) for 5 min at 37°C to assemble the presynaptic filament, which was further 
incubated for 5 min with PALB2 (200 or 400 nM), RAD51AP1 (400 nM), or both 
proteins added in 1 µl of buffer.  Following the addition of linear pUC19 DNA (83 µM 
nucleotides) in 1 µl and another 5-min incubation at 37oC, the reaction was treated with 
2.5 units of SspI for 10 min at 37oC and then analyzed. 
 
Immunofluorescence. EUFA1341 (PALB2-/-) fibroblasts and their derivatives (+ 
vector, + PALB2), a kind gift from Dr. Bing Xia, were maintained as described24. U2OS 
and HeLa cells were grown in Dulbecco’s Modified Eagle’s Medium and Minimum 
Essential Medium, respectively, with 10% fetal bovine serum. Cells were exposed to 160 
kVp X-rays filtered through 0.5 mm copper at a dose rate of ~1 Gy.min-1 or to 6 µM 
MMC for 1 h in regular growth medium at 37°C. The treated cells were kept in the 
regular growth medium at 37°C for 16 h before fixation and permeabilization as 
described12. For detection of RAD51AP1 and PALB2 foci, cells were incubated with 
mouse polyclonal α-RAD51AP1 antibody (SAB1400398; Sigma; 1:2000) and affinity-
purified rabbit polyclonal α-PALB2F4 antibody5 (1:600) in 2% bovine serum albumin 
(BSA) in Dulbecco's Phosphate Buffered Saline (DPBS; 137.9 mM NaCl, 8.1 mM 
Na2HPO4, 2.7 mM KCl, 1.5 mM KH2PO4, pH 7.5) at 4°C overnight. After 5 washes with 
DPBS, the cells were incubated for 1 h with Alexa Fluor 594 goat anti-mouse and Alexa 
Fluor 488 goat anti-rabbit IgG (Invitrogen; 4 μg.ml-1) in 2% BSA/DPBS, and DNA was 
stained by DAPI (50 ng.ml-1). The slides were viewed at 2,000 × magnification with a 
Zeiss Axioskop microscope. 
 



Immunoblotting. Western blot analysis was conducted as described24. The following 
primary antibodies were used: α-PALB2 (A301-246A, Bethyl Lab., 1:3,000), α-RAD51 
(PC-130; Calbiochem; 1:3,000), α-pan-H3 (ab1791; Abcam; 1:5,000), and α-QM (C-17; 
Santa Cruz Biotechnology; 1:3,000). Rabbit polyclonal α-RAD51AP1 antibody was 
raised against a RAD51AP1 fragment encompassing residues 21-166. HRP-conjugated 
goat α-rabbit IgG (Jackson ImmunoResearch Laboratories; 1:10,000) was used as 
secondary antibody. 
 
siRNA and transfections. The lead siRNA sequences used were r(GCAGUGUAGCCA 
GUGAUUA)d(TT) for RAD51AP115 and r(UUCUCCGAACGUGUCACGU)d(TT) for 
the negative control siRNA (Qiagen). Transfections were carried out using Lipofectamine 
RNAiMAX (Invitrogen) according to the manufacturer’s instructions.  
 
Preparation of all figures. Figures were prepared by recording protein gels in a BioRad 
gel documentation station, scanning and quantifying radioactive gels with a Biorad 
phospho imager and all figures were assembled in Adobe software (Photoshop or 
Illustrator). 
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Supplementary Fig. 1. Analysis of PALB2 fragments for DNA binding activity.  (a) 
Schematic summarizing the known features of PALB2 and the PALB2 species used in 
the DNA binding experiment. (b) SDS-PAGE analysis of the purified PALB2 species (4 
µg each).  (c) The indicated amounts of PALB2 611-764 or 850-1186 were incubated 
with a mixture of ssDNA and dsDNA (15 nM each) then analyzed as in Fig. 2. 
 
 
 



Supplementary Fig. 2. Enhancement of the D-loop reaction by PALB2 or 
RAD51AP1. An increasing amount of (a) PALB2 (400 to 700 nM) or (b) RAD51AP1 
(50 to 200nM) was examined for the ability to enhance the RAD51-mediated D-loop 
reaction, as in Fig. 3b1. 
 
 
 
 

Supplementary Fig. 3. 
The effect of PALB2 and 
RAD51AP1 is species 
specific.  We conducted a 
series of D-loop reactions, 
as described in Figure 3B, 
in which RAD51 was 
replaced with ScRad51. 
The results showed that 
neither PALB2 (200, 400, 
and 600 nM), nor 
RAD51AP1 (200nM), nor 
the combination of both 
factors has any effect on 
the ScRad51 recombinase 
activity. ScRad54 (200 nM) 
was used in conjunction 
with ScRad51 to provide a 
positive control2. 

 
 

 



 
 

 

 
Supplementary Fig. 4. Functional synergy between PALB2 and RAD51AP1 depends 
on their physical interaction. (a) MBP-tagged RAD51AP1 (2 μg) or RAD51AP1 N∆120 
(4 μg) was incubated with PALB2 (2 μg), and amylose resin was used to capture any 
protein complex formed, followed by elution of the bound proteins with SDS and SDS-
PAGE analysis, as in Figure 3C.  (b) RAD51AP1 (100 nM) and RAD51AP1 
NΔ120  (100 nM) were examined for the ability to enhance the ����1-mediated D-loop 
reaction with or without PALB2, as in Fig. 3b.  
 
 
 

 
 
 
 
 
 
 

 



 
 
 
 
 
 

Supplementary Figure 5. PALB2 and RAD51AP1 foci co-localize after DNA 
damage. Shown are representative micrographs obtained for HeLa (a-h) and U2OS 
nuclei (i-p). Without DNA damaging treatment, PALB2 (green) and RAD51AP1 (red) 
are mostly dispersed throughout the nucleus in both HeLa (a, b) and U2OS cells (i, j) and 
little or no co-localization was seen (c and k for HeLa and U2OS cells, respectively). 
After exposure to 15 Gy X-rays, PALB2 and RAD51AP1 re-localized into distinct foci in 
both HeLa (e, f) and U2OS (m, n) cells. A significant fraction of these DNA damage-
induced PALB2 and RAD51AP1 foci co-localize (yellow), as depicted by superimposing 
the individual signals, and specifically highlighted by the arrow heads in the zoomed-in 
displays (ii, iii) of the two indicated regions in panels g and o. Co-localization of PALB2 
and RAD51AP1 foci also is apparent when adding the DAPI channel (h, p). In these 
experiments, a 16-h post-irradiation time point was picked for analysis because the 
PALB2 foci are more prominent at this time than earlier3, thus permitting a more facile 
demonstration of protein co-localization. 

 



 
 

 
Supplementary Fig. 6. The RAD51 presynaptic filament is indispensable for duplex 
capture and is unable to capture ssDNA. (a) Capture of the duplex DNA requires the 
presence of ssDNA and hence the presynaptic filaments on the magnetic beads. (b) The 
PALB2-RAD51AP1-RAD51 presynaptic filament ensemble could not capture 
radiolabeled ssDNA. The concentration of the radiolabeled ssDNA was 4 µM nucleotides 
and the other reaction conditions were as in Fig. 4a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 

Supplementary Fig. 7. Multi-faceted role of PALB2 in RAD51-dependent 
homologous recombination. (a) The BRCA2-PALB2 complex functions in the delivery 
of RAD51 to chromosomal lesions to initiate their repair3. PALB2 also acts in 
conjunction with RAD51AP1 to enhance RAD51’s ability to catalyze D-loop formation 
(this work). (b) Mechanistic model depicting the co-operative action of PALB2 and 
RAD51AP1 in the RAD51-catalyzed D-loop reaction. 
 
 

P1 
5’-TTATATCCTTTACTTTGAATTCTATGTTTAACCTTTTACTTATTTTGTATTAGCCGGA 
TCCTTATTTCAATTATGTTCAT-3’ 

P2 
5’-ATGAACATAATTGAAATAAGGATCCGGCTAATACAAAATAAGTAAAAGGTTAAAC 
ATAGAATTCAAAGTAAAGGATATAA-3’ 

A1 
5’-CATTGCATATTTAAAACATGTTGGAAGGCTCGATGCATGCTGATAGCCTACTAGTG 
CTGCTGGCTTTCAAATGACCTCTTATCAAGTGAC-3’ 

A2 
5’-GTCACTTGATAAGAGGTCATTTGAATTCATGGCTTAGAGCTTAATTGCTGAATCTG 
GTGCTGGGATCCAACATGTTTTAAATATGCAATG-3’ 

A3 
5’-CTGCTACGATGCTAGTCGTAGCTCGGCAGTCGTAGCAGGTTCCCAGCACCAGATTC 
AGCAATTAAGCTCTAAGCCATGAA-3’ 

SspI 
5’-AATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTT 
ATT-3’ 

AflIII 
5’-CAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAG 
CCAGGA-3’ 

 
Table S1: Oligonucleotides used. 
 
 
 
 

 



 
 
SUPPLEMENTARY METHODS 
Plasmid construction 
The cDNAs for full length PALB2, PALB2 1-579, PALB2 611-764, and PALB2 850-
1186 were introduced into the pDEST20 vector (Invitrogen) to fuse them to the GST 
coding sequence for bacmid production in E. coli. The PALB2 fragments encompassing 
residues 1-100, 101-184, and 1-184 were introduced into the pDEST15 vector 
(Invitrogen) to fuse them to the GST coding sequence for protein expression in E. coli; a 
carboxyl-terminal (His)6 tag was attached to these PALB2 fragments.  
 
PALB2 purification from insect cells 
pDEST20 vectors containing full length PALB2, PALB2 1-579, PALB2 611-764, and 
PALB2 850-1186 were introduced into the E. coli strain DH10Bac, and the resulting 
bacmids were verified by PCR and used to transfect SF9 cells to generate recombinant 
baculoviruses. The viruses were amplified in SF9 cells, and 4 ml of the amplified viral 
stock was used to infect 400 ml of Hi5 insect cells. After a 48-h incubation at 27oC, cells 
were harvested by centrifugation and quickly frozen at -80°C. All the subsequent steps 
were carried out at 0-4°C. Extract was prepared by sonication of cell suspension in 30 ml 
of cell breakage buffer (50 mM Tris-HCl, pH 7.5, 600 mM KCl, 2 mM DTT, 10% 
sucrose, and the following protease inhibitors: aprotinin, chymostatin, leupeptin, and 
pepstatin A at 3 µg.ml-1 each). After centrifugation (100,000 x g for 80 min), the clarified 
lysate was loaded on a 6 ml Q Sepharose fastflow resin (Amersham) pre-equilibrated with 
buffer K (20 mM KH2PO4, pH 7.4, 0.5 mM EDTA, 1 mM DTT, 10% glycerol, and 
0.01% Igepal (Sigma)) containing 250 mM KCl, and the column was developed with a 30 
ml, 250-1,000 mM KCl gradient. PALB2 and PALB2 1-579 eluted from the Q Sepharose 
column at ~400 mM KCl, whereas PALB2 611-764 eluted at ~300 mM KCl and 850-
1186 eluted at ~450 mM KCl. Peak fractions were pooled and incubated with 1.5 ml of 
glutathione-Sepharose 4 beads (GE Healthcare) for 2 h. The beads were washed 
sequentially with 20 ml of buffer K containing 1 M KCl and 500 mM of KCl, 
respectively, before eluting the PALB2 species with 6 ml of 25 mM glutathione in buffer 
K containing 500 mM KCl. The eluate was diluted with an equal volume of 10% glycerol 
and fractionated in a 1 ml Mono Q column with a 10 ml gradient of 150-800 mM KCl. 
Fractions containing the peak of PALB2, PALB2 1-579 or PALB2 850-1186 (eluting at 
~400 mM KCl; 20 µg, 150 µg or 250 µg total, respectively) or PALB2 611-764, were 
pooled and concentrated in an Amicon-30 micro-concentrator (Millipore) (to 0.3 mg.ml-1 
for PALB2, 0.6 mg.ml-1 for PALB2 1-579, and 1.2 mg.ml-1 for PALB2 611-764 and 850-
1,186) and stored in small portions at -80°C.  
 
Purification of GST-tagged PALB2 fragments from E. coli  
For the purification of the GST- and (His)6-tagged PALB2 amino-terminal protein 
fragments encompassing residues 1-184, 1-100, and 101-184, plasmids that encode these 
protein species were introduced into E. coli strain BL21 (DE3). Overnight cultures (250 
ml) were diluted in 5 L fresh LB and protein expression was induced by the addition of 
0.2 mM IPTG and a 16-h incubation at 16°C.  All the subsequent steps were carried out 
at 0-4°C. The lysate from the E. coli cell paste was prepared by sonication in 50 ml of 
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cell breakage buffer containing 0.01% Igepal and clarified by centrifugation (100,000 × g 
for 90 min). The supernatant was mixed with 2 ml of glutathione-Sepharose 4 beads (GE 
Heathcare) for 2 h.  The beads were washed and bound proteins eluted with 10 mM 
glutathione as above. The eluate was incubated with 1 ml nickel nitrilotriacetic acid-
agarose (Qiagen) for 2 h, and the affinity matrix was washed with 5 ml of 20 mM 
imidazole in buffer K containing 300 mM KCl before eluting the bound proteins with 5 
ml of 100 mM imidazole in the same buffer.  The eluate was fractionated in a 1-ml 
macro-hydroxyapatite column (BioRad) with a 20 ml gradient of 50 to 320 mM KH2PO4 
in buffer K. Peak fractions (200-320 mM KH2PO4) were pooled and concentrated in an 
Amicon-30 micro-concentrator to ~ 5 mg.ml-1 protein (total yield of ~0.5 mg of each of 
the three PALB2 fragments) and stored in small portions at -80°C.  
 
Purification of other recombination proteins 
Expression of RAD51AP1, RAD51, and S. cerevisiae Rad54 in E. coli and their 
purification followed our published procedures1,4,5. S. cerevisiae Rad51 protein was 
expressed in yeast and purified according to our published procedures6.  
 
DNA binding substrates  
The oligonucleotides used in the construction of DNA binding substrates have been 
described (Supplemental Table S1) and the procedure for substrate preparation was as 
described7. 
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	Interactions of PALB2 with RAD51AP1
	Enhancement of synaptic complex assembly by PALB2-RAD51AP1 
	In the RAD51-mediated D-loop reaction, the presynaptic filament captures the duplex DNA partner, followed by a DNA homology search process that leads to the formation of a nucleoprotein intermediate, the synaptic complex, in which the DNA molecules are homologously aligned and base switching has occurred16,17. 
	We employed two separate assay systems to verify whether PALB2 and RAD51AP1 promote the formation of the synaptic complex with the RAD51 presynaptic filament. First, the duplex capture step (Fig. 5a, (i)) was examined by mixing the RAD51 presynaptic filaments assembled on ssDNA linked to magnetic beads with a radiolabeled duplex in the presence of PALB2, RAD51AP1, or both of these recombinase cofactors. As had been reported before, the RAD51 presynaptic filament alone exhibited only a weak ability to engage dsDNA18. PALB2 alone enhanced the ability of the presynaptic filament to capture duplex DNA (Fig. 5a, (ii)). RAD51AP1 also worked with the RAD51 presynaptic filament in duplex capture (Fig. 5a, (ii)). Then, we tested PALB2 and RAD51AP1 together to see if they would act synergistically in the duplex capture reaction. Numerous reactant concentrations were examined in this endeavor. As in the D-loop reaction, at certain PALB2 and RAD51AP1 concentrations, these two factors clearly synergized in duplex capture in a manner that required the RAD51 presynaptic filament and ATP (Fig. 5a, (ii)). As expected, no dsDNA capture occurred when magnetic beads without ssDNA were first incubated with RAD51, PALB2, and RAD51AP1 and then with the radiolabeled dsDNA (Supplementary Fig. 6a). Importantly, the combination of PALB2, RAD51AP1, and the RAD51 presynaptic filament failed to capture ssDNA (Supplementary Fig. 6b). 
	We next used protection of linear dsDNA against digestion by the restriction enzyme SspI (Fig. 5b, (i)) to directly examine synaptic complex formation19. The results from testing numerous reactant concentrations again provided clear evidence for an enhancement of RAD51-dependent synaptic complex formation by PALB2 and RAD51AP1 individually, and for a co-operative action of these recombinase co-factors (Fig. 5b, (ii)). Again, the reaction mediated by PALB2 and RAD51AP1 in conjunction with the RAD51 presynaptic filament showed a strict dependence on ATP (Fig. 5b, (ii)). 
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