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ABSTRACT

For elastically non-interacting vertical-fracture sets at arbitrary orientation angles to each

other, I present a detailed model in which the resulting anisotropic fractured medium gen-

erally has orthorhombic symmetry overall. Some of the analysis methods and ideas of

Schoenberg are emphasized, together with their connections to other similarly motivated

and conceptually related methods by Sayers and Kachanov, among others. Examples show

how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symme-

try transform into orthotropic fractured media if some subsets of the vertical fractures are

misaligned with the others, and then the fractured system can have VTI (vertical trans-

versely isotropic) symmetry if all the fractures are aligned either randomly, or half parallel

and half perpendicular to a given vertical plane. I compare and contrast an orthotropic

example having vertical fractures in an otherwise VTI earth system (studied previously by

Schoenberg and Helbig) with the other examples treated, and finally show how fluids in the

fractures affect the orthotropic poroelastic system response to seismic waves. The key result

is that fracture-influence parameters are multiplied by a factor of (1−B), where 0 ≤ B < 1
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is Skempton’s second coefficient for poroelastic media. Skempton’s B coefficient is itself a

measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid mod-

uli, and pore-fluid bulk modulus. For heterogeneous porous media, connections between the

present work and earlier related results of Brown and Korringa are also established.
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INTRODUCTION

The present work treats various issues related to fractures and anisotropy, especially in

relation to some of the published work of Michael Schoenberg (Schoenberg, 1980; Schoenberg

and Muir, 1989; Schoenberg and Sayers, 1995; Schoenberg and Helbig, 1997). Details of

methods presented here will also make use of an approach outlined by Sayers and Kachanov

(1991), and used previously by Berryman (2007, 2008, 2010) in a recent series of published

papers. In earlier work, it has also been shown (Berryman, 2007) that the general results of

(for example) Bakulin et al. (2000) for the Thomsen (1986, 2002) weak-anisotropy seismic

parameters, and contained in their Figure 6, are both qualitatively and even (reasonably)

quantitatively consistent with each other, as well as being consistent with results from the

method of Sayers and Kachanov (1991) being treated explicitly. Thus, a high degreee of

consistency is established among fracture-influence results that are based in part on the

linear-slip model of fractures by Schoenberg (1980) and in other examples on penny-shaped

(or approximately ellipsoidal) cracks. [Also see Grechka et al. (2006).] These relationships

are important to the main theme of the paper, because they show that the details are often

less important than the grand scheme of how fractures affect both the elastic-poroelastic

system response and the seismic wave propagation results.

After establishing these main ideas, I will then change focus and show how fluids in

the fractures alter the seismic wave speeds, by increasing the poroelastic stiffnesses. as

well as the inertial density. While the present analysis is conceptually entirely consistent

with earlier work on poroelasticity including that of Rice and Cleary (1976) and Cheng

(1997), among many others, my emphasis differs somewhat since the preferred application

is to seismic wave propagation problems rather than geomechanical analysis of reservoirs
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and hydrology. Also, there has been an effort made to avoid tensor notation (as much

as possible) in this presentation, since our purpose is mostly to understand the effects of

elastic/poroelastic responses on seismic waves, and this goal can be achieved rather easily

without adding another level of mathematical sophistication to the problem.

My main poroelastic result shows that, for orthotropic media [but also see Sayers et al.

(2009)], certain fracture-influence parameters (those pertinent to the principal stresses) are

modified by a factor (1 − B), where B is Skempton’s second coefficient (Skempton, 1954).

Appendix A gives an extended discussion of pertinent results in poroelasticity for ho-

mogeneous porous media, while Appendix B compares and contrasts present methods with

the work of Brown and Korringa (1975) on poroelastic materials having heterogeneous solid

constituents.

FRACTURE ANALYSIS

For seismic waves propagating in the [x1-x3]-plane with wavenumbers k1 = k sin θ and

k3 = k cos θ where k2 = k2
1 + k2

3, Tsvankin (1997) shows that the following equations

[patterned here after the notation of Berryman (1979)] are valid:

ρ0ω
2
± =

1
2

[
(C11 + C55)k2

1 + (C33 + C55)k2
3 ±R

]
, (1)

where

R ≡
√[

(C11 − C55)k2
1 − (C33 − C55)k2

3

]2 + 4(C13 + C55)2k2
1k

2
3 . (2)

The inertial density is ρ0 (with zero subscript, since ρf is used later for fracture density).

Equation (1) determines the two wave speeds

V 2
± =

ω2
±

k2
. (3)
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For the wave propagation studies of interest here, these Cij’s for i, j = 1, . . . , 6 are the

elastic stiffnesses of the system of interest. [When the system is fractured, but no fluids

(except air) are present in the fractures, I will talk later in the paper about the system

being “drained.” If the fractures are instead fluid-filled, then the notation will change to Su

and Cu for this “undrained” case. For present purposes, I need not make this distinction,

as the mathematics for wave propagation is the same in either case.] The quantities ω±

have dimensions of angular frequency, and are introduced mostly to simplify the form of the

equations. The pertinent phase speeds – V+ for quasi-P -waves and V− for quasi-SV -waves

– are given respectively by values corresponding to the + and − subscripts in the velocity

equation (3). Group velocities [Brillouin (1946); Ruger (2002); Tsvankin (2005)] can be

computed routinely as well when using the methods outlined earlier by Berryman (1979).

This set of equations describes only one of three sets of equations that are valid for

the orthotropic system to be studied here. The other two versions are obtained by per-

muting the indices, according to: 1 → 2 → 3 → 1, which corresponds to: [x1-x3] →

[x2-x1] → [x3-x2]. Then we have: C11, C33, C13, C55, k1, k3 → C22, C11, C12, C66, k2, k1 →

C33, C22, C23, C44, k3, k2. Each of the three versions behaves on its own much like a trans-

versely isotropic (TI) or polar (i.e., having one preferred axis of symmetry) wave propagation

system. It will therefore be sufficient to study this particular case using just equations (1)

and (2) in order to understand the behavior of the more general problem.

Sayers and Kachanov (1991) consider a model with two sets of possibly nonorthogonal

and noninteracting fractures, while also possibly having two different fracture density values

ρa and ρb. Fracture density can be defined (Bristow, 1960; Budiansky and O’Connell, 1976;

Berryman and Aydin, 2010) to account for the well-known fact that the actual thickness (or

aspect ratio α) for thin fractures does not strongly control their influence on the mechanics
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of a fractured medium. Similarly, the porosity φ associated with a fracture or set of fractures

is also not a pertinent measure of fracture influence since it is proportional to the fracture

aspect ratio. A better measure of the crack/fracture influence is therefore given instead by

the ratio

ρf ≡ φ/α, (4)

assuming that the cracks all have approximately the same aspect ratio % α. If that is not

the case, then α should be replaced with an appropriately averaged value 〈α〉. Alternative

definitions may be found in the references. When there are two distinct types of fractures

present, the total fracture density is given by the sum ρf = ρa + ρb, which is the rule used

by Sayers and Kachanov (1991). When the angle between the fracture sets is Φ, Sayers and

Kachanov (1991) found that the pertinent fracture-influence parameters were multiplied

either solely by ρf (total crack density) itself, or by one of the following two factors:

Af = ρf +
[
ρ2

f − 4ρaρb sin2 Φ
]1/2

,

Bf = ρf −
[
ρ2

f − 4ρaρb sin2 Φ
]1/2

.

(5)

In order to make use of these crack density factors, we also need to know the two fracture-

influence parameters η1 and η2. These results can be found in many places, including Sayers

and Kachanov (1991), Bažant and Planas (1998), and Berryman and Grechka (2006). We

therefore have formulas pertinent in the elastic non-interaction approximation (NIA) given

by:

η1 = − 4ν0(1 − ν0)
15G0(2 − ν0)

(6)

and

η2 =
8(1 − ν0)(5 − ν0)

15G0(2 − ν0)
, (7)

where G0 is shear modulus for the unfractured background material, and ν0 is Poisson’s

ratio for the same material. When I say the formulas are pertinent for the non-interaction
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approximation, I mean that these simpler results apply only when the fractures do not

interact mechanically among themselves. If there is mechanical interaction, then more

complex effective-medium-style results are needed, and that is another story well beyond

our current scope. Also, by way of clarification, it is important to realize that there is no

assumption made here about hydraulic interaction. Mechanical non-interaction means that

the fracture mechanics is being treated as if the cracks do not intersect each other; however,

this does not imply that there might not be other means of hydraulic interaction via (for

example) a double porosity mechanism in which the background material is itself porous and

the fractures can therefore interact hydraulically through the pores of the host medium. It

is also surely worth noting that, since ν0 typically lies in the range 0 ≤ ν0 ≤ 0.5, so then we

have |η1/η2| ≤ 0.05. This fact shows that η1 usually produces less than a 5% perturbation

to the overall quantitative predictions and, therefore, implies that we can often neglect η1

altogether in field situations.

Table 1 shows the Sayers and Kachanov (1991) results for corrections to the isotropic

background values of compliance (translated here into Voigt 6 × 6 matrix notation — re-

sults of the original paper being expressed instead in terms of tensor notation). Those

background values are specifically for a model having effective bulk modulus K0 = 16.87,

shear modulus G0 = 2.20, which then corresponds to Poisson’s ratio ν0 = 0.4375 (di-

mensionless), and Young’s modulus E0 = 6.325, with all moduli (except Poisson’s ratio)

measured in units of GPa. For the assumed inertial density ρ0 = 2200.0 kg/m3, the result-

ing isotropic background compressional wave speed is Vp = 3.0 km/s and shear wave speed

is Vs = 1.0 km/s. For these computations, I also need the isotropic background compliance

values, which are S11 = S22 = S33 = 1
E0

= 6.325, S12 = S13 = S23 = − ν0
E0

= −2.767, and

S44 = S55 = S66 = 1
G0

= 0.4545. The fracture influence factors η1 and η2, found for this spe-
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cific model by Berryman and Grechka (2006), are displayed in Table 2. Some higher order

fracture-influence factors (namely, η3, η4, and η5) were also determined in that earlier work,

but I will not be considering such factors here, since they correspond to results important

only for higher fracture densities that are beyond the scope of our current studies.

Figure 1 illustrates the general features of the conceptual model being considered here.

In the examples that follow, I will consider only the case of equal fracture densities

ρa = ρb = ρf/2. This simplified situation being somewhat easier to present both graphically

and analytically, I will also be able to use the simplified factors:

Af = ρf (1 + cos Φ),

Bf = ρf (1 − cos Φ),
(8)

which follow directly from (5). There may also be some slight uncertainty about exactly

which of these factors is which in this degenerate case, because of the sign ambiguity in tak-

ing the square root of cos2 Φ. However, this detail will in no way affect the main quantitative

results.

VANISHING OF ANELLIPTICITY PARAMETERS

One observation made immediately upon computing example velocities for the model spec-

ified here is that the quasi-SV -wave propagating in the [x1-x3]-plane using (1) and (2)

apparently has constant (or very nearly constant to numerical accuracy) wave speed at all

angles in this plane (see Table 3). This result is startling when first seen, but the general

validity of the result has been remarked upon previously in the literature by Gassmann

(1964) and also by Schoenberg and Sayers (1995). One useful interpretation of this fact

is obtained by noting that, for quasi-SV -waves to have constant velocity in the plane, it
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is necessary for the pertinent effective anellipticity parameter to vanish for this plane of

propagation. This parameter is given by

ε− δ =
X

2C33(C33 − C55)
(9)

where

X ≡ (C11 + C13)(C33 − C55) − (C13 + C55)(C33 + C13). (10)

Here ε ≡ (C11−C33)/2C33 and δ ≡ [(C13 +C55)2− (C33−C55)2]/2C33(C33−C55) are two of

Thomsen’s three weak anisotropy coefficients. If the anellipticity parameter does not vanish

identically, then it must at least vanish to first order in the fracture dependent correction

factors (shown here in Table 1) in order to explain the numerical results for the relatively

small fracture densities considered. Vanishing of (9) was shown earlier to be true in cases

of low crack densities (Berryman, 2007).

The condition required for exact vanishing of the pertinent anellipticity parameter in

terms of stiffness coefficients is:

C11C33 − C2
13 = C55 (C11 + C33 + 2C13) , (11)

which was already known to Gassmann (1964). This fact follows easily from (9) and (10),

since the definition of X can be rearranged into the form:

X = C11C33 − C2
13 − C55 (C11 + C33 + 2C13) , (12)

which clearly vanishes when (11) holds. The reason for this result is seen easily by a

rearrangement of (2)

R =
√[

(C11 − C55)k2
1 + (C33 − C55)k2

3

]2 + Xk2
1k

2
3 . (13)

It is easily seen that, if X vanishes in (13), then both the velocities determined by (1) have

simple elliptical symmetry, and no anelliptical contributions.
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Going farther in the analysis, it takes a fair amount of algebra to show — to first order

in the correction factors — that the result (11) also amounts to a condition relating the

compliance correction factors:

∆S55 = ∆S11 + ∆S33 − 2∆S13. (14)

This condition holds when it is valid to ignore higher order terms such as O(∆2), plus

all still higher orders (think of the proportionality ∆ ∝ ρf , with ρf a small number less

than unity). Then, Equation (14) is satisfied identically when the expressions in Table 1

are substituted. It is important to notice as well that exact satisfaction of the condition

in (14) is true for the general form of the definitions in Table 1, and not just for the

restricted definitions used in the examples computed. The simplified definitions of (8) were

employed to reduce our bookkeeping load. So the formula in (14) is more general than just

the specific examples I have computed. The result is certainly not expected to be true for

arbitrary compliance matrices. Nevertheless, it does turn out to be true for a wide range of

compliance matrices having vertical fractures in an otherwise isotropic (or TI in the next

section) earth body.

This result is already very interesting — maybe even surprising — but the curiously

symmetric nature of this fracture model can be highlighted more fully by considering the

following two expressions analogous (via permutation) to (14):

∆S44 = ∆S22 + ∆S33 − 2∆S23, (15)

and

∆S66 = ∆S11 + ∆S22 − 2∆S12. (16)

These two expressions are again both satisfied identically by the same set of expressions

found in Table 1. These facts indicate that the model also has vanishing anellipticity
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factors (at least to the precision at which I am working) in the other orthogonal planes of

propagation [x2-x3] and [x1-x2] as well.

The plane [x1-x2], corresponding to the result (16), is not particularly interesting for

exploration studies, since this is the horizontal plane, but the plane [x2-x3] is of some

additional interest. We can find the equations for this plane by taking the permutation

C11 → C22, C55 → C44, and C13 → C23. Then, Eqs. (1) and (2) become:

ρ0ω
2
± =

1
2

[
(C22 + C44)k2

1 + (C33 + C44)k2
3 ±R2

]
, (17)

where

R2 ≡
√[

(C22 − C44)k2
1 − (C33 − C44)k2

3

]2 + 4(C23 + C44)2k2
1k

2
3

≡
√[

(C22 − C44)k2
1 + (C33 − C44)k2

3

]2 + Y k2
1k

2
3 ,

(18)

where

Y ≡ C22C33 − C2
23 − C44 (C22 + C33 + 2C23) . (19)

Clearly, the condition for vanishing anellipticity in this case is just Y ≡ 0, which is also

equivalent (again to lowest order) to the condition (15).

As was known to Gassmann (1964), vanishing of the anellipticity factors means that

there will be no triplications of wave arrivals for these models from propagation in any of

these planes considered. Triplications arise because of complications from taking the partial

derivatives required to compute group velocity from phase velocities quoted here [also see

Berryman (1979) for examples]. Group velocity determines the wave speed of signals and/or

pulses of seismic energy [see Brillouin (1946) for detailed discussion].
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VERTICAL FRACTURES IN VTI EARTH

Another model in a closely related context that has been discussed frequently by Schoenberg

and Helbig (1997), Bakulin (2000), and others is the model of a VTI earth system [where

the background elastic medium is transversely isotropic with vertical axis of the system,

as would occur in a layered-earth model having isotropic layers (Backus, 1962) with super-

posed vertical fractures. A result that is often quoted in this context concerns a condition

(Schoenberg and Helbig, 1997) that is necessarily satisfied by the elastic stiffness matrix

elements for such a system:

C13(C22 + C12) = C23(C11 + C12). (20)

Using the same ideas applied already, this equation reduces to a simple statement about

the system compliances.

The resulting formula connecting two off-diagonal compliances is:

S13 = S23, (21)

by which it is meant that the only requirement imposed on the compliances after the

introduction of the vertical fractures to the VTI earth background is that the new overall

system compliance must satisfy the conditions in (21) after the changes due to the fractures

are included in the values of these two compliance components. No other special constraints

appear. To see that (21) is the correct condition, note that

S13 = (C12C23 − C13C22)/det (C),

S23 = (C12C13 − C23C11)/det (C),
(22)

where det (C) is the determinant of the upper left 3×3 sub-matrix of the orthotropic stiffness

matrix C. Equating these two expressions from (22) and rearranging the final result gives

a formula that is precisely the same condition (20) found by Schoenberg and Helbig (1997)
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What this condition means for the physical system — since the background earth

medium is assumed to be VTI with vertical axis of symmetry and also since S13 = S23

for this background medium itself (before the fractures are added to it) — is that the final

result for the overall compliance changes must therefore be the condition:

∆S13 = ∆S23. (23)

This very simple equality means that the changes (i.e., increases) in these off-diagonal

compliances — being caused by the addition of the vertical fractures to this model —

have just the one constraint, and that constraint is on changes in these two off-diagonal

compliances S13 and S23, which must occur in unison.

This result is also seen as a limiting case found in Table 1, when Af = Bf , which occurs

only when Φ = 0o. Since Φ = 0o means that all the vertical fractures are parallel, and

therefore being aligned fractures, I have just recovered — using the Sayers and Kachanov

(1991) approach — exactly the case studied, as well as the same results found, by Schoenberg

and Helbig (1997).

DISCUSSION OF VARIOUS FRACTURE-INFLUENCE MODELS

Among others, there are two closely (though perhaps not obviously) related methods that

are typically used in the seismic exploration literature for modeling the effects of fractures

on seismic wave propagation: One method is the linear-slip-interface model introduced orig-

inally by Schoenberg (1980), while the other is a continuum approach that was introduced

at about the same time by Kachanov (1980). These two methods have both been used

extensively in the exploration community, especially since the work of Sayers and Kachanov

(1991), Schoenberg and Sayers (1995), and Sayers and Kachanov (1995). Connections, in-
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cluding many similarities and a few differences, are discussed in the overview by Schoenberg

and Sayers (1995). I have some personal preference for the analytical version of Sayers and

Kachanov (1991), because it is so explicit while also permitting deep connections to be made

directly to effective medium theories (Berryman, 2007), by taking advantage of results of

Eshelby (1957). In particular, some recent and related work on fractures in outcrops using

an effective medium theory approach by Berryman and Aydin (2010) has made use of the

approach originally put forward by Sayers and Kachanov (1991) for modeling higher frac-

ture density media. This study might have been more difficult to carry through using the

original linear-slip-interface approach of Schoenberg (1980). But, once these higher fracture

density results are known, it also becomes straightforward to incorporate them into the

layer-averaging approach originated by Backus (1962) and later emphasized — as well as

being reformulated for mathematical clarity — by Schoenberg and Muir (1989). Thus, these

effective medium theories for layering were found to be very useful in providing a means

of determining fracture-fracture interactions when the fracture sets are close, and therefore

more dense, but not actually intersecting.

Figures 2, 3, and 4 illustrate the general behavior of seismic wave speeds for such models

of vertical fractures in either homogeneous, isotropic earth or in VTI (vertical transversely

isotropic) earth models with vertical fractures. Figure 2 shows quasi-compressional wave

speed behavior, while Figures 3 and 4 display quasi-SV waves and SH-wave speeds, respec-

tively.

Effects of fluids on the fracture behavior have not been emphasized here so far, but

this issue is obviously a very important one for our applications, and it has been treated

in other recent work by Daley et al. (2006) and Berryman (2007). Liquid effects on elastic

moduli may be incorporated fairly easily using results of Gassmann (1951a,b) and Skempton
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(1954), as was also shown recently by Berryman (2007). The following section will treat

these issues in more detail for the anisotropic systems being studied. Our main result will

be to show that the behavior for fractured poroelastic systems is qualitatively the same

as for fractured elastic systems, but the fluid influences the wave speeds by stiffening the

fractures via a uniform factor (depending only on Skempton’s second coefficient B).

ANISOTROPIC POROELASTICITY

Now the discussion will focus on a particular formulation of the equation of poroelasticity.

Emphasis is placed on the compliance form of these equations. Clearly, the physics does

not change when we go back and forth between compliance and stiffness forms of these

equations. But the ease of interpretation is greatly enhanced in the compliance form. And,

because we are treating fractures, which themselves directly introduce increases in elastic

compliance, the formulation is also good for that reason as well.

If the overall porous medium is anisotropic due either to some preferential alignment

of the constituent (anisotropic) particles or due to externally imposed stress (such as a

gravity field and weight of overburden on constituent grains), for example, or due to aligned

fractures, I can in all these situations consider the orthorhombic anisotropic version of the

poroelastic equations:




e11

e22

e33

−ζ





=





S11 S12 S13 −β1

S12 S22 S23 −β2

S13 S23 S33 −β3

−β1 −β2 −β3 γ









σ11

σ22

σ33

−pf





. (24)

The eii (no summation over index i) are principal strains in the i = 1, 2, 3 directions. The

σii are the corresponding principal stresses. The pore-fluid pressure is pf . The increment of
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fluid content is ζ, and is a dimensionless measure of the number of fluid molecules that move

either into or out of the pore space during the deformation process. Its defining equation

is:

ζ ≡ δ(φV ) − δVf

V
% φ

(
δVφ
Vφ

− δVf

Vf

)

, (25)

where V is the overall volume of the fully fluid-saturated porous material at the first moment

of consideration, Vφ = φV is the pore volume, with φ being the fluid-saturated porosity

within the same volume V . Vf is the volume actually occupied by the initial pore-fluid

so that, although Vf = Vφ initially, these two quantities can differ during the deformation

process unless they are constrained (via undrained conditions) to remain the same. The δ’s

are intended to indicate small changes in the quantities immediately following them.

In fact, the undrained state having ζ = 0 is a very common condition pertinent for wave

propagation studies, especially at ultrasonic frequencies, or for seismic waves at typical

exploration frequencies. The drained compliances are Sd
ij ≡ Sij (consistent with the earlier

parts of this paper). Undrained compliances (not yet shown explicitly) will be symbolized

by Su
ij .

An important advantage of the compliance form of the poroelastic equations as shown

in (24) is that the only component of this 4 × 4 matrix that includes fluid effects is γ

in the lower right-hand corner. If we invert this matrix to obtain the stiffness version of

these equations, the fluid effects get redistributed across all the components because the

determinant involved in the matrix inversion process provides a common (fluid-dependent)

factor for all the matrix elements in the stiffness form. This is one reason why poroelastic

analysis is somewhat simpler in this formulation.
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The drained Reuss average bulk modulus of an anisotropic porous medium is defined by

1
Kd

R

=
∑

ij=1,2,3

Sd
ij. (26)

To symbolize the Reuss average undrained bulk modulus Ku
R, I have drained compliances

replaced by undrained compliances [replace d’s by u’s in (26)]. A similar definition of grain

Reuss modulus Kg
R, with drained compliances replaced by grain compliances [replace d’s

by g’s in (26)] may also be defined, especially when the grains themselves are anisotropic.

The alternative Voigt (1928) average [also see Hill (1952)] of the stiffnesses will play no role

in this discussion. Off-diagonal coefficients βi ≡ Si1 + Si2 + Si3 − 1/3Kg
R, where Kg

R is the

Reuss average modulus of the grains (Reuss, 1929). And, finally, the remaining coefficient

γ ≡
∑

i=1−3 βi/B, where B is the second Skempton (1954) coefficient:

B ≡ 1 − Kd
R/Ku

R

1 − Kd
R/Kg

R

. (27)

The shear terms due to twisting motions (i.e., strains e23, e31, e12 and stresses σ23,

σ31, σ12) are excluded from this discussion since they typically do not couple to the modes

of interest for anisotropic systems having orthotropic symmetry, or any more symmetric

system such as transversely isotropic or isotropic. I have also assumed that the true axes

of symmetry are known, and make use of them in my current formulation of the problem.

Note that the Sij ’s are the elements of the compliance matrix S and are all independent

of the fluid, and therefore would be the same if the medium were treated as strictly elastic

(i.e., by ignoring the fluid pressure, or assuming that the fluid saturant were air). As

mentioned earlier, I typically call these compliances the “drained compliances” and the

corresponding matrix the “drained compliance matrix” Sd, since then any fluids present do

not contribute to the stored mechanical energy if they are free to drain into a surrounding

reservoir containing the same type of fluid. In contrast, the undrained compliance matrix
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Su presupposes that the fluid is trapped (unable to drain from the system into an adjacent

reservoir) and therefore contributes in a significant and measurable way to the compliance

and stiffness (Cu = [Su]−1), and also therefore to the stored mechanical energy of the

undrained system.

Next I find that the off-diagonal βi’s must satisfy this sumrule:

β1 + β2 + β3 =
1

Kd
R

− 1
Kg

R

=
αR

Kd
R

, (28)

where I have also defined (as for the isotropic case) a Reuss effective stress coefficient (Biot

and Willis, 1957):

αR ≡ 1 − Kd
R/Kg

R. (29)

Furthermore, I have the result [consistent with Brown nd Korringa (1975)]

γ =
β1 + β2 + β3

B
=

αR

Kd
R

+ φ

(
1

Kf
− 1

Kφ
R

)

, (30)

with φ being porosity. This result follows since I have the rigorous formula in this no-

tation (Berryman, 1997; Berryman and Nakagawa, 2010; Berryman, 2010) showing that

Skempton’s B coefficient is also given by

B ≡ αR/Kd
R

αR/Kd
R + φ(1/Kf − 1/Kφ

R)
. (31)

Note that (27), (30), and (31) all contain dependence on the pore bulk modulus Kφ
R that

comes into play when the solids present are heterogeneous (Brown and Korringa, 1975)

— so the pore response to stress depends in a complicated way on the types and spatial

distribution of these different solids, regardless of whether the overall system is isotropic or

anisotropic. I should emphasize that all these formulas are rigorous statements based on

earlier anisotropic analysis. The appearance of these definitions involving Kd
R and αR is not

an approximation. Rather, this is one useful choice of notation made because it helps to
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clarify the relationships between the rigorous anisotropic formulas and those for isotropic

systems.

The βi coefficients

I will now show several useful results for the βi coefficients, and then follow the results with

a general derivation showing their correctness.

In many important and practical problems, the coefficients βi are determined by

βi = Sd
i1 + Sd

i2 + Sd
i3 −

1
3Kg

R

. (32)

Again, Kg
R is the Reuss average of the grain modulus, since the local grain modulus is

not necessarily assumed uniform — as was mentioned previously. Equation (32) holds true

for homogeneous grains, when Kg
R = Kg. But it also holds true for the case when Kg

R is

determined instead by

1
Kg

R

≡
∑

m=1,...,n

vm

Km
, (33)

where several (n) different types of isotropic grains are assumed to be present, having

volume fractions vm, respectively, and Σmvm = 1. However, when the grains themselves

are also anisotropic, I need to allow for this possibility in a different way, and this can be

accomplished by defining three directional grain bulk moduli determined by:

1
3Kg

i

≡ Sg
i1 + Sg

i2 + Sg
i3 = Sg

1i + Sg
2i + Sg

3i, (34)

for i = 1, 2, 3. The second equality follows because the compliance matrix is always sym-

metric. I call these quantities in (34) the partial grain-compliance sums, and the K
g
i are

the directional grain bulk moduli. Then, the formula for (32) is replaced by

βi = Sd
i1 + Sd

i2 + Sd
i3 −

1
3Kg

i

. (35)
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Note that the factors of 3 have been correctly accounted for because

∑

i=1,2,3

1
3Kg

i

=
1

Kg
R

, (36)

in agreement with

1
Kg

R

=
∑

i,j=1,2,3

Sg
ij. (37)

If the three contributions represented by (34) for i = 1, 2, 3 happen to be equal, then each

equals one-third of the sum in (36).

The preceding results are for perfectly aligned solids grains. If the solids are instead

perfectly randomly oriented, then it is an easy exercise to verify that the formulas in (32)

hold as before, but now Kg
R is determined instead by (37), and the three directional grain

moduli defined in (34) are equal.

All of these statements about the βi’s are easily confirmed by considering applied stresses

satisfying σ11 = σ22 = σ33 = −pc = −pf , where pc is (external) confining pressure and pf

is the (internal) fluid pressure. In this situation, I have from (24), and using (35), that:

−eii =
(
Sd

i1 + Sd
i2 + Sd

i3

)
pc + βi(−pf ) = (Sg

i1 + Sg
i2 + Sg

i3) pf ≡ pf

3Kg
i

. (38)

This example is the most general of the three cases discussed, and also holds true for each

value of i = 1, 2, 3. These are statements about the strain eii that would be observed in

this case, as the formulas must be the same if these anisotropic (or inhomogeneous) grains

were immersed in the fluid, while measurements were taken of the strains observed in each

of the three directions i = 1, 2, 3, during variations of the fluid pressure pf . I consider this

demonstration to be equivalent to a thought experiment for determining the coefficients, in

the same spirit as those originally proposed by Biot and Willis (1957) [also see Stoll (1974)]

for the isotropic and homogeneous case.
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Coefficient γ

The stated relationship of coefficient γ to the other coefficients is easily established since I

have already discussed the main issue, which involves determining the role of the various

other constants contained in the Skempton (1954) coefficient B. This result is

B =
(

1
Kd

R

− 1
Kg

R

) [(
1

Kd
R

− 1
Kg

R

)

+ φ

(
1

Kf
− 1

Kφ
R

)]−1

. (39)

Again, from (24), I find that

−ζ = 0 = − (β1 + β2 + β3) σc − γpf , (40)

for undrained boundary conditions. Thus, I again have

pf

pc
≡ B =

β1 + β2 + β3

γ
, (41)

where again pc = −σc is the confining pressure. Therefore, the scalar coefficient γ is

determined immediately and given explicitly by

γ =
β1 + β2 + β3

B
=

αR/Kd
R

B
= αR/Kd

R + φ

(
1

Kf
− 1

Kφ
R

)

. (42)

Alternatively, I can consider the identity

B =
αR

γKd
R

, (43)

for the Skempton (1954) B coefficient that also follows easily from the same derivation.

I have now determined the physical significance of all the coefficients in the poroelas-

tic matrix (24). These results are as general as possible without considering poroelastic

anisotropies that have less than orthotropic symmetry, while also taking advantage of the

assumption that I do often know (or can deduce from measurements) the three directions

of the principal axes of symmetry.
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Inverting poroelastic compliance

The matrix in (24) is in compliance form and has extremely simple poroelastic behavior in

the sense that all the fluid-mechanical effects appear only in the single coefficient γ. I can

simplify the notation a little more by lumping some coefficients together, combining the

3× 3 submatrix in the upper left corner of the matrix in (24) as S, and defining the column

vector b by

bT ≡ (β1, β2, β3). (44)

The resulting 4 × 4 matrix and its inverse are now related by:




S −b

−bT γ



 =





A q

qT z





−1

, (45)

where the elements of the inverse matrix can be shown to be written in terms of drained stiff-

ness matrix Cd = C = S−1 by introducing three components: (a) scalar z =
[
γ − bTCb

]−1
,

(b) column vector q = zCb, and (c) undrained 3 × 3 stiffness matrix (i.e., the pertinent

one connecting the principal strains to principal stresses)

A = C + zCbbTC = Cd + z−1qqT ≡ Cu. (46)

[While these results are all easy to verify once known, the reader will find they are harder to

show directly from the general form of (45).] The drained stiffness is Cd = C by definition,

and A = Cu is clearly undrained stiffness by construction. This fact comes from the

undrained identity 



A q

qT z









E

0



 =





Σ

−pf



 , (47)

which follows from (24) and (45) with the definitions:

ET = (e11, e22, e33) and ΣT = (σ11, σ22, σ33). (48)
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These results are the same as those of Gassmann (1951a,b) for anisotropic porous media,

although his results were presented in a different form, which is fundamentally the same as

(46).

Equation (45) also shows that the decoupling of the fluid effects occurs only in the

compliance form (24) of the equations, and never in the stiffness (inverse) form for the

poroelasticity equations. Fluid factors appear everywhere in the stiffness matrix form be-

cause the inverse relation requires division by the determinant of the 4 × 4 in compliance

form. This determinant (a scalar) depends explicitly on the fluid bulk modulus, and there-

fore spreads the fluid effects across the entire 4 × 4 stiffness matrix.

From these results, it easily follows that

Sd = Su + γ−1bbT . (49)

This formula emphasizes the fact that the drained compliance matrix can be found directly

from knowledge of the inverse of undrained compliance, and the still unknown, but some-

times relatively easy to estimate, values of γ, together with the three distinct off-diagonal

orthotropic βi coefficients, for i = 1, 2, 3.

Orthotropic example with homogeneous grains: Deducing coefficients from

measurements

Now, further progress is made by considering the Reuss average again for both of the

orthotropic drained and undrained compliances:

1
Kd

R

≡
∑

i,j=1,2,3

Sd
ij, (50)
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and

1
Ku

R

≡
∑

i,j=1,2,3

Su
ij. (51)

These effective moduli are the Reuss averages of the nine compliances in the upper left 3×3

of the full (including the uncoupled shear components) 6× 6 compliance matrix for the two

cases, respectively, when the pore fluid is allowed to drain from the porous system, and

when the pore fluid is trapped by a jacketing material, and so undrained.

Although the significance of the formula in the orthotropic case is somewhat different

now, I find again that

β1 + β2 + β3 =
1

Kd
R

− 1
Kg

R

=
αR

Kd
R

, (52)

if I also define a Reuss effective stress coefficient:

αR ≡ 1 − Kd
R/Kg

R, (53)

by analogy to the isotropic case. Furthermore, I have

γ =
β1 + β2 + β3

B
=

αR

Kd
R

+ φ

(
1

Kf
− 1

Kg
R

)

, (54)

since I have the rigorous result in this notation (Berryman, 1997) that Skempton’s B coef-

ficient (Skempton, 1954) is given by

B ≡ 1 − Kd
R/Ku

R

1 − Kd
R/Kg

R

=
αR/Kd

R

αR/Kd
R + φ(1/Kf − 1/Kg

R)
. (55)

Note that, from (52) and (54), it follows that γ−1 = BKd
R

αR
[also see (43)]. So I can now

rewrite (49) to give the formal relationship

Sd
ij = Su

ij +
BKd

R

αR
βiβj , for i, j = 1, 2, 3. (56)
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At this point in the analysis, I know everything needed except for the three coefficients βi,

for i = 1, 2, 3. But, by using appropriate sums of (56), I find that

βi = Sd
i1 + Sd

i2 + Sd
i3 −

1
3Kg

R

= Su
i1 + Su

i2 + Su
i3 −

1
3Kg

R

+ Bβi. (57)

Rearranging (57), I find that

βi(1 − B) = Su
i1 + Su

i2 + Su
i3 −

1
3Kg

R

. (58)

Formula (55) for the Skempton (1954) coefficient determines B exactly in terms of (pre-

sumed) known quantities. In the present example, the Skempton coefficient B, however,

was not assumed to be known, since for homogeneous grains I can compute Kd
R relatively

easily, and then B follows since I also know Kg
R. For the case of heterogeneous or anisotropic

grains, the necessary introduction of the additional pore modulus Kφ
R requires still more

measured data, and it turns out that the next easiest quantity to measure is B itself —

as can easily happen in the isotropic case. So, all three βi’s (which are themselves drained

constants) and γ are now precisely determined. All the remaining drained compliances Sd
ij

can then be found directly from (56).

Homogeneous grains and pores: Deducing anisotropic drained constants

from undrained

I am now ready to complete the development of an analogy between the isotropic and

anisotropic Gassmann (1951) equations for the case of homogeneous grains. In particular,

the equation for the suspension modulus in

Ksusp =
[
1 − φ

Kg
+

φ

Kf

]−1

(59)
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does not change at all. In contrast, the equation for the effective undrained bulk modulus

Ku, as shown in two versions of the same formula

Ku = Kd + α2/[(α − φ)/Kg + φ/Kf ] (60)

and

Ku = Kd +
(1 − Kd/Kg)2

1/Ksusp − Kd/(Kg)2
, (61)

is altered only because the relationship is now between the Reuss averages Ku
R and Kd

R of

these quantities. This result is completely analogous to (61), and so will not be shown here.

The remainder of the argument is virtually identical to the isotropic case, so I obtain:

Kd
R =

(
Ku

R

Ksusp
− 1

) [
1/Ksusp − 2/Kg

R + Ku
R/(Kg

R)2
]−1

. (62)

This formula shows how to invert for drained Reuss bulk modulus Kd
R from knowledge of

Ku
R, φ, Kf and Kg

R in an anisotropic (up to orthotropic) poroelastic system.

Clearly, this formula does not yet provide the individual compliance matrix elements Sd
ij

directly. Nevertheless, the rest of the steps follow easily once this rigorous result is known.

To finish the analysis, I make use of the newly computed value of Kd
R, and substitute

this value into the formula for B, which in this case is:

B =
1 − Kd

R/Ku
R

1 − Kd
R/Kg

R

. (63)

This formula is the same as the results found previously (but written differently) in (27),

(31), (39), (43), and (55). Once I know Skempton coefficient B, this scalar can be sub-

stituted into (58) in order to determine the βi coefficients for i = 1, 2, 3. The remaining

coefficient is γ = αR/BKd
R. So I have shown that the critical step in this procedure was

determining the value of the drained Reuss bulk modulus Kd
R.
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Heterogeneous grains and pores: Deducing anisotropic drained constants

from undrained

One difficulty for heterogeneous grains comes from the additional constant Kφ
R which I do

not immediately know how to determine independently from the other poroelastic measure-

ments. But this fundamental problem is actually no different for the anisotropic case than

it was for the isotropic one, and the solution is also the same. In both cases, I need more

information, and in both cases the necessary information will most likely come from our

knowledge (through new measurements, or perhaps via tabulated values for various rock

types) of the Skempton (1954) coefficient B. If I assume that B can be directly measured

(which is plausible for laboratory measurements, since B = pf/pc in the undrained case

when a uniform confining pressure is applied to the system), then the problem is com-

pletely solved, because B is the key to solving for the coefficients βi in (58). The only new

difficulty is that the terms of the form 1/3Kg
R must also be replaced by the partial grain

compliance sums 1
3K

g
i
, as shown in (35). So I now have

βi = Sd
i1 + Sd

i2 + Sd
i3 −

1
3Kg

i

= Su
i1 + Su

i2 + Su
i3 −

1
3Kg

i

+ Bβi. (64)

Rearranging, I find that, for heterogeneous grains, the result is:

βi(1 − B) = Su
i1 + Su

i2 + Su
i3 −

1
3Kg

i

. (65)

So, I am almost done now, but I still need either to determine the values of the anisotropic

grain correction terms 1
3K

g
i
, or to find some way of avoiding the necessity of doing so.

In principle, this goal can be attained experimentally in laboratory tests by actually

performing measurements on the porous sample while applying the same pressure outside

and inside the porous sample. Then, measurements of the change in strain in the three
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orthogonal directions i = 1, 2, 3 would provide direct measures of the quantities K
g
i needed.

So this approach is one that is entirely feasible.

An alternative would be to perform shear tests by applying nonzero deviatoric stress

changes (Skempton, 1954; Lockner and Stanchits, 2002). The undrained fluid pressure

is given by pf = Bpc = B(−σm), where the mean stress is σm = (σ11 + σ22 + σ33)/3.

But, if the σii’s are not uniform, then there are also deviatoric stresses present, due to the

nonuniformity of the principal stresses.

Triaxial testing geometry for laboratory measurements

One common example of this type of measurement uses triaxial testing (Lockner and Stan-

chits, 2002), where a two-sided confining stress is defined as σ22 = σ33, and then the

deviatoric stress is determined by

σdev ≡ (σ11 − σ33) /2. (66)

In this situation, the general equation relating undrained pressure to the confining stresses

is given by:

−pf = Bσm + 2
(

A − 1
3

)
Bσdev, (67)

where the only new symbol is the first coefficient A of Skempton (1954).

It is not difficult to show that, in terms of our previous definitions for the triaxial testing

geometry, the coefficient A is given precisely by the ratio

A ≡ β1

β1 + β2 + β3
. (68)

For an isotropic system, A = 1/3, so this contribution always vanishes in (67). This fact

explains why this coefficient does not appear for isotropic analysis of poroelastic systems.
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Note that there is no assumption here that the poroelastic system itself is necessarily trans-

versely isotropic. Only the prescribed equality (in a laboratory setting) of the two applied

transverse stresses, σ22 and σ33, is assumed. Then, the formula (67) follows directly from

the equations already presented.

Measurements of Skempton’s B coefficient

There are many good sources of information about measured values of Skempton’s B coeffi-

cient. I will not attempt to review these here. One well-known reference that contains some

values and discussion is Rice and Cleary (1976). The text by Wang (2000) contains tables

of values taken from many sources, some of which are quoted here in Table 4. One series

of related contributions on the same subject includes papers by Green and Wang (1986),

Berge et al. (1993), Hart and Wang (1995, 2001). A very useful Ph. D. thesis with an

unpublished chapter on this topic was contributed by Hornby (1995). Although it might

appear from this listing that data are plentiful, it is clear from a quick scan of these papers,

books, and theses that more data of these types are certainly needed, especially for rocks

of particular interest in the seismic exploration context.

CONCLUSIONS

In this paper I have treated various methods for quantifying the geomechanical effects of

fracture sets on reservoirs. Special emphasis has been given to recent work, and also to

the influence that work of Michael Schoenberg has had on this subject. I conclude that

these methods provide a consistent and accurate picture of the influence of fractures on

wave propagation in many cases, and that the various methods in use, although sometimes
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presented quite differently, are very closely related both conceptually and also in terms

of the quantitative predictions. Generalization to fractures filled with fluids can also be

treated rather easily by incorporating the well-known Skempton’s A and B coefficients in

order to account rigorously for the reduced weakening effect (because of the stiffening effect

of the fluid saturant) of fractures when they are liquid-filled.

Of course, elastic orthotropy is not universal in the earth, so it is not appropriate to

assume that all the problems in exploration seismology will be solved using such relatively

simple models. One final conclusion must be that, although good progress has been made,

there is also clearly more work to be done relative to the influence of fluids and fractures on

seismic waves in more general anisotropic media than the ones considered specifically here.
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, 1951b, Über die Elastizitat poröser Medien: Vierteljahrsschrift der Naturforschen-

den Gesellschaft in Zürich, 96, 1–23.
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Rüger, A., 2002, Reflection Coefficients and Azimuthal AVO Analysis in Anisotropic Media:

Society of Exploration Geophysicists, Tulsa, OK.

Sayers, C. M. and M. Kachanov, 1991, A simple technique for finding effective elastic

constants of cracked solids for arbitrary crack orientation statistics, International Journal

of Solids and Structures, 27, no. 6, 671–680.

, 1995, Microcrack-induced elastic wave anisotropy of brittle rocks: Journal of

Geophysical Research, 100, no. B3, 4149–4156.

Sayers, C. M., A. D. Taleghani, and J. Adachi, 2009, The effect of mineralization on the

ratio of normal to tangential compliance of fractures: Geophysical Prospecting, 57, no. 3,

439–446.

34



Schoenberg, M., 1980, Elastic wave behavior across linear slip interfaces: Journal of the

Acoustical Society of America, 68, no. 5, 1516–1521.

Schoenberg, M. and K. Helbig, 1997, Orthorhombic media: Modeling elastic wave behavior

in a vertically fractured earth: Geophysics, 62, no. 6, 1954–1974.

Schoenberg, M. and F. Muir, 1989, A calculus for finely layered anisotropic media: Geo-

physics, 54, no. 4, 581–589.

Schoenberg, M., and C. M. Sayers, 1995, Seismic anisotropy of fractured rock: Geophysics,

60, no. 1, 204–211.

Skempton, A. W., 1954, The pore-pressure coefficients A and B: Geotechnique, 4, 143–147.

Stoll, R. D., 1974, Acoustic waves in saturated sediments, in Physics of Sound in Marine

Sediments, 19-39, Plenum, New York.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, no. 10, 1954–1966.

, 2002, Understanding Seismic Anisotropy in Exploration and Exploitataion: So-

ciety of Exploration Geophysicists, Tulsa, OK.

Tsvankin, I., 1997, Anisotropic parameters and P -wave velocity for orthorhombic media:

Geophysics, 62, no. 4, 1292–1309.

, 2005, Seismic Signatures and Analysis of Reflection Data in Anisotropic Media:

Elsevier, Oxford, UK.

Voigt, W., 1928, Lehrbuch der Kristallphysik: Teubner, Leipzig.

Wang, H. F., 2000, Theory of Linear Poroelasticity with Applications to Geomechanics and

Hydrogeology: Princeton University Press, Princeton, NJ.

35



Wood, A. W., 1948, A Textbook of Sound: Bell, London, p. 360.

Zhu, X. and G. A. McMechan, 1990, Direct estimation of the bulk modulus of the frame

in a fluid-saturated elastic medium by Biot theory: 60th International Meeting, Expanded

Abstracts, Society of Exploration Geophysicists, Tulsa, OK, 787–790.

36



APPENDIX A – POROELASTICITY WITH HOMOGENEOUS SOLID

BACKGROUND

Gassmann’s famous poroelasticity equation (Gassmann, 1951a,b) relating drained bulk

modulus Kd to undrained modulus Ku for homogeneous isotropic systems is sometimes

written in the form

Ku = Kd + α2/[(α − φ)/Kg + φ/Kf ], (69)

where α ≡ 1 − Kd/Kg is the effective stress coefficient or Biot-Willis coefficient (Biot and

Willis, 1957), Kg is the solid modulus of the grains (initially assumed homogeneous), Kf

is the pore-fluid modulus, and φ is the porosity. The formula becomes more complicated if

the solids constituting the porous medium are heterogeneous (Brown and Korringa, 1975) –

see Appendix B for a discussion. This important generalization is also treated in the main

text. I present only the case for homogeneous solids in this Appendix, together with some

references to the results for heterogeneous media.

For notational convenience, I introduce a modulus for a fluid suspension having the same

solid and fluid components as well as the same porosity as that in the Gassmann result, but

having drained modulus Kd ≡ 0. Then I find that the effective modulus is given by

Ksusp =
[
1 − φ

Kg
+

φ

Kf

]−1

. (70)

In the homogeneous case, this fact follows directly from Gassmann’s formula (69) by setting

Kd = 0 everywhere, since then Ku = Ksusp. But of course this result is also well-known in

mechanics and acoustics (Wood, 1948) for these types of fluid-solid suspensions.

Rewriting Gassmann’s formula in these terms, I find

Ku = Kd +
(1 − Kd/Kg)2

1/Ksusp − Kd/(Kg)2
. (71)
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All explicit porosity φ dependence is now imbedded in the modulus Ksusp. From this form

of the undrained equation, it is not hard to invert for the drained modulus and thereby

show that it is expressible as:

Kd =
(

Ku

Ksusp
− 1

) [
1/Ksusp − 2/Kg + Ku/(Kg)2

]
.−1 (72)

The transition from (71) to (72) involved only the solution of an equation linear in Kd.

Thus, the drained modulus in homogeneous media can be deduced from measurements

of the undrained modulus, together with knowledge of φ, Kf , and Kg. This result was

apparently first derived by Zhu and McMechan (1990), but published only in a conference

proceedings.

Although result (72) just presented applies only to isotropic and homogeneous systems,

there are similar results (as is shown in the main text) for anisotropic systems (up to

orthotropic symmetry), and also for heterogeneous systems. Furthermore, the orthotropic

poroelastic system of equations can additionally be inverted for all the drained constants.

Demonstrating these facts for homogeneous porous media is the focus of this Appendix,

with special emphasis being given to fractured systems.

If the overall porous medium is anisotropic either due to some preferential alignment of

the constituent anisotropic particles or due to externally imposed stress (such as a gravity

field and weight of overburden, for example), I reconsider the orthorhombic anisotropic

version of the poroelastic equations presented in (24). The eii (no summation over repeated

indices) are principal strains in the i = 1, 2, 3 directions. The σii (again no summation

over repeated indices) are the corresponding principal stresses. The fluid pressure is pf .

The increment of fluid content is ζ, and is defined in (25). The drained compliances are
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Sd
ij ≡ Sij. The drained Reuss average bulk modulus (Reuss, 1929) is also defined by

1
Kd

R

=
∑

ij=1,2,3

Sd
ij. (73)

Undrained compliances will be symbolized by Su
ij. For the Reuss average undrained bulk

modulus Ku
R, I have drained compliances replaced by undrained compliances in a formula

otherwise identical in form to (73), with symbol d replaced by u. Off-diagonal coefficients

βi = Si1 + Si2 + Si3 − 1/3Kg
R, where Kg

R is again the Reuss average modulus of the grains

– simply replace d’s with g’s in (73) to get Kg
R. The alternative (Voigt, 1928) average [also

see Hill (1952)] of the stiffnesses does not appear. And, finally, coefficient γ =
∑

i=1−3 βi/B

in (24), where B is the second Skempton coefficient (Skempton, 1954).

The shear terms due to twisting motions (i.e., strains e23, e31, e12 and stresses σ23, σ31,

σ12) are excluded from the present discussion because they typically do not couple to the

modes of interest for anisotropic systems having orthotropic symmetry, or more symmetric

systems such as those having transversely isotropic or isotropic symmetry.

Summing the off-diagonal coefficients βi, I now have

β1 + β2 + β3 =
1

Kd
R

− 1
Kg

R

=
αR

Kd
R

. (74)

I also define (as in the isotropic case) a Reuss effective stress coefficient: αR ≡ 1−Kd
R/Kg

R.

Furthermore, I have

γ =
β1 + β2 + β3

B
=

αR

Kd
R

+ φ

(
1

Kf
− 1

Kg
R

)

, (75)

since a rigorous result in this notation (Berryman, 1997) is that Skempton’s B coefficient

satisfies:

B ≡ 1 − Kd
R/Ku

R

1 − Kd
R/Kg

R

=
αR/Kd

R

αR/Kd
R + φ(1/Kf − 1/Kg

R)
. (76)
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More general versions (Brown and Korringa, 1975) of the B definition include another bulk

modulus Kφ
R for pore response that differs from the grain response if the medium consists of

a heterogeneous collection of grains, but this difference is beyond the scope of this Appendix

(but see Appendix B). With the exception of this caveat, all these formulas presented are

rigorous statements based on anisotropic analysis. The appearances of the Reuss-based

expressions Kd
R and αR are not approximations.

I next provide several results for the off-diagonal βi coefficients, and then follow the

results with a demonstration of their validity.

The coefficients βi are often determined by

βi = Sd
i1 + Sd

i2 + Sd
i3 −

1
3Kg

R

. (77)

Again, Kg
R is the Reuss average of the grain modulus. Equation (77) holds true for homo-

geneous grains, such that Kg
R = Kg. However, when the grains themselves are anisotropic,

I also need to allow for this possibility by defining three directional grain bulk moduli

determined by:

1
3Kg

i

≡ Sg
i1 + Sg

i2 + Sg
i3 = Sg

1i + Sg
2i + Sg

3i, (78)

for i = 1, 2, 3. The second equality follows because the compliance matrix is always sym-

metric. I call these quantities in (78) the partial grain-compliance sums, and the K
g
i are

pertinent directional grain bulk moduli. Then, the formula for (77) is replaced by

βi = Sd
i1 + Sd

i2 + Sd
i3 −

1
3Kg

i

. (79)

The preceding results are for perfectly aligned grains. If the grains are instead perfectly

randomly oriented, then it is clear that the formulas in (77) hold as before, but now the
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definition of Kg
R must be reformulated as

1
Kg

R

=
∑

ij=1,2,3

Sg
ij. (80)

If the actual heterogeneous, anisotropic rock material has internal organization that is

neither perfectly aligned, nor perfectly random, then an effective medium theory needs to

be used to estimate these effective grain moduli (Berryman, 2005). I will not pursue this

specialized thread of the analysis any further here.

All of these statements about the βi are easily proven by considering the situation when

σ11 = σ22 = σ33 = −pc = −pf . Because then, from (24), I have:

−eii =
(
Sd

i1 + Sd
i2 + Sd

i3

)
pc + βi(−pf )

= (Sg
i1 + Sg

i2 + Sg
i3) pf ≡ pf

3K
g
i
,

(81)

in the most general of the three cases discussed, and holding true for each value of i =

1, 2, 3. This result is a statement about the i-th diagonal component of strain eii that

would be observed in such circumstances, as it must be the same if these anisotropic (or

inhomogeneous) grains were immersed in the fluid, while measurements were taken of the

strains observed in each of the three directions i = 1, 2, 3, during variations of the fluid

pressure pf . This “proof” is a thought experiment for determining the coefficients, in the

same spirit as the thought experiments proposed originally by Biot and Willis (1957) for

the isotropic and homogeneous case.

The relationship of coefficient γ to the other coefficients is easily established because I

have already discussed the main issue, which involves determining the role of the various

other constants contained in Skempton’s coefficient B (Skempton, 1954). Again, from (24),

I find that

−ζ = 0 = − (β1 + β2 + β3) σc − γpf , (82)
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for undrained boundary conditions. Thus, I find again that

pf

pc
≡ B =

β1 + β2 + β3

γ
, (83)

where pc = −σc is the confining pressure. Then, the scalar coefficient γ is determined

immediately, and is given by

γ =
β1 + β2 + β3

B
=

αR/Kd
R

B
= αR/Kd

R + φ

(
1

Kf
− 1

Kg
R

)

. (84)

Alternatively, I might say that Skempton’s coefficient

B =
αR

γKd
R

. (85)

I have now determined the physical/mechanical significance of all the coefficients in the

poroelastic matrix (24) in terms of measurable quantities. These results are as general

as possible without considering poroelastic anisotropies that have less than orthotropic

symmetry and without allowing for either heterogeneous grains or special sets of grain

orientations. I have also taken advantage of the assumption that the three directions of the

principal axes of symmetry are typically known in order to simplify the presentation.

Now the issue becomes whether or not it is possible to deduce all the drained constants

from measured undrained ones. This question takes the form of a type of poroelastic inverse

problem. From (24) and previous definitions, the drained compliances satisfy:

Sd
ij = Su

ij +
BKd

R

αR
βiβj . (86)

The only unknown component on the right hand side of (86) is the undrained constants,

but I assume these have actually been measured by doing undrained wave propagation

experiments to determine the undrained stiffness Cu
ij ’s, and that this 3× 3 matrix has been

successfully inverted for the undrained Su
ij’s. By taking appropriate sums of (86) and then
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using (84), I find that

βi ≡
∑

j=1,2,3

Sd
ij −

1
3Kg

R

=
∑

j=1,2,3

Su
ij −

1
3Kg

R

+ Bβi. (87)

Rearranging (87), I find

(1 − B)βi =
∑

j=1,2,3

Su
ij −

1
3Kg

R

. (88)

Formula (85) determines B exactly in terms of known quantities. Then, Equation (86) plays

the same role in the anisotropic results, as (72) did for isotropic porous materials.

Equation (88) is one significant result, but now I want to go farther and show how the

same sets of equations can be used in the case when the porosity appears in the form of

fluid-filled fractures. In this context, I use the work of Sayers and Kachanov (1991, 1995), as

I also do in the main text of this paper. This approach introduces the concept of fracture-

influence parameters η, measuring the increase in elastic compliance (a weakening effect)

due to an oriented crack in some solid elastic background material. The total effect of a set

of fractures depends also on the overall fracture density ρf , which is a pure number typically

less than unity, shown for example in (4). [See Berryman and Grechka (2006) for examples

of the use of numerical experiments to determine the values of the crack parameters η.] If

the background material is the same as the grain material discussed here already, then the

concept of fracture influence amounts to formulas of the form:

Sd
ij = Sg

ij + ∆Sij, (89)

where the various corrections due to fractures are proportionalities having a form ∆Sij ∝

ρfη, or possibly sums of such terms. Typically I find that only two η’s are significant at low

crack densities, and I call these η1 and η2. For purposes of this Appendix, these details do

not need to be made explicit. It will be enough to recognize that such contributions give
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rise corrections of the form ∆Sij as shown in (89). Then, I can show how fluids influence

the effects of such fractures.

If I rearrange (86) and then use (89), I have

Su
ij = Sd

ij −
BKd

R

αR
βiβj = Sg

ij + ∆Sij −
BKd

R

αR
βiβj . (90)

Summing this result over both i and j, I have:

1
Ku

R

=
1

Kg
R

+
∑

ij

∆Sij −
BαR

Kd
R

. (91)

But I also have
∑

i

βi =
∑

ij

∆Sij =
αR

Kd
R

=
1

Kd
R

− 1
Kg

R

. (92)

So finally, I have the result that

1
Ku

R

=
1

Kg
R

+ (1 − B)
αR

Kd
R

=
1

Kg
R

+ (1 − B)
(

1
Kd

R

− 1
Kg

R

)

. (93)

The most important result for our present purposes comes from combining (92) and (93)

to obtain:

1
Ku

R

=
1

Kg
R

+ (1 − B)
∑

ij

∆Sij. (94)

This equation shows that all the changes introduced via communicating fractures are af-

fected simultaneously in the same way, and this involves a common factor of (1 − B) mul-

tiplying every fluid-free compliance change ∆Sij. The fluids therefore have the effect of

reducing the influence of cracks when they become filled with fluid, since 0 ≤ B < 1 always

holds for homogeneous porous media. Thus, the general result is an overall strengthening

by a factor of (1 − B) of the parts of the material saturated with fluid. This anisotropic

result is consistent with (and therefore generalizes) a similar result found by the present

author for isotropic porous media in an earlier publication (Berryman, 2007).
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APPENDIX B – HETEROGENEOUS POROELASTIC BACKGROUND

AND RELATIONSHIP TO BROWN AND KORRINGA RESULTS

A well-known result in problems concerning heterogeneous poroelastic media is the formula

due to Brown and Korringa (1975) found in their equation (32):

SA
ijkl − S∗

ijkl =
(SA

ij − SM
ij )(SA

kl − SM
kl )

(κF − κφ)φ + (κA − κM )
. (95)

Although most of my main results are intended to be specific to problems related to frac-

tures, and especially fluid-filled fractures, the general results can nevertheless be put into a

form like that of Brown and Korringa (1975). First note that their notation involves both

fourth and second rank tensors. My formulation is phrased instead in terms of matrices.

The meaning of the various Brown and Korringa (1975) superscripts, when translated into

present language, is this: A → d (drained), ∗ → u (undrained), M → g (material or grain),

F → f (fluid), φ → φ (porosity). The κ’s of Brown and Korringa (1975) are compressibil-

ties, and therefore (for example) κF ≡ K−1
f and κφ ≡ (Kφ

R)−1, when translated into bulk

moduli.

It is not hard to show that the expression equivalent to that of Brown and Korringa

(1975) is given — using current notation for the physical constants from the main text —

by:

Sd
ijkl − Su

ijkl =
(Sd

ij − Sg
ij)BKd

R(Sd
kl − Sg

kl)
αR

=
(
Sd

ij − Sg
ij

)
γ−1

(
Sd

kl − Sg
kl

)
, (96)

where B is Skempton’s second coefficient (used extensively in the main text), αR = 1 −

Kd
R/Kg

R is the effective stress or Biot-Willis coefficient (Biot and Willis, 1957), Kd
R is the

Reuss average bulk modulus of the drained system. And the very important poroelastic
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coefficient (because it contains all the fluid effects) is

γ = αR/BKd
R = (κF − κφ)φ + (κA − κM ) =

1
Kd

R

− 1
Kg

R

+ φ

(
1

Kf
+

1
Kφ

R

)

(97)

was introduced earlier in this paper in (24) and is exactly the same expression as (30).

The interested reader might want to verify (for the sake of personal knowledge and/or

satisfaction) that (96) is in fact equivalent to (49) [in compliance notation], and also to (46)

[in stiffness notation].
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∆S11 = Af (η1 + η2)

∆S22 = Bf (η1 + η2)

∆S33 = 0

∆S12 = ρfη1

∆S13 = Afη1/2

∆S23 = Bfη1/2

∆S44 = Bfη2

∆S55 = Afη2

∆S66 = 2ρfη2

Table 1: Compliance matrix correction values for the vertical fracture model considered in

Eq. 5, which are also valid for the specific limit of Eq. 8, as a special case of the general result.

Af , Bf , and ρf are all measures of fracture density, pertinent to particular components (as

shown) of the compliance matrix modifiers in ∆S.
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Fracture parameter GPa−1

η1 −0.0192

η2 0.3944

Table 2: Fracture-influence parameters [see Table 1 for usage and Eqs. (6) and (7) for their

NIA definitions] in a model reservoir having isotropic background with Poisson’s ratio ν =

0.4375, Vp = 3.0 km/s, and Vs = 1.0 km/s. This model assumes an isotropic background,

which is treated here as an especially simple case of VTI. Note that as a general rule

0 ≤ |η1/η2| ≤ 0.05
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φ Vsv (km/s)

0o 0.8602

30o 0.8678

45o 0.8771

60o 0.8896

90o 0.9222

Table 3: Constant Vsv wave speeds in the [x1-x3] plane found for various values of the angle

φ between fracture planes, and for the fixed value of fracture density ρf = 0.20.
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Rock B

Berea sandstone 0.62

Boise sandstone 0.50

Kayenta sandstone 0.67

Indiana limestone 0.46

Tennessee marble 0.51

Westerly granite 0.85

Table 4: Values of Skempton’s coefficient B (dimensionless) for various common earth

materials (Wang, 2000). Note that B is a function of the state of stress of the porous

material, so these are nominal values.

52



eij volume strain

k1, k2, k3 wavenumbers for directions x, y, z

pc, pf confining and fluid pressures

A,B Skempton’s first and second coefficients

Cij elastic stiffness matrix

E0, G0,K0 Young’s, shear, and bulk moduli of host medium

Kg
R,Kφ

R,Kd
R,Ku

R bulk moduli for grains, pores, drained & undrained systems

Kf ,Ksusp bulk moduli for pore-fluid and fluid-grain suspension

Sij = Sd
ij elastic (drained) compliance matrix

Su
ij poroelastic (undrained) compliance matrix

V± wave speeds for P - and SV -waves

Af ,Bf fracture densities for vertically fractured systems

β1, β2, β3 off-diagonal poroelastic compliances

γ diagonal poroelastic compliance

ε, δ two of Thomsen’s weak anisotropy parameters

ζ increment of fluid content

η1, η2 two fracture-influence compliance parameters

ν0 Poisson’s ratio of host medium

ρ0 inertial density

ρf fracture density

σij external stress matrix/tensor

φ porosity

Table 5: Symbols
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[x1, x3]
[x2, x3]

x2
x3

x1

Figure 1: Illustrating the concept of the two nonintersecting and nonparallel vertical fracture

sets.
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Figure 2: A set of three examples of compressional wave speed (a,b,c) for equal fracture

densities ρa = ρb = ρf/2. Angles between fracture planes are, respectively, φ = 30o, 60o,

and 90o.

Berryman –

55



0 10 20 30 40 50 60 70 80 90
0.85

0.9

0.95

1

Angle  (degrees)

SH
W

av
e 

Ve
lo

ci
ty

 (k
m

/s
)

 

 

 = 30o

 = 0.05
 = 0.10
 = 0.20

(a)

0 10 20 30 40 50 60 70 80 90
0.85

0.9

0.95

1

Angle  (degrees)

SH
W

av
e 

Ve
lo

ci
ty

 (k
m

/s
)

 

 

 = 60o

 = 0.05
 = 0.10
 = 0.20

(b)

0 10 20 30 40 50 60 70 80 90

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Angle  (degrees)

SH
W

av
e 

Ve
lo

ci
ty

 (k
m

/s
)

 

 

 = 90o

 = 0.05
 = 0.10
 = 0.20

(c)

Figure 3: A set of three examples of SH-wave speed (a,b,c) for equal fracture densities

ρa = ρb = ρf/2. Angles between fracture planes are, respectively, φ = 30o, 60o, and 90o.
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Figure 4: A set of three examples of SV -shear wave speed for equal fracture densities

ρa = ρb = ρf/2: angles between fracture planes are φ = 30o, 60o, and 90o. Constant values

seen here are also shown in Table 3.
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