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ABSTRACT 

We develop a Bayesian model to invert surface seismic refraction data with depth 

constraints from boreholes for characterization of aquifer geometry and apply it to 

seismic and borehole datasets collected at the contaminated Oak Ridge National 

Laboratory site in Tennessee. Rather than the traditional approach of first inverting the 

seismic arrival times for seismic velocity and then using that information to aid in the 

spatial interpolation of wellbore data, we jointly invert seismic first arrival time data and 

wellbore-based information, such as depths of key lithological boundaries. We use a 

staggered-grid finite-difference algorithm with second order accuracy in time and fourth 

order accuracy in space to model seismic full waveforms and use an automated method to 

pick the first arrival times. We use Markov Chain Monte Carlo methods to draw many 

samples from the joint posterior probability distribution, on which we can estimate the 

key interfaces and their associated uncertainty as a function of horizontal location and 

depth. We test the developed method on both synthetic and field case studies. The 

synthetic studies show that the developed method is effective at rigorous incorporation of 

multiscale data and the Bayesian inversion reduces uncertainty in estimates of aquifer 

zonation. Applications of the approach to field data, including two surface seismic 

profiles located 620 m apart from each other, reveal the presence of a low-velocity 

subsurface zone that is laterally persistent. This geophysically-defined feature is aligned 

with the plume axis, suggesting it may serve as an important regional preferential flow 

pathway. 

 2



1. Introduction 

Characterization of aquifer geometry is important for understanding and 

predicting subsurface flow and transport, as is needed for optimal management of water 

resources and environmental contaminants. However, such characterization is 

challenging due to the disparity of scales and mechanisms that contribute to the overall 

system flow behavior. Conventional techniques for characterizing subsurface flow 

properties typically rely on wellbore-based techniques, such as core sample analysis or 

pumping, slug, and flowmeter tests [e.g., Butler et al., 2005]. Unfortunately, the small-

scale data obtained using only wellbore-based methods may not provide information 

about key controls on overall system flow behavior. 

Estimation of large scale flow properties directly from small scale measurements 

has been recognized as one of critical unresolved problems in groundwater hydrology 

[Anderson, 2007]. In a recent special issue dedicated to the Future of Hydrology, 

DeMarsily et al. [2005] stated that ‘subsurface imaging is obviously an asset, as it can 

help describe the geometry of the heterogeneous system.’ Suggesting avenues for future 

research, they continued that ‘Geophysics could be used more systematically; so far, 

good examples of a successful use of geophysical images in the treatment of practical 

problems where heterogeneity plays a role is lacking’. 

Although not yet well developed for routine use to treat practical problems, 

several examples provided in Rubin and Hubbard [2005] exemplify the state-of-the-

research in hydrogeophysics, illustrating how geophysical methods have been used to 

improve our understanding of subsurface heterogeneity and predictions of flow. 

However, the majority of quantitative hydrogeophysical studies have been performed at 
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the local scale (~10 m), where the scale disparity between direct (wellbore) and indirect 

(geophysical) measurements is often not significant. In discussing hydrogeophysical 

frontier research areas, Hubbard and Linde [2010] described the pressing need to develop 

approaches for quantifying subsurface heterogeneity over scales relevant to the 

management of contaminant plumes and water resources. They reviewed recent studies 

that illustrate the potential of surface geophysical methods for larger scale subsurface 

characterization and monitoring, which include the use of: seismic reflection for inferring 

3D subsurface stratigraphy at a contaminated site [Addison et al., 2009], electrical 

resistivity methods for quantifying seasonal variations in subsurface moisture content 

[Miller et al., 2008], and electromagnetic methods for monitoring freshwater-saltwater 

dynamics [Falgas et al., 2009]. 

The seismic refraction method is an appealing approach for characterizing 

subsurface aquifer geometry because it is relatively inexpensive and can rapidly provide 

information about subsurface variability over large areas. The methods has been used 

successfully for mapping the distribution of lithological layers in environments associated 

with petroleum exploration, mining, civil engineering, and deep crustal studies. Seismic 

refraction methods work by Snell’s law, which governs the refraction of sound waves or 

light rays across the boundary between layers of different physical properties. If the 

velocity of the seismic waves increases with depth, the wave will be directed back to the 

ground surface where it can be recorded by geophones. Assessment of the travel times of 

the recorded refracted waves can provide information about the location of interfaces 

between units having different physical properties and are thus potentially useful for 
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estimating groundwater aquifers that can be defined by one or more distinct units [Haeni, 

1986]. 

However, two problems exacerbate the use of surface seismic methods for 

delineating subsurface geometry. The first one is associated with the relative placement 

of low-velocity layers in the subsurface. In deeper subsurface environments, such as 

those common to ore mining or petroleum reservoirs, the consolidation of the geological 

layers (thus its seismic velocity) typically increases with depth. Under these conditions, 

the seismic waves are well behaved in that some energy is successively refracted to the 

subsurface while some continues to penetrate deeper as was described above. In the near 

subsurface, however, lower velocity layers can be situated between layers having higher 

velocities. As described by Chen et al. [2006], low seismic velocity regions in shallow 

environments can be indicative of regions that are less consolidated, typically having 

higher porosity and hydraulic conductivity than surrounding layers. Traditional imaging 

of surface seismic refraction datasets, which rely on raypath assumptions, is challenging 

in these environments and thus the delineation of such low velocity zones is subject to a 

large degree of uncertainty [Sheehan et al., 2005a]. 

The second key problem in using surface seismic methods to quantify subsurface 

heterogeneity is associated with the scale disparity between wellbore and geophysical-

based measurements. Traditionally, a ‘two-step’ procedure is performed, whereby the 

surface seismic refraction arrival times are inverted to obtain estimates of the distribution 

of subsurface seismic velocity along 2D cross-sections, which is then compared with 

wellbore data collected along the cross section. The 2D velocity estimates are then used 

to aid in the interpolation of wellbore-based information (such as interfaces between key 
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units). However, traditional inversion of surface seismic refraction datasets usually leads 

to a smoothed velocity distribution in the subsurface (rather than to distinct zones that can 

readily be identified with lithological changes). Additionally, the estimated distribution of 

seismic velocity can be significantly influenced by inversion choices made by the 

geophysicist [Sheehan et al., 2005b]. 

In this study, we develop a Bayesian model to jointly invert surface seismic 

refraction data with constraints available from wellbores and other sources of 

information. We first test the developed method using a synthetic dataset and then apply 

it to the datasets collected from the Oak Ridge National Laboratory Integrated Field 

Research Center (ORNL IFC) for quantifying subsurface architecture at the scale that 

may impact regional flow and contaminant transport. Our method is distinct from 

currently used seismic refraction inversion methods in the following four aspects. First, 

we parameterize the inverse problem directly in terms of aquifer geometry, such as the 

interface between key geological layers, instead of the common approach of inverting for 

the distribution of seismic velocity. Second, we formulate the inverse problem within a 

Bayesian framework, which allows for incorporation of multisource and multiscale 

information (such as interface and water table locations) in a coherent and systematic 

way. Third, we adopt a more accurate forward seismic wave propagation model, i.e., the 

staggered-grid finite-difference method with second-order accuracy in time and fourth-

order accuracy in space [Levander, 1988], to numerically simulate seismic full 

waveforms with subsequent automated traveltime picking. Finally, we use Markov chain 

Monte Carlo (MCMC) methods to explore the resulting joint posterior probability 
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distribution function and obtain not only the estimates of aquifer geometry but also 

associated uncertainty information. 

The remainder of this paper is organized as follows. Section 2 describes the 

ORNL IFC site and available information. Section 3 describes the Bayesian framework 

and MCMC sampling approach for estimating architecture using surface seismic 

refraction and wellbore datasets. In section 4, we test the approach through synthetic case 

studies and evaluate the benefit of wellbore datasets for constraining the inversion. We 

apply the developed method to surface seismic refraction and wellbore datasets collected 

at the ORNL IFC in section 5. Discussion and conclusions are provided in sections 6. 

2. Oak Ridge National Laboratory Integrated Field Research Center 

2.1 Site Information 

The Oak Ridge National Laboratory, located near Knoxville Tennessee (Figure 

1), hosts one of the Integrated Field Research Centers (IFC) of the Subsurface 

Biogeochemical Research (SBR) Program of the U.S. Department of Energy (DOE). The 

IFC site includes contaminated and uncontaminated background areas, both located in 

Bear Creek Valley, west of the Oak Ridge Y-12 National Security Complex [Watson et 

al., 2005]. At the ORNL IFC, a groundwater plume exists that originated from the former 

S-3 Waste Disposal Ponds. 

The Ponds received 3.2 x 108 liters of acidic, nitrate and uranium-bearing waste 

for 32 years until the pond contents were neutralized, denitrified, and capped in 1988 

[Watson et al., 2004]. Although the ponds are capped, the vast majority of contaminant 

mass has migrated away from the ponds into the underlying geologic media where it has 

precipitated or adsorbed onto the solid phase or migrated into the matrix via diffusion, 

 7



creating an extensive secondary source of contamination [Jardine et al., 2002]. 

Groundwater interaction with this secondary source of contamination has resulted in a 

groundwater plume that extends over 4 km down the Bear Creek Valley. Total dissolved 

solid (TDS) content of the ground water plume is greater than 40,000 mg/L. 

Contaminants in the groundwater plume also contain elevated levels of nitrate (up to 

40,000 mg/L), sulfate (up to 3000 mg/L), uranium (up to 50 mg/L), technetium-99 (up to 

40,000 pCi/L), and tetrachloroethylene (up to 9 mg/L) [USDOE, 1997; Watson et al., 

2005]. Located within a humid regime, the subsurface transport processes are likely 

influenced by large annual rainfall inputs (>1400 mm/y). 

The site geology at the ORNL IFC is quite complex. Figure 2 shows a schematic 

structure that mimics the topography of Bear Creek Valley, with Appalachian Formations 

units dipping in the Valley and Ridge Province at a 37° angle to the southwest and 

aligned parallel to the valley [Fienen et al., 2005]. The primary direction of contaminant 

transport parallels the strike of bedding planes and the axis of valley groundwater and 

tends to be constrained within discrete packages of stratigraphic layers. The site is 

underlain by the Nolichucky Shale, although the top 4 m to 15 m has weathered into 

unconsolidated saprolite that maintains remnant bedding structure. To a depth of 

approximately 10 m, the saprolite is clay-rich and has a low permeability [Watson et al., 

2005]. Between the shallow, low permeability clay-rich saprolite and deeper, more 

competent bedrock is a transition zone that has been weathered to varying degrees.  Some 

areas of the site were excavated and filled during facility construction activities. The fill 

can be 0 to 7 m thick with a large fraction consisting of poorly sorted limestone gravel 
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mixed with lesser native saprolite. Groundwater flow near the S-3 Ponds source area is 

thought to occur within both the shale/saprolite and the fill [Watson et al., 2005]. 

2.2 Previous Hydrogeological Characterization at the ORNL IFC 

Many types of information have been collected from ORNL IFC site over time 

and across a range of spatial scales to characterize the subsurface hydrogeology, 

including borehole pumping and flowmeter tests [Fienen et al., 2004], tracer test 

experiments [Luo et al., 2006; Fienen et al., 2006], crosswell geophysical tomographic 

surveys [Chen et al., 2006], and surface seismic refraction and electrical methods 

[Watson et al., 2005; Sheenan et al., 2005a]. Many of the wells were installed using push 

probe techniques; the depth of penetration of those wells is a function of the competency 

of the subsurface units and thus can also potentially be useful for subsurface 

characterization. 

Interpretations of both hydrological and geophysical data have suggested that the 

transition zone, described in Section 2.1, serves as a preferential fast flowpath. At the 

local scale (~10 m), Fienen et al. [2004] and Luo et al. [2006] used pumping and 

flowmeter tests, together with  field-scale tracer test data collected near the S3 ponds, to 

interpret a fast flowpath in the subsurface that appeared to control the overall hydraulic 

behavior of the system. At the same site, Chen et al. [2006] developed and implemented a 

joint stochastic inversion approach that used crosswell seismic traveltimes and borehole 

flowmeter test data to estimate the probability of encountering high hydraulic 

conductivity zones. They found that the joint inversion was successful at the local scale 

for identifying a high hydraulic conductivity zone (located between 10.5 m and 13.5 m), 

which was coincident with a seismic low velocity zone. Comparison of their obtained 
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hydraulic zonation estimates with the tracer and biostimulation experimental results [e.g., 

Wu et al., 2006] suggested that the estimation approach was very effective in defining the 

geometry of preferential flow zones at the local scale. 

Watson et al. [2005] used the surface seismic and electrical datasets, collected 

adjacent to the S-3 source ponds, to guide the installation of wellbores used for 

bioremediation tests. In their study, the seismic refraction travel times were first inverted 

for seismic velocity images using conventional deterministic methods; the velocity 

gradients inferred from the inversion results were used to indicate contrasts in lithology 

or rock competency. Our study is based on the premise that inversion of the seismic 

refraction data with constraints from those wellbores may provide significant information 

for characterizing aquifer geometry at the large scale. We test this concept by developing 

and implementing a Bayesian-based method using the two seismic refraction lines (i.e., 

NT-2 and S3 pond) as shown in Figure 3. 

3. Bayesian Model for Aquifer Geometry Estimation 

In this section, we develop a Bayesian model based on the ORNL IFC site 

information. Bayesian methods provide a coherent and practical way to combine multi-

sources of information; they have been successfully used in many applied fields as shown 

by Gilks et al. [1996]. In this study, we estimate aquifer geometry from seismic refraction 

data and borehole-based information. Within the Bayesian framework, the seismic 

refraction data are connected to unknown parameters (such as lithological interfaces) 

through likelihood functions and the borehole-based data affect the unknown parameters 

through prior distributions. The posterior estimates of unknown parameters are 

combination of both seismic refraction data and the borehole-based information. 
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3.1 Parameterization of the Inverse Problem  

Since our focus in this study is on characterization of aquifer geometry in an 

environment where we expect the presence of a fast preferential flowpath, we consider 

our 2D velocity model as a superposition of three level sub-models, each of which 

includes different quality information from different sources. The first-level velocity sub-

model is the one based on gross hydrostratigraphy; it can be reliably derived from 

information, such as surface topography, groundwater table, and the thickness of man-

emplaced fill (or the soil layer). The second-level sub-model is the vertical global 

gradient of seismic velocity, which can be derived from the average of all the borehole 

velocity profiles, from assessing the conventionally-inverted seismic refraction profile, or 

from the joint inversion process. The third-level sub-model is our primary focus, referred 

to as inversion sub-model; this is the aquifer geometry that we strive to estimate.  

On the basis of the conceptual model of the ORNL IFC site [Watson et al., 2004], 

we divide the inversion sub-model into three distinct zones (Figure 4): (1) weathered 

saprolite (or unconsolidated bedrock); (2) consolidated bedrock; (3) transition zone 

located between the saprolite and the bedrock. As shown in Figure 4, we strive to 

estimate seismic velocity ( , , and ) in each zone, interface locations 

(

1v 2v 3v

,  1, 2, ,ix i  

,  1, 2, ,i

n ) between the weathered and consolidated zones, and thickness 

( y i  

n

n ) of the less competent zone as a function of horizontal locations, where 

 is the total number of locations. The use of zonation concept for characterizing aquifer 

geometry has also been used by Hyndman and Harris [1996] for inverting crosswell 

seismic traveltimes. To reduce the total number of unknowns, we choose to estimate 
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parameters at interval of each 5 m, which are referred to as pilot points. For seismic 

forward simulation, we linearly interpolate values at locations between those pilot points. 

The data used in the Bayesian model are the observed seismic refraction first 

arrival times for many source-receiver pairs. Let  be the first arrival-time recorded at 

the jth receiver from the ith source. Let 

obs
ijd

sm

, ,d d d 

 and  be the total number of sources and 

receivers, respectively. For ease of description, we let vector  represent the seismic 

refraction data for all the source-receiver pairs, arranged first by sources and then by 

receivers. That is, , where the superscript 

denotes observation or measurements, the subscripts denote source-receiver pairs, and 

symbol  represents the transpose of the vector. We also use depth of refusal or 

penetration information to constrain unknown variables through prior models as given in 

section 3.3. 

rm

1 2,s obs
ms

D

)T
11 12 1( , , , , ,obs obs obs ob obs

mr ms msmrd d dD 

T

We add two more unknown variables in this model besides those unknowns 

shown in Figure 4 to describe possible discrepancies between the recorded and 

numerically calculated seismic first arrival times. The first parameter is the bias between 

the first arrival time data and our automatic picking from the numerical forward modeling 

of the first arrival time. The parameter may also account for the systematic difference in 

picking first arrival time from real seismograms. The second parameter is the standard 

deviation of random measurement errors. Since the spatial correlation of the interfaces 

and thickness and the background velocity gradient are also often unknown, we include 

them in the estimation. Consequently, we can develop the following Bayesian model for 

the inversion. 
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( , , , , , , , | )

                  ( | , , , , , ) ( , , , , , , , ),

x y

x y

f g s

f g s f g s

  

   

X Y V D

D X Y V X Y V
                      (1) 

where 1 2( , , , )T
nx x xX  , , and  represent the 

interface locations, the thickness of low velocity zones, and block seismic velocity, 

respectively. Variables 

1 2( , , , )T
ny y yY  1 2 3( , , )Tv v vV

x  and y  represent the correlation lengths of the interface 

locations and the thickness of low velocity zones; variable  represents the background 

velocity gradient. Variable  represents the possible constant bias between the true and 

picked first arrival times, and variable 

g

s

  represent the standard deviation of 

measurement errors. The first term on the right side of equation 1 is referred to as the 

likelihood function, which is the link between the measured travel times and unknown 

variables; the second term is referred to as the prior distribution function, which 

summarizes all information besides the seismic refraction data. 

3.2 Likelihood Model of Seismic First Arrival Times 

We assume that the first arrival times picked from seismograms include an 

unknown constant bias and random noise. Let  be the first arrival times calculated 

from the staggered-grid numerical forward model for the ith source and jth receiver. Let 

ijG

ij  be the random error for the ith source and the jth receiver pair. Thus, we have  

( , , ) .obs
ij ij ijd G s   X Y V                                                  (2) 

We assume that error ij  has a t distribution with a given freedom of   (i.e., 4  ), 

mean of zero, and standard deviation of  . The reason for choosing t distribution rather 
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than the commonly used Gaussian distribution is that t distribution offers a more robust 

and realistic model of measurement errors because it has heavier tail.  

We model the joint likelihood function of the random errors for all the source-

receiver pairs by considering them dependent but uncorrelated, rather than independent as 

we used in other studies [Chen et al., 2006, 2008, and 2009]. Consequently, the 

likelihood function has a multivariate t distribution with the following probability density 

function, as given by [Kotz and Nadarajah, 2004]: 

1/ 2 1/ 2

( ) / 2

2
2

1 1

(( 1) / 2)
( | , , , , , )

( / 2) ( )

1
                     1 ( ( , , , ) ) ,

r s

s r
s r

m m

m m
m m

obs
ij ij

i j

f g s

d G g s




   



 

 

 



 
   

 


D X Y V

X Y V

             (3) 

where  represents the gamma function. The multivariate t likelihood model given in 

equation 3 has advantages over a multivariate Gaussian likelihood model based on the 

independence assumption of measurement errors in dealing with real data sets in practice 

as shown by many studies [Kelejin and Prucha, 1985; Joarder and Ahmed, 1996]. The 

multivariate t distribution can be interpreted as a scale mixing of multivariate Gaussian 

distribution using a hierarchical model [Pinheiro et al., 2001; Marchev and Hobert, 

2004]. It is the distribution of a random vector created by dividing each component of a 

centered multivariate Gaussian random vector by a common independent gamma-

distributed random variable [Kotz and Nadarajah, 2004]. 



3.3 Prior Models and Depth Constraints 

The prior distribution is determined from information other than seismic 

refraction data. We can simplify the prior model in equation 1 by assuming that the 
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location of interfaces between unconsolidated and consolidated bedrock, the thickness of 

low velocity zones, the block seismic velocity, the unknown bias, and the standard 

deviation of unknown measurement errors are independent. This assumption is 

reasonable for this estimation problem. Consequently, we can write the prior distribution 

function as follows: 

( , , , , , , , )

                 ( | ) ( | ) ( ) ( ) ( ) ( ) ( ) ( ).

x y

x y x y

f g s

f f f f f f g f s f

  

    

X Y V

X Y V
                (4) 

We specify prior models for each vector in Equation 4 differently, depending on the 

characteristics of those variables. For the unknown bias, we assume it has the uniform 

distribution on the range between -3 ms and 3 ms based on experience in first arrival time 

picking. For the standard deviation of errors, we assume its prior distribution has a 

uniform distribution, as suggested by Gelman [2006], with a range between 0.1 ms and 

10 ms. For spatial correlation, we use the exponential variogram and assume the two 

correlation lengths are uniformly distributed between 1 m and 20 m. Those assumptions 

are reasonable for the site based on other studies [e.g., Chen et al., 2006]. For the 

background velocity gradient, we first calculated the averaged gradient (82 m/s per meter 

depth) of the velocity profile given by Watson et al. [2005] and obtained from traditional 

inversion methods. We set the prior range from 60 m/s per meter depth to 100 m/s per 

meter depth. 

We specify the prior models of the interface locations and thickness of the low 

velocity zones , and Y  by taking account for both their bounds and spatial correlation. 

We assume that they have truncated multivariate Gaussian distributions, i.e., 

, and 

X

)Ind( MVN , )X XDX X μ Σ( X YInd( )MVN( , )Y YDY Y μ Σ , where  is Ind( )
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the indicator function, taking the value of one if the condition is satisfied and zero, 

otherwise; MV is multivariate Gaussian distribution with mean vector XN( )  μ  or Yμ  and 

variance-covariance matrix XΣ  or . Symbols XD  and  are the llowed domains of 

vector X and Y, respectively. 

YΣ YD  a

We define above vectors and matrices through specification of marginal bounds 

as done by Chen et al. [2006]. Let ( , )xi xil u  and  be the bounds of the interface 

location and thickness of low velocity zones at the ith pilot point. We define the ith 

component of mean vectors 

( ,yi )yil u

Xμ  and Yμ  by ( xi )xil u ( yi )yil u/ 2  and xi   / 2yi  

X Y

( ) /xi

, 

respectively. We define the ith marginal standard deviation of vectors  and  by the 

quarter of their corresponding interval widths, i.e., xiu l 4xi    and 

(yi yi ) / 4yiu l  

Y

. To account for the spatial correlation of each component of vectors X  

and , we use an exponential variogram with unknown correlation lengths x  and y . 

The variance-covariance matrices matrix  or  are determined by both the marginal 

standard deviations and the correlation matrices. 

XΣ YΣ

At the control points where wellbores are available, we can use data from those 

wells to constrain prior ranges. At the ORNL site there are generally two types of wells: 

(1) shallow wells that have been drilled in the last decade to provide information on the 

lower bounds of the interface locations from geological descriptions; (2) sparse, older, 

but deeper wells that provide information on both interface and thickness of low velocity 

zones. For a shallow well, if  represents the depth of the well that corresponds to the 

kth control point, we let 

ref
kz

ref
xk  kzl . For a deep well, suppose  and deep

kz de
k

ep  be the 

interface location and thickness of low velocity zones, we can assign , (1 )l z deep
xk k 
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(1 ) deep
xk ku z  , (1 ) deep

yk kl    , and (1 ) deep
yk ku    . Without loss of generality, we 

assume 0.1 

X

 in this study. 

3.4 Markov Chain Monte Carlo Sampling Methods 

We cannot obtain analytical solutions of the inverse problem defined by equation 

1 because the joint posterior probability distribution function involves numerical forward 

modeling of seismic first arrival times and because the likelihood function given in 

equation 3 is a nonlinear function of the unknown parameters. Therefore, we use MCMC 

sampling strategies to draw many samples from the posterior joint distribution. 

To implement MCMC sampling strategies, we first need to derive the conditional 

probability distribution for each type of unknowns given all other unknowns by dropping 

those terms that are not directly related to it in equation 1. For example, for unknown 

vector , we can have ( | ) ( | , , , , , ) ( | )xf f s fg  X D X Y V X . Similarly, we can 

obtain conditional probability distributions of other unknown vectors. We then need to 

draw samples using block-wise slice [Neal, 2003] or Metropolis-Hastings [Metropolis et 

al., 1953; Hastings, 1970] sampling methods. Finally, we use the method developed by 

Gelman and Rubin [1992] to check the convergence of Markov chains. 

4. Synthetic Case Studies 

In this section, we apply the developed Bayesian model to synthetic seismic 

refraction data generated by mimicking conditions at the ORNL IFC site. We use the 

synthetic study for two purposes: (1) to check if the developed Bayesian model and its 

associated MCMC sampling methods are effective for aquifer geometry estimation; (2) to 
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investigate the effects of depth constraints on the estimation under relative simple 

conditions. 

4.1 Synthetic True Model and Survey Geometry 

We developed a synthetic 2D velocity model based on a conceptual model of the 

seismic velocity distribution from previous research [Watson et al., 2005; Chen et al., 

2006]. As shown by Figure 5, the 2D cross-section spans 130 m and extends to a depth of 

25 m. We divide it into 520×100 intervals (i.e., 520m  , 100n  , and m, 

m). On the basis of typical geological structure at this site (see Figure 2), we 

divide the cross-section into four layers: (1) shallow topsoil with velocity of 600 m/s, (2) 

human-placed fill with velocity of 1000 m/s, (3) weathered bedrock (saprolite) with 

velocity of 1200 m/s, and (4) consolidated bedrock with velocity of 1400 m/s. Between 

the unconsolidated and consolidated bedrock is a low velocity zone of 800 m/s. We add a 

gradient of 82 m/s per meter to the above 2D block velocity model. To reduce the total 

number of unknowns, we pick 27 pilot points that are evenly spaced along the x axis with 

spacing of 5 m.  

0.25x 

0.25z 

We perform a forward simulation using the staggered-grid finite difference model 

to obtain seismic refraction travel time data. We use a Delta-function pulse as input to the 

numerical system because it generates sharp first arrivals for which the automatic picking 

of first arrivals works very robust. Although the Delta pulse leads to contaminated 

waveforms by numerical dispersion in later arrivals, as we only use first arrival time in 

this study, there is no effects of the numerical artifacts [Korneev et al., 2008]. We follow 

similar acquisition procedures used in the field to collect real data. There are 64 shot 

sources, starting from x = 1 m with a spacing of 2 m, and 128 receivers, starting from x = 
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1 m with a spacing of 1 m. Each shot source and receiver are located in depth of 0.5 m. 

We assume that there are four boreholes nearby the survey lines. Two of those wells (x = 

10 m and x = 110 m) are shallow and provide information about the depth of the interface 

between unconsolidated and consolidated bedrock; the other two wells (x = 50 m and x = 

90 m) are deep and provide depth information on both the interface and the thickness of 

less competent zones. 

We generate synthetic first arrival times using the numerical forward model. We 

assume that there is a constant of 1 ms bias, which accounts for possible differences 

between the automatically and manually pickings of first arrival times. Moreover, we add 

Gaussian random noises with zero mean and 1 ms standard deviation. The added bias and 

random noises are reasonable for the Oak Ridge site datasets based on the error studies 

conducted by Gaines et al. [2008]. 

4.2 Stochastic Inversion of Synthetic Datasets 

We invert the synthetic seismic data as described above using MCMC sampling 

methods for wide priors except at locations where wellbores are available. The prior 

ranges of three block velocities are [1000, 1400], [600, 1000], and [1200, 2000] m/s, 

respectively; the prior ranges of interface locations and thickness of the low velocity 

zones are [8, 16] m and [0, 6] m. Comparison with the true synthetic model shows that 

block seismic velocities can be accurately estimated from the inversion because seismic 

first arrival times are mostly sensitive to changes in those parameters. This implies that 

when we invert field data for aquifer geometry, we can use wide prior ranges for block 

seismic velocity and the inversion results will not be very sensitive to the specification of 

the priors. 
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The locations of interfaces between unconsolidated and consolidated bedrock can 

be resolved reasonably well. As shown in Figure 6, we can see that the medians of the 

estimated interface locations (white dashed curves) are close to their corresponding true 

values, even at locations near both edges where seismic wave coverage is very low. This 

is because we assume that the interface locations are spatially correlated. However, as 

shown in Figure 7, uncertainty associated with the estimation is high, depending on 

whether we use or not use depth constraints. 

The performance of the stochastic inversion for estimating the thickness of low 

velocity zones varies. As shown in Figure 8, the inversion method provides good 

estimates of thickness of low velocity zones in the middle locations (40 m < x < 100 m) 

along the x axis, but poor estimates at edge locations (x < 40 m or x > 100 m). The 

discrepancy is caused by difference in the distribution of seismic waves. Similar to the 

estimates of interface locations, uncertainty in the estimates of the thickness is also large. 

The effects of depth constraints from wellbores on the interface and thickness will be 

further addressed in the subsequent sections. 

4.3 Effects of Depth Constraints on Estimation 

We invert the synthetic seismic data with and without wellbore information to 

investigate the effects of depth constraints on the estimation of aquifer geometry. Figures 

7a and 7b compare the estimated medians and 95% predictive intervals of interface 

locations between unconsolidated and consolidated bedrock with and without depth 

constraints. We can see that the medians of both inversions are close to the true interface 

locations with the root-mean-squares (RMS) of difference from the true values of 0.31 m 

with depth constraints and of 0.32 m without depth constraints. Since the estimated 
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medians of interface locations with depth constraints are very close to those without 

depth constraints, our focus here is on the comparison of uncertainty associated with the 

constrained and unconstrained estimation. 

We can see that overall the estimates of interface locations with depth constraints 

(Figure 7a) have smaller uncertainty than those without depth constraints (Figure 7b). 

The averaged width of highest probability domains (HPDs) with depth constrains has a 

value of 1.49 m while that without depth constraints has a value of 1.74 m. To see the 

detailed effects of depth constraints, we also show depth constraints at the four borehole 

locations (black vertical dashed lines). We found that at locations near the edges (x = 10 

m or x = 110 m), the constraints reduce the uncertainty significantly and at locations 

close to the middle (x = 50 m or x = 90 m), the constraints reduce uncertainty slightly. 

This is because at locations in the middle, we have more wave coverage and thus the 

interfaces are better determined from seismic refraction data alone. 

Figures 8a and 8b show the thickness and location of the low velocity zones, 

where the blue curves with circles are the true thickness and the black curves, and red 

dashed lines are the medians and the lower and upper bounds of 95% HPDs. We can see 

that in the location from x = 20 m to x = 100 m, the medians of both inversions are close 

to the true thickness with the root-mean-squares (RMS) of difference from the true values 

of 0.42 m with depth constraints and of 0.40 m without depth constraints. Similar to the 

interface location, we compare uncertainty associated with the constrained and 

unconstrained estimation in the range and find that the averaged width of thickness with 

depth constraints (1.32 m) is much smaller than that without depth constraints (1.72 m). 

At the two locations (x = 50 m and x = 90 m), where depth constraints are available, 
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uncertainty in the estimates of thickness with depth constraints are significantly smaller 

than that without depth constraints. 

Different from the interface location, the medians of estimated thickness with and 

without depth constraints are significantly away from the corresponding true values at 

locations near both ends (i.e., x < 20 m or x > 100 m). This is partly because for the given 

survey geometry, we have much less wave coverage in the areas than that in the middle 

areas. Therefore, depth constraints at locations near edges play a far more important role 

than at locations in the middle area for improving estimates of thickness. Another reason 

is that the resolution of seismic refraction surveys typically decreases with increasing 

depth. For example, the RMS of misfits is about 0.3 m for interface location estimation 

and 0.4 m for thickness estimation. This again shows that the depth constraints from 

deeper wellbores are more important, especially at locations near edges. 

5. Inversion of ORNL IFC Field Datasets 

We apply the Bayesian model developed in section 3 to field seismic refraction 

and wellbore datasets collected down gradient in the NT-2 area and adjacent to the S3 

ponds (see Figure 3). These profiles are located perpendicular to groundwater flow 

direction and are separated by 620 m. Although inversion of data collected from the S3 

survey line using conventional deterministic methods indicated the possible existence of 

a low seismic velocity zone along the cross section [Sheehan et al., 2005b; Watson et al., 

2005], given uncertainty in the two-step conventional approach described in section 1, the 

estimated location and geometry of the fast flowpath zone are qualitative and subject to a 

large degree of uncertainty. To quantitatively estimate the aquifer geometry and 

associated uncertainty information, we apply the developed stochastic inversion approach 
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to the seismic refraction data collected from both survey lines with depth constraints from 

local environments. 

5.1 Inversion Using Data from the NT2 Survey Line 

5.1.1 Survey Location and Geometry 

Seismic refraction survey geometry on the NT2 area is given in Figure 9. The 

ground surface decreases from the south (x = 0 m and elevation = 298 m) to the north (x 

= 120 m and elevation = 296 m). A total of 55 sources (showing as crosses) were used, 

starting from x = 0.5 m with increment of 4 m. A total of 221 receivers (or geophones) 

were used, starting from x = 0 m with increment of 0.5 m. We consider a rectangle 

inversion domain with a lateral extent of 120 m from the south to the north and a vertical 

extent of 25 m from elevation of 300 m to elevation of 275 m. For forward simulation, 

we use the same grid size for both horizontal and vertical directions, which is  equal to 

0.25 m. This renders 480 grids along the lateral direction and 100 grids along the vertical 

direction. 

5.1.2 Depth Constraints from Wellbores and Other Types of Information 

Several wellbores are located near the NT2 survey profile as shown in Figure 3, 

and four of them are within the horizontal distance of 22 m from the profile. Wellbore 

GW828 has a horizontal distance of 18 m from the survey line and the total penetration 

depth of 51 m. Weathered rock (shale) was encountered at the depth of 2.3 m (or 7.5 ft) 

and fresh rock at the depth of 11.8 m (or 38.7 ft) [USDOE, 1995]. Wellbores FW600, 

FW601, and FW602 are also nearby and they are all shallow. The depths of refusal (or 

penetration) for wellbores FW600, FW601, and FW602 are 9.0 m (or 29.5 ft), 6.1 m (or 
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20.0 ft), and 10.2 m (or 33.3 ft), respectively. Since FW600 and FW601 are very close, 

with a distance of 1.6 m, we only use information from wellbore FW600 in the inversion. 

The depths encountered fresh rock are likely beyond those depths. 

We also use information from the conventional inversion results [Gaines et al., 

2008] to build a prior velocity model for shallow subsurface. The three-layer background 

block velocity model has fixed thickness for each layer, which includes a very thin layer 

with a thickness of 0.5 m and a constant velocity of 300 m/s, a topsoil layer with a 

thickness of 1.0 m and a constant velocity of 500 m/s, and an unsaturated layer above the 

groundwater level with a thickness of 2.4 m and a constant velocity of 800 m/s. 

5.1.3 Inversion of Seismic Refraction Data 

We invert seismic refraction data under several different conditions. The prior 

ranges of the bias, the standard deviation of measurement errors, the spatial correlation 

lengths, and the background gradient are given in section 3.3. The prior ranges of three 

block velocity are the same as those used in the synthetic studies for the Bayesian model 

with a background model, and they are [1000, 3000], [1000, 3000], and [2000, 4500] m/s 

for the Bayesian model without a background model. The prior ranges of the interface 

locations are [9, 18] m in depth; the prior range of the thickness is [0, 3] m in the narrow-

bound case and [0, 6] m in the wide-bound case. 

We first invert seismic refraction data using the narrow bounds for thickness 

without a background gradient model. Figure 10 shows the 2D velocity model calculated 

using the estimated medians of unknown parameters with depth constraints (Figure 10a) 

and without depth constraints (Figure 10b). Both images show the existence of two major 

low velocity zones on the cross-section: one is around x = 50 m and the other is around x 
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= 80 m. The interface locations are also very similar on the right side (x > 90 m). 

However, the estimated aquifer geometry at the south end (x < 40 m) in Figure 10b is 

significantly different from that in Figure 10a due to the lack of depth constraints from 

wellbores. At wellbore GW828, the estimated interface at the wellbore location obtained 

from inversion with depth constraints is consistent with the observed depth that fresh 

bedrock was encountered (black circle in Figure 10a), but that obtained from inversion 

without depth constraints much shallower than the observation. 

The Bayesian model allows us to quantify uncertainty associated with the 

parameter estimation. Figure 11 shows the medians and the lower and upper bounds of 

95% HPD for the interface locations (Figure 11a)  and for the thickness (Figure 11b). We 

can see that uncertainty in the interface is smaller than that in thickness relative to their 

corresponding prior ranges ([9, 18] m for the interface and [0, 3] m for the thickness) 

because the resolution of seismic refraction survey typically decreases with increasing of 

depth. From Figure 11a, we can also see that uncertainty in the interfaces at the locations 

with depth constraints (i.e., x = 25 m, 30 m, and 60 m) is significantly smaller than that 

without depth constraints. 

5.1.4 Effects of Prior Information on Estimation 

We vary the prior ranges of several types of unknown parameters on which we 

have less controls to investigate the effects of prior information on the estimation. We 

inverted the seismic refraction data under the following six different situations: (1) using 

the narrow thickness bounds with depth constraints and without a background gradient 

model, referred to as "narrow-depth-block";  (2) using the narrow thickness bounds 

without depth constraints and a background gradient model, referred to as "narrow-
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nodepth-block"; (3) using the narrow thickness bounds with depth constraints and a 

background gradient model, referred to as "narrow-depth-gradient"; (4) using the wide 

thickness bounds with depth constraints and without a background gradient model, 

referred to as "wide-depth-block"; (5) using the wide thickness bounds without depth 

constraints and a background gradient model, referred to as "wide-nodepth-block"; (6) 

using the wide thickness bounds with depth constraints and a gradient background, 

referred to as "wide-depth-gradient".  

Figure 12 compares the estimated thickness of low velocity zones for the above 

six cases. Although there are quite uncertain because of different prior information used 

for inversion, they all suggest there are low velocity zones around location x = 50 m and 

x = 80 m. To obtain more accurate estimates of aquifer geometry, the use of more 

information is beneficial. Similarly, we analyze the effects of other types parameters, for 

instance, the prior ranges of three block velocity, and the prior ranges of the bias and the 

standard deviation of measurement errors. The effects of those parameters are less 

prominent. 

5.2 Inversion Using Data from the S3 Survey Line 

5.2.1 Survey Location and Geometry 

There are total two survey profiles near the S3 pond. The first profile has 63 

sources, starting from x = 35 m with increment of 2 m, and has 48 receivers, starting from 

x = 82 m with increment of 1 m. The second profile has 50 shot sources, starting from x = 

28 m with increment of 2 m, and has 48 receivers, starting from x = 52 m with increment 

of 1 m. We consider a rectangle inversion domain with a lateral extent of 130 m from the 

south to the north and a vertical extent of 25 m downward from the ground surface. For 
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forward simulation, we also use the same grid size for both horizontal and vertical 

directions, which is equal to 0.25 m. This gives us 520 grids along the lateral direction 

and 100 grids along the 

5.2.2 Depth Constraints from Wellbores and Prior Model from Other Information 

Many wellbores have been drilled near the S3 pond survey lines in the past two 

decades. There are 22 wellbores within a horizontal distance of less than 5 m from the 

survey line. However, among those wells, some are only a few feet deep and thus provide 

no information on the interface location and geometry of fast flow pathways. As shown 

in Figure 3, seven wellbores (i.e., FW007-FW010, FW112, FW117, and TPB25) are 

more than 10 feet deep and provide depth of refusal information, which may reflect 

information about rock competency and thus can be used to build prior models. 

Some deeper well exist near the middle of the seismic survey line (Area 3 in 

Figure 3), within a vertical distance of about 10 m from the S3 survey line. At those 

wells, flowmeter and slug test data are available, and crosswell seismic data were also 

collected and inverted using joint stochastic methods for aquifer zonation [Chen et al., 

2006] as was described in section 2.3. The inversion results showed that there is a 

discrete, high hydraulic conductivity zone at depth, which has a thickness ranging from 

0.5 m to 3 m. Compared to large-scale (order of 100 m) seismic refraction surveys, the 

crosswell seismic surveys provide information of the aquifer in the small scale (~10 m). 

Such localized information also provides constraints on the interface and thickness of 

aquifer at the location near the middle of the survey line. The third type of information 

available near the S3 pond survey line is the inversion results using conventional methods 

[Watson et al., 2005]. We build a background block velocity model using such 
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information, which is the same as given in section 4 for synthetic case studies for joint 

inversion. 

5.2.3 Inversion of Seismic Refraction Data 

Figure 13 shows a 2D seismic velocity calculated from the estimated medians of 

unknown parameters, which can be explained as an average of many individual 

realizations. The figure shows the existence of a low velocity zone in the middle of the 

profile from x = 40 m to x = 90 m at depth around 15 m. These results are consistent with 

the findings by Sheehan et al. [2005b] in the previous studies at the site, who first 

suggested the presence of  a low seismic velocity zone at the ORNL. The jointly inverted 

data clearly delineate the geometry of the low velocity zone. 

Similar to the case of NT2 inversion, the estimated results shown in Figure 13 are 

also subject to uncertainty because of the specification of the background block velocity 

model and the prior distributions of unknown parameters. However, at the Oak Ridge 

site, given the fact that we have collected extensive information (see Figure 3) near the 

S3 pond, we think that our background model and prior distributions are reasonable. 

5.3 Joint Interpretation of Seismic Refraction Inversion Results 

Inversion of seismic refraction data at the NT2 and S3 pond survey profiles 

suggests the presence of discrete low velocity zones situated below the saprolite and 

above the bedrock. Comparison of the inversion results (Figures 10 and 13)  suggests that 

these zones are parallel to the strike and about 40 m in length and 15 m in depth. Since 

the low velocity zones are located at a similar location, this implies that the low velocity 

zone is laterally persistent for at least 620 m from the source region down gradient. Our 

previous seismic research at the site (Area 3 in Figure 3) demonstrated a strong 
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correlation between low velocity and high hydraulic conductivity zonation at the local 

scale [Chen et al., 2006]. Additionally, the location of the laterally extensive zone is 

aligned well with the distribution of high concentrations of the nitrate plume (see black 

arrow in Figure 14). Together, these observations suggest that the interpreted low 

velocity zone may serve as a preferential pathway at this study site. 

6. Discussion and Conclusions 

We developed a Bayesian model to invert seismic refraction data with depth 

constraints offered by wellbore datasets using finite-difference numerical forward 

modeling of seismic first arrival times and MCMC sampling methods. We applied the 

method to both synthetic and field seismic refraction datasets. Synthetic studies show that 

the developed method can be used to estimate the interface and geometry of low velocity 

zones under suitable constraints. The synthetic studies also show that the depth 

constraints were important for reducing uncertainty in estimation of interface and 

geometry of aquifers. With the good depth constraints, we can reduce the uncertainty 

significantly.  

We applied the developed method to two sets of field data collected from the 

ORNL IFC site: one located near the plume source zone and the other located 620  m 

down gradient. Case studies on the NT2 survey profile show that estimation of aquifer 

geometry using field data is more challenging because many factors may affect the 

accuracy of inversion results, such as prior ranges of interface locations and thickness of 

low velocity zones. In that case, depth constraints from wellbores become more important 

and the use of wellbore information  can help to significantly improve the accuracy of the 

estimation. 

 29



Although the dataset near the S3 pond (i.e., source area) had much more prior 

information from wellbores relative to the down-gradient dataset, both  inversion 

revealed a similar subsurface geometry. The inversion results show that there is likely a 

low velocity zone located at the same approximate depth below ground surface on the 

two profiles, which implies that the low velocity zone is laterally persistent for 620 m 

from the source region down gradient. The zone is fairly extensive, with an average 

thickness of about 1.5 m and width of about 40 m. Our previous seismic research at the 

site demonstrated a strong correlation between low velocity and high hydraulic 

conductivity zonation at the local scale. Additionally, the location of the laterally 

extensive zone is surprisingly coincident with the (narrow and long) plume distribution. 

These multiple lines of evidence all suggest that the geophysically estimated subsurface 

geometry, which contains a preferential flowpath, plays a key role in transport at the 

ORNL contaminated site. Future efforts will include additional acquisition and inversion 

of surface seismic refraction data at the study site, validation of the interpretation through 

deep wellbore drilling, and use the geophysically-obtained geometry to parameterize a 

site-wide flow and transport model. 

The current Bayesian method is computationally intensive. For instance, for a 

problem, such as inversion of seismic data along the NT2 profile with 55 sources, we 

need to run multiple chains for several days on a cluster with 55 CPUs, each CPU having 

a speed of 3.6 GHz. However, because of the use of  the staggered-grid finite-difference 

numerical algorithm, we are able to calculate seismic refraction arrival time under 

complex subsurface environments in high accuracy. With ever expanding computing 
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power, especially parallel computing techniques, computational limitations are expected 

to continue to diminish. 

The developed Bayesian model is advantageous because it allows us to 

parameterize the inverse problem in terms of aquifer geometry (rather than seismic 

velocity, as is the common approach), to simultaneously honor spatially extensive (yet 

indirect) geophysical data and sparser but direct wellbore ‘point’ measurements, and to 

estimate associated uncertainty of the estimated interface locations. This method should 

be applicable in other shallow subsurface sites where both surface seismic refraction and 

wellbore datasets are available. Development of this methodology opens the door for 

quantification of aquifer geometries over spatial scales relevant to water resources and 

contaminant remediation efforts. 
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Figure Captions 

Figure 1: Location of the Oak Ridge National Laboratory Integrated Field Research 

Center (ORNL IFC) site (USDOE) 

Figure 2: Geological structure at the Oak Ridge site (after Watson et al. [2005]) 

Figure 3: Seismic refraction survey lines and wellbores at the NT2 and S3 pond areas  

Figure 4: Two-dimensional cross-section with inversion parameters 

Figure 5: Synthetic true velocity model 

Figure 6: Estimated velocity model using the stochastic inversion method 

Figure 7: Estimated interface locations (a) with depth constraints and (b) without depth 

constraints 

Figure 8: Estimated thickness of low velocity zones (a) with depth constraints and (b) 

without depth constraints  

Figure 9: Seismic survey geometry at the NT2 area and the inversion domain  

Figure 10: Estimated 2D profile along the NT2 survey line (a) with depth constraints, 

and (b) without depth constraints 

Figure 11: Uncertainty associated with inversion at the NT2 area for (a) interface 

locations, and (b) thickness of low velocity zones 

Figure 12: Effects of prior information on the estimates of thickness for the NT2 dataset 

Figure 13: Estimated velocity model along the S3 pond profile 

Figure 14: Distribution of the nitrate plume at the Oak Ridge National Laboratory site 
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Figure 1. Location of the Oak Ridge National Laboratory Integrated Field Research Center
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Figure 2. Geological structure at the Oak Ridge site (after Watson et al. [2005])
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Figure 6. Estimated velocity model using the stochastic inversion method

D R A F T May 26, 2010, 8:16pm D R A F T



X - 6 CHEN ET AL.: STOCHASTIC INVERSION OF SEISMIC REFRACTION DATA

0 20 40 60 80 100 120

9

10

11

12

13

14

15

E
le

va
tio

n 
(m

)

(a)

True value
Estimated median
95% upper bound
95% lower bound
Borehole location

0 20 40 60 80 100 120

9

10

11

12

13

14

15

Distance in the horizontal direction (m)

E
le

va
tio

n 
(m

)

(b)

True value
Estimated median
95% upper bound
95% lower bound
Borehole location

Figure 7. Estimated interface locations (a) with depth constraints and (b) without depth

constraints
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Figure 8. Estimated thickness of low velocity zones (a) with depth constraints and (b) without

depth constraints

D R A F T May 26, 2010, 8:16pm D R A F T



X - 8 CHEN ET AL.: STOCHASTIC INVERSION OF SEISMIC REFRACTION DATA

0 20 40 60 80 100 120
275

280

285

290

295

300

Distance along the horizontal direction from the South to the North (m)

E
le

va
tio

n 
(m

)

Inversion domain:
xmax=120 m and zmax=25 m
dx=dz=0.25 m

Ground Surface

Sources (shots)
Receivers (geophones)

Figure 9. Seismic survey geometry at the NT2 area and the inversion domain
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Figure 10. Estimated 2D profile along the NT2 survey line (a) with depth constraints and (b)

without depth constraints
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Figure 11. Uncertainty associated with inversion at the NT2 area : (a) interface locations,

and (b) thickness of low velocity zones
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Figure 12. Effects of prior information on the estimates of thickness for the NT2 dataset

Figure 13. Estimated velocity model along the S3 pond profile
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Figure 14. Distribution of the nitrate plume at the Oak Ridge National Laboratory site
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