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Abstract. Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for 
the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the 
velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition 
to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The 
propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of 
the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the 
slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a non-
aqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-
dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large 
saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison 
between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic 
expression indicates overall agreement.  
 
1. Introduction  
 
In a wide range of activities, including environmental remediation, 

the geological sequestration of carbon dioxide, and geothermal energy 
development, it is important to correctly model the flow of fluids 
within the subsurface. To this end, one must adequately characterize 
the flow properties at depth. This is typically accomplished through 
solving an inverse problem in which observations are used to constrain 
medium parameters, such as the formation permeability [Sun, 1994]. 
Inverse modeling has advanced in recent years through improved field 
methods and the development of flexible modeling techniques. For 
example, there are networks of multi-level samplers and crosswell 
configurations of transducers capable of generating adense array of 
observations[Hsieh et al., 1985; Butler et al., 1999; Karasaki et al., 
2000; Yeh and Liu, 2000; Vesselinov et al., 2001; Datta-Gupta et al., 
2002]. In addition, geophysical measurements have been used to 
augment hydrological data, to characterize flow properties in the 
subsurface [Paillet, 1993; Kowalsky et al., 2004; 2005]. Such 
measurements include satellite-based observations of surface 
deformation due to seasonal effects, pumping, and fluid injection 
[Schmidt and Burgmann, 2003; Bell et al., 2008; Vasco et al., 2010; 
Rucci et al., 2010].  

Given the wide variety of geophysical and hydrological data, 
access to flexible and efficient approaches for modeling and inversion 
is essential. While purely numerical methods provide the most 
comprehensive solutions to multiphase flow problems, they tend to be 
computationally intensive and provide less insight and flexibility. 
Analytic solutions can be efficient, but are usually limited to fairly 
simple situations, such as linearized perturbations on a homogeneous 
background model. There are semi-analytic techniques for modeling 
and inversion that display some of the efficiency and insight of 
analytic methods while extending to the more complicated situations 
that can be treated by numerical techniques. One class of semi-analytic 
methods, the trajectory-based approaches described in Cohen and  

 
 
Lewis [1967], Shen [1983], Vasco and Datta-Gupta [1999], Vasco et 
al. [1999], and Vasco et al. [2000], has the additional flexibility of 
partitioning the inverse problem into a travel time matching problem 
[Brauchler et al., 2003] and an amplitude matching problem [Vasco, 
2008a]. As noted by Cheng et al. [2005], the travel time problem is 
quasi-linear and thus converges more readily than the highly nonlinear 
amplitude matching problem. Furthermore, inverting travel times is 
much more efficient than amplitude inversion and such inverse 
problems form the basis of medical imaging [Arridge, 1999] and 
geophysical tomography [Iyer and Hirahara, 1993].  

While asymptotic, trajectory-based solutions have been used to 
treat inverse problems in hydrology [Vasco, 2008b], there are some 
limitations in current derivations. These limitations are associated with 
the application of asymptotic techniques to nonlinear problems, such 
as multiphase flow and coupled processes, (e.g., deformation and flow. 
Specifically, while asymptotic techniques are applicable to nonlinear 
processes [Whitham 1974; Anile et al., 1993], and have been applied 
to two-phase flow [Vasco et al, 1999; Vasco, 2004], the applications 
have been limited in some respects. For example, capillary effects 
were neglected in Vasco et al. [1999]. And typically when capillary 
effects are included, background fields, such as the initial saturation 
and the capillary pressure, are assumed to be uniform [Anile et al., 
1993; Vasco, 2004]. Furthermore, when the governing equation is 
written in terms of a distinct saturation equation, as in Vasco [2004], 
the resulting equation for the saturation front velocity is a complicated 
expression that contains an implicit dependence on the solution of the 
pressure equation. In this paper I present a new derivation of a 
trajectory-based solution for two-phase flow in the presence of 
capillary forces. The derivation is based upon a general approach 
applicable to any set of coupled nonlinear partial differential 
equations. The resulting expression for the phase velocity depends 
explicitly upon the saturation and pressure amplitude changes in a  
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rather simple fashion. Due to the presence of the saturation
and pressure terms, the phase velocity must be calculated
in conjunction with the results from a numerical simulator.
However, the expression provides insight into the way in
which saturation and pressure changes control the propaga-
tion of a coupled two-phase front.

2. Methodology

In this section I present the governing equations for two-
phase flow and outline an asymptotic analysis based upon
the method of multiple scales. The details of the analysis
are given in full in Appendix A.

2.1. The Equations Governing Two-Phase Flow

To begin, I consider the set of simultaneous partial differ-
ential equations describing the flow of a wetting phase and a
non-wetting phase [Bear, 1972; Peaceman, 1977; de Marsily,
1986]

∇ ·
[

ρwkkrw

µw

∇ (Pw − ρwgz)

]

=
∂(ρwφSw)

∂t

∇ ·
[

ρnkkrn

µn

∇ (Pn − ρngz)

]

=
∂(ρnφSn)

∂t

(1)

where Sw and Sn denote the saturation of the wetting and
non-wetting phases, respectively. The relative permeabili-
ties of the wetting and non-wetting phases, which are func-
tions of the saturations, are represented by krw and krn,
while the permeability is given by k(x). The respective den-
sities are ρw and ρn, the gravitational constant is g and the
porosity is φ(x). The pressure associated with the wetting
phase is Pw(x, t) while the non-wetting phase pressure is
Pn(x, t), the fluid viscosities are µw and µn. The two equa-
tions are coupled because the two fluids are assumed to fill
the available pore space and thus, their saturations sum to
unity

Sw + Sn = 1. (2)

I also assume that the phases are incompressible so that their
densities are constant. I define the saturation-dependent
component of the fluid mobilities [Peaceman, 1977, p. 18]
by the ratios

ηw =
krw

µw

(3)

and

ηn =
krn

µn

. (4)

I shall assume that the relative permeability properties are
constant for a given formation. Thus, within a given hetero-
geneous layer I shall assume that the relative permeabilities
are only functions of the fluid saturations. Because the sat-
urations sum to unity, I can write the governing equations
(1) in terms of one of the saturations, say

S = Sw = 1 − Sn (5)

and hence the system of equations reduces to two equations
in three unknowns

∇ · [kηw (∇Pw − ρwZ)] = S
∂φ

∂t
+ φ

∂S

∂t

∇ · [kηn (∇Pn − ρnZ)] = (1 − S)
∂φ

∂t
− φ

∂S

∂t

(6)

where Z = g∇z is a vector in the dirction of the gravi-
tational attraction, and I have made use of the definitions
(3) and (4) and factored out the fluid densities, as they are
constant.

To reduce the system (6) to two equations in two un-
knowns, I invoke the assumption that the fluid pressure dif-
ference, the capillary pressure, Pc, in the pores is a function
of the fluid saturation [Bear, 1972], thus

Pc(S) = Pn − Pw. (7)

As was done for the relative permeabilities, I shall assume
that the capillary pressure function only varies across a layer
boundary and does not depend explicitly upon the spatial
location within a particular formation. Rather, in a given
formation the capillary pressure function is only a function
of the pressure in one fluid phase and the saturation distri-
bution within the layer. Denoting the fluid pressure in the
wetting phase by P

P = Pw (8)

and writing the fluid pressure for the non-wetting phase

Pn = P + Pc, (9)

I can reduce the system of equations (6) to two equations
in two unknowns. First, because of equation (7), I write the
gradient of the fluid pressure of the non-wetting phase in
terms of the gradients of the pressure and saturation of the
wetting phase:

∇Pn = ∇P +
∂Pc

∂S
∇S. (10)

Using equations (8) and (9), and substituting for ∇Pn in the
system of equations (6), gives the following equations for S
and P

∇ · [kηw (∇P − ρwZ)] = S
∂φ

∂t
+ φ

∂S

∂t

∇ · [kηn (∇P + γc∇S − ρnZ)] = (1 − S)
∂φ

∂t
− φ

∂S

∂t

(11)

where

γc =
∂Pc

∂S
. (12)

As in de Marsily [1986], I assume linear elastic behavior
for the porous matrix to arrive at a relationship between a
change in fluid pressure and a change in matrix porosity.
The exact relationship is

∂φ

∂t
= αT

∂Pw

∂t
, (13)

where αT is a proportionality coefficient that depends upon
the compressibilities of the fluids and the solid, and the
porosity. A careful analysis in de Marsily [1986, p. 107]
indicates that αT is of the form

αT = φ

(

βl − βs +
α

φ

)

(14)

where βl is the fluid compressibility, βs is the compressibility
coefficient of the solid grains, and α is the compressibility of
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the solid matrix. Substituting (13) for the time derivative
of the porosity φ, equation (11) becomes

∇ · [kηw (∇P − ρwZ)] = αT S
∂P

∂t
+ φ

∂S

∂t

∇ · [kηn (∇P + γc∇S − ρnZ)] = αT (1 − S)
∂P

∂t
− φ

∂S

∂t
.

(15)

Carrying out the differentiations associated with the outer
divergence operator, I can write equation (15) as the follow-
ing pair of equations

∇κ · ∇P + χw∇S · ∇P +∇ ·∇P − ρw∇κ ·Z− ρwχw∇S ·Z

=
αT

kηw

S
∂P

∂t
+

φ

kηw

∂S

∂t

(16)

∇κ · ∇P + χn∇S · ∇P + ∇ · ∇P − ρn∇κ · Z − ρnχn∇S · Z
+γc∇κ · ∇S + Υ∇S · ∇S + γc∇ · ∇S

=
αT

kηn

(1 − S)
∂P

∂t
− φ

kηn

∂S

∂t

(17)

where

κ = − ln k, (18)

χw = −∂ηw

∂S
, (19)

χn = −∂ηn

∂S
, (20)

and

Υ = γcχn +
∂γc

∂S
. (21)

Equations (16) and (17), comprise the governing equations
and serve as the starting point for my application of the
method of multiple scales, an asymptotic technique de-
scribed next.

2.2. An Asymptotic Analysis of the Governing

Equations

The governing equations (16) and (17) are rather compli-
cated as they are nonlinear, of mixed character, and coupled
partial differential equations with spatially-varying coeffi-
cients. Without some manner of simplification an analytic
solution is certainly not possible. Because one goal of this
work is to develop techniques to solve inverse problems, for
example using the saturation front arrival time to infer the
flow properties of the medium, retaining the heterogeneity
is essential. However, due to the limited resolution of most
inverse methods, in which a finite number of data are used
to estimate a field of properties, one typically seeks models
with smoothly varying heterogeneity. Thus, I am most in-
terested in two-phase flow in a model with smoothly varying
properties. I should note that sharp boundaries, in the form
of layering, are allowed as explicit boundary conditions.

I can build the assumption of smoothly varying hetero-
geneity into the modeling through a technique known as the
method of multiple scales [Anile et al., 1993]. This approach
is suited to the construction of asymptotic solutions for a
porous medium with heterogeneous, yet smoothly varying,
flow properties. The measure of smoothness is with respect
to the scale-length of the two-phase front. In order to define
this formally, I first denote the scale-length of the two-phase

front, the distance over which the saturation changes from
the background value to the value behind the front, by l.
In addition, let L denote the scale-length of the heterogene-
ity within the medium. The smoothness of the medium is
stipulated by the requirement that L >> l. An asymptotic
solution can be formulated in terms of the ratio of scale-
lengths ε = l/L. To this end, I will define the slow spatial
coordinates

X = εx, (22)

the scale over which many of the quantities of interest, such
as the travel time and the amplitude will vary. Similarly, I
can define a slow time:

T = εt. (23)

An asymptotic solution is a power series representation
of the dependent variables, that is, the saturation and pres-
sure. The power series is in terms of the scale variable ε, for
example the saturation is represented as

S(X, T, θs) = Sb(X, T ) +

∫ T

0

eθs(X,u)

∞
∑

i=0

εiSi(X, u)du

(24)

where Sb is the background saturation that may be a func-
tion of space and time, θs(X, T ) is a phase function that
is related to the propagation time of the saturation front,
and Si(X, T ) is the i-th contribution to the saturation am-
plitude. The integral appears in the representation because
I will be considering a step-function source, rather than a
pulse-like source. The saturation contains both an explicit
and an implicit dependence upon the spatial and temporal
coordinates. The implicit dependence is through the phase
function θs(X, T ). The representation (24) is in the form
of a traveling front, a propagating change in the saturation
with respect to the background saturation.

The increase in pressure across the two-phase front has a
similar representation

P (X, T, θp) = Pb(X, T ) +

∫ T

0

eθp(X,u)

∞
∑

i=0

εiPi(X, u)du.

(25)

Note that the phase function for the pressure can differ from
the saturation phase, meaning that the saturation and pres-
sure can move with different speeds. This allows the jump
in pressure to propagate much faster then the saturation
change for example. Later in the paper I will examine the
situation in which θs = θp.

The governing equations can be re-written in terms of
the slow coordinates. In order to do this I first express the
partial derivatives in terms of Xi, T , and θ. In doing so
I make use of the relationships (22) and (23) between the
fast and slow coordinates and the explicit and implicit de-
pendence upon the independent variables. Thus, I can write
the partial derivative with respect to time as

∂S

∂t
= ε

∂S

∂T
+

∂θs

∂t

∂S

∂θs

(26)

because, from the definition of T , equation (23), ∂T/∂t = ε.
Similarly, I can express the derivative with respect to xi as

∂S

∂xi

= ε
∂S

∂Xi

+
∂θs

∂xi

∂S

∂θs

, (27)
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and thus the gradient in terms of the X coordinates is given
by

∇XS = ε∇xS + ∇θs

∂S

∂θs

. (28)

Given these expressions for the differential operators I
can rewrite the governing equations in terms of the slow
variables X and T . Each term will contain a factor that is
the scale parameter ε raised to some power. Because we are
assuming that the saturation and pressure fronts vary over a
scale length that is much less then that of the heterogeneity,
ε is assumed to be much smaller than one. Therefore, terms
of low order in ε will dominate in the governing equations.
In Appendix A, I write the governing equations in terms of
the slow variables and retain terms of lowest order in ε. In
order to derive an expression for the travel time of the cap-
illary front, the following will be limited to terms of order
ε0. To order ε0 the governing equations take the form [see
Appendix A for a complete treatment]

χws · pS̄P̄ + p2P̄ − ρwχws · ZS̄ =
αT

kηw

SP̄
∂θp

∂t
+

φ

kηw

S̄
∂θs

∂t

(29)

χns · pS̄P̄ + p2P̄ + ρnχns · ZS̄ + Υs2S̄2 + γcs
2S̄

=
αT

kηn

(1 − S) P̄
∂θp

∂t
− φ

kηn

S̄
∂θs

∂t
(30)

where I have defined the gradient vectors of the phase func-
tions θp and θs

p = ∇θp (31)

and

s = ∇θs (32)

with magnitudes s = |s| and p = |p|, respectively. The
quantities S̄ and P̄ , defined by

S̄ = S0 − Sb (33)

and

P̄ = P0 − Pb, (34)

signify the change in saturation and pressure from the back-
ground values to new values due to the passage of the two-
phase front.

2.3. An Expression Governing the Evolution of the

Two-Phase Front

The two equations (29) and (30) provide relationships be-
tween the gradients of the phase functions, s and p and the
amplitudes of the saturation and pressure changes, S̄ and
P̄ , across the front. In this sub-section I use equations (29)
and (30) to derive explicit expressions for the magnitude of
the slowness vectors, s and/or p in terms of the medium and
fluid properties and the amplitude changes S̄ and P̄ . The
quantity s is the front slowness, the inverse of the front ve-
locity, an important quantity for calculating the travel time
of the two-phase front.

However, before delving into a detailed derivation, I need
to discuss an important issue regarding the nature of the
propagating front. As noted above, it is assumed that the
leading edge of the front is defined by a rapid jump in
saturation and pressure. Ahead of the front, the satura-
tion and pressure are at their background values, behind

the front the saturation and/or pressure assume new val-
ues, different from the background values. The concept of
a propagating front has proven extremely useful in a wide
variety of fields, such as electromagnetics [Kline and Kay,
1965; Luneburg, 1966], and is central to many treatments
of nonlinear wave propagation [Whitham, 1974; Maslov and
Omel’yanov, 2001]. Many of the coefficients, for example
χw, γc, and Υ, in equations (29) and (30) are functions of
the saturation and pressure. Thus, there is the question of
what values of saturation and pressure should be used in
determining the coefficients? Because I am interested in the
arrival time of the leading edge of the front, which evolves
according to the saturation and pressure encountered before
the jump to new values, I will use the background conditions
to compute the coefficients in (29) and (30).

Fixing the coefficients in equations (29) and (30) to their
background values, the next task involves estimating the
slowness of the propagating front. If the governing equa-
tions were linear differential equations, then the zeroth or-
der terms would form a linear system and one could use the
condition that the linear system have a non-trivial solution
to find the admissible slowness values [Kline and Kay, 1965;
Kravtsov and Orlov, 1990]. A formal approach, similar to
that used for linear systems of equations, may be based on
techniques from algebraic geometry [Cox et al., 1998]. Equa-
tions (29) and (30) comprise two quadratic equations in S̄
and P̄ . The condition that the two polynomial equations
(29) and (30) have common zeros, and thus solutions, is the
vanishing of the resultant [Cox et al., 1998; Sturmfels, 2002].
The resultant is the determinant of a matrix whose entries
are the coefficients in equations (29) and (30) and powers
of one of the variables, either S̄ and P̄ . Thus, the resultant
is a polynomial equation in s, p with coefficients that de-
pend upon either S̄ or P̄ and the properties of the medium.
The condition of the vanishing of the resultant generalizes
the vanishing of a determinant of the coefficient matrix of a
linear system of equations [Noble and Daniel, 1977].

Here I take a direct approach, first solving equation (29)
for the product term

s · pS̄P̄ =
1

χw

[

αT

kηw

SbP̄ +
φ

kηw

S̄ − p2P̄ − ρwχws · ZS̄

]

,

(35)

where I have used the background value Sb for the satura-
tion. Substituting this expression for s · pS̄P̄ into equation
(30) and grouping terms according to their degrees in s and
p gives

(

ΥS̄ + γc

)

S̄s2 +

(

1 − χn

χw

)

P̄ p2 + χns · Z (ρn − ρw) S̄s

−αT

k

(

1 − Sb

ηn

− χn

χw

Sb

ηw

)

P̄
∂θp

∂t
+

φ

k

(

χn

χw

1

ηw

+
1

ηn

)

S̄
∂θs

∂t

= 0, (36)

an equation for the slownesses.
In the most general situation, in which no assumptions

are made regarding s and p, there more unknowns then
there are equations. However, I am primarily interested in
the propagation of a two-phase front in which the change in
saturation and the change in pressure are coupled. That is,
the jump in saturation and pressure occur simultaneously
as the front passes. Thus, θs and θp, the phase terms asso-
ciated with the saturation and pressure changes, are equal
θs = θp = θ, ∇θs = s = p = ∇θp and s = p. In that case
equation (36) reduces to a single equation that is quadratic
in p

[(

1 − χn

χw

)

P̄ +
(

ΥS̄ + γc

)

S̄

]

p2 + χnp · Z (ρn − ρw) S̄p

4
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−αT

k

(

1 − Sb

ηn

− χn

χw

Sb

ηw

)

P̄
∂θp

∂t
+

φ

k

(

χn

χw

1

ηw

+
1

ηn

)

S̄
∂θs

∂t

= 0. (37)

Defining the ratio

χ =
χn

χw

(38)

and the coefficients

Γ =
χn (ρn − ρw) S̄

(1 − χ) P̄ +
(

ΥS̄ + γc

)

S̄
(39)

and

Ω =
αT

[

(1 − Sb) ηn
−1 − χSbηw

−1
]

P̄ − φ
[

χηw
−1 + ηn

−1
]

S̄

k
[

(1 − χ) P̄ +
(

ΥS̄ + γc

)

S̄
] ,

(40)

I can write equation (37) as

p2 + Γg cos(ζ)p − Ω
∂θ

∂t
= 0, (41)

where I have used the fact that p ·Z = g cos ζ. The quantity
ζ signifies the angle between the slowness vector p and the
direction of the gravitational attraction Z. As shown in the
next sub-section, this expression can be used, in conjunction
with a numerical reservoir simulator, to compute the slow-
ness, and hence the velocity of the propagating two-phase
front. In particular, one can use a numerical simulator to
calculate the saturation and pressure changes over the re-
gion of interest due to the passage of the two-phase front.
Thus, one obtains estimates of S̄ and P̄ which may be sub-
stituted into the expressions (39) and (40). Equation (41)
for the slowness is fairly general, allowing for both capillary
effects as well as gravitational forces.

2.4. The Computation of the Phase Function

Recalling the definition of the phase gradient vector p,
given by (31), one observes that equation (41) is a differen-
tial equation for the phase function θ(X, t)

∇θ · ∇θ + Γ∇θ · Z − Ω
∂θ

∂t
= 0. (42)

Equation (42) is an example of a Hamilton-Jacobi differ-
ential equation, a class of equations that are of fundamen-
tal importance in many areas of physics [Lanczos, 1986].
Hamilton-Jacobi equations have a well-developed mathe-
matical foundation [Courant and Hilbert, 1962; Sneddon,
2006, p. 81] that underlies ray methods in electromagnetic
[Kline and Kay, 1965; Luneburg, 1966] and elastic [Karal and
Keller, 1959; Kravtsov and Orlov, 1990] wave propagation.

The most direct method for solving equation (42) is a nu-
merical approach, based upon finite-differences. Such meth-
ods, which have grown in popularity since their inception
[Crandall and Lions, 1983; Crandall et al., 1984; Vidale,
1988; Sethian, 1990; van Trier and Symes, 1991], are now
well developed [Sethian, 1999]. Techniques, such as the fast
marching method and level set methods [Sethian, 1999] are
general and applicable to equations such as (42). I should
note that techniques developed for static Hamilton-Jacobi
equations, equations that do not depend upon time, can be
applied to equation (42) by treating the temporal variable
t simply as an additional spatial variable [Sethian, 1999, p.
99]. The fact that the gravitational term results in pref-
erential movement in the direction of Z presents no funda-
mental difficulty. There are a number of implementations
of finite-difference-based algorithms for anisotropic propa-
gation, commonly used in seismic wave propagation in an

anisotropic Earth [Lecomte, 1993; Eaton, 1993; Qian and
Symes, 2001; Soukina et al., 2003]. Preferential propaga-
tion in a horizontal or vertical direction is also a factor in
anisotropic crystal growth and finite-difference schemes have
been used to model such propagation [Sethian and Strain,
1992].

The classical alternative to a finite-difference approach is
to solve equation (42) using the method of characteristics
[Courant and Hilbert, 1962, p. 63]. As shown here, such an
approach leads to a trajectory-based solution and an alter-
native numerical technique for solving the Hamilton-Jacobi
equation (42). In the case of (42), the dependent variable θ
does not appear explicitly and I can applied the simplified
approach described in Courant and Hilbert [1962, p. 106]. I
first write equation (42) in the form

∂θ

∂t
− H(x, t,p) = 0 (43)

where H(x, t,p) is the Hamiltonian function, given by

H(x, t,p) = Ω−1
p · p + Ψp · Z (44)

and

Ψ(x, t) = Ω−1(x, t)Γ(x, t). (45)

The characteristic equations corresponding to the scalar par-
tial differential equation (43), are a set of ordinary differen-
tial equations

dxi

dt
= −∂H

∂pi

(46)

dpi

dt
=

∂H

∂xi

(47)

that follow from geometrical arguments. Making use of the
particular form of the Hamiltonian, equation (44), I can
write equations (46) and (47) in vector form as

dx

dt
= −2Ω−1

p − ΨZ (48)

dp

dt
= p2∇Ω−1 + p · Z∇Ψ. (49)

These two sets of differential equations define the system of
rays, that is the trajectories over which the solutions are de-
fined. The vector function x(t) defines a curve through the
model which describes the propagation of the coupled front.
The system of ordinary equations may be solved numeri-
cally, using techniques for two-point boundary value prob-
lems [Press et al., 1992,p. 745]. Note that the two sets
of equations (48) and (49) display preferential flow in the
Z direction due to gravitational forces. This preferential
flow introduces an anisotropy and modifies the trajectories.
The situation is similar to that of wave propagation in an
anisotropic medium and has been treated in studies of wave
propagation in an anisotropic Earth [Cerveny, 1972; Chap-
man and Pratt, 1992].

Once the trajectories between a source and an observation
point have been computed, and the slowness vector defined,
the method of characteristics can be used to compute the
phase. The defining equations are the two scalar ordinary
differential equations

dθ

dt
= −

3
∑

i=1

pi
∂H

∂pi

+ H (50)

5
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and

dpt

dt
=

∂H

∂t
(51)

[Courant and Hilbert, 1962, p. 106]. For the particular
Hamiltonian given above, one arrives at

dθ

dt
= p2Ω−1 (52)

and

dpt

dt
= p2 ∂Ω−1

∂t
. (53)

Integrating (52) produces an expression for θ in terms of the
medium properties, as contained in the function Ω

θ(x(t), t) =

∫ t

0

p2

Ω
du. (54)

Note that, if gravity is not important, for example if the
densities are close in value, or if the flow is restricted to
a narrow horizontal layer, equations (48) and (49) still ap-
ply, however Ψ will vanish. Therefore, the flow will be con-
trolled by Ω and there will be no preferential flow in the Z
direction. In that case it is possible, under certain circum-
stances, to write the phase function in a separable form,
such as θ(x, t) = β(t)σ2(x). In Appendix B I derive an ex-
plicit expression for θ(x, t) for the case in which the phase
is a separable function. In Appendix B, it is shown that

β(t) = −1

t

and

σ(x) =

∫

x

√
Ωds,

resulting in

θ(x(s), t) = − 1

4t

(
∫

x(s)

√
Ωds

)2

, (55)

is similar to the phase function for the linear diffusion equa-
tion [Vasco et al., 2000].

2.5. A Zeroth-Order Solution for the Saturation and

Pressure Changes

Armed with expressions for the trajectory of the propa-
gating front and the phase function θ(x, t), one can construct
a low order representation of the saturation and pressure
fields using the series solutions (24) and (25). Because I
am interested in solutions for a model with smoothly vary-
ing flow properties, ε is assumed to be small, and thus the
first few terms of the series dominate. Here I consider a
zeroth-order solution, only taking the first term of each se-
ries. The expression for the saturation change with respect
to the background value Sb(X, T ), is

S̄(X, T, θs) =

∫ T

0

eθs(X,u)S0(X, u)du, (56)

and similarly for the pressure change

P̄ (X, T, θp) =

∫ T

0

eθp(X,u)P0(X, u)du. (57)

Note that these solutions are incomplete because they de-
pend upon the amplitudes S0 and P0 which are not provided.
In fact, the defining equation for the phase, equation (42)

contains coefficients Γ and Ω that depend upon the ampli-
tude changes S̄ and P̄ . Thus, the expression (56) and (57)
must be evaluated in conjunction with estimates of the am-
plitude changes S0 and P0. For example, in the next section
I will use the numerical simulator TOUGH2 [Pruess et al.,
1999] to calculate the amplitude changes.

One can gain some physical insight into the meaning of
the phase terms θs and θp following a line of reasoning first
suggested by Virieux et al. [1994]. Before discussing their
approach in detail, I note that each of the semi-analytic ex-
pressions (56) and (57) are integrals with respect to time
of an exponential of the phase function multiplied by an
amplitude function. The exponential of the phase function
is always a positive number and the amplitude function is
typically of one sign for a passing front. For example, the
amplitude function S0 will either describe a decrease or an
increase in the saturation of the aqueous phase, depending
on the nature of the passing coupled front. The point is that
the integrals are typically piece-wise monotonic if the cou-
pled multiphase front is due to the injection of a particular
fluid component.

As noted in Vasco et al. [2000] and Vasco and Finsterle
[2004], the transient, wave-like nature of a solution to the
diffusion equation is emphasized by taking the derivative of
the head or pressure with respect to time. Thus, I shall
be interested in the time-derivative of the saturation and
pressure changes, which are of the form

∂S̄(X, T, θs)

∂t
= eθs(X,T )S0(X, T ) (58)

and

∂P̄ (X, T, θp)

∂t
= eθp(X,T )P0(X, T ). (59)

For a separable phase function, as given by equation (55),
the saturation and pressure resemble the product of a Gaus-
sian function and the time-varying amplitude function.

If the amplitude functions S0(X, T ) and P0(X, T ) vary
monotonically as functions of time, then the derivatives (58)
and (59) should display single peaks, associated with the
peak of each Gaussian function. I can derive equations for
the peaks by differentiating the expressions (58) and (59)
and setting the result to zero. For example, differentiating
(58) with respect to time

∂2S̄

∂t2
= eθs

[

S0
∂θs

∂t
+

∂S0

∂t

]

. (60)

The exponential term in (60) is non-zero as long as one stays
away from the origin. Thus, the condition for the peak of
the time derivative of S̄ is

∂2S̄

∂t2
= S0

∂θs

∂t
+

∂S0

∂t
= 0. (61)

In order to derive a specific expression relating the phase to
the peak of the time derivative of the saturation, I shall need
to introduce additional assumptions. In the next subsec-
tion I consider one possible form for the amplitude function
S0(X, t), a power-law time-dependence. Other amplitude
functions, such as a form based upon Hermite polynomials,
are possible.

2.5.1. A Power-Law Time-Dependence

Motivated by the solution to the linear diffusion equation
[Vasco et al., 2000], I consider the specific form

S0(X, t) = t−αsSx(X) (62)

6
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where αs is constant and Sx(X) is a function of X. Thus,
for an amplitude function of the form (62), equation (61)
becomes

∂2S̄

∂t2
= t−αs

∂θs

∂t
+ αst

−αs−1 = 0. (63)

Third, I assume that the phase function θs(X, t) can be writ-
ten in the separable form, θ(x, t) = β(t)σ2(x), as derived in
Appendix B. With these three assumptions, equation (61)
reduces to

∂2S̄

∂t2
=

σ2

4
− αst = 0. (64)

I can relate the phase component σ(X) to the time at which
the time-derivative of the saturation is a maximum or min-
imum. I denote the time at which the derivative is a peak
as Tpeak. The specific relationship is

σ = 2
√

αsTpeak, (65)

or, solving for Tpeak and using the definition of σ, given by
(B16),

√

Tpeak =
1

2
√

αs

∫

x(s)

√
Ωds. (66)

Thus, under the stated assumptions, the time derivative of
the saturation is a maximum at the time Tpeak and this time
is determined by the medium parameters, as contained in Ω,
by equation (66). A similar analysis can be applied to the
pressure variation, under the corresponding assumption that
the pressure amplitude has the separable form

P0(X, t) = t−αpPx(X) (67)

where Px(X) is the spatial component of the pressure am-
plitude function. The resulting peak time for the pressure
time derivative is

√

Tpeak =
1

2
√

αp

∫

x(s)

√
Ωds, (68)

which is similar to the expression for the linear diffusion
equation [Vasco et al., 2000].

3. Applications

In this section I illustrate how one can use the expression
for the slowness, equation (41), to calculate the travel time
of a coupled pressure and saturation disturbance. For sim-
plicity, I shall neglect gravitational effects, so that equation
(41) reduces to

p2 − Ω
∂θ

∂t
= 0. (69)

In the examples that follow I shall consider the injection
of water into a layer containing a non-aqueous phase liquid
(NAPL). The numerical simulator TOUGH2 [Pruess et al.,
1999] is used to model the flow of the two-phases in response
to the injection. The relative permeability functions krw(S)
and krn(S) are plotted in Figure 1. The relative permeabil-
ity of the non-aqueous phase liquid is given by the default
formulation of TOUGH2 [Pruess et al., 1999, p. 50] for oil,

krn(S) =
1 − S − Snr

1 − Snr

(70)

where Snr is the residual saturation of the NAPL. The rel-
ative permeability function of Corey [1954] is used to model

the water,

krw(S) = Ŝ4, (71)

where

Ŝ =
S − Swr

1 − Swr − Sgr

(72)

and Swr = 0.2 and Sgr = 0.1.
A central well, indicated by a star in Figure 2, injects

water at a rate of 4.0 kg/s. The injection starts at time zero
and continues at a constant rate. Thus, the source behaves
as a step-function in time. Two observation points, located
to the north of the injector, are denoted by the open and
filled circles in Figure 2. Due to the injection, saturation
and pressure changes propagate from the injection well into
the porous layer. The water saturation and pressure dis-
tributions, after 100 days of injection, are shown in Figure
2.

The saturation changes and the pressure calculated at the
first observation point, denoted by the filled circle in Figure
2, are shown in Figure 3. Note that saturation and pressure
changes occur soon after the start of injection. Initially,
there is a small decrease in water saturation at the obser-
vation point. However, a large, rapid saturation increase
occurs around 250 days after the start of injection. In con-
trast, the pressure builds up gradually and monotonically
over time. Careful examination of the pressure variation in
Figure 3, indicates a change in the rate of pressure build-
up at around 250 days. As noted above, and in previous
publications [Vasco et al., 2000; Vasco and Finsterle, 2004;
Vasco, 2008a], the propagation of transient pressure changes
are clearer if one considers the time derivative of the pres-
sure history. To this end, I plot the time derivative of both
the saturation and pressure changes in Figure 4. Note that
the time derivative of the pressure displays two peaks, the
first at an early time (less than 100 days), and the second
around 300 days. The derivative of the saturation change,
shown in Figure 4a, displays similar characteristics, in this
case a trough at an early time and a peak at around 300 days.
In the next sub-section I shall examine the early changes,
that I refer to as the first arrival, in more detail. Because
the change in saturation associated with the early distur-
bance is quite small, less than 5 %, the flow in this case is
dominated by the larger change in pressure.

3.1. Flow Dominated by a Change in Pressure

The changes at early times are associated with the tran-
sient pressure disturbance propagating in the non-aqueous
phase liquid, well ahead of the injected water front. That
is, the saturation and pressure changes are dominated by
pressure propagation in the background saturation distribu-
tion. There is also a small saturation change driven by the
pressure changes, inducing relative flow of the two phases.
In this sub-section I shall consider these changes and inter-
pret them in terms of the expressions for the travel time and
phase velocity.

The early peak in the pressure derivative in Figure 4 is
shown in greater detail in Figure 5. In Figure 5 I have also
plotted the early decrease in saturation seen in Figure 4a.
Both of these curves have been normalized to unit ampli-
tude and converted so that they are positive. Note how
closely the pressure change follows the saturation change
in time (Figure 5), with a peak value at around 50 days.
One can also consider snapshots of the normalized satura-
tion and pressure derivatives in the layer. Specifically, I
plot the normalized saturation and pressure derivatives in
each grid block at particular times, as done in Figures 6

7
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and 7. These snapshots convey the transient propagation
of the saturation and pressure changes. That is, the peak
of the saturation and pressure derivatives propagates out-
ward from the injection well over time. Furthermore, the
changes in saturation and pressure are coupled and move
with the same velocity. That is to be expected because the
saturation changes are induced by the propagating pressure
changes. Noting the time as which the normalized derivative
of the saturation and pressure in each grid block attains a
maximum value, I can compute the arrival time of the dis-
turbances at each point in the layer (Figure 8). The arrival
times are very similar for the early-time saturation and pres-
sure changes.

Using the expressions for Ω, equation (40), and the travel
times [equations (66) and (68)], one can estimate the ar-
rival times for the saturation and pressure changes. When
there is only a small saturation change associated with the
propagating front, I can approximate the coefficient Ω by

Ω =
αT

[

(1 − Sb) ηn
−1 − χSbηw

−1
]

k (1 − χ)
, (73)

where αT is the coefficient given by equation (14):

αT = φ

(

βl − βs +
α

φ

)

. (74)

Note that expression (73) only depends upon the proper-
ties of the medium. As noted by Vasco and Finsterle [2004]
one can use the arrival time field estimated from the output
of the numerical simulator to compute the trajectories x(t)
mentioned above. In Figure 8 I have plotted the trajectory
from the second observation point, denoted by the open cir-
cle, to the injection well, denoted by the star. Because the
layer is homogeneous the trajectory is a straight line. Using
the expressions (73) and (68) I can estimate the travel time,
assuming that the pressure disturbance travels in the same
manner as a solution to the diffusion equation

√

Tp =
1

6

∫

x

√

αT [(1 − Sb) ηn
−1 − χSbηw

−1]

k (1 − χ)
ds. (75)

In Figure 9 I compare travel times estimated using equa-
tion (75) to estimates extracted from the output of the
TOUGH2 numerical simulation. The values are computed
for the points along the trajectory shown in Figure 8. In
general, there is good agreement between the semi-analytic
estimates, based upon equation (75), and the estimates from
the numerical simulator.

3.2. Fully Coupled Saturation and Pressure Changes

Now consider the second arrival in Figure 4, associated
with the propagating saturation front. One can no longer
assume that the saturation change is small. Neither can
one assume that the pressure change in negligible due to its
large magnitude. To some degree I can isolate the pressure
change by calculating the pressure field in the layer due to
the injection of fluid of the same composition. Thus, I can
estimate the component of the pressure change due to the
fluid mass change with no corresponding saturation change.
In Figure 10 I compare the derivative of this differential pres-
sure, normalized such that the peak of the time derivative
is unity, to the normalized time derivative of the saturation
change. The removal of the pressure change due to the fluid
mass change is imperfect, however, in general there is good
agreement between saturation and pressure. As for the ear-
lier phase, I can examine snapshots of the saturation and
pressure time derivatives as they vary over the simulation

grid (Figure 11 and 12). Again, the propagation of the dis-
turbance is apparent in the snapshots, as is the agreement
between the saturation and pressure changes. Note that the
propagation away from the injection point is not entirely
symmetric, indicating some anisotropy, likely due to numer-
ical grid effects. This effect could possibly be minimized by
taking a finer simulation grid. In order to minimize the grid
effects I consider observation points along the north-south
axis of the grid, denoted by the filled and open circles in
Figures 11, 12, and 13.

As was done for the earlier arrival, one can post-process
the results of the numerical simulation in order to estimate
travel times for the propagating disturbances. The simplest
approach, and the one taken here, is to take the time at
which the time-derivative attains a maximum value as the
’arrival time’ of the disturbance. In Figures 13a and 13b
I have plotted the travel times associated with the satura-
tion and pressure disturbances, respectively. There is ex-
cellent agreement between the two distributions of travel
times within the layer. Note that the anisotropy, possible
due to numerical grid effects, is reflected in the asymmetry
of the travel time contours. The trajectories, computed by
marching down gradient of the travel time functions, are
also shown in Figure 13. The trajectories denote the path
traveled by the saturation and pressure disturbances from
the injection well to the outer observation point, denoted by
the open circle.

Using the expression for Ω, given by equation (40), one
can calculate the travel time from the medium parameters
and the changes in saturation and pressure due to the pas-
sage of the two-phase front. The model for water and NAPL
in TOUGH2 assumes no capillary effects so that the func-
tions γc and Υ vanish and Ω takes the form

Ω =
αT

[

(1 − Sb) ηn
−1 − χSbηw

−1
]

k (1 − χ)
+

φ
[

χηw
−1 + ηn

−1
]

S̄

k (1 − χ) P̄
.

(76)

From (76) and the relationship between Ω and Tpeak, as
given in equation (68), it is clear that the second term is re-
sponsible for the additional time taken to travel from the in-
jection well to the observation point. The amplitude changes
S̄ and P̄ were estimated from the numerical simulator out-
put. Specifically, I compute the difference between the field
values associated with the arrival time of the front (the time
at which the time derivative is a maximum) and the field val-
ues before the arrival of the front. In Figure 14 I compare
the travel time estimates based upon (76) with the times
obtained by post-processing the TOUGH2 numerical simu-
lator saturation and pressure histories. In general, there is
rather good agreement and, as is apparent in the saturation
and pressure derivatives (Figure 4), the second arrival takes
much longer to reach the observation point.

3.3. Flow in a Heterogeneous Medium

As noted above, one motivation for developing semi-
analytic solutions is the solution of the inverse problem.
That is, one would like to use the explicit expressions to
develop efficient and flexible methods for characterization.
For this reason, I have allowed for heterogeneity of arbi-
trary magnitude in the formulation. In this sub-section I
consider a heterogeneous medium, described by a variation
in absolute permeability k(x), all other parameters are kept
at the values used in the homogeneous case. The smoothly
varying model contains generally higher permeability to the
west and lower permeability to the east (Figure 15). The
lowest permeability is found in the northeast corner of the
model. The saturation and pressure variations, in response
to water injection in the central well, are influenced by the
heterogeneity. This is clear in Figure 16, which displays the

8
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saturation and pressure variations in the layer after 525 days
of injection. The fields reflect the heterogeneity, with rapid
migration of the two-phase front in the higher permeability
region west of the injection well.

The saturation and pressure histories are calculated at an
observation point to the north of the injector, indicated by
the filled circle in Figure 16. In Figure 17 the time deriva-
tives of the saturation and pressure variations are plotted
as a function of time from the start of injection. The over-
all character of the curves: the two peaks in the pressure
derivative and the early decrease in saturation followed by
a large and rapid increase, are similar to those found in the
homogeneous case (Figure 4). As in the homogeneous case, I
can compute the travel times associated with the two sets of
extremum in the saturation and pressure variations. For ex-
ample, the first arrival time is associated with the first peak
in the pressure derivative, as seen in Figure 17b, and the
early trough in the saturation variation (Figure 17a). The
distribution of travel times for the saturation and pressure
variations are shown in Figures 18a and 18b, respectively.
The distribution of travel times are very similar as are the
trajectories computed by marching down the gradient of the
travel time field, from an observation point to the injection
point (Figure 18). Using equation (75), now with a spa-
tially varying absolution permeability k(x), I can calculate
the travel time for the heterogeneous medium. In Figure 19
I compare the estimated travel times to values obtained from
the numerical simulation. The travel times are computed for
points along the trajectory shown in Figure 18. The asymp-
totic estimates are in general agreement with travel times
obtained from the TOUGH2 simulator output. In general
the front moves faster at near and intermediate distances
and then slows considerably at farther offsets. This behav-
ior makes physical sense because, as seen in Figure 15, the
trajectory encounters lower permeability material as it tra-
verses the northeast quadrant of the simulation grid near
the end of the path.

Now I consider the later arrival, exemplified by the second
peak in the saturation and pressure derivatives in Figure 17.
As noted previously, this disturbance is due to the propagat-
ing saturation front and the travel time is related to the vari-
able Ω, given by expression (76). In this case, the absolute
permeability, k(x) is a spatially varying quantity. I should
point out that the permeability appears both explicitly in
the expression (76) as well as implicitly, as the permeabil-
ity also determines the saturation and pressure amplitude
changes, S̄, and P̄ , respectively. Thus, the travel time dis-
tribution and the trajectories for this disturbance can differ
from those of the first arrival. In fact, the travel time con-
tours and the trajectory for the second arrival (Figure 20)
do differ from those of the first arrival (Figure 18). Some of
the differences may also be due to grid orientation effects,
noted in Figures 11, 12, and 13. In both cases the trajec-
tories curve towards the higher permeability region, away
from areas of lower permeability. Using expression (76) I
calculate the expected travel time to points along the tra-
jectory, as shown in Figure 21. As in the homogeneous case,
the travel time is much greater for the second arrival, due
to the presence of the second term in equation (76). Also,
as for the first arrival, the disturbance travels faster to near
and intermediate points of the trajectory and takes much
longer to reach the more distant points.

4. Conclusions

Under the assumption of smoothly varying heterogeneity,
it is possible to derive an explicit expression for the phase
velocity of a coupled change in saturation and fluid pres-
sure. The expression displays the explicit dependence of

the front velocity upon the parameters of the medium and
the saturation and pressure changes that occur as the front
passes. Due to the presence of the saturation and pressure
amplitude changes, the expression for the front velocity is
evaluated in conjunction with a numerical simulation. In
addition, the presence of the saturation and pressure am-
plitude means that at least two modes of propagation are
possible, depending on the relative magnitude of the satu-
ration and pressure changes. That is, the coupled front can
propagate with a different velocity, depending on the size
of the saturation change, relative to the change in pressure
as the front passes. Numerical simulation using TOUGH2
[Pruess et al, 1999], indicates that two modes of propaga-
tion are important: the propagation of a pressure-dominated
change and the propagation of a coupled front in which the
saturation change is large. These conclusions hold for a het-
erogeneous medium, though the geometry is controlled by
the spatial variation of properties. The factors influencing
the propagation velocity of the two-phase front are the back-
ground saturation, the saturation-dependent components of
the fluid mobilities, the medium compressibility, the per-
meability, the porosity, and the ratio of the slopes of the
relative permeability curves at the background saturation.

The technique presented in this paper is general and may
be applied to any system of nonlinear partial differential
equations. Thus, one may consider coupled processes in-
volving deformation and thermal effects. However, as ad-
ditional variable and equations are added, the resulting ex-
pressions for the phase velocity becomes increasingly com-
plicated. The increased complexity is no different from that
seen in linear systems, such as in coupled deformation in a
poroelastic medium saturated with two fluid phases [Tuncay
and Corapcioglu, 1996].

9
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5. Appendix A: The Method of Multiple
Scales

5.1. The First of the Governing Equations

Consider the first of the governing equations (16) and it’s
representation in terms of the slow coordinates X and T .
Substituting for the differential operators in this equation
gives the expression

ε∇κ ·
(

ε∇P + ∇θp

∂P

∂θp

)

+χw

(

ε∇S + ∇θs
∂S

∂θs

)

·
(

ε∇P + ∇θp
∂P

∂θp

)

+ε∇ ·
(

ε∇P + ∇θp
∂P

∂θp

)

+∇θp
∂

∂θp

(

ε∇P + ∇θp
∂P

∂θp

)

−ρwε∇κ · Z (A1)

−ρwχw

(

ε∇S + ∇θs

∂S

∂θs

)

· Z

=
αT

kηw

S

(

ε
∂P

∂T
+

∂θp

∂t

∂P

∂θp

)

+
φ

kηw

(

ε
∂S

∂T
+

∂θs

∂t

∂S

∂θs

)

.

Expanding the product terms and retaining terms of order
ε0 ∼ 1 gives

χw∇θs · ∇θp
∂S

∂θs

∂P

∂θp

+ ∇θp · ∇θp
∂2P

∂θp
2
− ρwχw∇θs · Z ∂S

∂θs

=
αT

kηw

S
∂θp

∂t

∂P

∂θp

+
φ

kηw

∂θs

∂t

∂S

∂θs

. (A2)

In what follows I shall need to define the gradient vectors

p = ∇θp (A3)

and
s = ∇θs. (A4)

From the particular form of the saturation and pressure,
given by the expansions (24) and (25), I note that to order
ε0,

∂S

∂θs

= S0 − Sb = S̄ (A5)

and
∂P

∂θp

= P0 − Pb = P̄ . (A6)

The quantities S̄ and P̄ signify the change in saturation and
pressure from the background value to the value after the
passage of the two-phase front. Incorporating all of these
considerations into the expression (A2) produces the more
compact expression

χws · pS̄P̄ + p2P̄ − ρwχws · ZS̄ =
αT

kηw

SP̄
∂θp

∂t
+

φ

kηw

S̄
∂θs

∂t

(A7)

where p and s are the magnitudes of the pressure and satu-
ration phase gradient vectors, respectively.

5.2. The Second of the Governing Equations

Now consider the second of the governing equations (17),
expressing the differential operators in terms of the slow

variables,

ε∇κ ·
(

ε∇P + ∇θp

∂P

∂θp

)

+χn

(

ε∇S + ∇θs
∂S

∂θs

)

·
(

ε∇P + ∇θp
∂P

∂θp

)

+ε∇ ·
(

ε∇P + ∇θp

∂P

∂θp

)

+∇θp · ∂

∂θp

(

ε∇P + ∇θp
∂P

∂θp

)

−ρnε∇κ · Z (A8)

−ρnχn

(

ε∇S + ∇θs
∂S

∂θs

)

· Z

+εγc∇κ ·
(

ε∇S + ∇θs

∂S

∂θs

)

+Υ
(

ε∇S + ∇θs
∂S

∂θs

)

·
(

ε∇S + ∇θs
∂S

∂θs

)

+εγc∇ ·
(

ε∇S + ∇θs

∂S

∂θs

)

+γc∇θs · ∂

∂θs

(

ε∇S + ∇θs
∂S

∂θs

)

=
αT

kηn

(1 − S)

(

ε
∂P

∂T
+

∂θp

∂t

∂P

∂θp

)

− φ

kηn

(

ε
∂S

∂T
+

∂θs

∂t

∂S

∂θs

)

.

To zeroth-order in ε I obtain the following form for the sec-
ond governing equation

χn∇θs · ∇θp
∂S

∂θs

∂P

∂θp

+ ∇θp · ∇θp
∂2P

∂θp
2
− ρnχn∇θs · Z ∂S

∂θs

+Υ∇θs · ∇θs

(

∂S

∂θs

)2

+ γc∇θs · ∇θs
∂2S

∂θs
2

(A9)

=
αT

kηn

(1 − S)
∂θp

∂t

∂P

∂θp

− φ

kηn

∂θs

∂t

∂S

∂θs

.

Making the substitutions discussed above [equations (A3)
through (A6)], equation (A10) takes the form

χns · pS̄P̄ + p2P̄ − ρnχns · ZS̄ + Υs2S̄2 + γcs
2S̄

=
αT

kηn

(1 − S) P̄
∂θp

∂t
− φ

kηn

S̄
∂θs

∂t
(A10)

Equations (A7) and (A10) form the starting point for the
analysis in the main portion of this paper.
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6. Appendix B: Computation of the Phase
for a Separable Function

In this Appendix I derive an explicit expression for the
phase function θ(x, t). In doing so I shall assume a separable
form for the phase function

θ(x, t) = β(t)σ2(x) (B1)

and use the separation of variables to solve equation (42).
Unfortunately, the gravitational term in equation (42) pre-
vents one from separating the spatial and temporal vari-
ables. Therefore, I shall have to neglect gravitational ef-
fects, assuming that either the density contrast between the
fluid phases is small or that the flow is dominantly horizon-
tal, perpendicular to the gravitational field. In that case,
equation (42) reduces to

∇θ · ∇θ − Ω
∂θ

∂t
= 0. (B2)

This equation, without gravity, is of sufficient interest and
covers a number of important situations that it is worthy
of consideration. Furthermore, I treat such problems in the
Applications section, where I compare the asymptotic esti-
mates of propagation time with estimates from a numerical
simulator. Substituting the separable form (B1) into equa-
tion (B2) and noting that

∇θ = 2βσ∇σ (B3)

and
∂θ

∂t
= σ2 dβ

dt
, (B4)

where I have used the total derivative for β(t) because it only
depends upon the single variable t, results in the expression

4β2σ2∇σ · ∇σ − Ωσ2 dβ

dt
= 0, (B5)

or
∇σ · ∇σ

Ω
− 1

4β2

dβ

dt
= 0. (B5)

Equation (B5) is separable if Ω is either separable or only
depends upon x. The time dependence of Ω enters through
the amplitude changes P̄ and S̄ which multiply each factor.
The amplitude changes may not be be functions of time.
For example, the change in saturation due to the passage
of the front is primarily determined by the pre-existing sat-
uration and by the properties of the relative permeability
curves describing the material. Thus, the saturation change
S̄ is essentially a function of position and does not change
significantly as a function of time. That is, the saturation
change will be the same, no matter when the two-phase
passes through a particular region. Alternatively, during the
initiation of injection, a transient pressure change can prop-
agate away from the injection well, accompanied by a very
small change in saturation. Thus, the saturation change
that occurs due to the passage of the front, S̄, is negligible
and only the terms associated with P̄ are significant. Then
the terms P̄ will factor out of Ω and the time-dependent
terms will cancel.

For situations in which Ω only depends upon x, equation
(B5), written as

∇σ · ∇σ

Ω
=

1

4β2

dβ

dt
(B6)

expresses the equality of the left-hand-side, which only de-
pends upon spatial coordinates, x, and the right-hand-side

which only depends upon time, t. This means that the terms
on either side must equal a constant value, which I denote
by C. Thus, for the right-hand-side of equation (B6),

1

4β2

dβ

dt
= C (B7)

or

β = − 1

4Ct
. (B8)

Similarly, the left-hand-side of equation (B6) produces the
partial differential equation

∇σ · ∇σ = CΩ (B9)

known as the eikonal equation [Kravtsov and Orlov, 1990].
A solution of the eikonal equation follows from an applica-
tion of the method of characteristics [Courant and Hilbert,
1962, p. 97]. The characteristic equations associated with
equation (B9) follow if I define the Hamiltonian function
F (x,p) as

F (x,p) = p · p − CΩ (B10)

with equation (B9) given by F (x,p) = 0. As noted in
Courant and Hilbert [1962, p. 97], the characteristic equa-
tions are a pair of ordinary differential equations

dxi

ds
=

∂F

∂pi

(B11)

dpi

ds
= − ∂F

∂xi

(B12)

or, making use of the Hamiltonian function (B10),

dx

ds
= 2p (B13)

dp

ds
= C∇Ω. (B14)

Equation (B13) defines a trajectory, x(s), over which a so-
lution is constructed. The variable s is the distance along
the trajectory. Using the trajectory to define a coordinate
system, I can rewrite the eikonal equation (B9), noting that
p is tangent to the trajectory x(s)

dσ

ds
=

√
CΩ. (B15)

Integrating along the trajectory, I arrive at an expression for
σ(x)

σ(x(s)) =
√

C

∫

x(s)

√
Ωds. (B16)

Combining the functions (B8) for β(t) and (B16) for σ(x),
produces an expression for the phase θ(x, t), [see equation
(B1)],

θ(x(s), t) = − 1

4t

(
∫

x(s)

√
Ωds

)2

. (B17)
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7. Figure Captions

Figure 1. The relative permeability curves for the non-
aqueous phase liquid (NAPL) and for water as a function
of the water saturation. The non-aqueous phase liquid
function is the default for oil in the reservoir simulator
TOUGH2 [Pruess et al., 1999].

Figure 2. (A) The distribution of water saturation in
the porous layer after 100 days of water injection. The
two observation points are denoted by the filled and open
circles. (B) The pressure field after 100 days of injection.

Figure 3. (A) The time varying saturation change at
the first observation point [indicated by the filled circle
in Figure 2]. (B) The time varying pressure at the first
observation point.

Figure 4. (A) The time derivative of the saturation
change. (B) the time derivative of the pressure variation
at the first observation point.

Figure 5. The normalized time derivatives of the satu-
ration and pressure variations for the first 150 days since
the start of the water injection. The derivatives are nor-
malized such that the peak values are 1.

Figure 6. Snapshots of the normalized time derivative
of the saturation variation for three different times. The
time derivative of the saturation variation in each grid
block is formed and normalized such that its peak value
is one.

Figure 7. Snapshots of the normalized time derivatives
of the pressure variation for three different times. The
time derivative of the pressure variation in each grid block
is formed and normalized such that its peak value is one.

Figure 8. Contour plots of the phase function computed
from the saturation and pressure variations in each block
of the simulation grid. The two observation points are
signified by the filled and unfilled circles. Trajectories,
extending from the second observation point to the in-
jection well, are denoted by the solid lines.

Figure 9. Travel times associated with various points
along the trajectories shown in Figure 8, which extends
from the second observation point to the injection well.
The travel times for the saturation and pressure phase
functions are associated with the time at which the
derivative attains its maximum value. The travel times
calculated using the asymptotic expression [see equation
(75)] are also plotted for points along the trajectory.

Figure 10. The time derivatives of the saturation and
pressure variations at the first observation point [denoted
by a filled circle in Figure 1]. The derivatives have been
normalized such that the peak values are 1. The values
are associated with the second set of peaks, between 200
and 400 seconds, in Figure 4. A background pressure
variation, calculated for oil injection in an oil saturated
layer, has been removed from the pressure curve.
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Figure 11. Snapshots of the normalized time derivatives of the saturation variation in each grid block.

Figure 12. Snapshots of the normalized time derivatives
of the pressure variation in each grid block. A back-
ground pressure variation, calculated for oil injection in
an oil saturated layer, has been removed from the pres-
sure curve in each grid block.

Figure 13. Contour plots of the phase function com-
puted from the saturation and pressure variations in each
block of the simulation grid. The phase functions corre-
spond to the second set of peaks in Figure 4, the second
arrival. The two observation points are signified by the
filled and unfilled circles. Trajectories, extending from
the second observation point to the injection well, are
denoted by the solid lines.

Figure 14. Travel time to points at various dis-
tances along the trajectories plotted in Figure 13. The
saturation and pressure estimates were obtained by
post-processing the output of the numerical simulator
TOUGH2 [Pruess et al., 1999). The asymptotic esti-
mates, based upon Ω given by (76), are denoted by the
crosses.

Figure 15. Permeability model used in the heteroge-
neous test case. The darker colors denote higher per-
meability. Two observation points are indicated by the
filled and unfilled circles. The injection well is denoted
by the star and the trajectory is a curve connecting the
outermost observation point with the injection well.

Figure 16. (A) The distribution of water saturation in
the heterogeneous porous layer after 525 days of water
injection. The two observation points are denoted by the
filled and open circles. (B) The pressure field after 525
days of injection.

Figure 17. (A) The time derivative of the saturation
change. (B) the time derivative of the pressure variation
at the first observation point.

Figure 18. Contour plots of the phase function com-
puted from the saturation and pressure variations in each
block of the simulation grid. The two observation points
are signified by the filled and unfilled circles. Trajecto-
ries, extending from the second observation point to the
injection well, are denoted by the solid lines.

Figure 19. Travel times associated with various points
along the trajectories shown in Figure 18, which ex-
tends from the second observation point to the injection
well. The travel times for the saturation and pressure
phase functions are associated with the time at which the
derivative attains its maximum value. The travel times
calculated using the asymptotic expression [see equation
(76)] are also plotted for points along the trajectory.

Figure 20. Contour plots of the phase function com-
puted from the saturation variations in each block of the
simulation grid. The phase function corresponds to the
second peak in Figure 17, the second arrival. The two
observation points are signified by the filled and unfilled
circles. A trajectory, extending from the second observa-
tion point to the injection well, is denoted by the solid
line.

Figure 21. Travel times associated with various points
along the trajectory shown in Figure 20, which extends
from the second observation point to the injection well.
The travel times for the saturation phase function is as-
sociated with the time at which the derivative attains its
maximum value. The travel times calculated using the
asymptotic slowness expression [see equation (76)] are
also plotted for points along the trajectory.
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