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Abstract. An asymptotic technique, valid in the presence of smoothly-varying heterogeneity, provides explicit 
expressions for the velocity of a propagating pressure and temperature disturbance. The governing equations contain 
nonlinear terms due to the presence of temperature-dependent coefficients and due to the advection of fluids with 
differing temperatures. Two cases give well-defined expressions in terms of the parameters of the porous medium: 
the uncoupled propagation of a pressure disturbance and the propagation of a fully coupled temperature and pressure 
disturbance. The velocity of the coupled disturbance or front, depends upon the medium parameters and upon the 
change in temperature and pressure across the front. For uncoupled flow, the semi-analytic expression for the front 
velocity reduces to that associated with a linear diffusion equation. A comparison of the asymptotic travel time 
estimates with calculations from a numerical simulator indicates reasonably good agreement for both uncoupled and 
coupled disturbances. 
 

1. Introduction  
Nonisothermal flow is a common occurrence in actual field settings. That is, there are variations in the temperature of 

fluids in the subsurface, for example due to the Earth’s thermal gradient or due to seasonal effects [Grifoll et al., 2005]. These 
temperature variations are usually small enough that their effect on fluid properties can be safely ignored. In certain activities, 
such as geothermal production [Brownell et al., 1977; Mercer and Faust, 1979] or high-temperature waterflooding [Boberg, 
1988], the differences in fluid temperature are so large that they must be accommodated when modeling such flow.  

Fluid flow under nonisothermal conditions is typically more complicated than is isothermal fluid flow [Brownell et al., 
1977; Bear and Corapcioglu, 1981; Noorishad et al., 1984; McTigue, 1986]. Nonisothermal flow, even under the simplest 
conditions in which matrix deformation is neglected, is governed by two coupled equations. Furthermore, two forms of 
nonlinearity are present in the governing equations. First, there are nonlinearities due to the temperature dependence of the 
coefficients in the governing equations. Second, there are explicit nonlinear terms in the mass and energy equations. These 
nonlinearities take the form of the scalar products of the pressure and temperature gradients. Due to the complexities of such 
coupled nonlinear equations with spatially-varying parameters, most investigators have turned to numerical methods in order 
to model nonisothermal flow [Noorishad et al., 1984]. Previous analytic or semi-analytic studies have been limited to rather 
restrictive situations, such as a homogeneous [Booker and Savvidou, 1984] or one-dimensional medium [O’Sullivan, 1981; 
Natale and Salusti, 1996; Doughty and Pruess, 1992], or linearized versions of the governing equations [McTigue, 1986].  

In this paper I present a semi-analytic approach for modeling nonisothermal flow in a heterogeneous medium. The 
approach is based upon an asymptotic technique that has proven useful in modeling coupled linear processes [Vasco, 2009], 
as well as nonlinear processes such as two-phase flow [Vasco, 2004]. The asymptotic procedure assumes that the length scale 
of the heterogeneity is greater than the length scale of the propagating pressure and temperature disturbances. Here, I extend 
this approach to coupled, nonlinear processes in a three-dimensional heterogeneous medium. Away from layer boundaries 
and faults, the heterogeneity is assumed to vary in a smooth fashion but with an arbitrary magnitude. Specifically, the length 
scale of the heterogeneity is assumed to be longer than that of the propagating pressure and temperature disturbance. One use 
of such modeling is for efficient inversion of flow and temperature data. The techniques developed here are intended to be 
used with a numerical simulator, both to aid in the interpretation of results and as a method for the inverse modeling of 
observations. For example, the asymptotic formulation provides explicit semi-analytic expressions for model parameter 
sensitivies [Vasco et al., 2000; Vasco, 2008]. Though the specific formulation of Noorishad et al. [1984], modified along the 
lines of the passive reservoir model of Brownell et al. [1977], is used here, and the fluid is assumed to be incompressible, the 
approach is general and applicable to more comprehensive formulations. That is, the techniques can be applied to general 
systems of nonlinear, as well as linear, governing equations.  
 
2. Methodology  
 
2.1. The Governing Equations for Nonisothermal Flow  
 
2.1.1. The Conservation of Mass and Momentum  
 
I begin with the conservation of mass and momentum, as given in Noorishad et al. [1984]  
 

 
 
where η is the equivalent fluid volume strain, e the volumetric strain in the solid, ρl the fluid density, ρo a reference density, K 
the permeability, µ the fluid viscosity, P the fluid pressure, and Z = gz the gravitational force vector. For this study I consider 
only volumetric changes due to local thermal and fluid pressure changes. That is, I will not consider stresses transmitted  
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across the reservoir and through the overburden. In addi-
tion, it will be assumed that the stresses due to the overbur-
den are not changing. For volumetric changes induced by
fluid pressure and temperature changes I can rewrite equa-
tion (1) in the form

γP
∂P

∂t
+ γT

∂T

∂t
= ∇ ·

[

ρlK

ρ0µ
∇P +

ρl
2K

ρ0µ
Z

]

(2)

where γP and γT are functions of x, and possibly pressure
and temperature, given by

γP = φ

(

βl − βs +
α

φ

)

, (3)

where βl is compressibility coefficient for the fluid, βs is the
compressibility coefficient for the solid, α is the compress-
ibility coefficient of the porous matrix [de Marsily, 1986, p.
108], and

γT = φ
(

∂ρl

∂T

)

ρ0

, (4)

is the thermal expansion coefficient of the fluid. Both the
fluid density ρl and the fluid viscosity µ depend upon tem-
perature while the permeability, K, is assumed to only de-
pend upon position x.

In the most general formulation, one would allow the fluid
density and fluid viscosity to depend upon both the temper-
ature and pressure. And the techniques presented in this
paper are applicable when the density and viscosity also
depend upon pressure. However, for no other reason then
simplicity, I shall assume that the fluid density and the fluid
viscosity only depend upon the temperature of the fluid.
This assumption is a fairly good approximation for water
under the conditions considered in the applications (Figure
1). For the pressures and temperatures in the numerical
tests below, only the density varies as a function of pres-
sure, and then by only a fraction of a percent. In contrast,
the fluid viscosity is a fairly strong function of temperature,
varying by a factor of 20 from 1 to 150 degrees C. Defining
the coefficients

ΥP (T ) =
ρl(T )

ρ0µ(T )
(5)

and

ΥZ(T ) =
ρl(T )2

ρ0µ(T )
, (6)

I can write equation (2) more compactly as

γP
∂P

∂t
+ γT

∂T

∂t
= ∇ · [ΥP K∇P + ΥZKZ] . (7)

Before expanding the divergence of the quantity in brack-
ets, I note that because ΥP and ΥZ only depend implicitly
upon x, through their dependence upon T , I can write their
gradients as

∇ΥP = ξPT∇T (8)

and

∇ΥZ = ξZT∇T (9)

where

ξPT =
∂ΥP

∂T
(10)

is a measure of the sensitivity of the coefficient ΥP =
ρl/(ρ0µ) to variations in the temperature of the fluid. A
similar expression holds for ξZT . Applying the divergence
operator to the quantity in brackets on the right-hand-side
of equation (7) results in a partial differential equation for
the fluid pressure and temperature

γP
∂P

∂t
+ γT

∂T

∂t
= [ΥP∇K + KξPT∇T ] · ∇P

+ [ΥZ∇K + KξZT∇T ] · Z + ΥP K∇ · ∇P. (11)

2.1.2. The Conservation of Energy

The conservation of energy provides a second governing
equation. Again, I am considering the situation in which
the matrix deformation, transmitted through the overbur-
den and the reservoir, may be neglected. That is the passive
reservoir model of Brownell et al. [1977] which leads to an
energy equation of the form

η
∂T

∂t
= [∇KT − CρΥP K∇P ] · ∇T − CρΥZK∇T · Z

+KT∇ · ∇T (12)

where

η = φρlCl + (1 − φ)ρsCs (13)

is the volumetric heat capacity of the rock, a weighted aver-
age of the heat capacity of the liquid and the heat capacity
of the solid,

Cρ = Clρ0 (14)

is the volumetric heat capacity of the liquid, and

KT = φKl + (1 − φ)Ks (15)

is the thermal conductivity of the composite material, a
weighted average of the liquid and solid conductivities
[Carslaw and Jaeger, 1959; Crank, 1975]. These coefficients
are defined in terms of the porosity φ, the fluid (ρl) and solid
(ρs) densities, the fluid and solid specific heat constants Cl

and Cs, and the fluid and solid thermal conductivities Kl

and Ks, respectively [Noorishad et al., 1984].
In formulating equation (12) I am assuming that the solid

and fluid reach thermal equilibrium rapidly and a single
temperature T is sufficient to represent the thermal state
of the solid and the fluid. As noted by de Marsily [1986], it
has been shown that temperatures equilibrate in less than
a minute for a medium with a grain size of less than 1 mm.
This assumption has been widely adopted in the modeling
of fluid flow under nonisothermal conditions, for example in
geothermal reservoirs [Brownell et al., 1977]. The modifi-
cations required in relaxing this assumption have been pre-
sented in a number of papers [Auriault and Royer, 1993;
Moyne, 1997; Quintard et al., 1997; Hsiao and Advani, 1999;
Sozer and Shyy, 2008]. The techniques discussed in this pa-
per could be applied to these more general equations, intro-
ducing an additional governing equation and more compli-
cated expressions.
2.1.3. The System of Governing Equations

I can consolidate the coefficients in equation (11) if I di-
vide through by K(x) and define

ζP =
γP

K
(16)

ζT =
γT

K
(17)
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and

λ = − ln K. (18)

In doing so, I am assuming that the permeability is never
zero. In fact, this must be true if one wishes to generate
flow. The equations governing fluid flow in a nonisothermal
medium are then

ζP
∂P

∂t
+ ζT

∂T

∂t
= [ΥP∇λ + ξPT∇T ] · ∇P

+ [ΥZ∇λ + ξZT∇T ] · Z + ΥP∇ · ∇P (19)

and

η
∂T

∂t
= [∇KT − CρΥP K∇P ] · ∇T − CρΥZK∇T · Z

+KT∇ · ∇T (20)

two coupled, nonlinear, partial differential equations for
T (x, t) and P (x, t). Note that there are other formula-
tions of nonisothermal flow, with somewhat different terms
present, and based on different assumptions [Brownell et al.,
1977; Pinder, 1979; Bear and Corapcioglu, 1981]. However,
the exact formulation of nonisothermal flow is not critical.
The asymptotic techniques presented in this paper are gen-
eral and can be applied to any of the corresponding govern-
ing equations.

2.2. An Asymptotic Analysis of the Governing

Equations: Propagation in a Medium with Smoothly-

Varying Heterogeneity

The governing equations (19) and (20) are rather compli-
cated because they are nonlinear, of mixed character, and
coupled partial differential equations with spatially-varying
coefficients. Without some manner of simplification an an-
alytic solution is certainly not possible. Because one goal of
this work is to develop techniques for solving inverse prob-
lems, for example using the thermal front arrival time to
say something about flow properties, accounting for hetero-
geneity is essential. However, due to the limited resolution
of most inverse methods, in which a finite number of data are
used to estimate a field of spatially-varying properties, one
typically seeks models with smoothly-varying heterogene-
ity. Thus, I am most interested in modeling fluid flow in
a medium with smoothly-varying properties. I should note
that sharp boundaries, in the form of layering or a fault, are
allowed as boundary conditions.

I can build the assumption of smoothly-varying hetero-
geneity into the modeling through a technique known as the
method of multiple scales [Anile et al., 1993, p. 49]. This ap-
proach is suited to the construction of asymptotic solutions
for a porous medium with heterogeneous, yet smoothly-
varying flow properties. The measure of smoothness is with
respect to the length scales of the propagating temperature
and pressure disturbances. In order to define this formally,
I follow the approach of Anile et al. [1993] and denote the
length scale of the front, eg. the distance over which the
pressure and temperature changes from a background value
to the value behind the front, by l. In addition, let L denote
the length scale of the heterogeneity within the medium.
The smoothness of the medium is stipulated by the require-
ment that L ≫ l. An asymptotic solution can be formulated
in terms of the ratio of scale-lengths ε = l/L, where ε ≪ 1.
In order to isolate the scale of interest, I define the slow
spatial coordinates

X = εx, (21)

the scale over which many of the quantities of interest, such
as the travel time and the amplitude will vary. Similarly, I

can define a slow variable for the time:

τ = εt. (22)

Intuitively, the assumption of smoothly-varying hetero-
geneity allows one to treat the propagating temperature and
pressure disturbances as local fronts. Concepts associated
with front propagation, such as the travel time, or phase,
and the amplitude of the front may be employed. Further-
more, one also assumes that local changes in these quan-
tities, front amplitude and phase, are due to local changes
in the properties of the medium. Thus, one can follow the
evolution of a given small segment of the front over time,
leading to the idea of a trajectory or ray. Furthermore, the
fields at a given location can be obtained by a summation
over all trajectories connecting the observation point to the
source point.

An asymptotic solution is a power series representation of
the dependent variables, that is, the temperature and pres-
sure. The form of the series is motivated by mathematical
and physical studies of propagating fronts [Kline and Kay,
1965; Maslov and Omel’yanov, 2001]. In particular, there
is an exponential phase term to model the propagation of
the disturbance and successive amplitude terms to model
changes in the magnitude of the disturbance. The formal
power series is in terms of the scale variable ε. Because
ε is assumed to be small, the first few terms of the series
are the most significant. The asymptotic solution for the
temperature is represented as

T (X, τ, θT ) = Tb(X, τ ) +

∫ τ

0

eθT (X,u)

∞
∑

i=0

εiTi(X, u)du

(23)

where Tb is the background temperature which may be a
function of space and time, θT (X, τ ) is a phase function
that is related to the propagation of the thermal front, and
Ti(X, τ ) is the i-th contribution to the amplitude of the tem-
perature change. The temperature change contains both an
explicit and an implicit dependence upon the spatial and
temporal coordinates. The implicit dependence is through
the function phase function θT (X, τ ).

Due to the nature of the source most commonly used in
injection and pumping, a constant rate function similar to a
step, I have modified the representation by integrating over
the temporal variable. That is, because a typical source in
hydrology is a step-function in time, the time-integral of a
more traditional impulsive source, I represent the solution
as an integral over time of the traditional asymptotic solu-
tion. For an impulsive source-time function, one can remove
the integral in equation (23) and work with the conventional
form of the asymptotic expansion.

The change in pressure across the front has a similar rep-
resentation

P (X, τ, θP ) = Pb(X, τ ) +

∫ τ

0

eθP (X,u)

∞
∑

i=0

εiPi(X, u)du.

(24)

where θP (X, τ ) is the phase function and Pi(X, τ ) are the
amplitude functions. Note that the phase function for the
pressure, θP , can differ from the phase associated with the
temperature, θT , meaning that the temperature and pres-
sure changes can move with different speeds. For example,
an initial jump in pressure might propagate faster then a
coupled pressure-thermal front. Later in the paper I will
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examine the situations in which the changes are both un-
coupled and coupled and θT is equal to θP .

The governing equations (19) and (20) can be rewritten in
terms of the slow coordinates X and τ . In order to do this,
I first recast the partial derivatives in terms of Xi, τ , and
θ. In doing so I make use of the relationships (21) and (22)
between the fast and slow coordinates and the explicit and
implicit dependence upon the independent variables. Thus,
I can write the partial derivative with respect to time as

∂T

∂t
= ε

∂T

∂τ
+

∂θT

∂t

∂T

∂θT

(25)

because, from the definition of τ , equation (22), ∂τ/∂t = ε.
Similarly, I can express the derivative with respect to xi as

∂T

∂xi

= ε
∂T

∂Xi

+
∂θT

∂xi

∂T

∂θT

, (26)

and thus, in terms of the X coordinates, the gradient is given
by

∇xT = ε∇XT + ∇θT
∂T

∂θT

. (27)

Given these expressions for the differential operators, I
can rewrite the governing equations in terms of the slow
variables X and τ . Each term will contain a factor com-
posed of the scale parameter ε raised to some power. Be-
cause we are assuming that the temperature and pressure
changes vary over a length scale that is much less then that
of the heterogeneity, ε is assumed to be much smaller than
one. Therefore, terms of low order in ε will dominate in the
governing equations. In Appendix A I write the governing
equations in terms of the slow variables and retain terms of
order ε0 ∼ 1. To order ε0 the governing equations take the
form [see Appendix A, leading up to equations (A10) and
(A18) for additional details]

ξPT s · pT̄ P̄ + αP P̄ − αT T̄ = 0 (28)

CρΥP Kp · sT̄ P̄ − βT T̄ = 0 (29)

where

P̄ = P − Pb (30)

and

T̄ = T − Tb (31)

are the changes in pressure and temperature that occur with
the passage of the front, the vectors

s = ∇θT (32)

and

p = ∇θP (33)

are the gradients of the temperature and pressure phase
functions used in the series representations (23) and (24),
the quantities s = |∇θT | and p = |∇θP | represent the mag-
nitudes of these respective vectors. Finally, I have defined
the coefficients,

αP = ΥP p2 − ζP
∂θP

∂t
, (34)

αT = ζT
∂θT

∂t
+ ξZT s · Z, (35)

and

βT = KT s2 + CρΥZKs · Z − η
∂θT

∂t
. (36)

There is an issue that needs to be addressed, the various
coefficients in equations (28) and (29) are nonlinear func-
tions of the temperature and pressure, and some are func-
tions of the spatial coordinates as well. Consider, for exam-
ple, ΥP (T ), which depends upon the temperature through
it’s dependence upon the fluid density and the fluid viscos-
ity [see equation (6)]. I argue that the kinematics of the
propagating pressure and temperature disturbances depend
upon the background conditions in the medium. That is,
the movement of propagating disturbance is controlled by
the conditions at its leading edge. For it is the propaga-
tion of the leading edge that defines the sequence of front
positions over time. Conditions behind the front primar-
ily determine the steepness of the changes in pressure and
temperature changes. To be sure this is an approximation
that must be examined through comparison with numerical
simulation. Therefore, I will assume that the coefficients in
equations (28) and (29) are evaluated using the background
pressure and temperature fields, Pb and Tb, respectively.

2.3. A Governing Equation for the Phase of the

Propagating Pressure and Thermal Fronts

In this sub-section I derive expressions for the phase. The
phase is related to the slowness of the propagating thermal
and pressure fronts. The slowness is the inverse of the prop-
agation velocity. Such expressions may be used to compute
the travel times of pressure and temperature disturbances
through a heterogeneous medium.

Note that the two reduced governing equations (28) and
(29) are polynomial equations in the amplitudes P̄ and T̄ .
It is well known, from algebraic geometry, that a system
of polynomial equations has a non-trivial solution if the re-
sultant, a determinant in the coefficients and a subset of
the variables, vanishes [Cox et al., 1998, p. 71]. The con-
ditions for a non-trivial solution of a system of governing
equations is often used to find the slowness values associ-
ated with modes of propagation in a medium [Kratsov and
Orlov, 1990]. However, in the case of equations (28) and
(29) it is simpler to work directly with the algebraic expres-
sions rather than with the resultant. In particular, I can use
the second equation, equation (29), to solve for the product
term p · sT̄ P̄ ,

p · sT̄ P̄ =
βT T̄

CρΥP K
. (37)

This expression may be substituted into equation (28) to
arrive at

(

ξPT βT

CρΥP K
− αT

)

T̄ + αP P̄ = 0. (38)

Assuming that the amplitude of the temperature and
pressure changes T̄ and P̄ are not simultaneously zero, that
at least one disturbance is propagating, equation (38) speci-
fies those values of s and p for which equations (28) and (29)
have solutions. The character of equation (38) is clearer if
I write it explicitly in terms of s and p and group terms
according to their degree. The result is

ΥP P̄ p2 +
ξPT KT T̄

CρΥP K
s2

+
(

ξPT ΥZ

ΥP

− ξZT

)

T̄ g cos(νT )s

4



VASCO: NONISOTHERMAL FLOW IN A HETEROGENEOUS MEDIUM X - 5

−
(

ζP +
ξPT η

CρΥP K

)

T̄
∂θT

∂t
− ζP P̄

∂θP

∂t
= 0 (39)

where νT signifies the angle between the gravitational force
vector and the phase gradient vector s. If P̄ and T̄ are
known, for example from a numerical simulation, then equa-
tion (39) is a single quadratic equation for the two un-
knowns, p and s. Thus, in the most general situation, it is
not possible to determine p and s independently. However,
there are situations that are of physical interest where one
can find expressions for p and s. One is the propagation of
a coupled pressure and temperature disturbance. Another
involves the propagation of a pressure disturbance well in ad-
vance of the advected hot or cold fluid. The first case, the
propagation of a coupled pressure and temperature front,
is of most interest and will be treated in the next section
in some detail. The second situation, uncoupled pressure
propagation will be discussed as a special case in the section
on Applications.
2.3.1. The Propagation of a Coupled Pressure and
Thermal Front

An advecting temperature change leads to a change in
flow properties, most significantly a change in fluid viscos-
ity, resulting in a pressure change across the thermal front.
Because the temperature and pressure fronts propagate to-
gether, the pressure disturbance is initiated by the change
in temperature, the phase functions are equal, θ = θP = θT

and similarly for the phase vectors p = s. Thus, equation
(39) is rewritten with p = s

[

ΥP P̄ +
ξPT KT

CρΥP K
T̄

]

p2

+
[(

ΥZ

ΥP

ξPT − ξZT

)

T̄
]

g cos(νP )p

=

[

ζP P̄ +

(

ζT +
ηξPT

CρΥP K

)

T̄

]

∂θ

∂t
. (40)

Defining

∆ =
ξPT

CρΥP K
, (41)

I can define the coefficients

Γ =
[ρlξPT − ξZT ] gT̄

ΥP P̄ + KT ∆T̄
(42)

and

Ω =
ζP P̄ + (ζT + η∆) T̄

ΥP P̄ + KT ∆T̄
(43)

and the quadratic equation (40) becomes

p2 + Γ cos(νP )p − Ω
∂θ

∂t
= 0. (44)

Equation (44) is the most general expression for the slowness
of a propagating coupled thermal and pressure front. In the
formulation, I allow for temperature-sensitive fluid density
and fluid viscosity. Furthermore, the flow properties of the
medium are allowed to vary spatially. Gravitational forces
are also included, rendering the slowness anisotropic, that
is, the slowness depends upon the propagation direction of
the front. Note that even if ζT is zero, there is no explicit
pore expansivity in equation (19), the slowness still depends
upon the temperature (T ) through the dependence of the
fluid properties upon temperature, due to the coefficients
ξPT and ξZT .

One can say a bit more about the coefficient Γ which
represents the gravitational term, and gives rise to convec-
tive motion. Using the fact that ξPT and ξZT represent the
sensitivity of ΥP and ΥZ to variations in temperature [see
equation (10)], I can write Γ as

Γ =

[

ρl

∂

∂T

(

ρl

ρ0µ

)

− ∂

∂T

(

ρl
2

ρ0µ

)]

gT̄

ΥP P̄ + KT ∆T̄
.

(45)

If the fluid density does not depend upon the temperature
then Γ vanishes. Thus, the convective term vanishes if the
density of the fluid does not depend upon temperature. This
fact follows from the initial assumption of an incompressible
fluid, in which density of the fluid does not depend upon the
fluid pressure. If one were to relax that assumption, a con-
vective term would remain even if the fluid density did not
depend upon the temperature. As indicated in Figure 1, the
density of water has a moderate temperature-dependence,
varying by roughly 10% as the temperature varies by 150
degrees.

2.4. The Computation of the Phase and the

Construction of a Trajectory-Based Solution

The equations for the phase, as given by the quadratic
equation (44), can be used to compute trajectories on which
solutions can be defined. Thus, as for the ray-based methods
that underlie electromagnetic [Kline and Kay, 1965; Bouche
et al., 1997] and elastic [Karal and Keller, 1959; Chapman,
2004] wave propagation, the asymptotic approach produces
a trajectory-based solution. Such techniques provide a foun-
dation for efficient imaging algorithms, such as ray-based
tomography [Iyer and Hirahara, 1993]. As the methods de-
scribe next, direct numerical integration and the method of
characteristics, are general methods, they are applicable to
the case in which gravity is important. For example, there
are modifications to the numerical solvers for scalar partial
differential equations in an anisotropic medium that can be
applied to equation (44) [Qian and Symes, 2001]. Similarly,
the method of characteristics can be used for general equa-
tions in which the slowness depends upon the direction of
propagation [Courant and Hilbert, 1962, p. 106; Cerveny,
1972]. Because p is the magnitude of the slowness vector,
given by p = ∇θ, I can write equation (44) as

∇θ · ∇θ + Γ∇θ · Z − Ω
∂θ

∂t
= 0. (46)

Equation (46) is a non-linear, first-order, partial differential
equation for the phase function. It is an example of a class
of equations [Lanczos, 1986, p. 229], that are instrumen-
tal in physics and applied mathematics. Equations of the
this type also appear when modeling the propagation of an
interface [Sethian, 1999].
2.4.1. Direct Numerical Integration

The most direct approach for solving equation (46) is a
numerical technique, such as a level set method [Sethian,
1999]. Level set methods are efficient finite-difference
schemes which converge to viscosity solutions of first-order
partial differential equations, solutions of equation (46) aug-
mented by a viscosity term for stabilization [Crandall and
Lions, 1983; Crandall et al., 1984]. Using stable finite-
difference schemes developed for hyperbolic conservation
laws [LeVeque, 1992], one can solve the first-order, scalar,
non-linear differential equation (46), augmented by a vis-
cosity term, in an efficient and robust fashion [Sethian,
1990]. The fact that the gravitational term results in pref-
erential movement in the direction of Z presents no funda-
mental difficulty. There are a number of implementations
of finite-difference-based algorithms for anisotropic propa-
gation, commonly used in seismic wave propagation in an
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anisotropic Earth [Lecomte, 1993; Eaton, 1993; Qian and
Symes, 2001; Soukina et al., 2003]. Preferential propaga-
tion in a horizontal or vertical direction is also a factor in
anisotropic crystal growth and finite-difference schemes have
been used to model such propagation [Sethian and Strain,
1992].
2.4.2. The Method of Characteristics

Though a numerical approach is efficient and relatively
easy to implement, there is an alternative classical approach
that is efficient, provides some insight, and under some cir-
cumstances, leads to semi-analytic expressions for the phase.
There is an extensive body of literature devoted to this ap-
proach that one can draw upon for insight and guidance. For
example, there is a well-established method for solving first-
order, partial differential equations, motivated by geometri-
cal arguments, the method of characteristics [Courant and
Hilbert, 1962]. Using this approach one finds that equation
(46) is equivalent to a system of first-order ordinary differen-
tial equations, the characteristic equations. These comprise
equations for a trajectory along which a semi-analytic solu-
tion is defined. To see this, I first write equation (46) as

F (x, t, θ,p,
∂θ

∂t
) = 0, (47)

where F is the Hamiltonian function, given by

F (x, t, θ, p,
∂θ

∂t
) = p · p + Γ(x, t, θ)p · Z + Ω(x, t, θ)

∂θ

∂t
.

(48)

The system of characteristic equations corresponding to
equation (47) is

dxi

ds
=

∂F

∂pi

(49)

dpi

ds
= − ∂F

∂xi

− ∂F

∂θ
pi (50)

and

dθ

ds
=

∂F

∂pi

pi (51)

[Courant and Hilbert, 1962, p. 106]. For the Hamiltonian
function given by equation (48), the first two sets of charac-
teristic equations are

dx

ds
= 2p + ΓZ (52)

dp

ds
= −∇Γp · Z − ∂Γ

∂θ
p. (53)

The trajectory x(s) is calculated by solving the system of
ordinary differential equations [Courant and Hilbert, 1962;
Kravtsov and Orlov, 1990]. The development of algorithms
for constructing the trajectories, or rays, is still an area of
active research [Ruger, 2004].
2.4.3. When the Phase Function is Separable

In certain circumstances, the differential equation (46) is
separable. There are two primary conditions for this: the
vanishing of the gravitational term Γ(x, t, θ), and the seper-
ablity of the coefficient Ω(x, t, θ). The function Ω(x, t, θ) is
said to be separable if it can be written as the product of
two functions, the first function only depends upon x while
the second only depends upon t:

Ω(x, t, θ) = Ωx(x)Ωt(t). (54)

The function Ω(x, t, θ) is separable if the temperature and
pressure disturbances display the same time-dependence. In
that case one may derive an exact solution, as shown in Ap-
pendix B. The resulting phase function is of the form [see

equation (B17)]

θ(x, t) = −σ2(x)

4t
, (55)

where

σ(x) =

∫ √
Ωds (56)

and Ω(x) is given by equation (43).

2.5. A Zeroth-Order Solution for Temperature and

Pressure

Once the phase function θ has been determined one can
construct approximate solutions for the temperature and
pressure variations. For example, the lowest-order repre-
sentations of the solutions are obtained from the series (23)
and (24) by retaining only the zeroth-order terms

T̄ (X, τ, θ) =

∫ τ

0

eθ(X,u)T0(X, u)du (57)

for the temperature and

P̄ (X, τ, θ) =

∫ τ

0

eθ(X,u)P0(X, u)du (58)

for the pressure. Here I am assuming that the tempera-
ture and pressure disturbances are coupled and propagate
together, so that θP = θT = θ. The integral appears in
these expressions because I am assuming a source term that
is a step-function function in time. The step-function source
term represents the rapid onset of pumping or injection fol-
lowed by a steady rate of flow. Such sources are frequently
used and are necessary in order to generate sufficient flow
at some distance from a well. For amplitude terms that
are of one sign, the integral forms (57) and (58) gener-
ate monotonic variations in pressure and temperature for
a given propagating front.

As noted by Virieux et al. [1994], and elaborated in Vasco
et al. [2000] and Vasco and Finsterle [2004], it is fruitful to
consider the time derivative of transient fields that are gen-
erated from a step-function source. By looking at the time
derivative, the transient propagation of flow-related distur-
bances, such as pressure and temperature variations, is often
more apparent. Furthermore, it is possible to define a quan-
tity akin to an arrival time, a quantity that can be related
to the flow properties of the medium [Virieux et al., 1994].
Such a relationship can be used to image the flow properties
in the vicinity of an active well [Vasco et al., 2008]. If I
consider the time derivatives of the zeroth-order asymptotic
expressions I obtain

∂T̄ (X, τ, θ)

∂τ
= eθ(X,τ)T0(X, τ ) (59)

for the temperature and

∂P̄ (X, τ, θ)

∂τ
= eθ(X,τ)P0(X, τ ) (60)

for the pressure. These forms are useful when relating the
phase θ to some measure of the arrival time of a propagating
temperature and pressure disturbance.

As an example, consider the solution for a propagating
pressure disturbance. Motivated by the form of the asymp-
totic solutions of the equation governing pressure in a het-
erogeneous medium [Vasco et al., 2000], I shall assume that
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the amplitude function P0(X, τ ) may be written in a par-
titioned form. Furthermore, again based upon the solution
of the linear diffusion equation, I shall assume a power-law
time dependence, resulting in an amplitude function of the
form

P0(X, τ ) = τ−aP P̄0(X) (61)

where P̄0(X) is the function accounting for the spatial vari-
ation of the amplitude of the pressure change.

As discussed in Virieux et al. [1994] and Vasco et al.
[2000], for an impulsive source, one measure of the arrival
time of the temperature and pressure disturbances is the
time at which the peak values are observed at a particular
location. Because the source is generated by a step-function,
I shall work with the time derivatives of the pressure and
temperature fields. Thus, I will be concerned with the mo-
ment at which the time derivative of ∂P̄/∂t reaches a max-
imum, that is, when

∂2P̄ (X, τ, θ)

∂t2
= 0. (62)

Differentiating the expression (60) with respect to time, and
accounting for the particular form of the amplitude term P̄0,
equation (61), yields

∂2P̄

∂t2
= t−aP eθ

[

∂θ

∂t
− aP

t

]

P̄0. (63)

The peak value is attained when the quantity in square
brackets vanishes, or when,

∂θ

∂t
=

aP

tpeak

(64)

where tpeak is the time as which the peak temperature is
obtained.

3. Applications

Here I shall consider examples involving the flow of a
high-temperature aqueous fluid into a reservoir. One of
the examples involves the propagation of uncoupled pressure
changes in a homogeneous medium. This example demon-
strates that the expression (40), given above, reduces to the
conventional expression for transient fluid flow. The next ex-
ample illustrates some important aspects of nonisothermal
coupled flow. Finally, I shall examine flow in a heteroge-
neous medium.

In all cases I will simplify matters by assuming that the
reservoir is thin (one meter in thickness) horizontal, essen-
tially two-dimensional, so that gravitational effects are neg-
ligible. That is, because the flow is always perpendicular to
Z, the linear terms in p in equations (39) and (46) vanish.
Including gravity does not involve any fundamental diffi-
culties other than the additional work required to compute
trajectories in a medium with anisotropic slowness, as noted
above.

The working fluid is liquid water, subject to sufficient
pressure that it remains in a fluid state. Because the
thermal-physical properties of water are known, the param-
eters and coefficients that appear in the governing equations
(19) and (20) are well constrained. In particular, the pres-
sure and temperature dependence of the fluid density and
fluid viscosity are characterized by laboratory studies. In
Figure 1 I have plotted the fluid density and viscosity of
water as functions of the fluid pressure and temperature.
The range of pressure and temperature variations reflects
the conditions of the numerical experiments presented be-
low. The background pressure, before the injection of hot
water, is 5.0 MPa, and all pressures are references to that

value. The injection of hot water is a model for energy stor-
age in an aquifer, or the re-injection of geothermal water
in a shallower part of the reservoir [Bear and Corapcioglu,
1981]. Such hot water injection is also used in secondary oil
recovery [Boberg, 1988].

The variation of density and viscosity with temperature
and pressure, shown in Figure 1, indicates that the density
will not vary dramatically for the test cases. For example,
the primary variation in density is as a function of temper-
ature, and for the temperature range considered, between
25 and 150 oC, the maximum density variation is roughly 8
%. Furthermore, neither the density nor the viscosity vary
significantly as a function of the fluid pressure. The pri-
mary variation with pressure occurs in the fluid density at
temperatures below the background temperature of 25 oC.
Even then, the density variation over the range of pressures
is less then 1 %. The most significant variation in fluid
properties is the change in viscosity as a function of temper-
ature (Figure 1). The viscosity varies by roughly an order
of magnitude between 25 oC and 150 oC.

The overall geometry of the experiment consists of an in-
jector in the center of the grid and an observation well to
the northwest of the injector, as portrayed in Figure 2. At
a particular time, which is taken as the origin of the time
scale, a high-temperature fluid, with an enthalpy of 7.0×105

J/kg, is introduced into the porous medium at a constant
flow rate of 10.0 kg/s. The fluid pressure and temperature
variations as a function of space and time are computed us-
ing the numerical simulator TOUGH2 [Pruess et al., 1999].
The porous layer was sub-divided into a grid of 50 by 50 cells.
Each cell in the grid was 100 m by 100 m laterally, and 1 m
thick. The pressure and temperature variations after 4207
Days of injection are shown in Figure 2. In this figure the
pressure scale signifies change in fluid pressure from a back-
ground value of 5.0 MPa. The edge of the grid is assumed
to be held at a constant pressure and the heat capacity of
the boundary grid blocks is taken to be an extremely large
number. Note that, due to grid and boundary effects, the
pressure and temperature variations do not display the ro-
tational symmetry inherent in the problem. With a finer
discretization and a larger mesh one could reduce these ef-
fects. However, that would increase the computation time
required for the simulation of 45,000 days of injection.

3.1. Propagation in a Homogeneous Medium

First, consider flow in a homogeneous medium with a
porosity (φ) of 10 %, a permeability (K) of 2.0 ×10−13 m2.
The density of the solid matrix (ρs) is 2650 kg/m3, the spe-
cific heat of the matrix (Cl) is 920.0 J/kg oC, the thermal
conductivity (Ks) is 2.51 W/moC, and the pore compress-
ibility (γP ) is 1.5 ×10−7 Pa−1. The simulated temperature
and pressure variations associated with the observation well
are shown in Figure 3. For comparison, in the left panel of
Figure 3, I have also plotted the pressure associated with
the injection of a fluid of the same temperature as the in
situ fluid (labeled Isothermal). Note that, when the prob-
lem is isothermal, the pressure increases monotonically with
the length of injection. When a high-temperature fluid is
injected, the pressure initialy increases as in the isother-
mal case, but after about 3000 days the pressure decreases
with time. The pressure decrease occurs as the temperature
rises due to the arrival of the hot water at the observation
well. Thus, for a nonisothermal injection there is a pressure
increase due to the introduction of a mass of fluid and a
pressure decrease due to the temperature-induced changes
in the fluid properties. As noted above, we can use the ex-
pression for slowness [equation (40)] to examine these two
cases in turn.

7



X - 8 VASCO: NONISOTHERMAL FLOW IN A HETEROGENEOUS MEDIUM

3.1.1. Uncoupled Pressure Propagation

In this case there is no temperature change associated
with the advancing change in pressure, and T̄ is zero in
equation (40). If there are no thermal or gravitational ef-
fects, the equation governing the phase is separable. This
isothermal process leads to uncoupled pressure propagation,
and equation (44) reduces to

p2 =
ζP

ΥP

∂θ

∂t
= 0 (65)

where the coefficients ζP and ΥP only depend upon the spa-
tial coordinates x. The resulting partial differential equation
for θ, obtained by noting that p = ∇θ, is separable and the
results from Appendix B can be used. Therefore, I can work
with a phase function of the form given in equation (B17)

θ = −σ2

4t
.

Then, the zeroth-order expression for the time derivative of
pressure, equation (60), is given by

∂P̄ (X, τ, θ)

∂t
= t−aP exp

(

−σ2

4t

)

P̄0(X), (66)

where I have assumed that the amplitude function can be
written in the separable form (61). In this case the condi-
tion for the peak of the pressure derivative, the vanishing of
the second derivative of the pressure with respect to time
[see equations (62) and (63)] gives

∂θ

∂t
=

σ2

4t2
. (67)

Equation (64) provides a relationship between the arrival
time of the peak and σ

tpeak =
σ2

4aP

(68)

or, using the definition of σ given by equation (B16) in Ap-
pendix B,

√

tpeak =
1

2
√

aP

∫ √
Ωds. (69)

Because the temperature change can be neglected, T̄ van-
ished in equation (43), and the expression (69) reduces to

√

tpeak =
1

2
√

aP

∫

√

ζP

ΥP

ds (70)

=
1

2
√

aP

∫ √

γP

K

ρ0µ

ρl

ds

where γP is the coefficient of the time derivative of pressure
in the governing equation (6), given by equation (3). If βs

and α are much smaller than βl then γP reduces to γP = φβl

and the expression for p2, equation (70) becomes

√

tpeak =
1

2
√

aP

∫

√

φβlρ0

k
ds (71)

where

k =
Kρl

µ
. (72)

Equation (71) is the expression for the square root of
the travel time of a pressure disturbance propagating in a
medium with smoothly-varying heterogeneity, the solution
of a linear diffusion equation [Vasco et al., 2000].

The uncoupled transient pressure variation occurs well
before the advected high-temperature fluid has arrived at a
specific location. For example, consider Figure 3, the pres-
sure and temperature variations simulated at the observa-
tion well. The location of the observation well is indicated
by the open circle in Figure 2. At this location the tem-
perature does not start increasing unil some time after 2000
days. However, there is a rapid build-up of pressure prior
to that time. In Figure 4 I plot the pressure increase as a
function of time for the case of isothermal and nonisother-
mal flow. The pressure variation is shown for the first 500
days of injection, well before the arrival of the advected hot
water. As noted by Vasco et al. [2000], for a constant flow
rate, a step-function source, it is difficult to determine the
’arrival time’ of a pressure disturbance. In the case of a
step-function source, it is easier to work with the derivative
of the pressure with respect to time and to compute an ar-
rival time based upon the peak of the time derivative. In the
right panel of Figure 4 I plot the time derivative of the fluid
pressure as a function of time. Note that both the isother-
mal and nonisothermal injections have peaks at roughly 235
days.

The similarity of the transient pressure disturbance to a
propagating front is clearer if one examines a sequence of
’snapshots’ of the derivative of the pressure with respect to
time. That is, I take the time series associated with each
cell of the simulation grid and differentiate it with respect
to time. I then normalize the time derivatives in each grid
block by the peak value obtained in the respective grid block.
In Figure 5 I have plotted three such ’snapshots’ at 20, 98,
and 446 days. The maximum values of the derivatives form
a ring around the injection well and propagate outward over
time. By recording the time at which the derivative is a
maximum in each grid block, I can compute the arrival time
of the transient pressure disturbance. An analytic expres-
sion relating the phase θP to the arrival time of the peak
derivative was given in Virieux et al.[1994] and Vasco et al.
[2000]. The travel time, calculated from the peak of the
derivative in each grid block, is shown in Figure 6.

In the panel on the left in Figure 12 I plot the travel times
for uncoupled pressure propagation, as calculated from the
expression for slowness, equation (71) (Asymptotic), and es-
timated from the output of the TOUGH2 numerical simula-
tor (Numeric). There is excellent agreement at the near and
intermediate distances. The agreement degrades slightly at
the longer offsets, perhaps due to the interaction with the
boundary of the grid, which lies 2.5 km away from the injec-
tor. The constant pressure boundary condition is likely to
have some influence as the edge of the grid is approached.
3.1.2. The Coupled Propagation of Temperature and
Pressure Changes

Next I consider the propagation of a coupled temperature
and pressure front, where the slowness is given by equation
(44) with no gravitational term

p2 − Ω(x, t, θ)
∂θ

∂t
= 0 (73)

with Ω given by equation (43):

Ω =
ζP P̄ + (ζT + η∆) T̄

ΥP P̄ + KT ∆T̄
. (74)

Expression (74) is complicated and the temperature and
pressure changes can both slow down and speed up the
propagation of the coupled front. The parameters used to
compute the slowness were identical to those used above: a
porosity (φ) of 10 %, a permeability (K) of 2.0 ×10−13 m2.

8



VASCO: NONISOTHERMAL FLOW IN A HETEROGENEOUS MEDIUM X - 9

The density of the solid matrix (ρs) is 2650.0 kg/m3 while
that of the liquid (ρl) is 997.0 kg/m3, the specific heat of the
matrix (Cs) is 920.0 J/kg oC, the specific heat of the liquid
(Cl) is 4180.0 J/kg oC, the thermal conductivity of the solid
(Ks) is 2.51 W/moC, the thermal conductivity of the liquid
(Kl) is 2.51 W/moC, and the pore compressibility (γP ) is
1.5 ×10−7 Pa−1. The partial derivative of ΥP with respect
to the temperature, where ΥP = ρl/ρ0µ is calculated by nu-
merical differentiation, with a value of approximately 25.6
(Pa − s)−1 (oC)−1. The temperature dependence of µ is
obtained from routines contained in the TOUGH2 simula-
tion package. The reference density ρ0 is taken to be the
liquid density ρl so that the ratio ρl/ρ0 is always unity. The
values of the jumps in pressure (P̄ ) and temperature (T̄ ) are
computed from the results of the TOUGH2 simulation and
have average values of 5.0 MPa and 106 oC, respectively. In
Appendix C I indicate how phase-dependent terms of T̄ and
P̄ can cancel for an impulsive or a step-function source.

For the example problem considered here, the coupled
pressure and temperature changes travel much slower than
the uncoupled pressure disturbance. For example, at the ob-
servation point, indicated by an open circle in Figure 2, the
coupled front arrives some time after 4,000 days (Figure 3)
while the uncoupled pressure disturbance arrives at roughly
235 days (Figure 4). In order to compute the arrival time
of the coupled front more accurately, I take the time deriva-
tives of the temperature and pressure variations (Figure 7).
In calculating the pressure derivative, some care must be ex-
ercised due to the presence of the earlier uncoupled pressure
disturbance. That is, there is a very significant transient
pressure response to the start of injection, independent of
the thermal effects. In order to isolate the coupled pres-
sure disturbance I consider the differential pressure, which
is given by the pressure of the nonisothermal flow simula-
tion, minus the pressure from an isothermal flow simulation.
This differential pressure is plotted in Figure 7, with the
pressure changes before the arrival of the thermal front set
to zero. Note that the peak of the differential pressure coin-
cides with the peak of the temperature derivative. The peak
of the derivatives define the arrival times of the temperature
and pressure changes.

As was done previously, I can compute the derivatives of
the temperature and pressure with respect to time for each
simulation grid block. In Figure 8 I plot the normalized
time derivatives for three ’snapshots’ (801, 2125, and 4207
days). The temperature and pressure disturbances propa-
gates outward, away from the injection well. However, the
propagation speed is much slower for the coupled front, il-
lustrating the importance of the thermal contributions to
the slowness (74). The travel times for the temperature and
pressure, which are related to the coupled phase θ(X), are
plotted in Figure 9. As indicated in Figure 8, it takes several
thousand days for the coupled front to propagate from the
injection well to the observation well.

The asymptotic travel time estimates are obtained by
solving the eikonal equation (73). In order to evaluate Ω,
given by (74), one needs estimates of T̄ and P̄ along the
propagation paths of interest. These quantities were ob-
tained from runs of the numerical simulator TOUGH2. In
Figure 10 I have plotted the temperature and pressure vari-
ations for three observation points located 500, 1000, and
1500 meters from the injection well. The amplitude of the
temperature change is relatively constant, roughly 135 de-
grees C. The amplitude of the pressure change is the differ-
ence between the pressure following the pressure peak and
the value of the pressure at the peak. The pressure change
varies slowly with distance away from the injection well.
In Figure 11 I have plotted the temperature and pressure
changes over the simulation grid. From this figure it is clear
that the temperature change is relatively constant and the
pressure change is slowly-varying. These changes are used
for T̄ and P̄ in the expression for Ω [equation (74)].

In an effort to examine the asymptotic travel times with
the travel times estimated from the TOUGH2 simulation, I
compare values along the trajectories extending from the in-
jection well to the observation well. The trajectories, which
for a homogeneous medium are straight lines, are plotted
on the contour maps of the uncoupled and coupled travel
times (Figures 6 and 9). The trajectories were obtained by
solving the reduced ray equations, as described in Vasco and
Finsterle [2004]. That is, I use the numerical simulator to
compute the pressure and temperature time series in each
grid block. By differentiating the time series and finding
the time at which the derivative is a maximum I can esti-
mate the distribution of the phase throughout the region of
interest. I then use one of the ray equations to compute
the trajectories by marching down the gradient of the phase
function.

In the panel on the right-hand-side of Figure 12 I plot the
travel times for both the pressure and the temperature vari-
ations for the case of coupled propagation. Due to the cou-
pled nature of the propagation, the temperature and pres-
sure travel times should lie close together. In general there
is overall agreement between the temperature and pressure.
The differences may be due to the approximate nature of
the numerical calculations. For example, it was noted ear-
lier that the propagating disturbances do not display the
rotational symmetry of the problem due to grid effects. In
addition, there are boundary effects to contend with, as well
as rounding error and possible difficulties in integrating non-
linear differential equations. The asymptotic travel time es-
timates, as computed using the slowness given by equation
(74), agree rather well with the temperature travel time.

3.2. Propagation in a Heterogeneous Medium

As mentioned above, the asymptotic approach, based
upon the method of multiple scales [Anile et al., 1993, p.
49], is suited for modeling the propagation of disturbances
in a medium with smoothly-varying heterogeneity. In an
effort to illustrate this, I generated a heterogeneous distri-
bution of permeability (K), shown in Figure 13. Only the
permeability was varied in this case, all other parameters
were kept at the values used in the simulation in the homo-
geneous medium. In Figure 13 I have plotted the logarithm
of permeability multipliers for each grid block, generated
by forming the moving average of a distribution of random
numbers. The radius of the averaging window controls the
smoothness of the spatial distribution. The permeability
varies by roughly two orders of magnitude about a mean
value of 2. × 10−13 m2, with a low permeability region
between the injection well and the observation well. The
permeability is generally higher to the east of the injection
well. The basic features of the numerical experiment, such
as the location of the central injection and observation wells
and the flow rates, are identical to the homogeneous exam-
ple.

The procedures for a heterogeneous medium are identical
to those used to model nonisothermal flow in a homogeneous
medium. The numerical simulator TOUGH2 was used to
solve the conservation of mass/momentum and energy. In
order to capture the propagation of the pressure and temper-
ature disturbances to the boundaries of the model domain,
roughly 50,000 days of flow were simulated.

As in the homogeneous example, at the initiation of injec-
tion there is a pressure increase that propagates away from
the central well. This propagation is clearly seen in Fig-
ure 14, where I have plotted the pressure change for three
times (20, 204, and 692 days). The effect of the heterogene-
ity is seen in distribution of pressure change over time, as
there is rapid propagation to the east, where the permeabil-
ity is highest. The slowest propagation is to the northwest,
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through the low permeability zone between the injection well
and the observation well. A contour plot of the travel time of
the pressure disturbance, shown in Figure 15, confirms the
faster propagation to the east and the slower propagation to
the northwest. A trajectory, indicating the path of the tran-
sient disturbance from the injection well to the observation
well, is shown by the curve in Figure 15.

The temperature and pressure changes associated with
the coupled propagation are shown in Figure 16. The cou-
pled disturbance propagates at a much slower speed, indicat-
ing that the additional terms in the expression for slowness
have a significant impact of the propagation. It takes more
than 10,000 days for the disturbance to reach the observa-
tion well. The stands in contrast to the roughly 300 days
required for the uncoupled pressure disturbance to propa-
gate over the same distance. The temperature and pressure
changes are similar in form and significantly different from
the uncoupled pressure propagation in Figure 15, support-
ing the notion of coupled propagation. The propagation
time through the layer is shown in Figure 17, along with the
trajectory from the injection well to the observation well.
The path curves in response to the heterogeneity, bending
towards the region of higher permeability. This makes in-
tuitive sense, as the first arriving disturbance should travel
along the fastest path.

In Figure 18 I compare the travel times calculated from
the output of the numerical simulator TOUGH2 (NU-
MERIC) to the asymptotic estimates, predicted by equation
(74), for uncoupled and coupled propagation, respectively.
As in the homogeneous medium, and as indicated in the
snapshots of uncoupled and coupled propagation (Figures
14 and 16), the uncoupled pressure disturbance propagates
much faster than the coupled disturbance. In spite of the
fact that I used the expressions for a separable phase func-
tion, and did not account for the differences in temporal be-
havior of the amplitudes, there is generally good agreement
between the travel times calculated using the asymptotic
expression (74) and the values derived from the numerical
simulation. Note that the heterogeneity, particularly the low
permeabilities between the injection well and the observa-
tion well, changes the travel time to the observation point
substantially. That is, it takes almost twice as long for the
disturbances to propagated to the observation well.

4. Conclusions

It is possible to extend asymptotic techniques, developed
for coupled linear systems of equations, to coupled nonlinear
systems. In particular, using the method of multiple scales,
an asymptotic approach, I have derived a semi-analytic so-
lution for nonisothermal flow. Nonisothermal flow is gov-
erned by a set of partial differential equations containing
coefficients that depend upon the temperature, rendering
the problem nonlinear. Furthermore, due to the advection
of heat there is a nonlinear term that is the scalar prod-
uct of the pressure and thermal gradients. Thus, there are
significant nonlinearities that become important when the
temperature of an injected fluid differs substantially from
that of the resident groundwater.

Assuming smoothly-varying heterogeneity, one can de-
rive the condition that the governing equations have a non-
trivial solution. Unlike the solution of the linear problem,
this condition depends upon the amplitude jump due to
the passage of the nonlinear disturbance. Therefore, the
method requires a technique for estimating the amplitude
of the pressure and temperature changes, such as a nu-
merical simulator. Because of this, the technique is most
useful in conjunction with a numerical reservoir simulator.
The specific semi-analytic expressions provide insight into

the medium parameters controlling the propagation of pres-
sure and temperature changes in a heterogeneous porous
medium. Furthermore, the technique provides explicit for-
mulas for the travel time of the temperature and pressure in
terms of the medium parameters, and may serve as the basis
of an efficient inverse modeling scheme [Vasco and Datta-
Gupta, 1999; Vasco et al., 2000; Datta-Gupta et al., 2002;
Brauchler et al., 2003; Cheng and Datta-Gupta, 2005; He
et al., 2006, Brauchler et al., 2007; Vasco, 2008; Brauchler
et al., 2010]. The trajectories, or ray-paths, indicate those
regions of the porous medium that influence the pressure
and temperature disturbances observed at a particular loca-
tion. As such, the trajectories and the expressions for the
travel times may be used to compute semi-analytic sensi-
tivities [Vasco and Datta-Gupta, 1999; Vasco et al., 2000;
Vasco, 2008]. Inversions based upon transient arrival times
are quasi-linear and thus less sensitive to the starting or
prior model [Cheng et al., 2005]. Furthermore, arrival time
inversions are relatively insensitive to boundary conditions
and to flow properties outside the region of investigation.

The approach developed in this paper is applicable to
more comprehensive treatments of coupled thermoelasticity
and fluid flow [Brownell et al., 1977; Bear and Corapcioglu
1981; Noorishad et al., 1984]. As additional governing equa-
tions are added the expressions for the slownesses and travel
times will become increasingly complicated. However, the
formulas should provide valuable insight into these complex
processes and aid in the interpretation of numerical simu-
lations. The common formalism for coupled nonlinear flow
and linear wave propagation provides some unity that might
enhance our understanding.

10
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5. Appendix A: The Method of Multiple
Scales

Asymptotic methods have a long history [Friedlander and
Keller, 1955]. Asymptotic techniques have proven useful for
a wide range of applications, from the modeling of electro-
magnetic [Kline and Kay, 1965] and seismic wave propaga-
tion to the modeling of fluid flow.

5.1. The Conservation of Mass and Momentum

In this sub-section I consider the first of the governing
equations, equation (19), that I rewrite as

ζP
∂P

∂t
+ ζT

∂T

∂t
= ΥP∇λ · ∇P + ξPT∇T · ∇P

+ΥZ∇λ · Z + ξZT∇T · Z
+ΥP∇ · ∇P. (A1)

I begin by substituting for the derivative operators in terms
of differential operators with respect to the slow coordinates,
as noted in the discussion surrounding equations (25), (26),
and (27). The result is the extended expression

ζP

(

ε
∂P

∂τ
+

∂θP

∂t

∂P

∂θP

)

+ζT

(

ε
∂T

∂τ
+

∂θT

∂t

∂T

∂θT

)

=

ΥP ε∇λ ·
(

ε∇P + ∇θP
∂P

∂θP

)

+ξPT

(

ε∇T + ∇θT
∂T

∂θT

)

·
(

ε∇P + ∇θP
∂P

∂θP

)

+ΥZε∇λ · Z (A2)

+ξZT

(

ε∇T + ∇θT
∂T

∂θT

)

· Z

+ΥP ε∇ ·
(

ε∇P + ∇θP
∂P

∂θP

)

+ΥP∇θP · ∂

∂θP

(

ε∇P + ∇θP
∂P

∂θP

)

where each term contains a factor that consists of ε raised to
some power. As noted in the Methodology section, ε is the
ratio of the length scale of the variation in pressure and tem-
perature to the length scale of the heterogeneity. Because I
am interested in modeling flow in a medium with smoothly-
varying heterogeneity, it is assumed that ε is small, much
less than one. Thus, I am primarily interested in terms of
lowest order in ε. In particular, terms of order ε0 ∼ 1 are
retained in equation (A2), resulting in

ζP
∂θP

∂t

∂P

∂θP

+ ζT
∂θT

∂t

∂T

∂θT

= ξPT∇θT · ∇θP
∂T

∂θT

∂P

∂θP

+ξZT∇θT · Z ∂T

∂θT

+ΥP∇θP · ∇θP
∂2P

∂θ2
P

. (A3)

As is done in wave propagation studies, I denote the gradi-
ent of the pressure phase function θP (X, τ ) as a vector, the
slowness vector p,

p = ∇θP . (A4)

Similarly, the gradient of the thermal phase function is rep-
resented by the vector

s = ∇θT , (A5)

which, in general, differs from p. Thus, I can rewrite equa-
tions (A3) as

ζP
∂θP

∂t

∂P

∂θP

+ ζT
∂θT

∂t

∂T

∂θT

= ξPT s · p ∂T

∂θT

∂P

∂θP

+ξZT s · Z ∂T

∂θT

+ΥP p2 ∂2P

∂θ2
P

(A6)

where p and s denote the magnitude of the vectors p and s,
respectively.

Now I can make use of the series representations (23) and
(24) of T (X, τ, θT ) and P (X, τ, θT ), respectively, to evaluate
the partial derivatives with respect to θP and θT . Due to
the specified form of the solutions, one can see that

∂T

∂θT

= T − Tb = T̄ (A7)

and
∂P

∂θP

= P − Pb = P̄ (A8)

where the bar signifies that the quantities represent the
changes in temperature and pressure with respect to the
background values Tb(X, τ ) and Pb(X, τ ). Note that, be-
cause ε is assumed to be small, P̄ is dominated by the
change in pressure associated with the zeroth-order term,
that is P̄ = P0 − Pb, similarly for T̄ . Using the expressions
(A7) and (A8) for the partial derivatives of P and T with
respect to the phase variable in equations (A6), and using
(A9) to compute the derivative of the phase functions with
respect to time, I arrive at

ζP P̄
∂θP

∂t
+ ζT T̄

∂θT

∂t
− ξPT s · pT̄ P̄ − ξZT s · ZT̄

−ΥP p2P̄ = 0, (A9)

a polynomial in the variables P̄ and T̄ . Collecting the co-
efficients and rearranging terms, I can write equation (A9)
as

ξPT s · pT̄ P̄ + αP P̄ − αT T̄ = 0, (A10)

where

αP = ΥP p2 − ζP
∂θP

∂t
(A11)

and

αT = ζT
∂θT

∂t
+ ξZT s · Z. (A12)

5.2. The Conservation of Energy

Now consider the second governing equation (19), ex-
pressing the conservation of energy,

η
∂T

∂t
= ∇KT · ∇T − CρΥP K∇P · ∇T − CρΥZK∇T · Z

+KT∇ · ∇T. (A13)

As in the previous sub-section, I can rewrite the differential
operators in terms of the slow coordinates and the phase
variables θP and θT .

η
(

ε
∂T

∂τ
+

∂θT

∂t

∂T

∂θT

)

=

ε∇KT

(

ε∇T + ∇θT
∂T

∂θT

)

−CρΥP K
(

ε∇P + ∇θP
∂P

∂θP

)

·
(

ε∇T + ∇θT
∂T

∂θT

)

−CρΥZK
(

ε∇T + ∇θT
∂T

∂θT

)

· Z (A14)

11
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+KT ε∇ ·
(

ε∇T + ∇θT
∂T

∂θT

)

+KT∇θT · ∂

∂θT

(

ε∇T + ∇θT
∂T

∂θT

)

.

I consider terms of lowest order in ε, that is terms of order
ε0 ∼ 1, producing the expression

η
∂θT

∂t

∂T

∂θT

= −CρΥP K∇θP · ∇θT
∂P

∂θP

∂T

∂θT

−CρΥZK∇θT · Z ∂T

∂θT

+ KT∇θT · ∇θT
∂2T

∂θ2
T

. (A15)

Making use of the definitions of the slowness vectors, (A4)
and (A5), the expressions for the derivatives with respect to
the phase variables, equations (A7) and (A8), I can write
equation (A15) as

CρΥP Kp · sT̄ P̄ − ηT̄
∂θT

∂t
+ CρΥZKs · ZT̄ − KT s2T̄ = 0.

(A16)
If I define the coefficient

βT = KT s2 − CρΥZKs · Z + η
∂θT

∂t
(A17)

I can write equation (A16) as

CρΥP Kp · sT̄ P̄ − βT T̄ = 0. (A18)

12
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6. Appendix B: Characteristics for a
Separable Phase Function

Though the numerical techniques described in the main
body of this paper are the most general, additional insight
is provided by an explicit solution for the phase function,
the goal of this Appendix. Such a solution is possible if the
equation governing the phase, equation (46) is separable.
This will only be true if the gravitational term can be ne-
glected and Ω is seperable. Therefore, I shall assume that
gravitational forces are not important in the derivation that
follows I shall also assume that the coefficient Ω, given by
equation (43), is only a function of spatial location x and
is independent of time t. This will be true if the changes
is pressure and temperature, P̄ and T̄ , vary in a similar
fashion as a function of time, say as t−α for some constant
α, this will cancel in Ω, as given by equation (43). Also,
the time variation cancels when treating the propagation of
uncoupled pressure or uncoupled temperature disturbances,
the special cases considered above.

The simple structure of equation (46) when the gravity
term vanishes, and the fact that the function Ω(x) only de-
pends upon spatial position x, might lead one to suspect
that the separation of variables [Courant and Hilbert, 1962]
could be used to find a solution. To this end, I assume that
θ(x, t) may be written in the form

θ(x, t) = β(t)σ2(x), (B1)

so that
∇θ = 2βσ∇σ, (B2)

and
∂θ

∂t
= σ2 ∂β

∂t
. (B2)

Substituting these expressions into equation (46) results in

4β2∇σ · ∇σ = Ω
∂β

∂t
. (B3)

Because the terms in equation (B3) depend upon either x
or t, but not both, I can group them as

∇σ · ∇σ

Ω
=

1

4β2

∂β

∂t
. (B4)

The left-hand-side of equation (B4) only depends upon x,
while the right-hand-side is only a function of t. Thus, each
side must be equal to the same constant value, that I shall
denote by C. Consider the right-hand-side, that can be
written as an ordinary differential equation because β only
depends upon t,

1

4β2

dβ

dt
= C. (B5)

Equation (B5) can be integrated to produce an expression
for β(t)

β(t) = − 1

4Ct
. (B6)

In all that follows I will take C = 1, as this results in an
expression for θ(x, t) that resembles a solution of the linear
diffusion equation.

Now I consider the left-hand-side of equation (B6), for
C = 1,

∇σ · ∇σ = Ω (B7)

that I may write as

F (x,pσ) = pσ · pσ − Ω = 0, (B8)

where I have defined the reduced slowness vector pσ associ-
ated with σ(x):

pσ = ∇σ. (B9)

Equation (B7) is a first-order, nonlinear partial differential
equation that can be solved by the method of characteris-
tics. In fact, equation (B7) is the eikonal equation, a well
known equation that appears in numerous wave propagation
studies [Karal and Keller, 1959; Kline and Kay, 1965; Chap-
man, 2004]. By the method of characteristics, one can show
that equation (B7) is equivalent to the system of ordinary
differential equations [Courant and Hilbert, 1962, p. 97],

dxi

ds
=

∂F

∂pσi

= pσi, (B10)

dpσi

ds
= − ∂F

∂xi

=
1

2

∂Ω

∂xi

. (B11)

Equations (B10) and (B11), written in vector form as

dx

ds
= p (B12)

and
dp

ds
=

1

2
∇Ω, (B13)

comprise the ray equations that define the trajectory. From
equation (B12) I have

pσ · pσ = pσ
2 = Ω (B14)

which can be written in trajectory-based coordinates in
which pσ is tangent to the trajectory x(s). In trajectory
based coordinates equation (B14) produces a differential
equation for σ

dσ

ds
=

√
Ω, (B15)

that can be integrated

σ(x) =

∫ √
Ωds. (B16)

Thus, I can write the phase function as

θ(x, t) = −σ2(x)

4t
, (B17)

where σ is given by (B17), a form that is similar to the
phase associated with the diffusion equation in a heteroge-
neous medium [Vasco et al., 2000]. Equation (B17) provides
a semi-analytic expression for the phase function. This ex-
pression can be combined with the definition of Ω in order
to derive a representation of the phase function, θ, entirely
in terms of the parameters of the medium.

13
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7. Appendix C: Analysis of the coefficient
Ω

In this Appendix I examine the coefficient Ω that is
present in the quadratic equation (44). The definition of
Ω, given in (43), is restated here for convenience:

Ω(x, t, θ) =
ζP P̄ + (ζT + η∆) T̄

ΥP P̄ + KT ∆T̄
. (C1)

The coefficients ζP , η, ∆, Υ, and KT depend upon the spa-
tial coordinates and possibly upon the background pressures
(Pb) and temperatures (Tb). The pressure and temperature
changes, P̄ and T̄ , are also present in expression (C1). It
is though the presence of T̄ and P̄ that the phase variable
θ appears in Ω(x, t, θ). For example, for a step-function
source, the temperature and pressure disturbances are given
to zeroth-order by the asymptotic power series (57) and (58).
For an impulsive source-time function the zeroth-order tem-
perature and pressure fields are given by

T̄ (x, τ, θ) = eθ(x,τ)T0(x, τ ) (C2)

and
P̄ (x, τ, θ) = eθ(x,τ)P0(x, τ ), (C3)

respectively, where T0(bfx, τ ) and P0(x, τ ) are the ampli-
tude functions. Here I shall briefly discuss the form of the
coefficient Ω(x, τ, θ) for both impulsive and step-function
sources.

7.1. An Impulsive Source-Time Function

For an impulsive source, I can substitute the asymptotic
solutions, given by (C2) and (C3), into the expression (C1).
The exp(θ) terms in the numerator and denominator cancel
and one is left with

Ω(x, t) =
ζP P0(x, τ ) + (ζT + η∆)T0(x, τ )

ΥP P0(x, τ ) + KT ∆T0(x, τ )
. (C4)

Note that if the temperature and pressure amplitude func-
tions T0(x, τ ) and P0(x, τ ) have the same time dependence,
for example a power-law dependence with the same expo-
nent, then Ω will only depend upon x.

7.2. A Step-Function Source

For a step-function source, with a rapid onset followed by
a constant flow rate, the zeroth-order asymptotic solutions
are of the form (57) and (58). The amplitude and phase
terms are coupled through the time integrals. However, the
form of the integrand, a rapidly-varying exponential term
multiplied by a more slowly-varying amplitude function, one
can derive an asymptotic representation of the integral [Din-
gle, 1973, p. 110]. The approach is based upon a Taylor se-
ries expansion of the slowly-varying amplitude function and
term by term integration. The resulting asymptotic expres-
sions for the temperature and pressure variations are

T̄ (x, τ, θ) = (αT − 2)!eθ(x,τ)τ−αT +2 T̄0(x)
(

∂θ
∂τ

)αT −1
(C5)

and

P̄ (x, τ, θ) = (αP − 2)!eθ(x,τ)τ−αP +2 P̄0(x)
(

∂θ
∂τ

)αP −1
. (C6)

Upon the substitution of these expressions for T̄ and P̄ into
equation (C1) for Ω(x, t, θ), the exponential phase terms
cancel. However, the phase derivative terms, raised to the
power of αT − 1 and αP − 1 do not appear to cancel unless
the time dependencies are identical (αP = αT ).
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8. Figure Captions

Figure 1. The variation of the fluid density (Upper
panel) and viscosity (Lower panel) as a function of the
fluid pressure and temperature. The range of the pres-
sure and temperature were chosen to reflect the variations
present in the numerical simulations.

Figure 2. The pressure and temperature distribution
4,207 days after the initiation of injection. High temper-
ature water, with an enthalpy of 7.0 ×105 J/kg, is in-
jected into the central well (denoted by an unfilled star)
at a rate of 10.0 kg/s. The observation location, located
in the upper-left-hand-corner of each of the two panels,
is indicated by an open circle.

Figure 3. Pressure and temperature variations calcu-
lated for the observation location in Figure 2 (open cir-
cle). The pressures for both isothermal and nonisother-
mal simulations are shown.

Figure 4. A more detailed view of the pressure varia-
tion over the first 500 days of injection. Both isothermal
and nonisothermal simulations are shown for comparison.
The time derivative of the pressure variations are shown
in the panel on the right.

Figure 5. Three snapshots of the time derivative of
the pressure variation, normalized by the peak value in
each grid block. The figures correspond to the uncoupled
pressure variation, the early-time pressure variation, as
shown in Figure 4.

Figure 6. The travel time associated with the propaga-
tion of the uncoupled pressure disturbance. The arrival
time of the pressure disturbance corresponds to the time
at which the time derivative of the pressure is a maxi-
mum. The line connecting the injection well (star) and
the observation well (open circle) is the trajectory, sig-
nifying the travel path of the uncoupled pressure distur-
bance.

Figure 7. The time derivative of the temperature and
pressure variations, as calculated by the TOUGH2 reser-
voir simulator [Pruess et al., 1999].

Figure 8. (Left Panel) Three snapshots of the normal-
ized time derivative of the coupled temperature variation
in the simulation grid.
(Right Panel) Three snapshots of the normalized time
derivative of the coupled pressure variation in the simu-
lation grid.

Figure 9. (Left Panel) The travel time of the coupled
temperature disturbance. The travel time corresponds to
the time at which the temperature derivative is a peak
for each grid block of the simulation grid. The line con-
necting the injection well to the observation location is
the ray-path, denoting the propagation path of the tem-
perature disturbance.
(Right Panel) The travel time of the coupled pressure
disturbance. The travel time corresponds to the time at
which the pressure derivative is a peak for each grid block
of the simulation grid. The line connecting the injection
well to the observation location is the propagation path
of the coupled pressure disturbance.
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Figure 10. (A.) Temperature change from the back-
ground value corresponding to three observation points
located at 500, 1000, and 1000 meters from the injection
well.
(B.) The pressure change corresponding to the coupled
pressure and temperature disturbance. Each curve rep-
resents the variation of pressure with time, as calculated
by the numerical simulation code TOUGH2. The calcu-
lations are for observation points 500, 1000, and 1500m
from the injection well.

Figure 11. (Left Panel) Temperature amplitude
changes from the initial background values. (Right
Panel) Pressure amplitude changes from the background
values.

Figure 12. The travel times for various points along
the trajectories in Figures 6 and 9. Travel times were ob-
tained by post-processing the output of the TOUGH2 nu-
merical simulator [NUMERIC]. (Left Panel) These travel
time estimates are associated with uncoupled pressure
propagation. The values output from the numerical sim-
ulator TOUGH2 [NUMERIC] were compared with cal-
culations made using the asymptotic expressions for the
travel times, from equations (71) and (72) [ASYMP-
TOTIC].
(Right Panel) For coupled propagation, both the pres-
sure [PRESSURE] and temperature [TEMPERATURE]
arrival times are plotted with the asymptotic estimates
[ASYMPTOTIC]. The asymptotic estimates were ob-
tained by solving equation (73) where Ω was given by
equation (74).

Figure 13. Permeability variation used in the heteroge-
neous simulation. The darker colors indicate higher per-
meability regions while the lighter yellows indicate low
permeability regions. As in the previous example, the
injection well is indicated by the unfilled star in the cen-
ter of the grid. The observation point is denoted by the
unfilled circle.

Figure 14. Three snapshots of the normalized time
derivative of pressure. The pressure variation corre-
sponds to uncoupled pressure propagation.
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Figure 15. The travel time associated with the propa-
gation of the uncoupled pressure disturbance in the het-
erogeneous medium shown in Figure 13. The curve con-
necting the injection well (star) and the observation well
(open circle) is the trajectory, signifying the travel path
of the uncoupled pressure disturbance.

Figure 16. Snapshots of the temperature and pressure
derivatives associated with the coupled propagation in
the heterogeneous medium.

Figure 17. The travel time associated with the propaga-
tion of the coupled pressure and temperature disturbance
in the heterogeneous medium. The curve connecting the
injection well and the observation well signifies the travel
path of the coupled disturbance.

Figure 18. The travel times for various points along
the trajectories in Figures 15 and 17. Travel times were
obtained by post-processing the output of the TOUGH2
numerical simulator [NUMERIC]. (Left Panel) Uncou-
pled pressure propagation.
(Right Panel) Coupled pressure and temperature prop-
agation. The estimates from the TOUGH2 simulation
were compared with calculations made using the asymp-
totic expressions for the travel times, from equations (73)
and (74) [ASYMPTOTIC], where the permeability now
varies along the trajectory.
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DISCLAIMER  
 
This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor The Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
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