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Abstract 

We propose a modification to the Levenberg-Marquardt minimization algorithm for a 

more robust and more efficient calibration of highly parameterized, strongly nonlinear 

models of multiphase flow through porous media. The new method combines the 

advantages of truncated singular value decomposition with those of the classical 

Levenberg-Marquardt algorithm, thus enabling a more robust solution of 

underdetermined inverse problems with complex relations between the parameters to be 

estimated and the observable state variables used for calibration. The truncation limit 

separating the solution space from the calibration null space is re-evaluated during the 

iterative calibration process. In between these re-evaluations, fewer forward simulations 

are required, compared to the standard approach, to calculate the approximate sensitivity 

matrix. Truncated singular values are used to calculate the Levenberg-Marquardt 

parameter updates, ensuring that safe small steps along the steepest-descent direction are 

taken for highly correlated parameters of low sensitivity, whereas efficient quasi-Gauss-

Newton steps are taken for independent parameters with high impact. The performance of 
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the proposed scheme is demonstrated for a synthetic data set representing infiltration into 

a partially saturated, heterogeneous soil, where hydrogeological, petrophysical, and 

geostatistical parameters are estimated based on the joint inversion of hydrological and 

geophysical data. 
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1. Introduction 

Calibrating a hydrologic model against selected observations of the system state is a 

standard method to estimate model parameters, which are then assumed to reflect either 

site-specific material properties or physical processes that are represented by effective 

coefficients. The calibration process is an integral part of model development (Carrera et 

al., 2005), and involves the following steps: (1) selection of calibration data and 

assessment of their error structure; (2) development of a conceptual, mathematical, and 

numerical model capable of simulating the system behavior of interest under 

measurement conditions; (3) definition of parameters to be estimated (parameterization); 

(4) formulation of an objective function as a measure of misfit between model prediction 

and measured data; (5) selection of an optimization algorithm to identify the minimum of 

the objective function; and (6) assessment of model appropriateness, parameter 

identifiability, estimation error, and prediction uncertainty. All these steps are interlinked. 

For example, the experimental design and the type of observed data available for 

   



calibration affect the model to be developed. The data and model determine the criteria 

for a suitable parameterization. The expected error structure of both the data and model 

affect the objective function, the topology of which then influences the choice of an 

effective minimization algorithm.  

Despite its universal appeal and wide use in science and engineering, the formulation and 

solution of the inverse problem is inherently difficult. Underlying assumptions are not 

always made consistent, and related decisions are seldom explicitly discussed. As a 

result, claims about the nature of the estimates and associated uncertainties often remain 

without a theoretical basis or practical justification. This is especially true for strongly 

nonlinear models, models that are either over- or underparameterized, or data that exhibit 

non-normal, correlated, or systematic errors. 

Minimization algorithms for the solution of nonlinear inverse problems have received 

considerable attention in the scientific community for a long time, starting with Carl 

Friedrich Gauss, who introduced the method of least squares for the analysis of 

astronomical and geodetic data during the last decade of the eighteenth century (Gauss, 

1821). Gauss made significant contributions to all aspects of parameter estimation, 

providing a detailed discussion of measurement errors, a probabilistic justification of the 

sum of squares as the objective function, a method to minimize this function, and an 

analysis of estimation uncertainty. While Gauss considered his method suitable also for 

non-normal errors, and his algorithm can be used (iteratively) for weakly nonlinear 

inverse problems, it has been continuously refined to address strongly nonlinear models. 

For example, the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) 

combines the robustness of the steepest-descent method with the quadratic convergence 

   



rate of the Gauss-Newton method to effectively identify the minimum of a convex 

objective function. More recently, a great number of mostly heuristic minimization 

algorithms have been proposed to handle high-dimensional objective functions with 

multiple local minima. While computationally very demanding, they have also been 

applied to inverse problems in hydrology (for summary discussions, see, for example, 

Regis and Shoemaker, 2004; Vrugt et al., 2009). 

The sole purpose of all these methods is to find the (preferably global) minimum of the 

objective function given a forward model and a finite, predefined set of adjustable, 

potentially constrained parameters. It is important to realize that the topology of the 

objective function to be minimized is fixed. It is predetermined by (1) the measured data 

values, (2) the functional form of the forward model, (3) the chosen parameterization, and 

(4) the functional form of the objective function itself. The most often chosen objective 

function is the sum of squared weighted residuals. The objective functions of so-called 

ill-posed inverse problems have poorly defined minima as a result of insufficient 

parameter sensitivity or strong parameter correlations, which are often an indication that 

the problem is over-parameterized.  

The convexity of the objective function and thus the well-posedness and stability of an 

inverse problem is often improved by regularization, either by including prior 

information about the parameters to be estimated (Carrera and Neuman, 1986), or by 

smoothness or homogeneity conditions—often referred to as Tikhonov regularization 

(Tikhonov and Arsenin, 1977)—which is standard practice in geophysical imaging. By 

adjusting the trade-off parameter that assigns relative weights to data matching and 

regularization, any inverse problem can be stabilized and a unique solution found. 

   



However, obtaining this solution comes at the expense of losing information contained in 

the observed data, and may lead to biased estimates. For example, if there is a conceptual 

difference between the data used as prior information and the corresponding model-

related parameter to be estimated by inverse modeling, the latter will be biased. Such 

conceptual differences include scale effects (e.g., if core-scale permeability 

measurements are used as prior information in a regional-scale groundwater model), or 

any discrepancy in the features or processes that need to be captured in an effective 

model parameter. Similarly, smoothness constraints may inappropriately homogenize 

stratigraphic discontinuities in the field (Moore and Doherty, 2006), which is then 

compensated for by adjusting hydrogeologic parameter values. It is therefore essential to 

remove inherent inconsistencies between the data matching and regularization terms and 

to appropriately weight them, before a formal inversion is attempted. In most cases, this 

precludes the dynamic adjustment of the trade-off parameter as part of the optimization 

procedure to increase the stability of the inversion. Nevertheless, if the regularization 

scheme and trade-off parameters are carefully selected (Alcolea et al., 2006), 

regularization fulfills its purpose of introducing additional information and of stabilizing 

the inversion.  

Monte-Carlo based methods are alternative approaches for the calibration of highly 

parameterized models; an overview is given in Hendricks Franssen et al. (2009). The 

main advantage of these methods is that they examine the topology of the objective 

function over an extended region in the parameter space, and thus provide insights into 

the uniqueness and accuracy of the solution. Many of these sampling-based methods, 

however, require a substantial amount of forward simulations, which is often impractical 

   



if the model incorporates coupled physical behavior and complex features, as does the 

one presented here. We therefore focus on a derivative-based method and examine its 

suitability for solving a highly parameterized inverse problem when a forward simulation 

is computationally expensive. 

In what follows, we attempt to solve potentially an ill-posed inverse problem without 

changing the topology of the objective function. Nevertheless, in certain applications, the 

objective function may contain well-justified contributions from regularization, which 

results in a formulation similar to the hybrid regularization methodology described by 

Tonkin and Doherty (2005). The problem we address is simpler in that it is only 

concerned with the minimization algorithm rather than the formulation of the inverse 

problem itself. 

We first present the standard Levenberg-Marquardt minimization algorithm, before 

modifying it to become a more robust and more efficient subspace method. The 

advantages of the proposed approach will be demonstrated using a synthetic 

hydrogeophysical inverse problem.  

 

2. Truncated Levenberg-Marquardt Algorithm 

Parameter estimation by automatic calibration of a numerical model is an iterative 

process in which a global measure of misfit between observed data and the corresponding 

model output is successively reduced by updating parameters based on the value, 

gradient, or curvature of the objective function. We are interested in inverse problems 

where the relationship between the n model parameters of interest (vector p) and the m 

   



model outputs (vector z) is highly nonlinear and evaluated by a computationally 

expensive forward model. We limit the discussion here to the minimization of the 

standard, weighted least-squares objective function 
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even though the Levenberg-Marquardt algorithm is flexible enough to also minimize 

other objective functions, such as those presented in Finsterle and Najita (1998). In (1), 

z* is the vector holding the measured data corresponding to model output z(p); the 

difference between the measured data and the model output is the residual vector r. The 

 positive-definite matrix  is referred to as the observation covariance 

matrix. It is often taken as a diagonal matrix with its elements 
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the measurement error. However, this interpretation assumes that the underlying 

conceptual model is error free, and that errors are independent. Since the residuals also 

include modeling errors, the validity of these assumptions is questionable, as 

demonstrated in Lehikoinen et al. (2010) and Finsterle and Zhang (2010). From a 

practical perspective, the purpose of  is to weight measurements of different quality, 

to scale observations of different types, to make the objective function dimensionless, and 

to weight the data fitting error relative to regularization terms. These purposes can also be 

fulfilled by a cofactor matrix . However, it is desirable to interpret the weighting 

matrix as the inverse of a covariance matrix of the residuals; the dimensionless scalar  

can then be used to test whether our prior stochastic assumptions about the residuals are 

consistent with the actual residuals obtained after model calibration (Finsterle and Pruess, 
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1995). For normally distributed residuals,  then becomes the stochastic model of the 

maximum-likelihood estimation framework.  

zzC

The Levenberg-Marquardt algorithm belongs to a class of methods that are based on a 

quadratic approximation of the objective function S evaluated at a given point pk  in the 

parameter space. The parameter set will be iteratively updated by pk such the objective 

function S(pk+1) < S(pk). If first and second derivatives of S are available, a quadratic 

model of the objective function can be obtained from the first three terms of the Taylor-

series expansion: 
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Here,  is the gradient vector, and  is the Hessian matrix at iteration k. The 

minimum of the right-hand side of (2) is achieved if 

kg H
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Defining the  Jacobian matrix as nm
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the gradient vector at iteration k can be written for the weighted least-squares objective 

function as 
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The Hessian is an  matrix with the second partial derivatives of the objective 

function. For least-squares problems, the Hessian can be written as 
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 is the Hessian of the 

residuals. Denoting the first term in (6) by F (also referred to as the Fisher information 

matrix) and second term by B, it becomes obvious that the Hessian of a least-squares 

objective function consists of a combination of first- and second-order information: 

  kkk BFH  2 . (7) 

Note that B is zero if the model is linear. For highly nonlinear models, B becomes 

significant if the residuals are large, such as when parameter combinations are far away 

from the minimum or when data are very noisy. Also note that the positive and negative 

residuals in B do not cancel one another, i.e., the Hessian is not necessarily a positive-

definite matrix. 

At the minimum of (3), satisfies the linear system kp

 kkk gpH  . (8) 

Combining (5), (7) and (8) yields Newton’s method: 
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The various iterative solutions to the nonlinear least-squares problem are based on 

different approximations to the Hessian. In particular, the Gauss-Newton method is based 

on the premise that the first-order term  of the Hessian dominates the 

second-order term B. This assumption is justified for linear and mildly nonlinear 

problems and for nonlinear problems near the solution, where the residuals are expected 

to be small, i.e., when the objective function is sufficiently smaller than the eigenvalues 

of F. The Gauss-Newton method simply sets B to zero, ensuring that the Hessian is 

positive-definite and approximating the actual objective function by a quadratic function. 

The Gauss-Newton update is given by 
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which is the solution of the linear least-squares problem. For nonlinear models, the 

parameter vector is iteratively updated, kkk ppp 1 , where pk  is the new Gauss-

Newton parameter update vector calculated for each iteration. 

For strongly nonlinear models, if the parameter vector  is far away from the optimum 

parameter set, the Hessian is not necessarily a positive-definite matrix, and the 

approximation  used by the Gauss-Newton method may not lead to an efficient 

or successful step. In the Levenberg-Marquardt method, the approximation to the Hessian 

is made positive definite by replacing B in (7) with a 

kp

n

)( 1JCJ 
zz

T

n  diagonal matrix kk D : 

   kzz
T
kkkkzz

T
kk rCJDJCJp 111     (11) 

The scalar   is the so-called damping or Levenberg parameter (Levenberg, 1944). If k  

is zero,  is identical to the Gauss-Newton step; askp k , the approximation of the 

   



Hessian becomes diagonally dominant. Consequently, kp  becomes parallel to the 

steepest-descent direction, and the step length approaches zero. After each iteration, the 

Levenberg parameter is either increased or decreased following a scheme proposed by 

Marquardt (1963). Far away from the minimum, i.e., during the first few iterations, a 

relatively large value of k  is chosen, leading to small steps along the gradient of the 

objective function. Stepping along the steepest-descent direction is a robust strategy, 

ensuring that  for sufficiently large))( 1k SS p  ( kp k . However, the step length 
2kp  

may be very small and minimization becomes inefficient. Therefore, k  is decreased by a 

factor of /1  after each successful step, where 1  is the so-called Marquardt 

parameter. With decreasing k , kp  approaches the Gauss-Newton step with its 

quadratic convergence rate. If an unsuccessful step is proposed, i.e., the objective 

function is increased, k  is increased by . 

Matrix D in (11) is sometimes referred to as the Tikhonov matrix because its function is 

to prevent the approximation to the Hessian to become singular, which is similar to the 

purpose of the regularization matrix discussed above. However, it is important to realize 

that we are not changing the inverse problem to be solved (as regularization does) by 

invoking (11); the Tikhonov matrix just changes the trust region and thus step direction 

and step length within the Levenberg-Marquardt method. We will consider four choices 

for D and examine their performance for highly parameterized inverse problems. 

The simplest and most often cited choice for D is the identity matrix, applying uniform 

damping to each parameter increment. In fact, Levenberg (1944) demonstrated that this 

choice is optimal at the solution. However, without providing a discussion, he also 

   



suggested a scheme where the diagonal elements of D are given by the reciprocals of the 

diagonal elements of F, improving the stability of H by assigning the highest damping to 

the diagonal element of F with the lowest value. Next, we propose two additional 

schemes where the diagonal elements of D are further scaled by the inverse of the 

eigenvalues of F, and, as a further modification, we use the eigenvalues of F to truncate 

the parameter space, i.e., only parameters associated with a sufficiently large eigenvalue 

of the Hessian will be updated. This last scheme is motivated by the following 

considerations. 

(1) The eigenvalues of the Fisher information matrix F indicate the amount of 

information parameters contribute to the solution of the inverse problem. 

Parameter combinations along the eigenvector with the largest eigenvalue change 

the calculated system behavior z(p) most dramatically, and can thus most 

accurately be identified from the measured data.  

(2) Conversely, small eigenvalues result from a lack of sensitivity. The 

corresponding rows of F likely lead to instability or even singularity of H; they 

need to be dampened more strongly by adding a larger value to the corresponding 

diagonal element of B. 

(3) In addition to parameter sensitivity, the eigenvalues also reflect statistical 

correlations among the parameters. Two parameters that are strongly correlated 

(and thus cannot be independently determined from the data) have similar 

columns in the Jacobian matrix, resulting in a Fisher information matrix with 

small eigenvalues. Using the proposed scheme, such parameters will be either 

   



(4) In a strongly nonlinear optimization problem (such as the calibration of a 

multiphase flow model considered here), parameter sensitivities may vary 

substantially as the minimization algorithm proceeds through the parameter 

space. Far away from the minimum, certain parameters may have very small or 

even zero sensitivity coefficients, whereas the same parameters may turn out to 

be the most significant ones near the solution. For example, a poor initial guess 

of the parameter vector p may lead to fully water saturated conditions at a sensor 

location where water content or capillary pressure is measured, resulting in zero 

sensitivity coefficients for all two-phase flow parameters. As other parameters 

are updated, this region of the flow domain may become unsaturated, i.e., the 

calculated water content and capillary pressures are now sensitive to the two-

phase flow parameters of interest, allowing them to be estimated by inverse 

modeling. It is therefore essential that parameters can be temporarily removed 

from the minimization to avoid singularity of H, which would cause premature 

termination of the calibration process. The procedure also must allow these 

parameters to be reactivated as soon as they become sensitive. 

(5) Truncating the parameter space has the additional advantage that fewer columns 

of the Jacobian matrix need to be evaluated by the perturbation method. Since 

sensitivity coefficients change for nonlinear problems, however, it is essential to 

re-evaluate the full Jacobian matrix after every few iterations. This dynamic 

determination of the solution subspace is efficient. Important parameters are 

   



The truncated Levenberg-Marquardt algorithm proposed here is summarized in Fig. 1. 

The truncation level k can either be predetermined and fixed throughout the inversion, 

updated during the inversion as a function of the Fisher matrix (which changes due to the 

nonlinearity of the model), or it can be relaxed according to an empirical schedule. If 

truncation is merely employed to obtain a more efficient solution to an otherwise robust, 

overdetermined inverse problem, k can be adjusted heuristically as the minimization 

proceeds, so that more and more parameters may enter the calibration solution space. 

Tonkin and Doherty (2005) propose setting k as the number of eigenvalues that exhibit a 

ratio to the largest eigenvalue that is greater than 10-6. As an alternative to this empirical 

threshold value, the dimension of the calibration solution space can be chosen such that 

the final value of the objective function (excluding contributions from Tikhonov 

regularization) is commensurate with the expected measurement noise level (Finsterle 

and Pruess, 1995; Tonkin and Doherty, 2005; Moore and Doherty, 2005), or that a 

predefined maximum prediction uncertainty is not exceeded (in case the inversion is part 

of an estimation-prediction framework). Evidently, choosing the appropriate truncation 

level is not a straightforward task, may be problem dependent, and thus needs some 

further experimentation.  

Recall that while only k columns of the Jacobian matrix are needed for the truncated 

Levenberg-Marquardt update, the full Jacobian needs to be evaluated every few iterations 

as the sensitivity coefficients change along the solution path. After a step in the parameter 

space has been taken, it may not be necessary to accurately recalculate the sensitivity 

   



coefficients. Instead, the Jacobian may be efficiently corrected using the Broyden rank-

one update (Broyden, 1965), which takes the objective function evaluated at the new 

parameter set to estimate its curvature and to update the Jacobian matrix. The Broyden 

update may be acceptable if the determinant of the resulting Fisher information matrix 

does not change dramatically. This scheme has been implemented into the iTOUGH2 

optimization code (Finsterle, 2004), which provides inverse modeling capabilities for the 

TOUGH2 suite of simulators (Pruess et al., 1999) for nonisothermal multiphase, 

multicomponent flow in fractured-porous media. 

 

3. Example 

An illustrative example is presented here to demonstrate the four schemes for specifying 

the Tikhonov matrix, i.e., where the diagonal matrix D is (1) the identity matrix, (2) the 

reciprocals of the diagonal elements of the normal matrix F, (3) the same as (2) but 

divided by the eigenvalues of F, and (4) the same as (3), but truncated at a user-specified 

threshold. We evaluate the performance of the various forms of the Levenberg-Marquardt 

algorithm using an example that involves the estimation of hydrogeological, 

petrophysical, and geostatistical parameters using synthetically generated hydrological 

and geophysical data from an infiltration experiment conducted in the vadose zone. This 

synthetic example considers infiltration of water from a pond into variably saturated, 

heterogeneous but structured soil with a shallow water table at a depth of 3 m. During the 

two-day ponded infiltration experiment and subsequent three-day redistribution period, 

daily averages of the infiltration rate are measured with an accuracy of 0.1 L/day. Two 

monitoring boreholes are equipped with 40 neutron probes for daily water content 

   



measurements with a standard deviation of 0.02. The same boreholes are also used for six 

ground penetrating radar (GPR) surveys, one prior to infiltration, and then one every day 

for five days. In each of these surveys, arrival times are recorded for 133 antenna pairs 

with a measurement noise of 0.5 ns. The locations of these observation points are 

visualized in Fig. 2b. 

The soil is heterogeneous with a standard deviation for the log10-permeability of 1.0. The 

field is spatially correlated as described by a spherical, anisotropic semivariogram, with a 

correlation length of 2.0 m along the main direction of the stratigraphic layers (which dip 

at an angle of 20 from the horizontal) and 0.4 m perpendicular to it. Sequential Gaussian 

simulation (Deutsch and Journel, 1992) is used to generate realizations of this spatially 

correlated permeability field (see Fig. 2a); the capillary strength parameter of the van 

Genuchten model (van Genuchten, 1980) is deterministically correlated to the local 

permeability value according to Leverett (1941).  

The model consists of a two-dimensional model domain with heterogeneous 

permeabilities (Fig. 2a), a constant pressure boundary condition at the bottom 

(representing the water table), an atmospheric boundary condition at the surface, a 

prescribed pressure in the pond (representing water depth during the infiltration period), 

and no-flow boundaries on the side. The simulated saturation distribution after one day of 

infiltration (Fig. 2b) reflects the intricacy of the heterogeneous soil, making it obvious 

that point measurements and a homogeneous evolution model would be inadequate to 

infer the system state and soil structure. GPR travel times are simulated using the 

straight-ray method, which is based on a high-frequency approximation that calculates 

the arrival time of the first amplitude departure of the transmitted wave, ignoring the 

   



remainder of the waveform. A volumetric mixing formula (Roth et al., 1990) is used as 

the petrophysical function that calculates the effective dielectric constant from the local 

saturation, porosity, and the known dielectric constants of the individual phases. This 

synthetic model has been described in detail in Kowalsky et al. (2004) and Finsterle and 

Kowalsky (2008). 

To test the performance of the truncated Levenberg-Marquardt algorithm, we deliberately 

formulated an ill-posed inverse problem in which a total of 30 parameters are 

simultaneously estimated based on the noisy, synthetically generated data of flow rates, 

water contents, and GPR arrival times. Of the 30 unknowns, ten are hydrological 

parameters (absolute permeability in horizontal and vertical directions, porosity, and 

seven parameters of the van Genuchten relative permeability and capillary pressure 

functions), two are petrophysical properties (the dielectric constant of the solids and the 

mixture exponent), four are geostatistical parameters (variance, correlation length, 

anisotropy factor, and orientation), and 14 are permeability modifiers at 14 so-called pilot 

points (deMarsily et al., 1984; RamaRao et al., 1995; Gómez-Hérnandez et al., 1997), 

which are used as conditioning points during the geostatistical simulation of the 

heterogeneous permeability field. Table 1 summarizes the parameters. 

This overparameterized, highly nonlinear inverse problem is solved using the Levenberg-

Marquardt algorithm with different strategies regarding the Tikhonov matrix. Fig. 3 

shows the reduction of the objective function versus the number of forward simulations 

(which is proportional to the CPU time required to solve the inverse problem). The small 

fluctuations in the objective function represent the changes in the objective function as 

each parameter is perturbed by 1% of its value to numerically evaluate derivatives. Large 

   



spikes are trial evaluations that led to an unsuccessful uphill step, triggering an increase 

in the Levenberg parameter, whereas step reductions indicate the successful completion 

of an iteration.  

If using the diagonal elements of the normal matrix as the dampening coefficients, the 

algorithm encounters a local minimum after a single iteration and terminates. Using the 

identity matrix leads to steep reduction of the objective function at early iterations, but 

becomes less efficient as the minimum is approached. If the Tikhonov matrix is scaled by 

the inverse of the eigenvalues, the objective function is further reduced and approaches 

the theoretical minimum achievable for the given data noise after approximately 400 

forward simulations. The truncated Levenberg-Marquardt algorithm outperforms the 

other approaches during the first few iterations when it reaches a relatively low objective 

function value. Further fine-tuning, however, is prevented by the fact that more than a 

third of the adjustable parameters are below the truncation threshold of 10-4 and are thus 

assigned to the calibration null space. This is further illustrated in Fig. 4, which shows the 

ranking of the eigenvalues (scaled by the maximum eigenvalue) at the last iteration. The 

parameter associated with the largest eigenvalue is the reference permeability in the 

vertical direction, reflecting the fact that gravity-driven flow determines the system state 

during the infiltration experiment. Porosity is the second highest ranked parameter, as it 

not only directly affects water content measurements, but also—by means of the 

petrophysical model—the dielectric constant and thus the velocity with which the 

electromagnetic wave travels from the transmitting to the receiving GPR antennas. 

Geostatistical, other hydrological, and the two petrophysical parameters have higher 

eigenvalues than the first permeability modified at the pilot point closest to the 

   



infiltration pond, which is ranked number 11. Ten of the 13 parameters below the 

truncation threshold of 10-4 are pilot points. This does not imply that soil heterogeneity 

cannot be estimated in general. In this example, the truncation threshold of 10-4 was 

chosen relatively high to better demonstrate the mechanics of the algorithm. Moreover, 

by curtailing the parameter space and thus the algorithm’s flexibility to adjust the 

heterogeneity of the soil, the goodness-of-fit may be considered poor according to the 

criteria discussed in Finsterle and Zhang (2010), calling for further model refinement. 

The data are also insufficient to identify three hydrological parameters, specifically the 

cut-off value for extrapolating the capillary pressure function near residual saturation, 

which is a parameter of low sensitivity during an infiltration experiment (but may be 

essential if soil drying is considered). Note that scaling the Tikhonov matrix by the 

inverse of these small eigenvalues prevents the system of normal equations from 

becoming numerically singular. 

Fig. 5 shows a scatter plot of the final GPR-time residuals. The cloud of residuals is 

widest if the identity matrix is used (blue symbols), and tightest for the inversion result 

obtained with the eigenvalue-based Tikhonov matrix without truncation of the parameter 

space (green symbols). (The residuals after the attempted inversion with the normal 

matrix are not shown, as the objective function itself indicates that the model is an 

unlikely fit to the data.) The relative quality of the matches revealed in the scatter plot is 

consistent with the final values of the objective function shown in Fig. 3. The plot also 

shows a random pattern about the diagonal line, indicating that the calibrated model is 

devoid of obvious systematic errors. Similar conclusions can be drawn for the analysis of 

the water-content and infiltration-rate residuals. While a more detailed residual analysis is 

   



essential for the assessment of the models ability to reproduce the data, such an analysis 

is outside the scope of this paper; a detailed discussion can be found in Finsterle and 

Zhang (2010). The reconstructed permeability field is very close to the true field shown 

in Fig. 2a. However, this outcome is too optimistic and a result of the fact that a synthetic 

example was chosen with a known seed value used by the random number generator; this 

issue is further discussed in Finsterle and Kowalsky (2008). 

As discussed above, the Levenberg-Marquardt algorithm with an eigenvalue-based 

Tikhonov matrix performs best for this particular example and other inversion problems 

examined by the authors. However, as with any local method used for solving highly 

nonlinear inverse problems, we cannot guarantee that the proposed approach is superior 

to others in all cases. In fact, it is difficult to provide conclusive arguments why the 

algorithm converged better than its alternatives. Truncating the parameter space has the 

obvious advantage of reducing the computational burden of evaluating the Jacobian 

matrix. In addition, it appears that the large perturbations taken by insensitive parameters 

at a given iteration may lead the inversion astray in subsequent iterations, when these 

parameters may become more sensitive. The dynamic regularization and truncation 

method keeps these parameters contained when needed, but allows them to adjust should 

they become relevant. Moreover, the length and orientation of the parameter update is 

different in the case where step size limitations are invoked, or parameter bounds are 

reached. The overall impact, however, is difficult to assess as the solution path is tortuous 

and the behavior depends on the details of the implementation of the algorithm.  

 

4. Concluding Remarks 

   



The calibration of multiphase flow models is challenging because (1) a large number of 

parameters is needed to capture a variety of coupled processes and to adequately describe 

the heterogeneous structure of the subsurface, (2) the governing equations are highly 

nonlinear, and (3) the solution of the forward problem is computationally very expensive. 

This challenge calls for an inversion approach that allows for a flexible parameterization 

and robust minimization of the objective function, whose topology is complicated and 

may change significantly along the solution path. While regularization methods may 

improve the robustness of the solution, they fundamentally change the inverse problem 

that is solved. Instead of changing the objective function to be minimized, we focused on 

improving the minimization algorithm itself. To handle highly nonlinear, potentially 

overparameterized inverse problems in a robust and potentially more efficient manner, a 

modified, truncated Levenberg-Marquardt algorithm was proposed and examined using 

an example that involves the joint inversion of hydrogeological and geophysical data.  

It was demonstrated that using the inverse of the eigenvalues of the Fisher information 

matrix as damping coefficients yielded better estimates with a significantly smaller 

number of forward evaluations. Truncating the parameter space based on these 

eigenvalues led to improved performance during the initial iterations, but may result in 

subobtimal parameter sets if the truncation limit is set too high. This difficulty bay be 

addressed by dynamically lowering the truncation limit, or by optimizing for 

superparameters (i.e., parameters that are aligned with the eigenvectors) as proposed by 

Tonkin and Doherty (2005). 

Solving multiphase inverse problems will remain difficult. It foremost requires a solid 

understanding of the involved physical processes and their representation in a numerical 

   



model. A careful design of characterization experiments or monitoring systems is equally 

important to ensure that the measured data contain information about the relevant 

parameters. Finally, robust and efficient minimization algorithms are needed to solve the 

related nonlinear inverse problem. The enhancements discussed here are intended to 

make the calibration of highly parameterized multiphase flow models more feasible, thus 

reducing the impact of systematic errors on estimated parameters and subsequent model 

predictions. 

 

   



Acknowledgment 

We would like to thank Andrés Alcolea and two anonymous reviewers, as well as 

Michael Commer (LBNL) for their thoughtful and constructive review comments. 

Discussions with Knútur Árnason, ÍSOR, Iceland, are also greatly appreciated. This work 

was supported by Laboratory Directed Research and Development (LDRD) funding from 

Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of 

Energy, and as part of the Subsurface Science Scientific Focus Area funded by the U.S. 

Department of Energy, Office of Science, Office of Biological and Environmental 

Resources under Award Number DE-AC02-05CH11231.  

 

References 

Alcolea, A., J. Carrera, and Medina A., 2006. Pilot points method incorporating prior 

information for solving the groundwater flow inverse problem. Advances in Water 

Resources 29(11), 1678–1689, doi:10.1016/j.advwatres.2005.12.009. 

Broyden, C.G., 1965. Class of methods for solving nonlinear simultaneous equations. 

Mathematics of Computation 19(92), 577–293, doi:10.2307/2003941. 

Carrera, C., Neuman, S.P., 1986. Estimation of aquifer parameters under transient and 

steady state conditions: 1. Maximum likelihood method incorporating prior 

information. Water Resources Research 22(2), 199–210. 

Carrera J., A. Alcolea, A. Medina, J. Hidalgo,  and L.J. Slooten L.J., 2005. Inverse 

problem in hydrology, Hydrogeology Journal 13, 206–222, doi: 10.1007/s10040-004-

0404-7. 

   



deMarsily, G.H., G. Lavedan, M. Boucher, and G. Fasanino (1984). Interpretation of 

inference tests in a well field using geostatistical techniques to fit the permeability 

distribution in a reservoir model. In: Verly G. et al. (editors). Geostatistics for natural 

resources characterization. Part 2. D. Reidel Pub. Co., 831–849. 

Deutsch, C.V., Journel, A.G., 1992. GSLIB-Geostatistical Software Library and User's 

Guide. Oxford University Press, New York. 

Finsterle, S., 2004. Multiphase inverse modeling: Review and iTOUGH2 applications. 

Vadose Zone Journal  3, 747–762. 

Finsterle, S., Kowalsky, M.B., 2008. Joint hydrological-geophysical inversion for soil 

structure identification. Vadose Zone Journal 7, 287–293, doi:10.2136/vzj2006.0078. 

Finsterle, S., Pruess, K., 1995. Solving the estimation-identification problem in two-

phase flow modeling. Water Resources Research  31(4), 913–924. 

Finsterle, S., Najita, J., 1998. Robust estimation of hydrogeologic model parameters. 

Water Resources Research 34(11), 2939–2947. 

Finsterle, S., Zhang, Y., 2010. Error handling strategies in multiphase inverse modeling. 

Computers and Geosciences (this issue). 

Gauss, C.F., 1821. Theory of the Combination of Observations Least Subject to Errors. 

(in: Stewart (trans.), SIAM, Philadelphia, PA, 1995).  

Gómez-Hérnandez, J.J., A. Sahuquillo, and J.E. Capilla (1997). Stochastic simulation of 

transmissivity fields conditional to both transmissivity and piezometric data: 1. 

Theory. Journal of Hydrology 204(1–4), 162–174.  

   



Hendricks Franssen, H.J., A. Alcolea, M. Riva, M. Bakr, N. van de Wiel, F. Stauffer and 

A. Guadagnini, 2009. A comparison of seven methods for the inverse modelling of 

groundwater flow. Application to the characterisation of well catchments. Advances 

in Water Resources, 32(6), 851–872, doi:10.1016/j.advwatres.2009.02.011. 

Kowalsky, M.B., Finsterle, S., Rubin, Y., 2004. Estimating flow parameter distributions 

using ground-penetrating radar and hydrological measurements during transient flow 

in the vadose zone. Advances in Water Resources 27(6), 583–599. 

Lehikoinen, A., Huttunen, J.M.J., Finsterle, S., Kowalsky, M.B. Kaipio, J.P., 2010. 

Dynamic inversion for hydrological process monitoring under model uncertainty. 

Water Resources Research  46, W04513, doi:10.1029/2009WR008470. 

Levenberg, K., 1944. A method for the solution of certain nonlinear problems in least 

squares. The Quarterly of  Applied Mathematics 2, 164–168. 

Leverett, M. C., 1941. Capillary behavior in porous solids. Transactions of the Society of 

Petroleum Engineering AIME 142, 152–169. 

Marquardt, D.W., 1963. An algorithm for least squares estimation of nonlinear 

parameters, SIAM Journal of Applied Mathematics 11, 431–441. 

Moore, C., Doherty, J., 2005. Role of the calibration process in reducing model predictive 

error. Water Resources Research 41, W05020, doi:10.1029/2004WR003501. 

Moore, C., Doherty, J., 2006. The cost of uniqueness in groundwater model calibration. 

Advances in Water Resources 29, 605–623. 

   



RamaRao, B. S., de Marsily, G., Marietta, M.G., 1995. Pilot point methodology for 

automated calibration of an ensemble of conditionally simulated transmissivity fields: 

1. Theory and computational experiments. Water Resources Research, 31(3), 475-493 

Regis, R.G., Shoemaker, C.A., 2004. Local function approximation in evolutionary 

algorithms for the optimization of costly functions. IEEE Transactions on 

Evolutionary Computation 8(5), 490–505. 

Roth, K.R., Schulin, R., Flühler, H., Attinger, W., 1990. Calibration of time domain 

reflectometry for water content measurement using a composite dielectric approach. 

Water Resources Research, 26(10), 2267–2273.  

Tikhonov, A.N., Arsenin, V.Y., 1977. Solutions to Ill-Posed Problems. John Wiley, New 

York, pp. 272. 

Tonkin, M., Doherty, J. 2005. A hybrid regularized inversion methodology for highly 

parameterized models. Water Resources Research 41, W10412, 

doi:10.1029/2005WR003995. 

van Genuchten, M. T., 1980. A closed-form equation for predicting the hydraulic 

conductivity of unsaturated soils. Journal of the American Soil Sciences Society 44, 

892–898. 

Vrugt, J., Robinson, B.A. Hyman, J.M., 2009. Self-adaptive multimethod search for 

global optimization in real-parameter spaces. IEEE Transactions on Evolutionary 

Computation 13(2), 234–259. 

   



Table 1. 

Hydrological, petrophysical, and geostatistical parameters fixed and estimated by joint 

inversion of hydrological and geophysical data 

 

Parameter Value 

Hydrogeological Parameters 

Reference horizontal permeability, log(kref,h [m
2])  -12.0 

Reference vertical permeability, log(kref,v [m
2])  -13.0 

Porosity,  0.25 

Reference capillary-strength parameter, log(1/ref [Pa])  3.0 

Residual liquid saturation, Slr 0.1 

Irreducible liquid saturation, Sli 0.1 

Saturation exponent,  0.5 

van Genuchten parameter, n 2.7 

van Genuchten parameter, m 0.7 

Cutoff for linear extrapolation of capillary pressure,  0.05 

Petrophysical Parameters 

Mixture exponent, n 0.5 

Dielectric constant, solid, s 4.0 

Geostatistical Parameters 

Permeability modifiers at 14 pilot points, log(k/kref) 0.0 

Correlation length, L [m] 0.4 

Geometric anisotropy ratio,   5.0 

Orientation,  [] 20.0 

Sill value, log(c) 1.0 
 

 

   



Figure Captions 

Figure 1.  Truncated Levenberg-Marquardt algorithm. 

Figure 2. (a) Spatially correlated permeability field, and (b) liquid saturation 

distribution after one day of water release, locations of neutron probes in 

boreholes (squares), and GPR straight-ray paths. 

Figure 3. Levenberg-Marquardt minimization of the objective function with different 

damping matrices. 

Figure 4. Ranked scaled eigenvalues of Fisher information matrix. 

Figure 5. Scatter plot of final GPR-time residuals after calibration with different 

Tikhonov matrices. 
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Figure 2. (a) Spatially correlated permeability field, and (b) liquid saturation 

distribution after one day of water release, locations of neutron probes in boreholes 

(squares), and GPR straight-ray paths. 

   



 

Figure 3. Levenberg-Marquardt minimization of the objective function with different 

damping matrices. 

   



 

Figure 4. Ranked scaled eigenvalues of Fisher information matrix. 

   



 

Figure 5. Scatter plot of final GPR-time residuals after calibration with different 

Tikhonov matrices. 
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