
()

Large Data Visualization on Distributed Memory Multi-GPU
Clusters

Thomas Fogal1,2, Hank Childs3, Siddharth Shankar1, Jens Krüger4, R. Daniel Bergeron2 and Philip Hatcher2

1Scientific Computing & Imaging Institute, University of Utah
2Department of Computer Science, University of New Hampshire

3Lawrence Berkeley National Laboratory
4Interactive Visualization and Data Analysis Group, DFKI, Germany

Abstract

Data sets of immense size are regularly generated on large scale computing resources. Even among more tra-
ditional methods for acquisition of volume data, such as MRI and CT scanners, data which is too large to be
effectively visualized on standard workstations is now commonplace.
One solution to this problem is to employ a ‘visualization cluster,’ a small to medium scale cluster dedicated
to performing visualization and analysis of massive data sets generated on larger scale supercomputers. These
clusters are designed to fit a different need than traditional supercomputers, and therefore their design mandates
different hardware choices, such as increased memory, and more recently, graphics processing units (GPUs).
While there has been much previous work on distributed memory visualization as well as GPU visualization, there
is a relative dearth of algorithms which effectively use GPUs at a large scale in a distributed memory environment.
In this work, we study a common visualization technique in a GPU-accelerated, distributed memory setting, and
present performance characteristics when scaling to extremely large data sets.

1. Introduction

Visualization and analysis algorithms, volume rendering in
particular, require extensive compute power relative to data
set size. One possible solution is to use the large scale super-
computer that generated the data, which clearly has the req-
uisite compute power. But it can be difficult to reserve and
obtain the computing resources required for viewing large
data sets. An alternative approach, one explored in this pa-
per, is to use a smaller scale cluster equipped with GPUs,
which can provide the needed computational power at a frac-
tion of the cost – provided the GPUs can be effectively
utilized. As a result, a semi-recent trend has emerged to
procure GPU-accelerated visualization clusters dedicated to
processing the data generated by high end supercomputers;
examples include ORNL’s Lens, Argonne’s Eureka, TACC’s
Longhorn, SCI’s Tesla-based cluster, and LLNL’s Gauss.

Despite this trend, there have been relatively few efforts
to study distributed memory, GPU-accelerated visualization
algorithms which can effectively utilize the resources avail-
able on these clusters. In this paper, we report parallel vol-

ume rendering performance characteristics on large data sets
for a typical machine of this type.

Our system is divided into three stages:

1. An intelligent pre-partitioning which is designed to make
combining results from different nodes easy.

2. A GPU volume renderer to perform the per-frame volume
rendering work at interactive rates.

3. MPI-based compositing based on a sort-last compositing
framework.

Müller et al. presented a system similar to our own that
was limited to smaller data sets [MSE06]. We have extended
the ideas in that system to allow for larger data sets, by re-
moving the restriction that a data set must fit in the com-
bined texture memory of the GPU cluster and adding the
ability to mix in CPU-based renderers, enabling us to an-
alyze the parallel performance on extremely large data sets.
The primary contribution of this paper is an increased under-
standing of the performance characteristics of a distributed
memory GPU-accelerated volume rendering algorithm at a

jawolslegel
Typewritten Text
1

jawolslegel
Typewritten Text

T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron, and P. Hatcher / Visualization on Multi-GPU Clusters

scale (256 GPUs) much larger than previously published.
Further, the results presented here (data sets up to 81923 vox-
els) represent some of the largest parallel volume renderings
attempted thus far.

Our system and benchmarks allow us to explore issues
such as:

• the balance between rendering and compositing, which is
a well-studied issue with CPU-based rendering, but cur-
rently with unclear performance tradeoffs for rendering
on GPU clusters;

• the overhead of transferring data to and from a GPU;
• the importance of process-level load balancing; and
• the viability of GPU clusters for rendering very large data.

Figure 1: Output of our volume rendering system with a data
set representing a burning helium flame.

This paper is organized as follows: in section 2, we
overview previous work in parallel compositing and GPU
volume rendering. In section 3, we outline our system in de-
tail. Section 4 discusses our benchmarks and presents their
results. Finally, in section 5 we draw conclusions based on
our findings.

2. Previous Work

Volume rendering in a serial context has been studied for
many years. The basic algorithm [DCH88] was improved
significantly by including empty space skipping and early
ray termination [Lev90]. Max provides one of the earli-
est formal presentations of the complete volume render-
ing equation in [Max95]. Despite significant algorithmic
advances from research such as [Lev90], the largest in-
crease in performance for desktop volume renderers has
come from taking advantage of the 3D texturing capabilities
[CCF94, CN94, WE98] and programmable shaders [KW03]
available on modern graphics hardware.

Extensive research has been done on parallel rendering

and parallel volume rendering. Much of this work has fo-
cused on achieving acceptable compositing times on large
systems. Molnar et al. conveyed the theoretical underpin-
nings of parallel rendering performance [MCEF94]. Ear-
lier systems for parallel volume rendering relied on direct
send [Hsu93, MPHK93], which divides the volume up into
at least as many chunks as there are processors, sending ray
segments (fragments) to a responsible tile node for com-
positing via the Porter and Duff over operator [PD84]. These
algorithms are simple to implement and integrate into ex-
isting systems, but have sporadic compositing behavior and
thus have the potential to exchange a large number of frag-
ments, straining the network layers when scaling to large
numbers of processors. Tree based algorithms feature more
regular communication patterns, but impose an additional la-
tency which may not be required, depending on the particu-
lar frame and data decomposition. Binary swap and deriva-
tive algorithms are a special case of tree-based algorithms
that feature equitable distribution of the compositing work-
load [MPHK94]. Despite advancements in compositing al-
gorithms, network traffic remains unevenly distributed in
time, and thus high-performance networking remains a ne-
cessity for subsecond rendering times on large numbers of
processors.

In the area of distributed memory parallel volume ren-
dering of very large data sets, the algorithm described by
Ma et al. in [MPHK93] has been taken to extreme scale in
several followup publications. In [CDM06], data set sizes
up to 30003 are studied using hundreds of cores. In this
regime, the time spent ray casting far exceeds the composite
time. In [PYRM08, PYR∗09], the data set sizes range up to
44803, while core counts of tens of thousands are studied.
In [HBC10], the benefits of hybrid parallelism are explored
at concurrency ranges going above two hundred thousand
cores. For both of these studies, when going to extreme con-
currency, compositing time becomes large and dominates
ray casting time. This suggests that a sweet spot may ex-
ist with GPU-accelerated distributed memory volume ren-
dering. By using hardware acceleration, the long ray casting
times encountered in [CDM06] can be overcome. Simulta-
neously, the emerging trend of composite-bound rendering
time observed in [PYR∗09] and [HBC10] will be mitigated
by the ability to use many fewer nodes to command the same
compute power.

Numerous systems have been developed to enable parallel
rendering in existing software. Among the most well-known
is Chromium [HHN∗02], a rendering system which can
transparently parallelize OpenGL-based applications. The
Equalizer framework boasts multiple compositing strategies,
including an improved direct send [EP07]. The IceT library
provides parallel rendering with a variety of sort-last com-
positing strategies [MWP01].

There has been less previous work studying volume ren-
dering on multiple GPUs. Strengert et al. developed a sys-

jawolslegel
Typewritten Text
2

T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron, and P. Hatcher / Visualization on Multi-GPU Clusters

tem which used wavelet compression and adaptively de-
compressed the data on small GPU clusters [SMW∗04].
Marchesin et al. compared a volume that ran on two dif-
ferent two-GPU configurations: two GPUs on one system,
and one GPU on two networked systems [MMD08]. The
use of just one or two systems, coupled with an in-core
renderer artificially constrained the data set size. Müller et
al. developed a distributed memory volume renderer that
runs on GPUs [MSE06]; their system differs from ours in
a few key ways. First, we use an out-of-core volume ren-
derer and therefore can exceed the available texture memory
of the GPU by also utilizing the CPU memory. To further
reduce memory costs, we compute gradients dynamically in
the GLSL shader [KW03], obviating the need to upload a
separate gradient texture. This also has the benefit of avoid-
ing a pre-process step, which is normally software-based in
existing general-purpose visualization applications (includ-
ing the one we chose to implement our system within) and
can be quite time consuming for large data sets. Further dif-
ferentiating our system and in line with recent trends in visu-
alization cluster architectures, we enable the use of multiple
GPUs per node. Müller et al. used a direct send compositing
strategy ([Hsu93, MPHK93]), whereas we use a tree-based
compositing method ([MWP01]). Finally, and most impor-
tantly, we report performance results for substantially more
GPUs and much larger data sets, detailing the scalability of
GPU-based visualization clusters. We therefore believe our
work is the first to evaluate the usability of distributed mem-
ory GPU clusters for this scale of data.

3. Architecture

We implemented our remote rendering system inside of VisIt
[CBB∗05], which is capable of rendering data in parallel on
remote machines. The system is comprised of a lightweight
‘viewer’ client application, connected over TCP to a server
which employs GPU cluster nodes. All rendering is per-
formed on the cluster, composited via MPI, and images, op-
tionally compressed via zlib, are sent back to the viewer for
display. Example output from our system is in Figure 1.

Although VisIt provided a good starting point for our
work, we needed to make significant changes in order to im-
plement our system. In this section, we highlight the main
features of our system, taking special care to note where we
have deviated from existing VisIt functionality.

3.1. Additions to VisIt

3.1.1. Multi-GPU Access

At the outset, VisIt’s parallel server supported only a sin-
gle GPU per node. We have revamped the manner in which
VisIt accesses GPUs to allow the system to take advantage
of multi-GPU nodes. When utilizing GPU-based rendering,
each GPU is matched to a CPU core which feeds data to

that GPU. Additionally, when the number of CPU cores ex-
ceeds the number of available GPUs, we allow for the use of
software-based renderers on the extra CPUs. This code has
been contributed to the VisIt project.

3.1.2. Partitioning

VisIt contained a number of load decomposition strategies
prior to our work. However, we found these strategies to be
insufficient for a variety of reasons:

• Brick-based Equalizing the distribution of work in VisIt
was entirely based on bricks, or pieces of the larger data
set. Our balancing algorithms use the time taken to render
the previous frame to determine a weighted distribution of
loads.

• Master-slave Dynamic balance algorithms in VisIt are
based on a master node, which tells slaves to process
a brick, waits for completion, and then sends slaves a
new brick to process. We implemented a flat hierarchy, as
seems to be more common in recent literature [MMD06,
MSE06].

• Compositing Most importantly, for our object-based de-
composition to work correctly, we needed a defined or-
dering to perform correct compositing. The load balanc-
ing and compositing subsystems were independent prior
to our work.

Our system relies on a kd-tree for distributing and balanc-
ing the data. The spatial partitioning is done once initially
and can be adaptively refined by the rendering times from
previous frames. The initial tree only considers the number
of bricks available in the data set, and attempts to evenly dis-
tribute them among processes, to the extent that is possible.
When using static load balancing, this decomposition is de-
termined and invariant for the life of the parallel job. Figure
2 depicts a possible configuration determined by the parti-
tioner, and shows the corresponding kd-tree.

When the dynamic load balancer is enabled, we use the
last rendering time on each process to determine the next
configuration. In our initial implementation, the metric we
utilized was the total pipeline execution time to complete a
frame. This included the time to read data from the disk, as
well as compositing time, among other inputs. However, we
found that I/O would dwarf the actual rendering time. Fur-
ther, compositing time is not dependent on the distribution
of bricks. This therefore proved to be a poor metric. Switch-
ing the balancer to use the total render time for all bricks on
that process gave significantly better results.

In order to compare different implementations, we im-
plemented multiple load balancing algorithms, notably
those described in Marchesin et al. and Müller et al.’s
work [MMD06, MSE06], in order to compare different im-
plementations. In both cases, leaf nodes represent processes,
and each process has some number of bricks assigned to it.
In the Marchesin-based approach, we start at the parents of

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text
3

T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron, and P. Hatcher / Visualization on Multi-GPU Clusters

Split

Split

Bricks Bricks

Split

Bricks Bricks

Figure 2: Decomposition and corresponding kd-tree for an 8x8x3 grid of bricks divided among 4 processors. Adjacent bricks
are kept together for efficient rendering and compositing. A composite order is derived dynamically from the camera location
in relation to splitting planes. Note that the number of leaves in the tree is equal to the number of processes in the parallel
rendering job.

the leaf nodes and work our way up the tree, searching for
imbalance among siblings. If two siblings are found to be
imbalanced, a single layer of bricks is moved along the split-
ting plane. This process continues up to the root of the tree,
at which time the virtual results are committed and the new
tree dictates the resulting data distribution. In the Müller-
based approach, we begin with the root node and use pre-
order traversal to find imbalance among siblings. Once im-
balance is found, the process stops for the current frame. In-
stead of blindly shifting a layer of blocks between the sib-
lings, the method derives the average rendering cost associ-
ated with a layer of bricks along the split plane, and shifts
this layer if the new configuration would improve rendering
times.

In addition to achieving a relatively even balance among
the data, the kd-tree is used in the final stages to derive a
valid sort-last compositing order.

3.1.3. Rendering

Rendering is performed in parallel on all nodes. We inte-
grated a library for both slice-based and ray-based direct
volume rendering via GLSL shaders; for this work, we used
the slice-based renderer. For nodes without access to a GPU,
data are rendered through the Mesa library’s ‘swrast’ mod-
ule, which executes vertex and fragment shaders on the CPU.
Nodes render all the data they are responsible for indepen-
dently, without regard for the screen space projection of the
data.

Data are forwarded “as-is” from disk, without modifica-
tion or transformation to its type. In our experiments, this
means that floating point data flows all the way through the
pipeline, and becomes the input to the renderers – we push
the native-precision data down to the GPU and render it at
full resolution. Of course, data are effectively quantized due
to the limited resolution of a transfer function.

We find this architecture compelling because it removes
any need to pre-process the data. VisIt’s parallel pipeline ex-
ecution is based wholly around the bricks given as input to
the tool. Our main restriction is the size of each individ-
ual brick: since we utilize an out-of-core volume renderer,
we can stream sets of bricks through a GPU, even if the
stream exceeds the maximum 3D texture size or GPU mem-
ory available. However, each individual brick must be small
enough to fit within the texture memory available on a GPU.

In practice, this limitation has not affected how we gen-
erated or visualized the data for this work. Should the need
arise, we could re-brick the data set to sizes more amenable
for visualization.

3.1.4. Compositing

After rendering completes, each node has a full image with a
subset of the total data volume rendered into it. A composit-
ing step takes these partial images and combines them to pro-
duce the final result. As noted in Section 2, we did not expect
compositing to dictate the performance of our system; still,
we had previously integrated the IceT parallel compositing
library [MWP01], for its ease of integration and proven re-
sults. IceT gives considerably better performance than the
other built-in compositors available, and so we extended the
compositing code to derive a compositing order from the kd-
tree and hand it to IceT.

IceT implements a number of different compositing
modes. However, not all of them support what IceT calls
ordered compositing, as is needed for object-parallel dis-
tributed volume rendering. For this work, we have utilized
the so-called reduce strategy, which, since we only configure
a single ‘tile’ in our system, essentially simplifies [MWP01]
to an implementation of Binary Swap [MPHK94].

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text
4

T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron, and P. Hatcher / Visualization on Multi-GPU Clusters

4. Evaluation

We implemented and tested our system on Lens, a GPU-
accelerated visualization cluster housed at ORNL. However,
we were only able to access 16 GPUs on that machine. In
order to access a larger number of GPUs, we transitioned
to Longhorn, a larger cluster housed at the Texas Advanced
Computing Cluster. Specifications for each cluster are listed
in Table 1. Due to machine availability and configuration,
we were not able to fully utilize either machine.

4.1. Rendering Times

The two dominant factors in distributed memory visualiza-
tion performance are the time taken to render the data and
the time taken to composite the resulting sub-images. These
have the largest impact on usability, because they comprise
the majority of the latency a user experiences: the time be-
tween when the user interacts with the data and when the
results of that interaction are displayed.

 0

 5

 10

 15

 20

 25

 30

10243 20483 40963 81923

T
im

e
(s

ec
on

ds
)

Dataset Size (voxels)

64 GPUs, 2 GPUs/node
128 GPUs
256 GPUs

64 GPUs, 1 GPUs/node

Figure 3: Overall rendering time when rendering to a
1024x768 viewport on Longhorn. This incorporates both
rendering and compositing, and therefore shows the delay
a user would experience if they used the system on a local
network. Data points are the average across many frames,
and error bars indicate the rendering times for the slowest
and quickest frames, respectively. For these results we used
a domain consisting of 133 bricks (varying brick size), with
the exceptions that all runs in the 128 GPU cases used 83

bricks, and the run for the 81923 data set was done using
323 bricks.

Our data originated from a simulation performed by the
Center for Simulation of Accidental Fires and Explosions
(C-SAFE), designed to study the instabilities in a burning
helium flame. In order to study performance at varying reso-
lutions, we resampled this data to 10243, 20483, 40963, and
81923, at a variety of brick sizes. We then performed tests,
varying data resolution, image resolution, choice of brick
size, and number of GPUs, up to 256. Unless noted other-
wise, we divided the data into a grid of 8x8x8 bricks for

parallel processing (larger data sets used larger bricks), and
rendered into a 1024x768 viewport.

Figure 3 shows the scalability on the Longhorn cluster.
The principal input which affects rendering time is the data
set size, as one might expect. These runs were all done using
2 GPUs per node, except the “64 GPUs, 1 GPU/node” case,
which was run on 64 nodes, each accessing a single GPU.
With very large data, there is a modest increase in perfor-
mance for this experimental setup.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

128 256 315342 373 512

R
en

de
rin

g
T

im
e

Brick Size (voxels, cubed)

4096
3
 Dataset

Figure 4: Rendering time as a function of brick size. Error
bars indicate the minimum and maximum times recorded,
across all nodes, for that particular brick size; high disparity
indicates the rendering time per-brick was highly variable,
and load imbalance was therefore likely. All tests were done
with a 40963 data set statically load balanced across 128
GPUs on 64 nodes, using a scripted camera which requested
the same viewpoints each run. Note that the choice of brick
size matters little in the average case, but bricks using non-
power-of-two sizes give widely varying performance. Brick
sizes of 5123 technically give the best performance, though
raw data show it is only hundredths of a second faster than
2563 bricks.

As can be seen in Figure 4, the brick size, generally, has
little impact in performance. A parallel volume renderer’s
performance is dictated by the slowest component though,
and therefore the average rendering time is less important
than the maximum rendering time. Taking that into account,
it is clear that brick sizes which are not a power of two are
poor choices. Dropping down to 1283, we can see that per-
brick overhead begins to become more noticeable, impacting
overall rendering times. We found larger brick sizes of 5123

get the absolute best performance, with 2563 a good choice
as well, as the differences are minor enough that they may
be considered sampling error. Of course, such recommenda-
tions may be specific to the GPUs used in Longhorn.

We were initially surprised to find that the image resolu-
tion, while relevant, was not a significant factor in the over-
all rendering time. When developing single GPU applica-
tions that run on a user’s desktop, our experience was the

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text
5

T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron, and P. Hatcher / Visualization on Multi-GPU Clusters

Component Lens Longhorn
Number of nodes 32 256
GPUs per node 2 2
Cores per node 16 8
Graphics card NVIDIA 8800 GTX NVIDIA FX 5800

Per-node Memory 64 GB 48 GB
Processors 2.3 GHz Opterons 2.53 GHz Nehalems

Interconnect DDR Infiniband Mellanox QDR InfiniBand

Table 1: Configuration of GPU clusters utilized.

opposite: that image size did play a significant role in per-
formance. We at first thought this was due to skipping bricks
which were ‘empty’ under our transfer function – our do-
main is perfectly cubic, yet as is displayed in Figure 1, very
little of the domain is actually visible – but even after chang-
ing to a transfer function with no “0” values in the opacity
map, rendering times changed very little. We concluded that
the data sizes are so large compared to the number of pixels
rendered that the image size is not relevant as a factor.

In our initial implementation on Lens, we noticed that
we began to strain the memory allocators while rendering
a 30003 data set, as we approached low memory conditions.
Our volume renderer automatically accounts for low mem-
ory conditions and attempts to free unused bricks before fail-
ing outright. However, an operating system will thrash ex-
cessively before finally deciding to fail an allocation, and
therefore during the time leading up to a failed allocation,
performance will drop considerably. Worse, we are working
in a large existing code base, and attempting to manage al-
locations outside our own subsystem would prove unwieldy.
As such, we found the original scheme to be unstable; the
rendering system would create memory pressure, causing
other subsystems to fail an allocation in areas where it may
be difficult or impossible to ask our volume renderer to free
up memory.

To solve this problem, we render the data in a true out-
of-core fashion: bricks are given to the renderer, rendered
into a framebuffer object, and immediately thrown away. We
might expect that out-of-core algorithms would have more
per-block overhead and therefore be slower than an in-core
algorithm. As shown in Figure 5, out-of-core approach actu-
ally out-performs the analogous in-core approach even when
there is sufficient memory to hold the data set. In this case,
lookups were performed into a data structure with logarith-
mic lookup time; the in-core approach did these lookups in
logarithmic time, whereas the conservative approach taken
in the out-of-core algorithm meant the container maxed out
at one element, which accounted for the very minor improve-
ment to performance.

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0 10 20 30 40 50 60 70

R
en

de
rin

g
T

im
e

(s
ec

on
ds

)

Frame

In-Core
Out-of-Core

Figure 5: Rendering times, per frame, for the in-core and
out-of-core approaches to rendering a 10243 data set (which
fits comfortably in memory) across 16 GPUs. Additional
processing in the out-of-core case does not negatively im-
pact performance.

4.1.1. Readback and Compositing

In earlier results, particularly with GPU-based rendering ar-
chitectures, the community was generally concerned with
the time required to read the resulting image data from the
GPU and into the host’s memory [MMD08]. Our study did
not provide corroboration of this concern, which we inter-
pret as a positive data point with respect to evolving graph-
ics subsystems. Our system did demonstrate that this time
increased as the resolution grew, but as can be seen in Ta-
ble 2, even at 1024x768 this step took only thousandths of a
second.

As expected, the time required for image composition is
significantly reduced when taking advantage of the GPUs
available in a visualization cluster. Since a GPU can render
much faster than a software-based renderer, one can achieve
acceptable rendering performance using far fewer nodes.
Furthermore, because compositing scales with the number of
nodes involved in the compositing process, compositing per-
formance improves significantly when utilizing fewer nodes.

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text
6

T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron, and P. Hatcher / Visualization on Multi-GPU Clusters

Dataset Size Rendering (s) Readback (s) Compositing (s) Total (s)
10243 0.06141 0.00328 0.06141 0.12610
20483 0.35107 0.00377 0.07673 0.43157
40963 2.50984 0.00377 0.29533 2.80894
81923 19.60648 0.00373 0.51799 20.12820

Table 2: Breakdown of the different pipeline stages for various data set sizes, when running on 256 GPUs and rendering into a
1024x768 viewport. All times are in seconds. The 10243, 20483, and 40963 case used 133 bricks (varying brick size); the 81923

case used 323 bricks, making each brick 2563. Compositing time rises only artificially; if a node finishes rendering before other
nodes, the time it must wait was included under ‘Compositing’ due to an artifact of our sampling code. Thus, the data imply
that larger data sets see more load imbalance.

4.2. Load Balancing

We also sought to examine the utility of load balancing algo-
rithms for our system. We have implemented the algorithms
as presented in two recent parallel volume rendering papers,
and compared rendering times to each other and to a stat-
ically balanced case. Figure 6 illustrates the comparisons,
where the times shown are the maximum on all processes.

We did a variety of experiments with multiple load bal-
ancer implementations, using 8 or 16 GPUs. Our initial fly-
through sequence proved to be inappropriate for the appli-
cation of a load balancer, as there was not enough imbal-
ance in the system to observe a significant benefit. We then
attempted to zoom out of the dataset, but rendering times
increasing on all nodes was not a case the balancers we im-
plemented could effectively deal with: we found many cases
where the balancers would shift data to a node that was pre-
viously idle or at least doing very little work, and a frame
or two later the workload on such nodes would spike. This
occurred because these nodes had both 1) received new data
as part of the balance and, 2) retained old data as part of
the initial decomposition or older balancing processes. The
sudden additional workload of previously invisible bricks
caused these nodes to overcompensate, sending data to other
“idle” nodes – nodes which would experience the same prob-
lem a frame or two later.

In previous work, authors have praised the effect load bal-
ancing has when zooming in to a data set. This naturally
creates imbalance, as some nodes end up with data which
are not rendered under the current camera configuration, and
therefore the node has no work to do.

With the implementations we recreated as faithfully as
possible, we did find that zooming in to the data set was
a task that was well-suited for load balancing. Still, we en-
countered issues even with this case. For the algorithm given
in [MMD06], we observed that data would move back and
forth between nodes quite frequently, having a negative im-
pact on overall rendering time. We therefore introduced a
‘threshold’ parameter to the existing algorithm, in an attempt
to limit this ‘ping-pong’ behavior. As we move up the tree,
imbalance between the left and right subtrees is subject to
this threshold; if it does not exceed the threshold, the imbal-

Figure 6: The maximum rendering time across all nodes un-
der various balancing algorithms. The numbers after some
algorithms indicate thresholds: rendering disparity under
these thresholds is ignored.

ance is ignored. This is a very useful parameter for ensur-
ing that we do not move data too eagerly. Generally, setting
this threshold too high will yield behavior equivalent to the
static case; setting it to low leads to a considerable amount
of unnecessary data shifting, and we found that this in many
cases overcompensated for minor, expected variations (such
as those one might expect from differing brick sizes; see Fig-
ure 4). For example, see Figure 6, in which low thresholds
display an obvious ‘ping-pong’ effect as nodes overcompen-
sate for increased rendering load.

Müller et al. describe a different balancing sys-
tem [MSE06]. This system calculates the average cost of
rendering a brick, and therefore has a clearer idea of what
the effect of moving a given set of bricks will have on overall
system performance. Further, they introduce additional pa-
rameters which add some hysteresis to the system, which can
help reduce the ‘ping-pong’ effect of nodes sending data to a
neighbor, just to receive in the next frame when the neighbor
becomes overloaded.

We found that this algorithm did do intelligent balancing
for reasonable settings of these parameters, and the addi-

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text
7

T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron, and P. Hatcher / Visualization on Multi-GPU Clusters

Figure 7: Per-process rendering times for the ‘Müller’ line
given in Figure 6.

tional parameters could be successfully used to reduce ex-
cess data reorganization. Still, we found two issues with the
approach: for one, the assumption that ‘all bricks are equal’
did not pan out for our work. Even assuming uniform bricks
for a data set (true for our case, but likely not in a general
system), one can see in Figure 4 that the time to render a
brick sees variation on the order of a second. Secondly, de-
spite experimenting with parameter settings, we found it dif-
ficult to get the algorithm to choose the ‘best’ set of nodes
for balancing. In many cases, we found a particular node
was an outlier, consistently taking the most time to render
per frame. Yet it was common for this algorithm to balance
different nodes. While rendering times would generally im-
prove, the system’s performance is determined by the slow-
est node, and therefore making the fast nodes faster does not
help overall performance.

This was apparent in the tests described in 6: the algo-
rithm quite clearly balanced between some of the nodes, but
the slowest node was never balanced, and therefore the user-
visible performance for this run was equivalent to the static
case. Figure 7 shows a more detailed analysis of the exe-
cution of the Müller algorithm that generated the data for
Figure 6. The per-node rendering times in Figure 7 show
that process 7 is usually the last process to finish and is of-
ten much slower than the next to the last. As evident from
the lack of sudden discontinuities in that process’ render-
ing times, however, no bricks from process 7 move to other
nodes. Therefore rendering times decrease but the maximum
rendering time does not change.

We theorize that additions to the algorithm to learn
weights for each individual brick would yield fruitful results.
Furthermore, the algorithm explicitly attempts to avoid vis-
iting the entire tree, as an attempt to bound the maximum
time needed to determine a new balancing. In our work, we
did not observe cases where iterating through nodes in the
tree had a measurable impact on performance, and feel that

by doing so the algorithm could obtain the global knowledge
it needs to balance data effectively. Both of these extensions
are left to future work.

In Section 1, we noted a variety of questions which the
design of our system allows us to answer.

• Rendering vs. Compositing. As shown in Table 2, sub-
second rendering times are achieved using a very small
number of nodes, relative to previous work. This relieves
a significant source of work for compositing algorithms.

• Overhead of GPU Transfer. Table 2 shows readback time
to be on the order of thousandths of a second for com-
mon image sizes. Measuring texture upload rates is diffi-
cult with the asynchronous nature of current drivers and
OpenGL, but we did not find evidence to suggest this was
a bottleneck.

• Importance of Load Balancing. A dynamic load balancer
can have a very worthwhile impact on performance. How-
ever, it can also lower the performance of the system.
Load balancers generally come with some number of tun-
able parameters, and useful settings for these parameters
are difficult to determine a priori, and likely impossible
for an end-user to effectively set. We observed that dy-
namic load balancing for volume rendering struggled in
some of the cases often encountered in real world envi-
ronments and, for this reason, believe there is still a gap
before deploying these techniques in production systems.
We see a great opportunity for future work in this area.

• Viability. As displayed mostly by Figure 3 and Table 2,
rendering extremely large data sizes – up to 81923 voxels
– is possible on relatively few nodes. Further, data sets up
to 20483 can be rendered at approximately two frames per
second.

5. Conclusions

With this study, we demonstrated that GPU accelerated ren-
dering provides compelling performance for large scale data
sets. Figure 3 demonstrates our system rendering data sets
which are among some of the largest reported thus far, using
far fewer nodes than previous work. This work shows that a
multi-GPU node is a great foundational ‘building block’ to
compose larger systems capable of rendering very large data.
As the performance-price ratio of a GPU is higher (provided
it can effectively parallelize the workload) than CPU-based
solutions, this work makes the case for spending more visu-
alization supercomputing capital on hardware acceleration,
and acquiring smaller yet more performant clusters.

Reports on the time taken for various pipeline stages
demonstrate that PCI-E bus speeds are fast enough that read-
back performance is not as great of a concern as it was a few
years ago. However, it remains to be seen if contention will
become an issue if individual nodes are made ‘fatter’, uti-
lizing additional GPUs. The 1 GPU per node results given
in Figure 3 suggests that multiple GPUs do contend for re-

jawolslegel
Typewritten Text

jawolslegel
Typewritten Text
8

T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron, and P. Hatcher / Visualization on Multi-GPU Clusters

sources, but at this scale the differences are not yet signif-
icant enough to warrant moving away from the more cost-
effective ‘fat’ node architecture. Given the relatively few
nodes needed for good performance on large data, and ex-
ternal work scaling compositing workloads out to tens of
thousands of cores, it seems likely that the relatively ‘thin’
2-GPU-per-system architecture can be made to scale to even
larger systems.

5.1. Future Work

We would like to study our system with higher image reso-
lutions, such as those available on a display wall, and larger
numbers of GPUs. At some point, we expect compositing to
become a significant factor in the amount of time needed to
volume render large data, but we have not approached the
cross-over point in this work, due to the use of ‘desktop’ im-
age resolutions and low numbers of cores.

Our system allows substituting a Mesa-based software
renderer when a GPU is not available. This provided a con-
venient means of implementation for an existing large soft-
ware system, in particular because it allows pipeline execu-
tion to proceed unmodified through the rendering and com-
positing stages. However, tests very quickly showed that us-
ing software renderers when a GPU was available was not
worthwhile, and usually ended up hurting performance more
than helping. Therefore, we traded access to more cores for
the guarantee that we will obtain GPUs for each core we do
get.

An alternate system architecture would be to decouple the
rendering process from the other work involved in visual-
ization and analysis, such as data I/O, processing, and other
pipeline execution steps. In this architecture, all nodes would
read and process data, but processed, visualizable data would
be forwarded to a subset of nodes for rendering and com-
positing. The advantage gained is the ability to tailor the
available parallelism to the visualization tasks of data pro-
cessing and rendering, which, as we have found, can benefit
from vastly different parallel decompositions. The disadvan-
tages are the overhead of data redistribution, and the wasted
resources that arise from allowing non-GPU processes to sit
idle while rendering.

Our compositing algorithm assumes that the images from
individual processors can be ordered in a back-to-front fash-
ion to generate the correct image. For this paper, we met this
requirement by using regular grids, which are easy to load
balance in this manner. It should be possible to also handle
certain types of curvilinear grids and perhaps AMR grids.
Extensions to handle unstructured grids would be difficult,
but represent an interesting future direction.

Load balancing is an extremely difficult problem, and we
have just scratched the surface here. The principal difficulty
in load balancing is identifying good parameters to con-
trol how often and to what extent the balancing occurs. We

would like to see ideas and algorithms which move in the
direction of user-friendliness: determining the most relevant
parameters and deriving appropriate values for them auto-
matically.

6. Acknowledgments

The authors would like to thank Gunther Weber and Mark
Howison at LBNL for productive discussions, as well as
Sean Ahern at ORNL for numerous discussions on ‘decou-
pled’ processing and rendering, which we unfortunately did
not have time to consider in depth for this work.

This research was made possible in part by the Office
of Advanced Scientific Computing Research, Office of Sci-
ence, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231 through the Scientific Discov-
ery through Advanced Computing (SciDAC) program’s Vi-
sualization and Analytics Center for Enabling Technolo-
gies (VACET), by the NIH/NCRR Center for Integrative
Biomedical Computing, P41-RR12553-10 and by Award
Number R01EB007688 from the National Institute Of
Biomedical Imaging And Bioengineering, by the Cluster of
Excellence “Multimodal Computing and Interaction” at the
Saarland University, and by the Center for the Simulation of
Accidental Fires and Explosions at the University of Utah,
which was funded by the U.S. Department of Energy under
Contract No. B524196, with supporting funds provided by
the University of Utah Research fund. Resources were uti-
lized at the Texas Advanced Computing Center (TACC) at
the University of Texas at Austin and at the National Cen-
ter for Computational Sciences at Oak Ridge National Lab-
oratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

References

[CBB∗05] CHILDS H., BRUGGER E., BONNELL K., MEREDITH
J., MILLER M., WHITLOCK B., MAX N.: A Contract Based
System For Large Data Visualization. In Proceedings of IEEE
Visualization 2005 (2005). http://www.idav.ucdavis.edu/
func/return_pdf?pub_id=890.

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated volume
rendering and tomographic reconstruction using texture mapping
hardware. In VVS ’94: Proceedings of the 1994 symposium on
Volume visualization (New York, NY, USA, 1994), ACM, pp. 91–
98. http://doi.acm.org/10.1145/197938.197972.

[CDM06] CHILDS H., DUCHAINEAU M., MA K.-L.: A scal-
able, hybrid scheme for volume rendering massive data sets. In
Proceedings of Eurographics Symposium on Parallel Graphics
and Visualization (May 2006), pp. 153–162. http://www.idav.
ucdavis.edu/publications/print_pub?pub_id=892.

[CN94] CULLIP T. J., NEUMANN U.: Accelerating Vol-
ume Reconstruction With 3D Texture Hardware. Tech.
Rep. TR93-027, University of North Carolina at Chapel
Hill, 1994. http://graphics.usc.edu/cgit/pdf/papers/
Volume_textures_93.pdf.

http://www.idav.ucdavis.edu/func/return_pdf?pub_id=890
http://www.idav.ucdavis.edu/func/return_pdf?pub_id=890
http://doi.acm.org/10.1145/197938.197972
http://www.idav.ucdavis.edu/publications/print_pub?pub_id=892
http://www.idav.ucdavis.edu/publications/print_pub?pub_id=892
http://graphics.usc.edu/cgit/pdf/papers/Volume_textures_93.pdf
http://graphics.usc.edu/cgit/pdf/papers/Volume_textures_93.pdf
jawolslegel
Typewritten Text

jawolslegel
Typewritten Text
9

T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron, and P. Hatcher / Visualization on Multi-GPU Clusters

[DCH88] DREBIN R. A., CARPENTER L., HANRAHAN P.: Vol-
ume Rendering. In SIGGRAPH ’88: Proceedings of the 15th
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1988), ACM, pp. 65–74. http:
//doi.acm.org/10.1145/54852.378484.

[EP07] EILEMANN S., PAJAROLA R.: Direct Send Composit-
ing for Parallel Sort-Last Rendering. In Proceedings of the Eu-
rographics Symposium on Parallel Graphics and Visualization
(2007), pp. 29–36. http://doi.acm.org/10.1145/1508044.
1508083.

[HBC10] HOWISON M., BETHEL E. W., CHILDS H.: MPI-
hybrid Parallelism for Volume Rendering on Large, Multi-core
Systems. In Eurographics Symposium on Parallel Graphics
and Visualization (EGPGV) (Norrköping, Sweden, May 2010).
LBNL-3297E.

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R., FRANK R.,
AHERN S., KIRCHNER P. D., KLOSOWSKI J. T.: Chromium:
A Stream-Processing Framework for Interactive Rendering on
Clusters. In SIGGRAPH ’02: Proceedings of the 29th an-
nual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 2002), ACM Press, pp. 693–
702. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.19.7869.

[Hsu93] HSU W. M.: Segmented Ray Casting for Data Parallel
Volume Rendering. In PRS ’93: Proceedings of the 1993 Sympo-
sium on Parallel Rendering (New York, NY, USA, 1993), pp. 7–
14. http://doi.acm.org/10.1145/166181.166182.

[KW03] KRÜGER J., WESTERMANN R.: Acceleration Tech-
niques for GPU-based Volume Rendering. In Proceedings
IEEE Visualization 2003 (2003). http://wwwcg.in.tum.de/
Research/data/vis03-rc.pdf.

[Lev90] LEVOY M.: Efficient Ray Tracing of Volume Data. ACM
Trans. Graph. 9, 3 (1990), 245–261. http://doi.acm.org/10.
1145/78964.78965.

[Max95] MAX N.: Optical Models for Direct Volume Render-
ing. IEEE Transactions on Visualization and Computer Graphics
1, 2 (1995), 99–108. http://www.llnl.gov/graphics/docs/
OpticalModelsLong.pdf.

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A Sorting Classification of Parallel Rendering. IEEE Comput.
Graph. Appl. 14, 4 (1994), 23–32. http://doi.acm.org/10.
1145/1508044.1508079.

[MMD06] MARCHESIN S., MONGENET C., DISCHLER J.-M.:
Dynamic Load Balancing for Parallel Volume Rendering. In 6th
Eurographics Symposium on Parallel Graphics and Visualization
(May 2006), pp. 43–50. http://people.freedesktop.org/
~marcheu/egpgv06-loadbalancing.pdf.

[MMD08] MARCHESIN S., MONGENET C., DISCHLER J.-M.:
Multi-GPU Sort-Last Volume Visualization. In EG Sym-
posium on Parallel Graphics and Visualization (EGPGV’08),
Eurographics (April 2008). http://icps.u-strasbg.fr/
~marchesin/egpgv08-multigpu.pdf.

[MPHK93] MA K. L., PAINTER J. S., HANSEN C. D., KROGH
M. F.: A Data Distributed, Parallel Algorithm for Ray-Traced
Volume Rendering. In PRS ’93: Proceedings of the 1993 sympo-
sium on Parallel Rendering (New York, NY, USA, 1993), ACM,
pp. 15–22. http://doi.acm.org/10.1145/166181.166183.

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D., KROGH
M. F.: Parallel Volume Rendering Using Binary-Swap Com-
positing. IEEE Comput. Graph. Appl. 14, 4 (1994), 59–
68. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.104.3283.

[MSE06] MÜLLER C., STRENGERT M., ERTL T.: Opti-
mized Volume Raycasting for Graphics-Hardware-based Clus-
ter Systems. In Eurographics Symposium on Parallel Graph-
ics and Visualization (EGPGV06) (2006), Eurographics Associ-
ation, pp. 59–66. http://www.vis.uni-stuttgart.de/ger/
research/pub/pub2006/egpgv06-mueller.pdf.

[MWP01] MORELAND K., WYLIE B. N., PAVLAKOS C. J.:
Sort-Last Parallel Rendering for Viewing Extremely Large Data
Sets on Tile Displays. In IEEE Symposium on Parallel
and Large-Data Visualization and Graphics (2001), pp. 85–
92. https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/
PVG2001.pdf.

[PD84] PORTER T., DUFF T.: Compositing Digital Images. In
SIGGRAPH ’84: Proceedings of the 11th annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 1984), ACM, pp. 253–259. http://doi.acm.org/10.
1145/964965.808606.

[PYR∗09] PETERKA T., YU H., ROSS R., MA K.-L., LATHAM
R.: End-to-End Study of Parallel Volume Rendering on the
IBM Blue Gene/P. In Proceedings of the ICPP’09 Conference
(September 2009). http://vis.cs.ucdavis.edu/Ultravis/
papers/129_peterka-icpp09-finalpaper.pdf.

[PYRM08] PETERKA T., YU H., ROSS R., MA K.-L.: Par-
allel volume rendering on the ibm blue gene/p. In Proceed-
ings of Eurographics Parallel Graphics and Visualization Sym-
posium (EGPGV 2008) (April 2008), pp. 73–80. http://vis.
cs.ucdavis.edu/papers/EGPGV_08.pdf.

[SMW∗04] STRENGERT M., MAGALLÓN M., WEISKOPF D.,
GUTHE S., ERTL T.: Hierarchical visualization and compression
of large volume datasets using gpu clusters. In In Eurographics
Symposium on Parallel Graphics and Visualization (EGPGV04)
(2004 (2004), pp. 41–48.

[WE98] WESTERMANN R., ERTL T.: Efficiently Using Graph-
ics Hardware in Volume Rendering Applications. In ACM
SIGGRAPH 1998 (1998). http://doi.acm.org/10.1145/
280814.280860.

http://doi.acm.org/10.1145/54852.378484
http://doi.acm.org/10.1145/54852.378484
http://doi.acm.org/10.1145/1508044.1508083
http://doi.acm.org/10.1145/1508044.1508083
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.7869
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.7869
http://doi.acm.org/10.1145/166181.166182
http://wwwcg.in.tum.de/Research/data/vis03-rc.pdf
http://wwwcg.in.tum.de/Research/data/vis03-rc.pdf
http://doi.acm.org/10.1145/78964.78965
http://doi.acm.org/10.1145/78964.78965
http://www.llnl.gov/graphics/docs/OpticalModelsLong.pdf
http://www.llnl.gov/graphics/docs/OpticalModelsLong.pdf
http://doi.acm.org/10.1145/1508044.1508079
http://doi.acm.org/10.1145/1508044.1508079
http://people.freedesktop.org/~marcheu/egpgv06-loadbalancing.pdf
http://people.freedesktop.org/~marcheu/egpgv06-loadbalancing.pdf
http://icps.u-strasbg.fr/~marchesin/egpgv08-multigpu.pdf
http://icps.u-strasbg.fr/~marchesin/egpgv08-multigpu.pdf
http://doi.acm.org/10.1145/166181.166183
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.3283
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.3283
http://www.vis.uni-stuttgart.de/ger/research/pub/pub2006/egpgv06-mueller.pdf
http://www.vis.uni-stuttgart.de/ger/research/pub/pub2006/egpgv06-mueller.pdf
https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/PVG2001.pdf
https://cfwebprod.sandia.gov/cfdocs/CCIM/docs/PVG2001.pdf
http://doi.acm.org/10.1145/964965.808606
http://doi.acm.org/10.1145/964965.808606
http://vis.cs.ucdavis.edu/Ultravis/papers/129_peterka-icpp09-finalpaper.pdf
http://vis.cs.ucdavis.edu/Ultravis/papers/129_peterka-icpp09-finalpaper.pdf
http://vis.cs.ucdavis.edu/papers/EGPGV_08.pdf
http://vis.cs.ucdavis.edu/papers/EGPGV_08.pdf
http://doi.acm.org/10.1145/280814.280860
http://doi.acm.org/10.1145/280814.280860
jawolslegel
Typewritten Text

jawolslegel
Typewritten Text
10

	Introduction
	Previous Work
	Architecture
	Additions to VisIt

	Evaluation
	Rendering Times
	Load Balancing

	Conclusions
	Future Work

	Acknowledgments
	References

