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Abstract 

The vector potential and the magnetic field have been derived for an arrays of quadrupole magnets with 
thin Cos(20) current sheet placed at r=R.bc. The field strength of each coil within the array, varies purely as a 
Fourier sinusoidal series of the longitudinal coordinate z in proportion to WrnZ, where Wm = (2mil)~, L denotes 
the half-period, and m= I ,2,3 etc. The analysis is based on the expansion of the vector potential in the region 
external to the windings of a linear 3D quad, and a revision of that expansion by the application of the "Addition 
Theorem" from that around the coil center to that around any arbitrary poin~ in space. 

The expression of the current density J in a quad (a form that satisfies the conservation condition \l . J: = 
% + * ~ = 0 as required), and its contribution to the vector-potential A and magnetic field jj in an infinite array 
of quadrupole magnets, are listed below for the region r.>R (excluding the self field of the coil with its center at 0,0) 

J(O ,Z)lr=R = L Jo z,m [ (W~R) sin 20 sinwmzeo +COS20 coswmzez] 
m=l 

JOz,m = 1 8~G2,m (Aim) and G2,m gradient at z = 0 
(to (wmR) J(~ (wmR) 

(2m - 1)7r 
Wm = L where L denotes the half period. 

~ _ '" '" (toJo z,mR(4k - 3)! [ + ' . • _ 12(2 k_I)(wm r )] • . 
Ar- ww wmR 2(2k-l) Ck,mI2(2k_I)(wmr)+ 2(2k-l)Ck,m wmr cos2(2k- l)OSIll WmZ 

m=1 k=1 2(-2-) 

A~ - - L L (toJoz,mR(4k - 3)! [c- I' ( ) + 2(2k -1)C+ 12(2k_ I)(wmr )] . 2(2k ~ 1)0 . o - 2(2k I) k m 2(2k-l) wmr k m SIll SIllW Z 
2( WmR) - , , wmr 

m=1 k= l 2 

~ _ '" '" (to JOz,mR ( 4k - 3)! + . 
A z - w w R 2(2k-l) Ck,mI2(2k-I)(wmr) COS 2(2k - 1)0 COSWmZ 

m=1 k=1 2(~) 

4k 2 
+ _ '" '" [ . . . . . . . .J 16lz(wmR) (wmR) -Ck,m - W W J(4(k_I)(WmS,,)) COS 4(k - 1)001 ,) + J(4k(WmS' ,J) cos 4kOo l ,J (4k _ 3)! -2-

1=1 J=I 
, 4k-l 

,- '" '" [ (J 1612(wmR) (wmR) Ck,m = W W J(4(k-1)(WmSi,;) cos 4(k - I)OOi ,; - J(4k WmSi,;) cos4kOOi,; (4k _ 3)! -2-
1=1 J =I 

Where In and Kn are the "modified" Bessel functions of the first and second kind of order n, and the prime 
denotes differentiation with respect to the argument. The summation i,j is over the infinite number of quads in 
the first octant of the array. 

b 

C 

"Multipoles in Cos(20) Coil Arrays - Type I", SC-MAG-583, LBID-2203, May 1997. 
"Multipoles in Cos(20) Coil Arrays - Type II", SC-MAG-596, June 1997. 



The magnetic field components are, 

( 
2 ) 4k- 3 , 

Er = L ttOJoz,m L wmR (4k - 3) !Ck,mI2(2k _ j)(wmr)sin2(2k -l)Ocoswm z 
m ; j k;j 

( )

4k - 3 I ( ) 2 22k-j wmr . 
Eo = L POJOz,m L -- 2(2k - 1)( 4k - 3)!Ci: m () cos 2(2k - 1)0 cos WmZ 

wmR ' wmr, 
m;j k;j 

( 
2 ) 4k - 3 .. 

Ez = - L poJoz,m L wmR (4k - 3)!Ck,n,!2(2k-j)(wmr) sm2(2k - l)Osmwmz 
m;j k;j 

The format used here for A and B was specifically chosen to avoid a singularity that may rise when L is large 
(e.g. when the 3d problem reduces to 2d). Appendix B contains plots of both C+ and C-. 

In calculating the values of the mUltipole coefficients we need to distinguish between coils placed on lines 
of symmetry and coils placed elsewhere. 

and 

0=45° 

On the 45 degree line of symmetry we use, 

WmS;,j = (2m _ 1)2J2i 7r; 

Summing on this line of symmetry requires , 

.7rS 
WmS;,j = 2(2m - l)t-y 
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and 

Coils with centers in the first octant but NOT on lines of symmetry 

This part also requires, 

WmSi ,j = 2(2m -1))(i + j)2 + j2 7rZ 
O t -1 J 

Oi ,j = an (i + j) 

self coil i=j=O 

first octant 

coil i,j 

0--->' / 

Figure 1 Cross section showing current density arrangement 

From Figures 6-8 in Appendix B we can estimate the effect the geometry has on the values of ct m and , 
Ck m' If we just use the fundamental term m= I and vary the value of k, we notice that for k= I, which is the 
contribution to quadrupole term, the C's drop to 112 of their maximum value when SIR changes from 1.0 to 1.2. 
For the same change in SIR the dodecapole (k=2) and the 20's pole (k=3) will be reduced by a factor of 114 and 
118 respectively. All harmonic terms do not vary significantly as long as ¥!- ::::: 0.5 
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Contributions from the self coil at ioO j=O, r~R 

~ '" 1'0Joz mR ] , AT = L.. 4' (wmR)[K3(wmR)I3(wmr) - KJ(wmR)lJ(wmr) cos2BslllWmZ 

m =: l 

.40 = L 1'0 Jo;,mR (wmR)[K3(WmR)Ja(wmr) + KJ (wmR)lJ (wmr)] sin 20sinwmz 
m = l . 

.4z = L l'oJo z,mRK2(WmR)h(wmr) cos 20coswmz 
m = l 

Stored Energy 

The energy stored in a single coil member of the array is, 

where the first term in the square bracket corresponds to the self coil energy and the second term arises from 
all other coils in the array, 

2L 

Figure 2 Top view of a single periodic coil 'array of a single function (m=l) quad, 
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Figure 3 View of a 3x3 quadrupole array. The windings (of constant current) 
.,-__________ c:::o::rr:.:e:2spond to three terms m=I.2.3 which provide free space between coilsd 

d This 3d CAD model was made on ProE by Ken Chow. 
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Analysis 

Consider a quadrupole with its center located at (S cos 00 , S sin 00 ) as shown in Fig. 4. The expansion of the 
vector potentiale in the region outside the current sheet (p>R) and around that center is, 

~ "" IloJoz mR ) [ ) ( ' )] a . Ap = 0 4' (wmR Ja(WmR)J(3(WmP) - h(wmR J(I wmP cos 2,., SIllWm Z 
m=l 

Ap = L i'OJOz,m
R 

(wmR)[I3(wmR)J(3(wmP) + h(wmR)J(1 (wmP)] sin 2(i sinwmz 
4 . 

1n=1 

Az = L i'oJoz,mRh(wmR)J(2(WmP) cos 2(i COSWmZ 
m=l 

The relations between the components of the vector around (0,0) - (AT' Ao, Az) and the above components 
(Ap , Ap,Az) around (ScosOo,SsinOo) are, 

AT = Ap cos (0 - (i) + Ap sin (0 - (i) 

Ao = - Ap sin (0 - (i) + Ap cos (0 - (i) 

Az = Az 

---coil i=j=O 

coil ij 

"'-. 

Figure 4 The geometry associated with the Addition Theorem - top, and components of the vector potential - bottom. 

Proceeding, we shall make use of the following relationships, 

The unit vector relations are: 
ep = - cos ((i - 7r lex - sin ((i - 7r ley = cos (iex + sin (iey 
ep = sin ((i - 7r lex - cos ((i - 7r ley = - sin (iex + cos (iey 

ex = cos OeT - sin Oeo 

ey = sin BeT + cos Beo 
~~~~--~~--~~ e "Combined Right and Left Hand Helical Function Magnets", S.Caspi, SC-MAG-534, January 1996. 
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Therefore, 

ep = cos (0 - (3)eT - sin (0 - (3)eo 

e{3 = sin (0 - (3)eT + cos (0 - (3)eo 

01' 

eT = cos (0 - (3)ep + sin (0 - (3)(~{3 

eo = - sin (0 - (3)ep + cos (0 - (3)er; 

Addition Theorem 

In deriving the expansion around (0,0) we shall make use of the Addition Theorem as described in Reference f 

for simplicity we have dropped the i,j index for the parameter S. 

f 

We proceed in the derivation of the vector potential using the above relations and, 

t/> = 0 - 00 

(3 = 1r + 00 - ,p 
O-(3=t/>+,p-1r 

cos (3(3 - 0) = - cos (300 - 0) cos 3,p - sin (300 - 0) sin 3,p 

sin (3(3 - 0) = - sin (300 - 0) cos 3,p + cos (300 - 0) sin 3,p 

cos ((3 + 0) = - cos (00 + 0) cos ,p - sin (00 + 0) sin ,p 

sin ((3 + 0) = - sin (00 + 0) cos,p + cos (00 + 0) sin ,p 

cos 2(3 = cos 200 cos 2,p + sin 200 sin 2,p 

AT = Apcos(O - (3) + Ar; sin (0 - (3) 

, . 

AT = L J.loJo;,mR (wmRHh(wmR)f(3(WmP) cos (3(3 - 8) - h(wmR)f(I(WmP) cos ((3 + 0)] sinwmz 
m=l 

"Theory of Bessel Functions", G.N.Eatson, Cambridge University Press, page 361 
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The above is a contribution from a single quad with its center at Se-iOo. If we wish to assume an arrangement 
of 8 quads with full symmetry around 0,0 and centers located at Se-i(±8o) , Se-i(±~±Oo ) '. Se-i(-dOo)(quads on 
the symmetry line will require a weight factor of 112). 

~COS (k+3)OO = 2 COS (k+ 3)00[1+2cos(k~3)7r + COS (k+3)7r] 
00 

~ sin(k + 3)00 = 0 
00 

~ cos (k + 1 )00 = 2 cos (k + 1 )00 [1 + 2 cos (k ~ 1 )7r + cos (k + 1)7r] 
00 

~ sin(k+1)Oo=O 
00 

With the help of the relations, 

, 2(2k - 1) 
14k-3 = 12(2k-l) + 12(2k-J) wmr 

, 2(2k - 1) 
14k-l = 12(2k- l) - 12(2k-l) wmr 

and additional algebraic manipulation and the introduction of a nonnalization factor, 

The summation in i,j is carried out over all coils in the first octant. 

AO = - Ap sin (0 - (3) + Ap cos (0 - (3) 

Ao = ~ f.toJ~ ,mR (wmR) [h(wmR)/(3(WmP) sin (3(3 - 0) + h(wmR)/(J (wmP) sin ((3 + O)J sin WmZ 
m= l 
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The above expression is for the contribution from a single quad with its center at Se-iO •. As before if ~e 
now include contributions from 8 quads placed with full symmetry, we shall need to add the vector potential 
of coils with their center at Se-i(±O.) , Se-i(±~±O. ) , Se-i(-dO.). Making use of the trigonometric relations as 
shown for Ar 

- "" "" f.ioJoz mR(4k - 3)1 [ _ ' + 12(2k_ I)(wmr )] . . 
AO=-DD '2(2k) Ck 12(2k_ I) (wmr)+2(2k- l)Ck s10 2(2k- l )OSlOWmZ , 2(WmR) 1 ,m ,m wmr 

m=1 <=1 2 

Az = L f.iOJOz,mRh(wmR) J(2(WmP) cos 2{3coswmz 
m=l 

00 

](2 (WmP) cos 2{3 = L J(2+k(wmS)h(wmr)[cos 200 cos k(O - 00) + sin 200 sin k(O - 00)1 
k=-oo 

The above expression is for the contribution from a single quad with its center at Se-:-iO • . As before if we 
now include contributions from 8 quads and make use of the relations as shown for Ar, 

L cos 200 cos k( 0 - 00) = 2 cos 200 cos kOo cos kO [1 + ( _1)k - 2 cos ~7l" ] 
O. 

L sin 200 sin k( 0 - 00) = -2 sin 200 sin kOo cos kO [ 1 + ( _1)k - 2 cos k; ] 
o. 

~ [ k k7l"]" J(2(wmP)cos2{3=2 D J(2+k(wmS)h(wmr) cos (k + 2)00 1 +(-1) -2cosT cos kO 
k= - oo 

- " """" f.ioJo z,mR( 4k - 3)1 + 
Az= DD w R 2(2k I) Ck,mI2(2k_I)(Wmr) cos2(2k- l)O coswmZ 

m=lk=1 2("'Y') 
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Check 'V . A = 0 
A way of checking the results is to assure the divergence is zero anywhere in space. 

and since 

the divergence 

as it should be. 

The Magnetic Field Components. 

The r component of jj 

From the vector potential we derive the radial magnetic field component in the region r.S:R, 

Br = (\7 x X) = ~ oAz _ oAo 
r r 8f) oz 

oAz _ '" flOJOz,mR '" (4k - 3)! + ." 
of) - - 0 2 0 wmR 2(2k 1)2(2k -1)Ck,mI2(2k_1)(wmr)s1I12(2k -1)f)coswmz 

m=l k=l (-2-) 

[ , 1 oA J (4k _ 3)1 Ck,mI2(2k_l)(wmr)+ 
-8 0 = - L flo OZ,m (wmR) L 2(2k~l) I (. )(w r) sin 2(2k -1)f) cosWmZ 

Z m=l 2 k=l (wjR) + 2(2k _ l)Ct,m 2 2k~~r m 
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and Br reduces to, 

( 
2 )4k-3 , 

B r = L JlOJOz,m L wmR (4k - 3)!Ck,m I2(2k_J)(Wml' ) sin 2(2k - 1)0 coswmz 
111. ;::; 1 k= l 

We need to add the self field contribution from the coil at i=j=O. For r:O;R we add, 

and for r~R we add, 

The 0 component of jj 

Bo = (\7 x.4) = oAr _ oAz 
o oz or 

[ 

+ ' 1 oAr wmR (4k - 3)! Ck,m I2(2k_I)(Wmr)+ 
OZ = L JlOJOz,m (-2-) L W R 2(2k-l) . _ 12(2k - l) cos 2(2k - 1)0 COSWmZ 

m=1 k= 1 ("T") + 2(2k -l)Ck,m W
m

l ' 

oAz _ " (wmR)" (4k - 3)! + ' • or - 6JloJoz,m - 2- 6 W R 2(2k_I)Ck,mI2(2k-I)(Wmr) cos 2(2k -l)Ocoswm z 
m = 1 k=1 ("T") 

_ L L 2(2k - 1)(4k - 3)! - 12(2k_I)(wmr) 
Bo- JloJO zm 4k-3 Ckm cos 2(2k-1)Ocoswm z , (WmR) 'W I' 

m = 1 k= 1 ~ m 

In the region r:O;R we add the self field, 

" 4JloJoz,m h(wmr) 
Bo = 6 (R) , COS 20 COSWmZ 

Wm W m 1 
m=l 
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and similarly for r~R we add, 

The z component of jj 

Bz = (V x;\') = ~[8(7'Ao) _ 8Ar] 
z 7' 8,. 88 

but 

Therefore 

in the region r$R we supplement the field with the self field, 

and in the outer region r~R we add 
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Check \1 . B = 0 

As was done for vector potential we make sure the divergence of B is zero, 

nB~ 18(I'BT ) 8Be 8Bz 0 
v = +-+-= 

I ' 81' 1·80 8z 

8(rBT )" " (4k - 3)! - [' "l . . 81' = D /JOJOz,m D W R 4k 3 Ck,m 12(2k _ l)(Wml') + Wml'12(2k _l)(wmr) sm 2(2k - 1)0 COSWm Z 
m = l k= l ("T") . 

8Be " " (4k - 3)! 2 12(2k-l) (Wml' ) 
8fJ = - DllOJOz,mD W R 4k 3[2(2k-l)] Ck,m WI' sin2(2k-l)O cos wmZ 

m = l k= l ("T") . m 

8Bz " (4k-3)! _ . 
-8 = - D /JOJOz,mwm L 4k- 3 Ck,mI2(2k - 1)(wmr) sm 2(2k - 1)0 COSW", Z 

Z (WmR) m = ] k= l - 2-

\1B ex" (4k - 3)! 
D (wmR)4k 3 
k= ] 2 

and since 

The stored energy 

In calculating the stored energy we start from, 

1 JJJ ~ ~ E = 2 J. Adv 

and integrate the product on the surface current only over a full periodg : 

2~ L h L 

IJJ~~ IJJ~~ E = 2 J ' Ada = 2 J . ARdOdz 

o -L 0 - L 

(the current density is per unit length and the unit of energy is J = T, A . m2 ). 

g "Forces and Stored Energy in Thin Cosine(nfJ) Accelerator magnets." S.Caspi, SC-MAG-546, LBL-38500, 
March 1996. 
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We shall calculate the contributions arising from all external coil arrays followed by the self coil contribution. 
The product of the cu rrent density and the vector potential is : 

In performing the integration we shall make use of the following orthogonality relations: 

2~ {O J sin 20 sin 2(2k - 1 )OdO = 7r 

o 

2K {O J cos 20 cos 2(2k - 1 )OdO = 7r 

o 

k # 1 } 

k = 1 

L {O J sinwm zsinwj z dz = L 

-L 

In#J} 
In = J 

L {O J coswmzcoswjzdz = L 

-L 

In#}} 
In =J 

As a result the stored energy is reduced to, 

+ 

or, 

where, 

CJ;m = L L [J(O(WmSi ,j ) - J(4(WmSi,j) cos 400i,j]16I;(wmR) (W~R) 3 

1=1 J= 1 

the stored energy of the self coil is : 

and the total energy is, 
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Simulation of Current density and flow lines 

To generate flow lines we make use of a technic first demonstrated by 1.Laslett and W. Fawley of this laboratory. 
The character of the flow lines for a single function magnet n, will follow from the differential equation, 

RdO Jo 
dz Jz 

Assuming the current density for magnet type n=2 as, 

it follows that, 

and 

or, 

So that, 

j = J; JO.,m [ (W~R) sin 20 sin wmzeO + cos 20 cos wmze.] 

RdO 
dz 

I:: JOz,m(wmR) sin 20 sinwmz 
m=l 

2 I:: JOz ,m cos 2() cos WmZ 
m=l 

() I:: JO.,m(wmR) sinwmz 
cos 2 dO _ m=l dz = 0 
sin20 2R I:: JO.,mcoswmz 

m=l 

In (sin 20) + In (2 J; JOz,m coswmz) = canst. 

. () const. 
SIn 2 = -::-=----=-----

2 I:: JO.,m cos WmZ 
m=l 

and the flow lines are therefore, 

I:: JOz,m 
sin 20 = m=l sin 2()0 

I:: JOz,m cos WmZ 
m=l 

where ()o denotes the value of 0 at z=O. 

In a special case, we may choose special values for lo2,m such that, 

J02 (2M -1) 1 (2M -I)! 
J02 ,m = 22(M-l) M - m = J02 22(M_l) (M + m - 1)!(M - m)! 

where M is the number of m terms used in a particular case and 102 is a constant. 

We note that in this particular case 

1 ~ (2M - I)! 2M-l 
22(M-l) ~ (M + m _ 1)!(M _ m)! COSWmZ = cos WjZ 

1 M (2M-I)! 
22(M-l) J; (M + m - 1)!(M - m)! = 1 
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and therefore the current density is, 

M 
'" '" 1 (2M - I)! 2M- I 
L.. J02 ,mCOSWm z = J02 L.. 22(M - I) (M +m -1)!(M - m)! COSWmZ = J02cos WIZ 

In= l m= l 

With that, the flow lines reduce to the simple expression, 

sin 2() = 2M 
1 

I sin 2()0 
cos WI Z 

7r 
WI =-

L 

and the components of current density are, 

m=! 

m=! and m=2 

De, 

J(O, Z)lr=R = J02 
7rR(2M _1)cos2(M-I) 7rZ sin 7rZ sin2()eo 
2L L L 
cos2M-I 7rZ cos 20e 

L Z 

J 7r R . 7rZ . 2() 
0= 2L smysm 

7rZ 
Jz = cos y cos 2() 

Flow lines : sin 20 = sin 2!zO 
cosT 

7rR( 7rZ)2. 7rZ . 
Jo = 3 2L cos Y sm Y sm 20 

( 
7rZ)3 Jz = cos y cos 20 

Flow lines: sin 20 = 

16 

sin 2()0 

(cos ¥)3 



m=l, m=2 and m=3 

1rR( 1rZ)4 1rZ 
Jo = 5

2L 
cosT sinT sin20 

( 
1rZ)5 Jz = cos T cos 211 

Flow lines: sin 211 = 

17 

sin 2110 

(cos ¥)5 
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Figure 5 View of a full period array of a quad wilh m=1 only, a summalion over m= I,2 , and m= I,2,3. These special 
cases revel the reduction in crowding between magnets at the expense of an increased non-linear field. 
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The limiting 2 dimensional case 
As a farther simplification and check, we reduce the results obtained for the 30 array by extending the 

periodicity to infinity, limL~oowm = 0, and compare those with more familiar 20 cases of multipole magnets 
as cited in the abstract. 

s -> 0 

L ->oo 
. 2 

hm h(s) -> S8 
S~O 

lim ](2(S) -> f,-
S~O 

lim 1;(s) -> t, 
S~O 

, 4 
lim ](2(s) -> -.,-
S~O 

. 1;>5) 54 
hm }' ( ) -> - 16 
5-0 \2 S 

I, I ( ) I (S)2(2k - l) " ( ) I (S)4k-3 
s~~ 2(2k - l) S -> [2{ 2k I))! 2" !~ 12(2k_ l) s -> 2{4k-3)! 2" 

I, f( () (4k-5)!(S)-4(k - l) I' f( () (4k-I)!(S) - 4k 
lin 4(k-l) s -> 2 2" 1m 4k s -> 2 2" 

8-0 8-0 

- Jo = 2RG2,m Jz = Jocos20 ; 
1'0 

The 30 vector-potential reduces to the 20 expression (including self coil): 

AT = 0 

Ao = 0 

( )

4k 

Az = ~ 1'0J:z,m (~r cos 20 + 2,~ 1'0Joz,mR ~ (4k - 1) cos4kOOi,j S~j (~fk-2 cos 2(2k - 1)/1 

where the first term corresponds to the self field contribution from coil i=j=O, The field-not including the self 
field, is : 

_ ( R ) 4k 7' 4k-3 " 
BT=-4LI'OJOz,mL(2k-1)(4k-1)cos4kOOi,j Si (R) sin2(2k-1)0 

m=1 k=1 ,} 

( 
R )4k r 4k-3 

Eo=-4LI'OJOz,mL(2k-1)(4k-1)cos4kOOi,j Si (R) cos2(2k-1)0 
m=1 k= 1 J 

Ez = 0 
in agreement with the references cited in the abstract. The self field is : 

B- - '" 1'0JOz,m ( r) . 20 
T - - 6 2 R sm 

m=l 

B- L 1'0JOz,m (r ) 20 0=- - cos 
2 R 

m=l 

Ez = 0 

The array 20 multipole coefficients are equal to their contribution to the stored energy. 

2D 7r R2 LI'O '" 2 ( -2D) 7r R2 Ll'o '" 2 '" '" [ ( R ) 4 ] Etotal = 6 Jo 1 - em = 6 Jo 66 1 + 24 -S" COS400i,j 
8 8. . '} 

m m I J ' 
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Appendix A Region outside the coil r;?:R 

The contribution of the self field (centered at 0,0) in the region outside the current sheet is listed below, 

Contributions from the coil at i=O, j=O in the region r~R 

~ '\' !loJO z m ° 
AT = 0 4 ' (wmR)[h(wmR)K3(wmr) - h(wmR)Kj (Wml')] cos 20 sinwm z 

m = l 

Ao = L !loJ:z,m (wmR)[h(wmR)K3(Wml') + h(wmR)Kl(wmr)] sin 20 sinwmz 
m= l 

Az = L /loJo z,mRh(wmR)K2(Wmr) cos 20 COSWmZ 
m = l 

'\' JO zm!lO 2 ' , ° BT = 0 2 (wmR) J2 (wmR)K2 (Wml°) SIll 20 COSWm Z 
m= l 

B '\' Jozm!lO( R)2J'( R)2!(2(Wml0

) · 20 e = ~ Wm 2 Wm COS COSWmZ 
2 wmr 

m= I 

Bz = - L JO Z;!lO(wmR)2J;(wmR)K2(wmr)Sin20Sinwmz 
m=l 

02,m = JO~to (wmR)3 K;(wmR) 
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Appendix 8 3 Dimensional Coefficients 
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Figure 6 The values associated with the multipole coefficients for m=l and the 
quad term k=l. Values at pi*RJL = 0 correspond to the 2 dimensional case, 
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Figure 7 The values associated with the multipole coefficients for m=1 and the 
dodecapole tenn k=2. Values at pi *R/L = 0 correspond to the 2 dimensional case. 
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Figure g The values associated with the multipole coefficients for m=l and the 
20' s pole k=3. Values at pi*RJL = 0 correspond to the 2 dimensional case. 
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Figure 9 Ratio of stored energy contributed by external coils for m=1 and the 
quad term k=1. Values at pi*RJL = 0 correspond to the 2 dimensional case. 
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