GPU COMPUTING FOR PARTICLE
TRACKING !

Hiroshi Nishimura, Kai Song, Krishna Muriki,
Changchun Sun, Susan James, Yong Qin

ALS and IT Divisions
Lawrence Berkeley National Laboratory
One Cyclotron Road
Berkeley, CA 94720

April, 2011

I'Work supported by U.S. DoE Contract No. DE-AC02-05CH11231



DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. While this document is believed to contain
correct information, neither the United States Government nor any agency
thereof, nor the Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes any legal re-
sponsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by its trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, rec-
ommendation, or favoring by the United States Government or any agency
thereof, or the Regents of the University of California. The views and opin-
ions of authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof or the Regents of the
University of California.



GPU COMPUTING FOR PARTICLE TRACKING *

Hiroshi Nishimura T, Kai Song, Krishna Muriki, Changchun Sun, Susan James, Yong Qin
Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA

Abstract

This is a feasibility study of using a modern Graphics
Processing Unit (GPU) to parallelize the accelerator par-
ticle tracking code. To demonstrate the massive paral-
lelization features provided by GPU computing, a simpli-
fied TracyGPU program is developed for dynamic aperture
calculation. Performances, issues, and challenges from in-
troducing GPU are also discussed.

INTRODUCTION

General-purpose Computation on Graphics Processing
Units (GPGPU) bring massive parallel computing capabil-
ities to numerical calculation [1]. However, the unique ar-
chitecture of GPU requires a comprehensive understanding
of the hardware and programming model to be able to well
optimize existing applications. In the field of accelerator
physics, the dynamic aperture calculation of a storage ring,
which is often the most time consuming part of the acceler-
ator modeling and simulation, can benefit from GPU due to
its embarrassingly parallel feature, which fits well with the
GPU programming model. In this paper, we use the Tesla
C2050 GPU which consists of 14 multi-processors (MP)
with 32 cores on each MP, therefore a total of 448 cores, to
host thousands of threads dynamically. Thread is a logical
execution unit of the program on GPU. In the GPU pro-
gramming model, threads are grouped into a collection of
blocks. Within each block, multiple threads share the same
code, and up to 48 KB of shared memory. Multiple thread
blocks form a grid, which is executed as a GPU kernel. A
simplified code that is a subset of Tracy++ [2] is developed
to demonstrate the possibility of using GPU to speed up the
dynamic aperture calculation by having each thread track a
particle.

PARTICLE TRACKING

Accelerator Code

A new library TracyGPU is developed to demonstrate the
above concept. Among several programming models that
are available to GPU, Compute Unified Device Architec-
ture (CUDA) [1] is chosen to create a subset of Tracy++,
which is a C++ code developed and used by Advanced
Light Source (ALS) [3]. The original ALS storage ring
lattice [3] is used for testing. This work is developed with
CUDA C, which is a variant of C that supports both CPU
and GPU. Theoretically, it is possible to port the entire C++

*Work supported by U.S. DoE Contract No. DE-AC02-05CH11231
T H_Nishimura@1Ibl.gov

library including data structure and classes to GPU. How-
ever, as we describe in this paper, due to the limitations of
the CUDA compiler and the GPU architecture, TracyGPU
library is a redesigned version of Tracy++ to utilize both
the CPU and GPU for accessibility, simplicity, and flexibil-
ity.

TracyGPU contains three logic units: Optics, Fitting,
and Tracking. The Optics unit calculates the accelerator
optics functions such as beta and dispersion functions, be-
tatron tunes, chromaticities and the natural emittance, by
using the matrix formalism. The Fitting unit fits optics
functions and properties by calling Optics unit. Tracking
unit tracks particles to calculate dynamic apertures.

TracyGPU is developed with two execution modes for
performance comparison: 1) all three logic units run on
CPU, 2) Optics and Fitting run on CPU while Tracking runs
on GPU. In the second mode, due to some physical limita-
tions that are discussed later in this paper, only the Tracking
unit is currently ported to GPU, while the other two units
remain on CPU and are not parallelized. To better utilize
the limited shared memory on GPU, another data structure
uRing, which is different than the original Ring data struc-
ture that is dedicated to CPU, is designed for GPU. The
new uRing data structure only has a 7 KB of memory foot-
print. By comparing it to the 42 KB memory footprint of
Ring, it stores more efficiently and saves memory spaces
for other data structures.

Steps of the Calculation

When calculating the dynamic apertures for a given op-
tics setting, particles are tracked at 651 transverse mesh
points (x, y) with x=0, 1, 2, .. , 30 mm and y=0, 1, 2,

., 20 mm. This calculation is performed in parallel on
GPU by creating 651 threads. Each thread tracks a particle
with a given initial point that is up to 400 turns by checking
the transverse excursion. These 651 threads form a thread
block.

To further explore the GPU parallelization capability,
we launch multiple Ring settings to calculate the dynamic
apertures of each Ring, e.g., 100 different sets of betatron
tunes. If a GPU can host multiple optics settings simulta-
neously, the entire tracking process can be done in parallel.

The actual calculation works as described below. A Ring
object is created on CPU. The optics are calculated and fit-
ted by using the Optics and Fitting units. This is done for
all the optics settings, and the output magnet settings are
stored in a data array. This data array and a subset of Ring
data structure, uRing, will be passed to GPU. On GPU,
each thread block saves a copy of the uRing in its shared
memory, and the magnet values will be set from the input



data array. This results in each thread block having its own
uRing object settings, thus being able to calculate dynamic
aperture independently and in parallel.

RESULTS AND DISCUSSION

Performance Measurement

As mentioned previously, TracyGPU library has two ex-
ecution modes. The wall clock time spent on the TracyGPU
code is compared between these two execution modes to
demonstrate the performance improvement. Figure 1
shows that the total simulation time scales as IV increases
for both mode 1 and mode 2, in which N represents the
number of Rings. It is observed that running on GPU takes
about one order of magnitude less time than solely on CPU,
even though only the Tracking unit is ported to GPU.

200
180
160
140

Time (s)
)
o

0 5 10 15 20 25

Figure 1: Execution time comparison between the CPU and
GPU versions of TracyGPU

Figure 2 shows the run time further broken down for
different units in execution mode 2, in which the solid line
depicts the Optics and Fitting units running on CPU, and
dashed line represents the Tracking unit running on GPU.
As indicated, the time spent on the Tracking unit increases
little as the number of Rings is increased. This is due to
the massive parallelization and the large number of cores
available on the Tesla C2050 GPU. However, for the Op-
tics and Fitting units, since they are only executed on CPU
and these portions of code are not in parallel, the run time
increases at a larger O(IV) scale. As a consequence, this
will affect the overall performance when a large N value is
used.

To further analyze the performance profile on GPU, we
also separately measured the kernel execution time and the
time spent on initializing the CUDA environment. Because
CUDA API does not provide an explicit way to initialize its
environment, the latter part is roughly measured by using
the time spent on the first cudaMalloc() function, which
is usually the first CUDA API called in the program. As
showed in Fig. 3, CUDA initialization time typically takes

— Optics+Fitting
30f - - Tracking

25

20

Time (s)

Figure 2: Execution time of Optics/Fitting and Tracking
units for TracyGPU running at GPU mode

about 6 seconds and could randomly go up to about 8.5 sec-
onds. The reason for the randomness is unknown. How-
ever it is suspected that this is related to the fact that we
have two C2050 on the host and it may not be initializing
the same device each time. Nevertheless, this initialization
time also reduces the overall performance, especially when
less Rings are used. As also indicated in Fig. 3, the time
spent in the GPU kernel routines does not increase linearly
but exhibits a step increase with a period of 14 Rings. This
is due to the 14 multi-processors available on the GPU.
During each iteration, a total of 14 Rings are launched si-
multaneously on these 14 multi-processors to run in par-
allel, and synchronized at the end of each iteration. Thus
they consume the same amount of time to finish.

10
9
8
7
B L LR L SR
@
o 9
S
S
3
2
—Kernel
1 - = cudaMalloc()

0 20 40 60 80 100 120

Figure 3: GPU initialization and kernel time comparison

With all these unique performance characteristics, it is
also worthwhile to assess the overall speedup versus the
speedup only for the Tracking unit, which is the only part
that is ported to GPU. In Fig. 4, overall speedup is defined
as the run time of execution mode 1 divided by run time of
execution mode 2 which are showed in Fig. 1; while kernel



speedup is defined as the execution time of the Tracking
unit running on CPU divided by the execution time running
on GPU. The results indicate that the overall speedup is
considerably less than that of the GPU kernel due to the
non-optimized Optics and Fitting units, as well as the GPU
initialization time.

140

Speedup

—Kernel
20 == Overall
G0 20 40 60 80 100 120 140 160
N

Figure 4: TracyGPU speedup comparison

Issues and Lesson Learned

There are two major issues when porting Tracy++ library
to GPU: 1) dealing with data structures with many pointers
and classes and, 2) memory limitation of the GPU kernel.
For these reasons, the whole Ring data structure was rewrit-
ten to eliminate classes, and to pre-allocate all data arrays
inside the Ring. Another obstacle that is noticed during the
development is that, it is not possible to compile the code
if we try to fit the entire library into the kernel. This is be-
cause some of the library functions are too big to optimize,
thus the compilation will eventually run out of memory and
fail. As a result, we removed Optics and Fitting units from
the GPU kernel and performed these calculations on CPU
to further shrink the GPU kernel size.

With all these challenges, it is learned that porting ex-
isting C/C++ library to GPU is not trivial. It usually re-
quires partial or full reconstruction of the data structures
and functions so that the kernel can be successfully com-
piled and efficiently executed on GPU. Therefore, some-
one with a comprehensive insight of the library can be ex-
tremely helpful. Based on our experience, existing compu-
tation libraries, especially those designed without having
GPU architecture in consideration, could be difficult to port
due to the differences between CPU and GPU architectures.
One solution for this is to start by re-evaluating the design
of the original data structures and algorithm, and optimize
specifically for GPU.

Future Work

In this study, a simple GPU based particle tracking code,
TracyGPU, is developed, and the performance character-

istics are studied. The same technology could also be ex-
tended to other potential applications, e.g., particle track-
ing for Frequency Map Analysis (FMA) [4, 5]. By adding
two extra arrays to the kernel that performs the particle
tracking, the particle trajectories can be maintained and
then transferred from GPU to CPU for FMA. The code
demonstrated here is implemented with single-precision
floating-point calculations. However we are also aiming at
a double-precision version to better suit accelerator simula-
tions. In this paper we presented a simplified test case with
up to several hundred Rings. As discussed above, when
more and more Rings are added to the simulation, which
will be the typical usage of TracyGPU, Optics and Fitting
units will consume a significant portion of the total simula-
tion time. Nevertheless, since these two units are currently
running on CPU and in serial, parallelization technologies
for CPU, such as OpenMP, multi-threading, or vectoriza-
tion could also be used for further optimization and perfor-
mance improvements.

SUMMARY

In this paper we performed the feasibility study of port-
ing an existing Tracy++ library to Nvidia Tesla C2050
GPU for ALS lattice research. Performance of the new
TracyGPU library, as well as the challenges encountered
during this effort are extensively discussed. Based on this
preliminary research, good performance enhancement is
observed, however further optimization and performance
improvements are also expected. One potential applica-
tion of this library is provided as the next step research
direction. From this study, we anticipate that the mas-
sive parallelization features introduced by GPGPU could
greatly benefit the HPC community and facilitate scientific
research.

ACKNOWLEDGEMENTS

This research used resources provided by LRC, Labora-
tory Research Computing [6], which is managed by LBNL
IT division. The authors would also like to thank David
Robin from ALS and Gary Jung from IT Division for their
encouragement and support, as well as John Stratton from
UIUC for his advice on GPU programming.

REFERENCES
[1] David B. Kirk, Wen-mei W. Hwu, “Programming Massively
Parallel Processors, ISBN: 978-0-12-381472-2, 2010
[2] H. Nishimura, PAC 2001, Chicago, June 2001.

[3] LBL PUB-5172 Rev. LBL,1986. A. Jackson, IEEE 93PAC,
93CH3279-7,1432, 1993.

[4] J. Laskar, Icarus 88, 266-291, 1990.
[5] D. Robin et al., Phys. Rev. Lett. 85 (2000) 558.
[6] Laboratory Research Computing, http://lrc.1bl.gov



