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Abstract

Background: Terabyte-scale collections of string-encoded data are expected from consortia efforts such 

as the Human Microbiome Project  (http://nihroadmap.nih.gov/hmp). Intra- and inter-project data 

similarity searches are enabled by rapid k-mer matching strategies. Software applications for sequence 

database partitioning, guide tree estimation, molecular classification and alignment acceleration have 

benefited from embedded k-mer searches as sub-routines.  However, a rapid, general-purpose, open-

source, flexible, stand-alone k-mer tool has not been available. 

Results: Here we present a stand-alone utility, Simrank, which allows users to rapidly identify database 

strings the most similar to query strings.  Performance testing of Simrank and related tools against DNA, 

RNA, protein and human-languages found Simrank 10X to 928X faster depending on the dataset. 

Conclusions: Simrank provides molecular ecologists with a high-throughput, open source choice for 

comparing large sequence sets to find similarity.

Background

 Molecular ecology methods often require the collection of thousands of polymer sequences (DNA, 

RNA or proteins) extracted from biological specimens (isolates or communities) followed by a similarity 

search of those sequences against one or more reference databases. The match results enable the 

deduction of community composition [1] or inference of functional capacity [2, 3] within organisms or 

across populations.  The most popular method for sequence comparison has been to find local alignment 

pairings using BLAST [4] but due to speed limitations, other software has emerged to bypass the time-



consuming alignment step by simply counting the number of short sub-sequences shared between a 

subject and query.  Sub-sequence oligomers are referred to as k-mers and are the set of possible fragments 

of a given length (2-mer, 3-mer, 4-mer, etc.) from a polymer.  K-mer matching has been employed for 

diverse objectives in genomics including bacterial gene discovery [5], identifying DNA signatures of 

pathogenic bacterial genomes [6], delineating plant genome polyadenylation sites [7],  spotting genetic 

engineering in bacteria [8], assembling shotgun DNA sequences [9], human genome re-sequencing [10], 

protein superfamily recognition [11], and sequence clustering [12].  Rapid k-mer similarity searches have 

become the foundation for high-throughput phylogenetic classification of DNA [13-15]. Surprisingly, a 

general-purpose open-source software tool to aid biologists in performing all the aforementioned tasks is 

not readily available.  MICA [16] can match DNA k-mers against a genome but requires a Windows or 

Macintosh GUI, is not open source and is restricted to 7-mers or shorter.  SSAHA2 [17] is less limited but 

is impeded by coupling k-mer searching with non-optional local alignments that are unnecessary for some 

applications. Unfortunately, SSAHA2 does not search protein sequences.  Cd-hit [12] efficiently evaluates 

k-mer set unions for the purpose of single-linkage (nearest-neighbor) clustering.  Cd-hit does not allow 

the decoupling of k-mer searches from the clustering, thus it is not used as a general-purpose similarity 

reporting tool.

 Simrank was conceived to avert these limitations.  The earliest version (N. Larsen, unpublished) 

was produced to run as a web service for the Ribosomal Database Project, starting in 1992 [18]. It was 

coded in FORTRAN when only a few hundred 16S rRNA gene sequences had been determined, and was 

able to index a maximum of 33,000 sequences.  Since FORTRAN popularity has generally waned in 

comparison to PERL and C [19],  Simrank was reimplemented to encourage greater community 

involvement and extended for usage with larger datasets. The PERL/C implementation described here has 



a database limit of 2 billion sequences, but this limit can be lifted by changing constants within the source 

code.  Compared to the alternatives, Simrank is the only choice that is completely open source, quickly 

estimates the overall similarity between query and database sequences, compiles and runs on all 

contemporary hardware and operating systems, is sans GUI allowing pipeline integration, eschews 

sequence alignment and clustering steps, allows user-definable search depths, is unrestrictive of k-mer 

sizes, and is unrestrictive of polymer or string type.  If sequences can be represented as text strings, such 

as nucleic acids, proteins, and even human-readable language, then they can be quickly compared using 

Simrank.

 Simrank has enabled advances in curation and annotation practices of large biomarker data-sets 

such as the Greengenes 16S rRNA gene database [13] and has aided in creating guide-trees, OTUs and 

probe performance predictions for the PhyloChip™ assay (Second Genome, San Francisco, CA)[20].  

Microbial ecologists have employed Simrank to annotate 16S rRNA gene sequence libraries by 

comparisons to reference databases [21-23].   Counts of sequences matching each taxon are used as 

proxies for community structure and are compared across clinical or environmental samples by 

researchers to elucidate niche effects such as competition, selection, resource partitioning and 

colonization [24].  Simrank’s utility to molecular microbial ecologists will continue to grow concomitant 

with the size of sequence datasets. 

Implementation 

 Simrank is implemented mainly as an object-oriented PERL module, with one 5-line function 

written in C for efficiency.  An example script is included with the software which allows parameter 



choices for many features directly from a command line.  Accessing the object directly within a PERL 

program allows all features to be parameterized. 

Inputs

 The input files (reference database or query set) are FastA formatted multiple sequence files and 

do not need to be aligned.  For each record only two newline-separated fields are required, the header and 

the string itself.  The header begins with the “>” character and can contain any number of fields separated 

by characters convenient for the user’s work flow.  The one constraint, is that within the header must be a 

unique string identifier between the “>” and the first space or newline.  For example, within the header 

“>gg_id244724  cattle rumen clone YNRC11\n”,  “gg_id244724” is considered the unique identifier.  

Following the header is the string itself which can be DNA, RNA, protein, human readable language or 

other text.

Database Format

 From the input, a binary file is generated optimized for retrieval of k-mer similarities.  The binary 

file contains a pre-computed map between all unique k-mers and a list of all sequences containing that k-

mer. Recorded k-mers can be restricted to those entirely composed of a user-defined alphabet (e.g. ACGT 

for DNA databases). 

Formatting procedure

 Each string is assigned an integer index and then is split into all valid k-mers of user-defined 

lengths  (default 7-mers) and alphabets. The k-mers are overlapping substrings representing the 

contiguous source string.  Unique k-mers are hashed and counted. Each k-mer is associated with an array 



of offsets representing all the string indices containing the given k-mer. Specifically, each integer in this 

ordered list is the number of indices to skip to find the next string index containing this k-mer.   This 

information is encoded in a binary file ordered according to Table 1.

Search procedure

 Simrank’s search procedure is initialized by reading minimal database attributes into memory. 

Then, query strings are handled serially to calculate similarity to each database string.  In the 

initialization, six of the eleven database file segments (Table 1) are read: the list of string identifiers, k-

mer length, all unique k-mers, counts of unique k-mers in each string, and the file’s start positions and 

lengths of each k-mer’s offset array.  Constraining disk access to only these elements minimizes pre-

search lag-time.  An in-memory PERL data structure is established as a hash of k-mer keys, each 

referencing two pointers, the begin byte position of list of offsets and the length of the offset.  Since the 

database file structure is governed by the k-mer length, each unique combination of a reference string file 

and k-mer length will require its own database creation.

 Each query string initializes a C scoring vector of length equal to the number of strings in the 

database x 4 bytes. All scores are set to zeros.  Next, Simrank extracts all unique query k-mers according 

to user-defined length and alphabet restrictions and sorts them lexically.  Any query k-mer found in the 

database begins a file seek to read the list of sequence id offsets allowing increments of scores for 

corresponding elements in the scoring vector. Lookups and increments occur in precompiled C routines.  

After all query k-mers are examined, Simrank returns a sorted list of similarities as a table. The similarity 

between sequences Q and S are the number of unique k-mers shared, divided by the smallest total unique 

k-mer count in either Q or S.   



Results

 Diverse data sets (DNA, RNA, protein and human readable language) of various sizes ranging 

from 2.8 million to 687 million characters (Table 1) were used for testing Simrank in comparison to other 

tools (Figure 1).  Simrank was able to index each dataset according to various k-mer and alphabet sizes.   

SSAHA2 and megaBLAST were unable to index the protein dataset.  Language indexing and searching 

was tested using institute names extracted from GenBank records.  Indexing the list of institute names 

directly was impossible for SSAHA2, BLAST and megaBLAST, so an artificial conversion from 

language to DNA [25] was performed.  

 Simrank considered all regions of both the query and database sequences in each pair-wise 

calculation of similarity.  Since BLAST constrains its results to only sub-regions of high similarity, it was 

run with parameter ‘-q -1’ to allow longer match regions and equitable comparison to Simrank. BLAST 

was accelerated with parameters ‘-S 1 –e 0 –m 8’ so that only the top strand was searched for significant 

matches and minimal disk writes were required.   In all comparison tests, the top ten database matches 

with over 90% identity (as defined by each program) were requested for each query string except for 

BLAST where percent identity thresholds are not definable.  All software comparisons were conducted on 

a Linux server with Dual-Core AMD Opteron 8216 2.4GHz processors and 32 GB of shared memory but 

Simrank does not require hardware with large memory.  For example, a MacOSX  laptop with an Intel 

Dual-Core i5 2.4GHz processor required only 66 MB of memory and completed the ITS test (Table 2) in 

540 seconds (similar to the speed observed on the 32 GB server).  Figure 1-top displays the log-scale 

time required to complete each search. Simrank completed its search in less time than all other tools in all 

dataset types. The only exception was in the randomly shuffled DNA dataset test where SSAHA2 

completed its search before all others.  Search hit counts were measured in comparison to BLAST.  The 



number of query-subject relationships each tool returned was divided by the number returned from 

BLAST.  Since BLAST constrained hits by e-values equal to 0, hits with under 90% similarity were 

counted resulting in BLAST returning the majority of hits across all datasets.  Figure 1-bottom reveals 

comparable hit counts among the tools for real DNA datasets such as the 16S rRNA database, the 

pryrosequence library and the ITS database (Table 2).  The shuffled (synthetic) DNA library was included 

in the dataset as a negative control where only insignificant hits are expected. Simrank reported fewer of 

these insignificant hits than BLAST but megaBLAST and SSAHA2 ignored them all.

 The protein and RNA datasets revealed a large contrast among the tools. Only Simrank and 

BLAST were able to search protein sequences and BLAST returned the greatest number of hits given the 

constraints.  RNA searches were possible with all tools but SSAHA2 was unable to find matches and 

Simrank found less than both BLAST and megaBLAST.    

 The institute affiliation data set was comprised of character strings representing over 23,000 

academic departments and addresses found in GenBank records.  Simrank was able to not only find exact 

matches but also to rapidly detect highly similar inexact matches.  For instance, “Institut National de la 

Recherche Agronomique, Avenue des Etangs, Narbonne 11100, France” and “Laboratoire de 

Biotechnologie de l'Environnement, Institut National de la Recherche Agronomique, Avenue des Etangs, 

Narbonne 11 100, France” shared 96.47% of their 4-mers.  The BLAST tools and SSAHA2 were effective 

at finding these relationships as well but only after the artificial conversion [25] from language to DNA. 

 Comparison of an experimentally obtained 16S rRNA gene library [26] against a 16S reference set 

is plotted in Figure 2.   Similarities were calculated using Simrank with 7-mers or the alignment-based 

F84 similarity, a metric commonly used as a measure of phylogenetic divergence [27-29].  Each circle 



represents a single sequence. The majority of observed pairings exceeded 90% by F84 distance and 60% 

by Simrank distance.

 In a test of DNA search sensitivity, 50 16S rRNA gene queries were drawn randomly from the 

Greengenes set of 188,073 subjects.  All query-to-subject full-length alignments were found with BLAST 

(-q -1) and were recored whenever the percent identity was >= 97%, calculated as  i/min(Lq, Ls), where i is 

the count of pair-wise base identities and Lq and Ls are the lengths of the query and subject strings, 

respectively.   These recorded matches were labeled as “true positives” for reference in Receiver Operator 

Characteristic (ROC) analysis [30].  The same 50 queries were Simrank compared to all subjects using 

multiple k-mer lengths (from 5-mers to 10-mers) and the results are presented in ROC curve format as 

Figure 3.

 

Memory

 The memory consumption of Simrank during indexing is moderate and grows linearly with the 

number of sequences and depends on the k-mer size defined by the user.  For example, when the 16S data 

set containing sequences with a mean length of 1,350 characters was indexed on 7-mers, 50 MB of 

memory was utilized for every 20,000 sequences.

Discussion

 As expected, Simrank was able to search bio-polymer databases in less time than local alignment 

search tools. Simrank was 10X to 928X faster than the BLAST tools in finding similarities among DNA, 

RNA and proteins.  The rapid delivery of results is enabled by the simplistic calculation requiring no 

bottleneck alignment steps.  Since SSAHA2 employs a hybrid strategy of building pair-wise alignments 



but only against records achieving significant k-mer identities, it was expected to exhibit speeds between 

BLAST and Simrank.  This prediction was observed in Figure 1-top where Simrank is shown to be only 

1.5X to 158X faster than SSAHA2 when tested against public DNA and RNA datasets.  SSAHA2 was 

unable to search protein databases.  Simrank and BLAST lagged behind megaBLAST and SSAHA2 when 

searching shuffled DNA sequences (i.e. synthetic dataset), but were able to find distant relationships 

missed by the others. SSAHA2 and megaBLAST require larger seeds to elicit alignments and thus 

searches terminated quickly.  Conversely, Simrank and BLAST examined each 7-mer in each query 

requiring more compute time but enabling distant similarity reporting.   

 The method of hit count measurement displayed in Figure 1-bottom presents serious drawbacks.  

Similarity scales across the tools are not strictly equivalent (as noted in Figure 2 and in “Usage 

Considerations”), therefore, a 90% match has not the same meaning in Simrank as it may have in the 

context of an alignment-based score.  Comparison of different scales with a uniform threshold does not 

convey the true sensitivity of Simrank.  In order to more directly address the question of sensitivity, a test 

was conducted to determine the ability of Simrank to find homologues with 97% identity, a popular cutoff 

for Operational Taxonomic Unit (OTU) boundaries used in molecular microbial ecology [20].  Figure 3 

demonstrates the capacity of Simrank's similarity measure to find appropriate database subjects with a 

reasonable number of false positives and false negatives despite the difference in scoring scales.  This 

approach allows calibration of  Simrank and definition of appropriate thresholds.  For example, to find 

query-subject pairs with 97% full-alignment identity within the 16S dataset, one could utilize a Simrank 

k-mer size of 8 and score threshold of 84.6% to realize a true positive rate of  95.00% with a 

corresponding false positive rate of just 00.05%.  This means that Simrank matches with over 84.6% 8-



mer identity will cover 95% of the BLAST hits but will also match a very small number of strings not 

found by BLAST.  

 Although not included in the Figure 1, we observed that BLAST and SSAHA2 database 

formatting procedures are faster than Simrank’s.   For this reason we suggest using BLAST or SSAHA2 

for exploratory sequence comparison since trial-and-error databases can be created and destroyed rapidly, 

but to select Simrank for persistent datasets where various queries will be compared to a fixed set of 

sequences.  Consequently, the Greengenes web service [13] utilizes Simrank as the search engine for 

sequence comparison and taxonomic classification of arbitrary user sequences against a reference data set.

 Simrank can run in stand-alone mode or as a PERL module within a simple or complex pipeline.  

The components are modular so various phases of a pipeline can separately encode databases, initialize 

search factories in memory, and/or process queries as batches or data streams. Simrank accepts user 

parameters to filter results by depth and/or percent similarity. This is an advantage in high-throughput 

environments over BLAST, for instance, since post-processing filtering scripts are not needed.

 Simrank may allow recovery of useful information from error-laden sequences.  A current problem 

in the popular pyrosequencing technique is the reporting of long homopolymers not verifiable by 

traditional sequencing techniques [31].  Simrank eliminates the effect of sequence discrepancies arising 

solely from homopolymer exaggeration. For instance, a run of 7 consecutive A’s can be recorded as one 

unique 6mer. Thus, if the only polymorphism differentiating two query sequences is the length of an 

unsubstantiated homopolymer, their Simrank scores against a database will be equivalent.

 While this manuscript was under review, another k-mer leveraging software package, UCLUST/

SEARCH [32] was published.  Although it  is not open-source and requires a paid license for 64-bit 



versions or commercial use, it does have potential to be highly useful for rapid k-mer searches as well as 

sequence alignments.

Usage considerations

 From observations summarized in Figure 1, it is advised that Simrank is not suitable for searching 

randomly shuffled DNA, marginally suitable for matching proteins or strings of highly variable content 

such as group I self-splicing introns where similarity is limited to only two short spans [33].  Simrank is 

well-suited for searching variants of full-length homologous strings such as 16S rRNA genes, partial-

length homologous strings such as those created by Roche-454 sequencing technology, and variants of 

eukaryotic internal transcribed spacer regions.

 Simrank similarity scores are not equivalent to alignment percent similarities.  For example, 

Figure 2 displays differences in similarity scores observed when a single DNA sequence collection [26] is 

compared to a reference database using Simrank versus the alignment-based F84 scoring distance [27].  

Alignment identities of 90% can produce Simrank identities of 55-70%, and conversely, Simrank 

identities of 90% can produce alignment identities of 93-99%.  The differences are caused by two factors. 

First, one sequence may contain repetitive k-mers at disjointed positions leading to a perceived increase in 

similarity, and second the spatial distribution of mismatches can lead to divergence of Simrank and 

BLAST scoring. For example if every 1 in 7 bases are mismatched in a pair-wise alignment, then Simrank 

using 7-mers would report a 0% similarity where BLAST would conclude 86% similarity. Thus, tuning k-

mer length to the expected frequency of mismatches may result in application-adapted search sensitivity. 

 Levels of significance for hits to protein sequences should be established based on known 

reference sets. Protein strings  are generally shorter than gene strings and their similarity patterns are often 

single conserved amino acid positions separated by one or two variable positions.  The search for 4-mer 



similarities within the GP120 protein dataset revealed this difficulty.  The BLASTp alignment procedure, 

although 28X slower, was nearly twice as sensitive compared to Simrank.

 Furthermore, since each k-mer is compared across sequences without regard to their relative 

position in the sequences, Simrank is insensitive to continuous and non-continuous patterns within the 

sequence such as sites of potential secondary structure.  As with all inter-sequence comparisons, search 

results decline in significance when comparing a very short versus a long sequence.  Users can set lower 

length limits to avoid misleading match pairs. 

 As noted in Table 2, the language search comparison encountered 61 unique characters in the 

institute names but the complexity was reduced to 46 characters for BLAST and SSAHA2.  BLAST and 

megaBLAST were able to find twice as many matches than Simrank but the significance of these hits are 

questionable since BLAST’s local alignments allow one word such as “University” to produce high-

scoring pairs.  Of the tools, only Simrank tested the entire string for similarity.

 Simrank search results across databases composed of strings with repetitive elements can be 

refined by setting the k-mer length to exceed the repeat length.   Any repetitive k-mers within a string are 

counted only once since only the unique counts are used to create the quotient.  In this case, Simrank 

percent similarity scores would be inflated relative to BLAST. 

Future work

 Common tasks in molecular microbial ecology may be facilitated with Simrank. Applications 

include dataset de-replication, sequence clustering, and rapid classification.  In upcoming versions, we 

plan to provide options to reduce database file sizes and memory requirements for constrained alphabets.  

For instance non-ambiguous DNA can be encoded with 2 bits for each base instead of 8.   To further 



increase speed during batch queries, a non-redundant strategy will be made available allowing a pre-

screen of the batch to identify all unique k-mers before reading offset arrays from disk. This will prevent 

common k-mers from inducing repetitive file reads.  Because strings within biological query sets can 

often contain similar k-mers, we estimate a >5-fold speed increase.  To increase the ability to filter hits 

from a large databases of various length strings, a significance score can be added which considers the 

likelihood of a percent similarity score given the number of total unique k-mers in the query-subject 

comparison. This feature will generally down-weight matches from short strings compared to long strings 

with equivalent percent k-mer identities.  Lastly, Simrank can be extended to store and output the string 

coordinates where k-mers match, should that become desirable.  The computationally intensive k-mer 

tally procedure was written in C for speed but the IO and formatting is written in PERL for easy 

adaptations and extensions by computational biologists.  It is the authors’ intentions that other 

bioinformaticians will be able to improve the open source code where necessary to meet the needs of their 

projects. Please contact us if you would like to have your changes reflected in the distributed version.

Conclusions

 Simrank provides molecular ecologists with a high-throughput choice for comparing large 

sequence sets to find similarity.  The software presented is orders of magnitude faster than its open-source 

counterparts, sensitive to low-similarity matches when desired, and flexible to allow similarity 

comparison for DNA, RNA, proteins and even written language.  Simrank is specifically designed for 

matching queries against large reference sets.  Two of Simrank's beneficial attributes are its speed and 

flexibility.  It is capable of reporting significant hits faster than both BLAST and SSAHA2 ,  moreover, 

Simrank is more flexible than CDHIT  since k-mer searches are de-coupled from clustering.   



Availability and requirements:

Project name: String::Simrank

Project home page: http://search.cpan.org/perldoc?String::Simrank

Operating system(s): Platform independent

Programming language: PERL, C

Other requirements: 

License: PERL Artistic License

  Any restrictions to use by non-academics: No

MICA: k-Mer Indexing with Compact Arrays; SSAHA2: Sequence Search and Alignment by Hashing 

Algorithm. GUI: Graphical User Interface - the point-and-click requirements to operate a program. OTU: 

Operational Taxonomic Unit - a set of highly similar genes believed to carry phylogenetic relatedness. 

PERL: Practical Extraction and Report Language. ROC: Receiver Operator Characteristic - graphical plot 

of the sensitivity, or true positive rate, vs. false positive rate for a binary classifier system as its 

discrimination threshold is varied.
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Figures

Figure 1. Search duration and relative hit results 
Comparison of search duration and hits between search tools with 

various data sets.  Data sets are described in Table 2.  Search 
duration is expressed in seconds and shown in log scale.  Hit 
results are expressed as a percentage in relation to subject hit 
counts from BLAST’s local alignments.

Figure 2. Similarity score comparison
Comparison of DNA sequence similarity scores observed when a single 

DNA sequence collection is compared to a reference database using 
either Simrank or an alignment-based scoring system.

Figure 3. Simrank sensitivity and specificity
Comparison of sensitivity and specificity of Simrank DNA searches with 

various k-mer lengths. True hits were defined as those with 97% 
alignment identity. The x-axis is the false positive rate (FPR - 
Simrank hits to subjects with <97% alignment identity), the y-
axis is the true positive rate(TPR - Simrank hits to subjects 
with >=97% alignment identity).  Each curve represents the 
balance of TPR and FPR through the range of Simrank thresholds. 
Vertical dashed line at y=0.95, represents a 95% TPR.  Inset 
table lists the FPR and Simrank cutoff for each k-mer search to 
obtain a 95% TPR. 
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Table 1. Simrank database binary file structure and storage 
requirements.
File Segment File Element Storage 

Requirement 
(bytes)

1 F, string ID field size 10
2 K, k-mer length 10
3 N, string count 10
4 string ID array

€ 

FN
5 offset arraysa

€ 

4si
i=1

k

∑
6 k-mer arrayb

€ 

Kk
7 offsets index arrayc

€ 

4k
8 offsets lengths arrayd

€ 

4k
9 unique k-mers per string arraye

€ 

4N
10 k, unique k-mer count 10
11 file position of segment 6 10
aEach k-mer generates a vector of string indices, encoded as an integer array of offsets required to “visit” each string index containing the k-
mer. k is the count of unique k-mers, and si is the count of strings containing the ith k-mer. Each offset is stored as a 4-byte integer.

bLexically sorted ASCII text strings of each unique k-mer stored as one byte per character.

c4-byte integer list of file positions for the start of each k-mer’s list of offsets.

d4-byte integer list of the byte length of each k-mer’s list of offsets.

e4-byte integer list of the count of unique k-mers in each string.

aEach k-mer generates a vector of string indices, encoded as an integer array of offsets required to “visit” each string index containing the k-
mer. k is the count of unique k-mers, and si is the count of strings containing the ith k-mer. Each offset is stored as a 4-byte integer.

bLexically sorted ASCII text strings of each unique k-mer stored as one byte per character.

c4-byte integer list of file positions for the start of each k-mer’s list of offsets.

d4-byte integer list of the byte length of each k-mer’s list of offsets.

e4-byte integer list of the count of unique k-mers in each string.

aEach k-mer generates a vector of string indices, encoded as an integer array of offsets required to “visit” each string index containing the k-
mer. k is the count of unique k-mers, and si is the count of strings containing the ith k-mer. Each offset is stored as a 4-byte integer.

bLexically sorted ASCII text strings of each unique k-mer stored as one byte per character.

c4-byte integer list of file positions for the start of each k-mer’s list of offsets.

d4-byte integer list of the byte length of each k-mer’s list of offsets.

e4-byte integer list of the count of unique k-mers in each string.



Table 2. Datasets used for performance evaluationTable 2. Datasets used for performance evaluationTable 2. Datasets used for performance evaluationTable 2. Datasets used for performance evaluationTable 2. Datasets used for performance evaluationTable 2. Datasets used for performance evaluation
Data Set String Type Mean 

Length
Database 

Count
Query 
Count

alphabet 
size

k-mer 
length

total 
database 

k-mers
16Sa DNA 1350 188,073 2000 4 7 16,384
Pyrob DNA 150 501,532 500 4 6 4,096
ITSc DNA 627 212,367 2000 4 6 4,096
Shuffled DNA 687 1,000,000 1000 4 7 16,384
gpIe RNA 398 20,085 5000 4 7 16,360
GP120f Protein 175 68,119 2000 20 4 98,695
Institutesg Text 121 23,768 1000 47/61 4 67,287
a Greengenes 16S rRNA gene collection (DeSantis, 2006)
b Roche-454 pyrosequences from gastrointestinal contents (Ochman, 2010) 
c Internal Transcribed Spacer region from eukaryotic ribosomal genes.
d Derived from random repetitive shuffling of Ralstonia solanacearum strain UW486
endoglucanase precursor, DQ657652 (Castillo and Greenberg, 2007)
e Group I catalytic introns RFAM RF00028 (Griffiths-Jones, et al., 2003)
f HIV Envelope glycoprotein PFAM PF00516 (Finn, 2008)
g Institute names as displayed in GenBank records. For BLAST and SSAHA2, all non-alphanumeric characters were interpreted as a space for a total 
of alphabet size of 47, for Simrank no substitution for any of the 61 unique characters was performed.
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f HIV Envelope glycoprotein PFAM PF00516 (Finn, 2008)
g Institute names as displayed in GenBank records. For BLAST and SSAHA2, all non-alphanumeric characters were interpreted as a space for a total 
of alphabet size of 47, for Simrank no substitution for any of the 61 unique characters was performed.
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f HIV Envelope glycoprotein PFAM PF00516 (Finn, 2008)
g Institute names as displayed in GenBank records. For BLAST and SSAHA2, all non-alphanumeric characters were interpreted as a space for a total 
of alphabet size of 47, for Simrank no substitution for any of the 61 unique characters was performed.
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b Roche-454 pyrosequences from gastrointestinal contents (Ochman, 2010) 
c Internal Transcribed Spacer region from eukaryotic ribosomal genes.
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e Group I catalytic introns RFAM RF00028 (Griffiths-Jones, et al., 2003)
f HIV Envelope glycoprotein PFAM PF00516 (Finn, 2008)
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d Derived from random repetitive shuffling of Ralstonia solanacearum strain UW486
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of alphabet size of 47, for Simrank no substitution for any of the 61 unique characters was performed.



!"#$%&'()$#*+,-
#"
#
$
%&
∀
$
(
)*

+,-./

#$01+,-./

∀∀1213

."#!156

."/#*+0"'!"#$%&'1+*2

7
%8
9%
+
,
-
.
/
%2
"#
%(
8
∃
5
#∀

;

3;

<;

=;

>;

?;;

?;=

.2∃99@$ ?=. A%!8 C/. C5∀#"#∃#$∀ DA?3; 0 @

.2∃99@$ ?=. A%!8 C/. C5∀#"#∃#$∀ DA?3; 0 @

?;<

?;3

?

Figure 1

dshawkes
Typewritten Text
Figure 1



Figure 2

dshawkes
Typewritten Text
Figure 2



Figure 3

dshawkes
Typewritten Text
Figure 3

dshawkes
Typewritten Text



DISCLAIMER  
 
This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor The Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or The Regents of 
the University of California. 
 
Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity 
employer. 
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