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Abstract 

The application of geophysical methods, in particular electrical resistivity measurements, may be 

useful for monitoring subsurface contamination. However, interpreting geophysical data without 

additional data, and without considering the associated hydrogeochemical processes, is 

challenging since the geophysical response is sensitive to not only heterogeneity in rock 

properties, but also to the saturation and chemical composition of pore fluids. We present an 

inverse modeling framework that incorporates the simulation of hydrogeochemical processes and 

time-lapse electrical resistivity data, and apply it to various borehole and cross-borehole datasets 

collected in 2008 near the S-3 Ponds at the DOE Oak Ridge Integrated Field Research Challenge 

site, where efforts are underway to better understand freshwater recharge and associated 

contaminant dilution. Our goal is to show the coupled hydrogeochemical-geophysical modeling 

framework can be used to a) develop a model that honors all the available datasets, b) help 

understand the response of the geophysical data to subsurface properties and processes at the site 

and c) allow for the estimation of petrophysical parameters needed for interpreting the 
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geophysical data. We present a series of cases involving different datasets and increasingly 

complex models, and find that the approach provides useful information about soil properties, 

recharge-related transport processes, and the geophysical response. Spatial heterogeneity of the 

petrophysical model can be described sufficiently with two layers, and its parameters can be 

estimated concurrently with the hydrogeochemical parameters. For successful application of the 

approach, the parameters of interest must be sensitive to the available data, and the experimental 

conditions must be carefully modeled. 

 

1. Introduction 

The high value of geophysical data for hydrological investigations—in the field broadly 

referred to as hydrogeophysics—is increasingly recognized due to the sensitivity of geophysical 

measurements to properties that are (directly or indirectly) related to hydrological processes. The 

challenge is in extracting information from geophysical data that can be used quantitatively to 

gain insight into the spatiotemporal nature of hydrogeochemical processes and to inform 

hydrological models. The application of electrical resistivity measurements in particular may be 

useful for monitoring subsurface contamination, but interpreting those measurements without 

additional data, and without considering the associated hydrogeochemical processes is 

challenging since the electrical response is sensitive to not only heterogeneity in soil and rock 

properties, but also to the temporally varying saturation and the chemical composition of pore 

fluids. In general, the geophysical response to hydrological processes and parameters must be 

understood before such data can be applied widely at a given site. Conversely, if a quantitative 

understanding can be gained, geophysical data may be useful not just for imaging the subsurface, 

but also for the estimating hydrological and geochemical parameters. 
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One way to integrate different types of hydrogeophysical data is through coupled 

hydrological-geophysical modeling such that simulated geophysical measurements become a 

function of the hydrological processes. This modeling approach, also referred to as coupled 

hydrogeophysical modeling, is useful in “forward mode” to evaluate the sensitivity of different 

geophysical measurements for monitoring hydrological processes [Kowalsky et al., 2009]. The 

approach is also useful in “inverse mode,” wherein an optimization algorithm is used to 

determine the relevant hydrological parameters that minimize the difference between measured 

and simulated geophysical and hydrological data.  

An important benefit of the coupled hydrogeophysical approach is that it only requires the 

simulation of the directly measured geophysical attributes (e.g., GPR travel times) instead of the 

results of a computationally expensive tomographic inversion [e.g., Peterson et al., 1985] to 

obtain geophysical images at each survey time for every set of parameters considered in the 

iterative inversion procedure. Furthermore, errors that might otherwise be introduced in the 

tomographic inversion [Day-Lewis and Lane, 2004] are excluded in the coupled 

hydrogeophysical approach.  

The coupled hydrogeophysical approach is most commonly applied to systems in which the 

physical properties (e.g., water saturation, solute concentration, pressure, temperature) are 

undergoing transient changes, and time-lapse geophysical measurements are available that are 

sensitive to those changes. It is also possible to apply such an approach to hydrological systems 

that are at steady state [Cassiani and Binley, 2005], although in general the geophysical data may 

be less sensitive to the hydrological properties (relative to time-lapse data collected during 

transient conditions).  
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Johnson et al. [2009] discuss the advantages and limitations of some choices for 

implementing geophysical data in approaches that rely on a petrophysical transformation 

between geophysical and hydrological properties. They propose an alternative formulation that 

takes advantage of correlation between changes in geophysical and hydrological properties and 

bypasses the need for a petrophysical model. Hinnell et al. [2010] compare the abilities of 

coupled and uncoupled inversion using an example based on the use of surface-based electrical 

conductivity surveys for monitoring water infiltration and redistribution. Evaluating the merits of 

joint inversion approaches for different hydrological applications remains an active area of 

research. Many such studies have focused on synthetic studies rather than field-based 

investigations, and the results are likely to be application specific. 

An example of the coupled hydrogeophysical modeling framework involves the use of time-

lapse ground penetrating radar (GPR) measurements, which are primarily sensitive to variations 

in the dielectric constant, to indirectly estimate the heterogeneous distribution of permeability 

and parameters of the relative permeability and capillary pressure functions [Kowalsky et al., 

2004, 2005; Finsterle and Kowalsky, 2008]. This is made possible by the dependence of the 

dielectric constant on water saturation. A hydrological forward model (which simulates the 

evolution of water saturation) and a GPR forward model (which simulates GPR travel times as a 

function of dielectric constant, which depends on the water saturation, porosity, and temperature) 

are coupled such that the simulated hydrological and geophysical measurements become a 

function of the unknown hydrological parameters. The hydrological parameters can then be 

estimated in an inverse modeling framework. Furthermore, they show that estimating a 

parameter of the petrophysical function helps to overcome uncertainty in the petrophysical 

relationship. A related application invoked the coupled simulation of unsaturated flow and off-
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ground GPR measurements for estimating near-surface hydrological parameters [Lambot et al., 

2006; Jadoon et al., 2008]. Other studies illustrated the usefulness of GPR measurements for 

inferring hydrological properties using a variety of approaches [e.g., Binley et al., 2002; Rucker 

and Ferré, 2004, Farmani et al., 2008].  

Electrical resistivity measurements are another type of geophysical data that are well 

established for monitoring subsurface properties. They have been used to monitor, for example, 

hydrological barriers [Daily and Ramirez, 2000], leakage from underground tanks [Ramirez et 

al., 1996], remediation processes [Ramirez et al., 1993; Daily and Ramirez, 1995], as well as the 

movement of water or dissolved solutes in the subsurface [Daily et al., 1992; Park, 1998; Slater 

et al., 2000; Binley et al., 2002; French et al., 2002; Kemna et al., 2002; Singha and Gorelick, 

2008], and changes in subsurface water content due to rainfall [Zhou et al., 2001]. A stochastic 

data integration approach combined electrical resistivity data and other hydrological datasets to 

improve estimates of water saturation [Yeh et al., 2002].  

A variety of applications that include the use of electrical resistivity data have been proposed 

for inferring hydrological parameters, sometimes in combination with other data. For example, 

Kemna et al. [2002] used time-varying distributions of solute concentration that were inferred 

from time-lapse electrical resistance tomography (ERT) to parameterize an equivalent 

convection-dispersion model [Kemna et al., 2002]. Binley et al. [2002] carried out calibration of 

a hydrological model using GPR and ERT data, as did Looms et al. [2006] and Deiana et al. 

[2008]. Looms et al. [2008] demonstrated that the combination of different geophysical data 

types can decrease uncertainty in hydrological parameters when integrated within a data fusion 

approach. Day-Lewis and Singha [2008] related the temporal moments of ERT data to 

parameters of a dual-porosity transport model. Pollock and Cirpka [2008] developed a coupled 
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system for simulating groundwater flow, solute transport, and electrical resistivity measurements 

with the goal of using moments in a hydrogeophysical inversion. 

Electrical resistivity measurements are promising for inclusion in a coupled 

hydrogeophysical modeling framework [Ferré et al., 2006; Lehikoinen et al., 2009, 2010; 

Hinnell et al., 2009]. Similar to the dielectric constant in GPR applications, the electrical 

resistivity of soil is in general not directly related to hydrological parameters such as 

permeability, but it can be related to a combination of the current system state (specifically 

saturation and solute concentration, which determines pore fluid electrical conductivity) and soil 

properties (e.g., clay content, and porosity).  

The overall motivation for this study is to begin developing a tool that can be used to gain 

insight into the impact of recharge on subsurface hydrogeochemical responses over field-scales 

at the DOE Oak Ridge National Laboratory (ORNL) Integrated Field Research Challenge 

(IFRC) site. Understanding the impact of freshwater recharge on subsurface contaminant 

concentration and mobility is a focus of the IFRC research effort. Recharge creates large 

hydraulic and geochemical gradients in the subsurface at the IFRC site that can disrupt 

geochemical equilibrium in the groundwater as sub-neutral rainwater (which is high in dissolved 

oxygen and low in ionic strength) mixes with acidic, high ionic strength groundwater. The 

oscillations of geochemical conditions in the shallow groundwater are hypothesized to have 

significant implications for solute transport. Solutes and colloids that adsorb onto aquifer solids 

can be released into solution by decreases in ionic strength and pH. The decreases in ionic 

strength also cause thermodynamic undersaturation of the groundwater with respect to some 

mineral species and may result in mineral dissolution [van de Hoven et al., 2005]. The system 

response to recharge events is complex because of the large variations in contaminant 
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concentrations, pH, mineralogy, and due to preferential flowpaths in the plume region. Better 

understanding the response to recharge is challenging because of the large spatial extent of the 

plume, the complexity of the subsurface hydrogeochemistry, and the sparseness of direct 

hydrogeochemical measurements.  

We present an inverse modeling framework that incorporates the simulation of 

hydrogeochemical processes and time-lapse electrical resistivity data, and apply it to datasets 

collected in 2008 near the S-3 Ponds at the DOE Oak Ridge Integrated Field Research Challenge 

site, where efforts are underway to better understand freshwater recharge and associated 

contaminant dilution. We aim to use the coupled hydrogeochemical-geophysical modeling 

framework to develop a model that a) honors a variety of datasets (time-lapse electrical 

resistivity data and hydrogeochemical data, including water level data and solute concentration 

data), b) improves understanding of the response of geophysical data to subsurface properties at 

the site, and c) allows for estimation of the spatially variable petrophysical parameters that are 

necessary for interpreting geophysical data collected at the site. After describing the 

methodology, the experimental site and datasets, and the hydrogeochemical and geophysical 

models used in the procedure, we present a series of cases in which the approach is applied with 

different datasets and increasingly complex models.  

 

2. Methodology 

The approach used in this study consists of three components: (1) a hydrogeochemical 

forward model, which simulates fluid flow and solute transport and the corresponding 

hydrogeochemical measurements; (2) a geophysical forward model, specifically an electrical 

resistivity forward model, which simulates the injection of electrical current in the subsurface 
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and the corresponding resistivity measurements; and (3) a hydrogeophysical modeling 

framework to control the procedure.  These components are briefly described in the following 

sections. 

 

2.1. Hydrogeochemical Forward Model (HM) 

The HM used in this study is TOUGH2 [Pruess et al., 1999], which numerically simulates 

the behavior of multiphase, multicomponent fluid mixtures and heat in porous and fractured 

geologic formations. While temperature is known to affect the electrical properties of sediment 

mixtures, the temperature fluctuations were minor for the nine-day period in which electrical 

resistivity surveys were conducted for this study. In addition, the temperature did not vary 

significantly with depth in the region sampled by the electrical resistivity measurements. We 

therefore limit the study to isothermal simulations. The three equations solved per grid block are 

mass balance equations for the components water, air, and solute (nitrate). We assume the solute 

is dissolved in the aqueous phase and does not affect the fluid properties (e.g., viscosity and 

density). Capillary pressure and relative permeability behavior are modeled using the 

relationships developed by van Genuchten [1980]. 

Some of the directly simulated state variables, such as nitrate concentrations at specified 

locations and times, are considered as hydrogeochemical measurements. We also simulate 

hydraulic head (or water level) measurements in the saturated and unsaturated zones at the 

screened intervals. In addition, the simulated distributions of water saturation and nitrate 

concentration are used as input for the geophysical forward model (GM), which is described in 

the next section. 
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2.2. Geophysical Forward Model (GM) 

The GM used in this study is CRMOD [Kemna, 2000; Kemna et al., 2002], which simulates 

the 2D flow of electrical current in the ground and the corresponding resistivity measurements. 

Input for CRMOD includes electrode configuration information specifying the sets of dipoles in 

which current is injected and measured. The input resistivity distribution is calculated from 

properties simulated in the HM based on the petrophysical models described in Section 4.2. In 

addition to site-specific parameters, the petrophysical model uses the simulated distributions of 

water saturation and solute concentration, along with the porosity distribution, to calculate the 

electrical resistivity distributions for the specified geophysical survey times.  

In this study we assume that the hydrogeochemical processes being monitored are relatively 

slow compared to the time required for data collection. For simplicity, we simulate electrical 

resistivity measurements for a given survey at a single point in time. However, there is no 

fundamental limitation in our approach that prevents the simulation of individual measurements 

at precisely recorded times. 

It is worth noting that the numerical grids for the HM and GM need not be identical, since 

output from the HM is mapped onto the GM grid. This is a useful feature since there are many 

cases in which it is convenient to use different grids (e.g., finer grid spacing may be required for 

one of the forward models, or the electrical resistivity model may only need to cover a small 

region of a larger HM domain).  

We restrict our analysis to a 2D GM in order to reduce the computational burden otherwise 

imposed by 3D geophysical simulations.  
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2.3. Coupled Hydrogeophysical Modeling Framework  

We implemented a coupled hydrogeophysical modeling approach in iTOUGH2 [Finsterle, 

1999; Finsterle, 2004], which provides forward and inverse modeling capabilities for a variety of 

hydrogeochemical and geophysical data (Figure 1). The approach integrates the HM and GM to 

allow for inverse modeling using the following procedure: (1) a set of hydrogeochemical and 

geophysical parameters is specified; (2) a hydrogeochemical simulation is performed with the 

HM, producing the simulated hydrogeochemical data (water levels and nitrate concentrations) 

and the information used as input for the GM; (3) a petrophysical model translates the HM 

output (e.g., water saturation, solute concentration, and porosity) into the relevant geophysical 

property (electrical resistivity); (4) the geophysical data (electrical resistances) are simulated 

with the GM at the specified geophysical survey times; (5) an objective function is evaluated to 

measure the misfit between the measured and simulated hydrogeochemical and geophysical data; 

(6) a new set of hydrological and geophysical parameters is obtained through an optimization 

algorithm; and (7) the process is repeated starting at (2), until a set of parameters that minimizes 

the objective function is found.   

Aside from its usefulness in performing inverse modeling, the coupled hydrogeophysical 

modeling framework is helpful for evaluating the sensitivity of different hydrogeophysical data 

types to the parameters and processes of interest for a particular site [e.g., Kowalsky et al., 2008]. 

For example, when designing a field experiment, it is useful to perform a sensitivity study to 

determine the optimal placement of measurements and the sampling frequency, as well as to 

determine which data types are likely to be most sensitive to the relevant parameters. It is hoped 

that the coupled model we begin to develop in this work can be used in the future to optimize 

data collection at the site. 
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3. Description of Field Experiment at ORNL S-3 Ponds Site 

The DOE Oak Ridge IFRC was established to investigate long-term immobilization 

strategies and to improve the understanding of rates and mechanisms that control contaminant 

fate and transport from the plot scale to the watershed scale. One of the research objectives of the 

IFRC is to examine the impact of freshwater recharge on contaminant dilution and mobility, and 

to explore the use of geophysical methods for assessing associated subsurface hydrogeochemical 

processes that are often difficult to ascertain using sparse wellbore data alone.  

 

3.1. Site Description 

The study site is adjacent to the southern-most corner of the S-3 Ponds at the Oak Ridge 

Reservation, located in eastern Tennessee (Figure 2). From 1951 to 1983, unlined surface 

trenches (the S-3 Ponds) received approximately 2.5 million gallons per year of waste containing 

acidic nitrate and uranium, among other contaminants. After the waste was neutralized, the 

trenches were capped in 1988 and covered by a parking lot. The majority of the waste originally 

present in the S-3 Ponds has since migrated into the underlying geological formation and 

precipitated or adsorbed onto the solid phase, or diffused into the matrix, forming a persistent 

secondary source of groundwater contamination. Extensive contaminant plumes now emanate 

from the S-3 Ponds and ultimately discharge to surface water sources, jeopardizing the 

surrounding ecosystem.  

Groundwater recharge at the study site is substantial and highly variable, exerting a major 

influence on local hydrogeochemical processes. Recharge from precipitation fluctuates not only 

seasonally and annually, but also varies rapidly in response to individual storm events. A related 

source of recharge—runoff from the S-3 parking lot—enters the formation through intermittent 
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standing water in a drainage ditch that surrounds the parking lot. Perched water bodies are 

suspected to form at shallow depths, also affecting local recharge. Heterogeneity at the S-3 site—

comprised of a complex mixture of human-placed fill, soil, Saprolite, and fractured sedimentary 

rocks—along with preferential flow paths and a rapid aquifer response to fluctuations in 

recharge, all lead to spatial and temporal variability of groundwater chemistry and contaminant 

transport [van de Hoven, 2005]. Understanding the influence of recharge on contaminant fate in 

this complex, dynamic environment requires the development of new approaches that integrate 

multiple types of data. 

Chen et al. [2006] conducted a study in a region located approximately 10 m west of the site 

considered here. Their study, which involved the inversion of flowmeter and crosshole seismic 

tomography data for hydraulic conductivity zonation, identified a fracture zone with high 

hydraulic conductivity that varied in thickness and continuity. Assessment of tracer-test data 

confirmed that heterogeneity at the site (in the fracture zone in particular) heavily impacted local 

flow and transport.  

In this study we focus on the recharge-related dilution of nitrate, which occurs at 

concentrations up to 50,000 mg/l in the S-3 Ponds area. Note that the nitrate concentrations 

stated throughout this paper are mg/l NO3. Although not examined here, the higher pH of rainfall 

relative to the groundwater leads to desorption of uranium, which is present at the site at 

concentrations up to 60 mg/l.  

It should be noted that we assume dilution is the most dominant process affecting nitrate 

concentration, especially over the short time frame (during a period of especially high recharge) 

over which the geochemical data analyzed in this study were collected (13 days). Issues related 
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to the reactive transport of nitrate at the site are being considered as part of the larger IFRC 

effort.  

3.2. Experimental Setup and Measurements 

A measurement campaign was conducted in 2008 to monitor the geophysical responses to 

recharge events at the study site. The campaign included time-lapse surface and cross-borehole 

resistivity measurements, collected in conjunction with a variety of hydrogeochemical data. 

Cross-borehole seismic and surface seismic refraction measurements were also collected at the 

site, all of which are leading to improved characterization of the subsurface [e.g., Chen et al., 

2010; Gaines et al., 2009]. 

In this study we consider hydrogeophysical datasets collected from several wells near the S-3 

Ponds (see Figure 3), including water level data in wells SG002 and FW117 (in the perched and 

saturated zones, respectively); multilevel geochemistry data in FW120; and cross-borehole 

electrical resistivity data in wells FW124 and FW125. The rainfall rate for the 2008 

measurement period (days 98 to 365, corresponding to April 1 through December 31, 2008) is 

shown in Figure 4, along with the water level in the drainage ditch next to the site. Note that 

while individual rainfall events may be short in duration, water typically remains longer in the 

drainage ditch. 

Water level data in wells SG002 and FW117 indicate that recharge is highly variable in time 

(Figure 5). There is initially water present in the perched zone well (SG002), but the water level 

decreases until the well becomes dry at day 170 (June 19), after which the perched zone remains 

mostly dry (except for spikes occurring after several infiltration events) until the onset of winter 

rainfall starting around day 318 (November 14). Some water level data from SG002 were 

discarded between days 342 and 352 (between December 8 and 18), because they were affected 
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by the extraction of water for geochemistry measurements. The water level in the saturated zone 

well (FW117) also shows significant variability: it decreases rather steadily by approximately 

one meter from day 98 (April 1) to day 310 (November 6), with the exception of some temporary 

increases around days 190 (July 9) and 235 (August 23), and then increases dramatically after 

day 310 with the increased winter rainfall. 

Of the geochemistry data collected in FW120, we focus solely on nitrate concentrations, 

which contribute most significantly to the total dissolved solids at the site. In particular, we focus 

on nitrate concentration data collected on six days in December (days 343, 344, 346, 349, 351, 

356, which correspond to December 9, 10, 12, 15, 17, and 22, respectively), as shown in Figure 

6a. Since these data were collected in a period of sustained heavy rainfall and high recharge (see 

Figure 4), it is not surprising to observe overall nitrate dilution, but it is interesting to note that 

the level of dilution varies with depth and that in some cases nitrate concentration increases. At 

the shallowest sampling depth (near 5.5 m), the nitrate concentration remained relatively low 

(approximately 110 mg/l) and nearly constant, while near 8 m depth, the concentration increased 

slightly from its initial value of 2176 mg/l, followed by continued decrease, starting after day 

346, to 1060 mg/l. In contrast, at 13.2 m the concentration decreased monotonically from 5131 

mg/l to 2357 mg/l. The highest concentrations for all times are observed at the deepest sampling 

depth (15.2 m). 

In general, the process for collecting cross-borehole electrical resistivity data is as follows: a 

number of electrodes are placed in boreholes at desired locations; pairs of electrodes are selected 

into which current is injected (current dipoles); pairs of electrodes (measurement dipoles) are 

selected at which measurements are to be made for each current injection dipole; and a 

multiplexer is programmed for the automatic injection of current and the measurement of 

 14



resistance (equal to the recorded voltage divided by the recorded current). A dipole consists of 

electrodes placed in the same borehole or in opposing boreholes, and the spacing between 

electrodes can be varied.  

For this experiment, a total of 56 electrodes were permanently installed along two boreholes 

(FW124 and FW125) that were spaced 3 m apart. Vertical spacing between the electrodes is 0.6 

m in the upper 10 m and 0.3 m in the transition zone (Figure 7). A complete dataset contains 

more than 10,000 points measured for various current and measurement dipole combinations. Of 

all the dipole configurations that were collected, we focused on a subset that was relatively small 

(and thus manageable) and that we expect to be more sensitive to vertical variations in 

subsurface properties than to lateral variations. In particular, the chosen subset includes only the 

current dipoles formed with electrodes in opposing boreholes and the measurement dipoles that 

are formed by electrodes in the same. Furthermore, only the electrodes that remain in the 

saturated zone for all survey times are considered. Also, for measurements that were found to be 

erroneous at any survey time (e.g., for voltages below 0.2 mV and current below 200 mA, 

corresponding to measurements with suspected contact resistance problems), data from the 

corresponding dipole configurations were removed for all survey times. One of the current 

dipoles and corresponding measurement dipoles is depicted in Figure 7a. An additional 19 

current dipoles at different depths are included in the study, each with a different set of 

measurement dipoles, giving a total of 581 measurements per survey (Figure 7b). We consider 

two surveys performed on day 345 and 354 in December 2008. Two additional surveys were 

performed on days 346 and 353, but the corresponding data values did not merit inclusion in the 

inversion, because they were not sufficiently different from the datasets collected on days 345 

and 354, respectively. 

 15



4. Development of Coupled Hydrogeophysical Model for S-3 Ponds Site 

Details of the hydrogeochemical and electrical resistivity simulations are given next 

(Sections 4.1 and 4.2, respectively), followed by application of the approach to several cases 

with successively increasing model complexity (Section 4.3).  

 

4.1. Hydrogeochemical Simulations 

Our conceptual model for the site is shown in Figure 8a. The modeled region covers a 

vertical distance of 16 m and a horizontal distance of 20 m. The geological layering includes the 

atmosphere (at 0 m), a fill layer (0 to 2.6 m), a Saprolite layer (2.6 to 10 m), the so-called 

transition zone (10 to 16 m), and a low permeability bedrock layer (below 16 m). The transition 

zone is thought to be less cohesive than the units above and below it and can contain fracture 

zones with high hydraulic conductivity that serve as preferential pathways [e.g., Chen et al., 

2006]. The permeability in the Saprolite has been observed to be several orders of magnitude 

lower than in the transition zone, and as a consequence, the horizontal groundwater flux in the 

Saprolite is orders of magnitude lower than in the transition zone. We take advantage of this 

observation to improve the computational efficiency of the hydrogeochemical model (i.e., by 

using a 1D grid) for the inversion case (Case A) considered in Section 4.3.1  

For the hydrogeochemical simulations, we consider both 1D and 2D numerical 

representations of the system (Figure 8b and 8c, respectively). The 1D HM accounts for vertical 

flow in the fill and Saprolite layers and horizontal outflow in the transition zone to a boundary 

whose pressure is held constant at a value determined in the inversion. In the 1D model, the grid 

blocks are 20 m wide, and the vertical spacing is 12.5 cm for depths between 0 and 6 m, and 25 

cm for depths between 6 and 10 m. The transition zone is represented by a single grid block with 
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a thickness of 6 m. The upper grid block of the model remains fixed at constant atmospheric 

pressure. 

Note that use of a 1D HM makes the assumption that the hydrogeochemical processes of 

interest in the fill and Saprolite layers occur predominantly in the vertical direction (or the 

vertical transport process occurs uniformly at the site). This assumption can be partly justified 

given the large amount of recharge entering the system. However, lateral transport is also 

important, for example, as it is the mechanism responsible for moving the contaminant plume 

away from the S-3 Ponds site, especially in the transition zone. While the limited datasets 

considered in this study are insufficient to resolve 2D heterogeneity at the site, we expand the 1D 

model to 2D by assuming that heterogeneity in the hydrological parameters exists in the vertical 

direction only (i.e., by extrapolating the vertical heterogeneity in the lateral direction). This 

assumption will be relaxed in subsequent studies as more downgradient hydrogeochemical data 

become available. 

In the 2D model (Figure 8c), the horizontal grid spacing is between 0.5 m and 1 m, and the 

vertical grid spacing in the fill and Saprolite layers is the same as for the 1D model. As opposed 

to the 1D model, the transition zone contains multiple grid blocks with 0.25 m vertical spacing. 

The constant pressure boundary at the lower left side of the transition zone is now represented by 

multiple grid blocks with a fixed hydrostatic pressure distribution that is shifted by a value 

determined by inversion. 

Heterogeneity in the hydrological parameters is based on the geological layering, with a 

uniform region in the fill layer, two separate but uniform regions in the Saprolite layer between 

2.6 and 6 m and between 6 and 10 m (each representing a zone of potentially different 

weathering), and a uniform region in the transition zone. Within each of these regions, the 
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porosity and permeability are uniform and either fixed or estimated by inversion. The parameters 

of the capillary pressure and relative permeability functions are uniform in the model: two of 

them ( and n, as defined in van Genuchten [1980]) are estimated in Case A (Section 4.3.1).  

Two sources of recharge drive the system hydrologically, namely direct infiltration of 

rainfall, and water from the drainage ditch adjacent to the study site (Figures 4a and 4b). The 

depth of water in the drainage ditch varies in time, depending on intermittent surface flow from 

the S-3 Ponds parking lot. This variability is incorporated in the 1D and 2D models (Figures 8b 

and 8c) through an additional connection that is treated as a time-dependent Dirichlet boundary 

with either of the following sets of conditions specified: (1) the pressure at the bottom of the 

ditch that corresponds to the measured water level and 100% water saturation at times when 

water is present; or (2) atmospheric pressure and 0% water saturation at times when the ditch is 

dry, making it impermeable to water. The rate at which water enters through the drainage ditch is 

controlled by the water level in the ditch (a known function of time) and by the permeability of 

the ditch bed, which is determined in the calibration procedure. It is worth noting that the rate is 

affected by subsurface moisture conditions, which amounts to a physical coupling between 

surface water and groundwater. Rainfall-induced infiltration is implemented by specifying a 

time-dependent flux of water at the surface.  

Simulated water level measurements in the saturated zone well (FW120) are obtained by 

taking the simulated pressures at the top of the screened interval of the well and converting them 

to hydraulic heads. Simulated water level measurements in the perched zone (SG002) are given 

by the elevation of the upper-most water-saturated grid block. Simulated nitrate concentration 

measurements are taken as the concentrations in the grid blocks at the multilevel sampling 

depths. 
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The general simulation procedure proceeds as follows for any given set of input 

hydrogeochemical parameters. In the first step, steady-state conditions are calculated with the 

pressure in the lower boundary fixed (to a value that is estimated by inversion). The resulting 

pressure and saturation distributions are then used as initial conditions for the second step of the 

simulation, which starts on day 98 (April 1). The nitrate concentration is set to zero for the first 

and second steps of the simulation. The simulation advances as the time-varying rainfall and 

ditch water level cause transient flow, and water level measurements in the perched and saturated 

zone wells are simulated on each day (days 98 through 356). At the time of the first geochemical 

sampling campaign (day 343 or December 9), the third step of the simulation begins. In this step 

the initial conditions for the nitrate concentration are specified based on values that are also 

estimated in the inversion (Figure 6c). Naturally, the initial distribution of the nitrate 

concentration and the recharge-induced flux of water influence the simulated multilevel nitrate 

concentrations at subsequent geochemical sampling times. The simulated saturation and nitrate 

concentration distributions at each of the electrical resistivity survey times are used as input to 

the GM simulations (described in Section 4.2).  

 

4.2. Electrical Resistivity Simulations 

For simulating the cross-borehole electrical resistivity measurements collected in the field 

between wells FW124 and FW125, we are using a 2D grid (shown in Figure 7), with grid 

discretization in the vertical and horizontal directions ranging from 0.15 m to 0.9 m, and 0.3 m to 

1.35 m, respectively.  

Coupling between the HM and the GM (see Figure 8d) allows for simulated 

hydrogeochemical properties to be used as input to the electrical resistivity simulations. In the 
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cases presented below that consider electrical resistivity data (in Sections 4.3.3 and 4.3.4), output 

from the 2D hydrogeochemical grid is mapped onto the 2D electrical resistivity grid. 

The petrophysical model used to translate the hydrogeochemical properties to the electrical 

conductivity (inverse of electrical resistivity) distribution needed for the GM has some 

components that were determined from field data and some that are estimated during the 

inversion. The electrical conductivity of the pore fluid w
 [mS/cm] has been empirically related 

to nitrate concentration  [mg/L] at the site using concentration data and co-located electrical 

conductivity data (from a borehole logging tool), and is given by  

NC

 w aCN b, (1)  

where a and b are 0.0011 and 3.627, respectively, for the units given in Equation 1; the mean 

coefficient of determination (R2) for the fit is 0.81. The influence of temperature on w
 is not 

considered since variations in temperature were minor over the time period of the resistivity 

surveys, and the electrodes used in the study remained below the water table, where temperature 

varied little with depth. 

We consider two models for the electrical conductivity of the variably saturated soil mixture. 

For the first, we assume the electrical conductivity is adequately described by Archie’s law 

[Archie, 1942]: 

  w
mSw

n
, (2) 

where   is the porosity, Sw
 is the water saturation,  m is the cementation index, and n is a 

constant. At present, we make the relatively common assumption that n equals 2 (and is 

uniform). Friedman [2005] summarized studies that investigated the validity of Archie’s law for 

a wide range of water-saturated soils, and observed that the cementation exponent m ranges 
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between 1.2 and 4 for most porous media. He also noted the model is intended for porous media 

in which surface conduction due to the presence of clays, for example, is minimal. 

We also consider the model of Rhoades et al. [1976], which contains two fitting parameters 

(R1 and R2) and a term that accounts for surface conduction (s):  

  w(R1
2 R2)s , (3) 

where  is the water content, defined as the product of the porosity and the water saturation. 

Values of the coefficients of this model for a variety of soil types were reported by Hamed et al. 

[2003].  

While the electrical conductivity varies in space as a function of porosity ( ) and the time-

varying state (Sw and ), parameters of the petrophysical model (Equations 1 and 2 or 

Equations 1 and 3) may be spatially variable as well [Singha and Moysey, 2006]. Therefore, we 

examine the possibility of spatial variability in the cementation index m of Equation 2, and the 

surface conduction s of Equation 3, by estimating their values in various layers as part of the 

inversion procedure (see Sections 4.3.3 and 4.3.4). 

NC

It is worth noting that the petrophysical model is being refined in ongoing laboratory column 

experiments. While we expect the electrical conductivity of the soil mixture to be mostly 

controlled by nitrate, additional contributors may turn out to be important (e.g., other fluid 

constituents, immobile porosity, and surface conduction effects). 

  

4.3. Results 

Next we apply the coupled hydrogeophysical modeling approach to several cases with 

increasing model complexity. In the first case (Case A in Section 4.3.1), an inversion is 

performed using a 1D representation of the HM, with hydrogeochemical data covering the time 
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period of days 98 to 362, to obtain estimates of hydrogeochemical parameters that are then fixed 

or used as initial guesses in most of the subsequent cases. For the second case (Case B in Section 

4.3.2), we switch to a 2D representation of the HM that more accurately represents flow and 

transport at the site, while covering the shorter time period of days 290 to 356. The next set of 

cases involves inversion of a single electrical resistivity dataset (without performing 

hydrogeochemical simulations, but using output from the hydrogeochemical simulation of the 

previous case as input to the electrical resistivity simulations) to estimate parameters of the 

petrophysical models and examine uncertainty and non-uniqueness issues (Cases C.1 to C.5 in 

Section 4.3.3). Finally, coupled inversion of the hydrogeochemical datasets with either one or 

two electrical resistivity datasets is performed (Case D.1 to D.3 in Section 4.3.4). The models 

and datasets used for each case are listed in Table 1.   

The objective function that is minimized during the optimization procedure is formed by 

contributions from each data type included in a given case. For each data type, the contribution 

to the objective function is calculated with the least squares criterion, formed by summing the 

square of the weighted residuals (the difference between the simulated and measured value 

divided by the standard deviation of the measurement error) for all data points and times. The 

standard deviation of the measurement error was assumed to be 20 mg/l for the nitrate 

concentration measurements, and 0.2 m and 0.1 m, respectively, for the water level 

measurements in the perched-zone and saturated-zone wells. In the contribution of the electrical 

resistivity data to the objective function, each residual is calculated using the logarithm of the 

resistance (in units of log ) with the standard deviation of measurement error taken to be 10% 

of the log resistance. The code used in this study automatically orders the electrodes for each 
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dipole to give positive resistance values, thus allowing for the log transform of the data to be 

used in the inversion. 

For the inversion cases that include all the hydrogeochemical and geophysical data types 

(Cases D.1 to D.3), the relative contributions to the objective function of the different data types 

are, approximately, 10% for the water level data, 75% for the geochemical data, and 15% for the 

electrical resistivity data (for Case D.1); and 9% for the water level data, 66% for the 

geochemical data, and 25% for the electrical resistivity data (for Cases D.2 and D.3). We leave 

the testing of alternate formulations of the objective function for future research (e.g., using 

dipole-dependent measurement error for the electrical resistivity data, and exploring different 

weighting schemes). 

 

4.3.1. Case A: Inversion of hydrogeochemical data (covering days 102 to 362) with 1D HM 

In this case inversion is performed using a 1D HM with hydrogeochemical data 

corresponding to a relatively long time period of 260 days, during which numerous wetting and 

drying cycles occurred (see Figure 4). As listed in Table 2, the parameters considered unknown 

are four permeability values (for the Saprolite layers, the transition zone, and the ditch); one 

porosity value (for the combined Saprolite layers); two parameters of the capillary pressure and 

relative permeability functions (parameters  and n of the van Genuchten [1980] functions); 

eight concentrations that define the initialization profile at day 343 in the Saprolite layer (since 

the transition zone is not modeled in detail in the 1D model; see Figure 6b); and the constant 

pressure value at the lower boundary, for a total of 16 unknown parameters. The 

hydrogeochemical data used in the inversion are the daily water level data collected between 
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days 102 and 362 from the perched and saturated-zone wells, and data from three geochemical 

sampling depths at six survey times (days 343, 344, 346, 349, 351, and 356). 

Given the considerations on the limited amount of data and resulting non-uniqueness, certain 

parameters could not be estimated independently and were instead set to reasonable values (e.g., 

the porosity of the fill layer and the permeability of the transition zone). 

The estimated values and uncertainties for all of the parameters except the initial 

concentrations are given in Table 2; the estimated initial concentration profile is shown in Figure 

6c. The permeability in the fill layer is estimated to be on the order of 5E-11 m2, while that of the 

upper and lower portions of the Saprolite, respectively, are 3 orders of magnitude lower (4E-14 

m2) and 2 orders of magnitude lower (1.6E-13 m2). The porosity in the combined Saprolite layers 

is estimated to be 0.36. 

Figure 9 shows the fit between the measured and simulated water level data (Figures 9a and 

9b) and the nitrate concentration data (Figure 9c). The water level behavior in both wells is 

captured reasonably well, though the simulated water level in FW117 rises faster after day 300 

than the measured response. The trends of the nitrate concentrations at each depth are also 

reproduced.  

Some of the observed differences between the simulated and measured data are likely due to 

inherent model error, such as 2D or 3D effects or effects occurring over long time scales that are 

not adequately accounted for. Regardless, it is promising that the complex water level and nitrate 

concentration behavior in the upper part of the model can be explained with a relatively simple 

1D model. The corresponding parameter estimates can now be transferred to the 2D model and 

fixed or used as initial guesses. The parameters  and n of the capillary pressure function are 

fixed in the remaining cases to the values estimated in this section.  
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4.3.2. Case B: Inversion of hydrogeochemical data (covering days 290 to 356) with 2D HM 

To better represent flow and transport at the site, we switch to a more accurate 2D 

representation of the HM and perform inversions with additional hydrogeochemical data 

(collected at three depths in the transition zone). Because of the increased computational 

demands of the 2D model, we focus on data collected during the shorter time period of days 290 

to 356. In addition to estimating most of the parameters considered in the previous case, we also 

estimate the porosity in the transition zone, as well as four more parameters of the initial nitrate 

concentration profile (corresponding to depths in the transition zone). The parameters  and n of 

the capillary pressure function are fixed to the values estimated in Case A.  

The measured and simulated water level and nitrate concentration data are shown in Figure 

10. Relative to Figure 9, this figure differs in that the measured and simulated nitrate 

concentrations for the transition zone (at depths of 11.5, 13.2 and 15.2 m) are included, and the 

shorter time period is focused on the prolonged wetting phase beginning around day 300. 

The estimated values and uncertainties of the 19 parameters for this case are given in Table 

2. It is interesting to note that while the values remain similar to those for Case A, the uncertainty 

of the estimated hydrological parameters is increased relative to Case A. This is probably a result 

of the shorter time period considered, which mainly experiences a prolonged wetting (or wet) 

phase. The wetting and drying cycles that occur in the time period for Case A lead to increased 

sensitivity of the water level data to the hydrological parameters. The increased uncertainty may 

also be related to the wider range of phenomena that can occur in the 2D model as water enters 

the model from the ditch, spreads laterally, and causes intermittent water ponding. 
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As discussed previously (in Section 4.1), we initialized the nitrate transport component of the 

simulation by specifying the vertical profile of the concentration at day 343 based on parameters 

that are estimated in the inversion. This was necessary because of the high sensitivity of the 

response to the assumed shape of the initial profile. To highlight this issue, the simulated 

response of the nitrate measurements are shown in Figure 11 as a function of time for three 

different initial profiles, with all other parameters of the HM remaining unchanged. The first two 

profiles were obtained by linear and nearest-neighbor interpolation (see Figure 6b) of the 

multilevel geochemistry data collected on day 343, and the third was estimated by inversion (see 

Case B in Figure 6c). Since both of the profiles obtained by interpolation honor the geochemistry 

data at the sampling locations (shown with symbols in Figure 6b), one might assume that either 

would serve as adequate initial conditions for the inverse modeling procedure. However, as is 

evident in Figure 11, the response varies significantly depending on the initial profile, and not all 

of the profiles allow for the observed response to be adequately reproduced. The responses at 8, 

13, and 15.2 m depth are seen to be generally similar for all initial profiles: the concentrations 

decrease with time. The interesting thing to note is in the responses for the interpolated profiles 

at 10 and 11.5 m, which exhibit the trend of continuously increasing concentration with time. In 

contrast, using the profile that was estimated by inversion, the shape of the response is more 

similar to that of the measured response, namely, showing a decrease in concentration after an 

initial increase. This is explained by considering the results of the inversion, which predict that 

there is a zone of decreased concentration at around 8.5 to 9 m depth (Figure 6c). Such a zone of 

decreased concentration was not captured by the limited multilevel geochemistry samples, but it 

appears to be important for modeling the response of nitrate to fresh water dilution. These results 
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highlight the importance of accurately modeling the initial conditions, as well as the contaminant 

source term, in order to make accurate transport predictions. 

The simulated water saturation distribution at day 345 is shown in Figure 12, as are the 

nitrate concentration distributions at days 345 and 354, corresponding to the electrical resistivity 

surveys discussed below (in Sections 4.3.3 and 4.3.4). The water table remains high during this 

short time period. Due to the large contrast between the fill layer and the underlying Saprolite 

layer, the water originating from the ditch moves laterally much faster than vertically, spreading 

out over the model domain before migrating vertically. An overall displacement of the low 

concentration front is observed to travel downward and toward the outflow region in the 

transition zone.  

 

4.3.3. Cases C.1 to C.5: Inversion of single electrical resistivity survey using output from 2D HM  

The cases in this section involve the inversion of a single electrical resistivity dataset from 

the survey conducted on day 343. No hydrogeochemical data are included in the objective 

function, and no hydrogeochemical simulations are performed. However, output from the 

hydrogeochemical simulation of Case B (Section 4.3.2) at day 343 is used as fixed input to the 

electrical resistivity simulations. Note that due to insensitivity of the electrical resistivity data to 

the properties of the fill layer, which only extends 2.6 m in depth, the petrophysical parameters 

of the fill layer are assigned the same values as those of the upper Saprolite zone, some of which 

are estimated by inversion.  

First we consider Archie’s law (Equation 2) to describe the electrical conductivity of the 

soil/rock mixture (the fluid conductivity is given as a function of the nitrate concentration by 

Equation 1). Several inversion cases are considered to examine possible heterogeneity in 
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parameter m: one case (Case C.1) where it is assumed to be spatially uniform, and three cases 

(Cases C.2 to C.4) where multiple zones or regions, each corresponding to a distinct value of m, 

are assumed to exist. For the case in which m is modeled as homogeneous for the entire model, 

its estimated value is 1.01, which is below the expected range of 1.2 to 4 (see Section 4.2). In 

Case C.2, two regions with distinct values of m are assumed to exist: for the region containing 

the Saprolite it is estimated to be 1.72; and for the region containing the transition zone it is 

estimated to be 0.97. In the next two cases, three regions with distinct values of m are assumed to 

exist: two regions are formed by the upper and lower halves of the Saprolite while the third is 

formed by the transition zone in Case C.3, and two regions are formed by the upper and lower 

halves of the transition zone while the third is formed by the Saprolite in Case C.4. In all of the 

Cases C.2 to C.4, the m values are estimated to be consistently higher in the Saprolite, ranging 

between 1.72 and 1.9, than in the transition zone, ranging between 0.94 and 0.97. The estimated 

values and the uncertainty in the estimates are reported in Table 3. Note that the observed low 

values of m may be due to surface conduction or immobile porosity, which are not accounted for. 

The sensitivity of the objective function to the parameters considered in Cases C.1 to C.4 is 

depicted in Figure 13. Recall that for these cases, the only contribution to the objective function 

comes from a single electrical resistivity data set collected on day 343. For each curve, the 

specified parameter is varied and the objective function is calculated, while any remaining 

parameters are fixed at the values that were estimated by inversion. Since the shape of each 

curve depends on the values of the other parameters, these figures show approximate 

relationships and are mainly intended to help understand potential issues of non-uniqueness and 

parameter identifiability.  
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For Case C.1, the minimum of the objective function is clearly defined (Figure 13a), but its 

value of 539 is higher than for the remaining cases (see Table 3), revealing that it is likely not 

appropriate to assume m is spatially uniform at this site. Note the vertical scale in Figure 13a is 

different from that in Figures 13b-d. Performing the inversion with the assumption that 

heterogeneity in m can be described using two regions (Case C.2) results in an overall decrease 

in the minimum value of the objective function to 421 (20% lower than the previous case), and 

uniquely determined values of m for both regions. When adding a second region for which m is 

to be estimated in the Saprolite layer (Case C.3), making three regions in total, inversion results 

in a minimum objective function value of 415, though the objective function is relatively 

insensitive to m in the upper-most layer (Figure 13b). When instead adding a second region for 

which m is to be estimated in the transition zone (Case C.4), the minimum value of the objective 

function is 417, and each value is uniquely determined. Given that the inversions for the three-

layer cases (Cases C.3 and C.4) result in minimum objective function values that are only 

marginally lower than for the two-layer case (Case C.2), and given that the two layers estimated 

in the transition zone in Case C.4 appear to have nearly the same value (0.94 and 0.97), we 

conclude that heterogeneity in m can be described sufficiently using the two-region 

parameterization of Case C.2.  

We also consider the Rhoades model (Equation 3) for modeling the electrical conductivity of 

the soil/rock mixture (Case C.5). The parameters R1 and R2 are assumed to be spatially uniform 

and are estimated by inversion, while the log of the surface conduction s is estimated for two 

regions: one that contains the Saprolite (and fill layer), and one that contains the transition zone. 

The estimated values of the log surface conduction term correspond to actual values for s of 

0.017 and 0.066 S/m, respectively (see Table 3), indicating that surface conduction a) may play a 
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significant role at the site, and b) may be around four times higher in the transition zone than in 

the Saprolite. The shape of the objective function in the vicinity of the estimated parameter 

values is shown in Figure 14. The objective function is relatively flat for low values of s (i.e., 

for log (s S/m]) values less than approximately -1.6). With a minimum value of the objective 

function equal to 428 (see Table 3), this petrophysical model allows for a fit to the electrical 

resistivity data that is similar to that obtained in Cases C.1-C.4, but it requires four parameters 

instead of, for example, only two parameters needed for Case C.2.  

The measured and simulated electrical resistivity data for two representative petrophysical 

model cases, Cases C.2 (Figure 15a) and C.5 (Figure 15b), show a nearly identical fit. The 

average error is nearly the same for each: for Case C.2, the median and standard deviation of the 

residuals of the log resistance data are 0.004 and 0.25 [log ], respectively; and for Case C.5, the 

corresponding values are -0.006 and 0.25 [log ]. Each subplot shows the dipole measurements 

for a current dipole at a single depth. The misfit is largest for the measurements at the deepest 

current dipoles (CD 1 to CD 7). 

 

4.3.4. Cases D.1 to D.3: Coupled inversion of hydrogeochemical data (covering days 290 to 

356) and electrical resistivity data with 2D HM 

In the final three cases, we perform coupled inversion of all the hydrogeochemical data 

considered in Case B and one electrical resistivity survey dataset collected on days 343 (Case 

D.1) or the two electrical resistivity survey datasets collected on days 343 and 354 (Cases D.2 

and D.3), as described in Table 1. The estimated parameters include the hydrogeochemical 

parameters that were estimated in Case B (Table 2) and the two parameters of the petrophysical 

model (Archie’s model) that were estimated in Case C.2 (Table 3). 
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For Case D.1, the initial parameter guesses for the hydrogeochemical parameters were taken 

as the estimated values from Case B, and those for the petrophysical parameters were taken as 

the estimated values from Case C.2. Many of the parameter estimates resulting from the coupled 

inversion are similar to the initial guesses (i.e., the values obtained in Case B and Case C.2), 

suggesting that the initial guesses were already close to the true values. However, the standard 

deviations of the hydrological parameter estimates are lower in this case. In addition, the 

petrophysical parameter m for the Saprolite and fill layers decreased from 1.72 to 1.62, and that 

for the transition zone decreased from 0.97 to 0.88.  

For Case D.2, two electrical resistivity datasets are included, along with the 

hydrogeochemical datasets that were included in Case D.1. Including the additional electrical 

resistivity dataset has the effect of increasing the amount of weight assigned to the electrical 

resistivity data (from 15% to 25%, as mentioned above). However, the parameter estimates 

remain mostly unchanged (within the standard deviation) from the previous case.  

In Case D.3, we examine the sensitivity of the results to the initial conditions, and the overall 

stability of the inversion. The setup for the inversion is the same as for Case D.2 except that most 

of the initial guesses are intentionally set at values that are significantly different from those 

estimated in Sections 4.3.2 and 4.3.3. The initial values of parameter m for the Saprolite and the 

transition zone are now 1.3 (instead of 1.72 and 0.97, respectively). The initial guesses for the 

log permeability of the fill, upper Saprolite, lower Saprolite, and the ditch are -10.5, -13, -12, -

10.5, respectively (instead of -9.8, -13.5, -12.6, -9.9). The initial porosity values in the Saprolite 

and in the transition zone are 0.25 and 0.2, respectively (instead of 0.33 and 0.12). The remaining 

parameters have initial guesses that are unchanged relative to Case B. Whereas the initial value 

of the objective function for Case D.2 was 3809, the value for this case is five times higher 
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(19054). However, the inversion for this case resulted in the minimum value of the objective 

function of 3606, which is only 2% higher than the minimum achieved in Case D.2. The 

parameter estimates are mostly similar to the previous case for the hydrogeochemical 

parameters, though the estimated value of constant pressure at the outflow boundary is increased. 

In addition, the porosity estimate in the Saprolite layers increased from 0.362 to 0.382, and the 

petrophysical parameter m for the Saprolite layers increased from 1.68 to 1.75. Overall, it 

appears that the inversion is stable and not overly sensitive to initial conditions. 

The measured electrical resistivity data and the values simulated with the parameters 

obtained in the inversion for Case D.2 are shown in Figure 16a. Note that while the fit between 

measured and simulated data is good, the variation in time from day 343 to 354 is relatively 

small, implying potentially low sensitivity of the data to the changing nitrate concentrations. The 

temporal variations would of course be larger if coincident geophysical-hydrological-

geochemical datasets were collected at additional times during which different hydrological 

conditions prevailed (e.g., earlier in the wetting phase or during a drying phase, rather than only 

the closely spaced surveys during the sustained wet phase). 

The coupled model that was developed in this section (specifically, using the parameters 

estimated in Case D.2) can be used to examine the sensitivity of different types of datasets for 

understanding the spatiotemporal variations in subsurface processes. For example, the potential 

gain in sensitivity from including an electrical resistivity dataset at a later time is depicted in 

Figure 16b. The simulated time-lapse electrical resistivity data are shown for days 345 and 365, a 

time lapse of 20 days (as opposed to the time lapse of 9 days between the actual surveys that 

were conducted on days 345 and 354). Overall, the time-varying differences between 

measurements are larger, indicating better sensitivity due to the fact that the nitrate concentration 
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and thus the electrical properties are predicted to change more by day 365 than they had by day 

354. Further increased sensitivity would likely be achieved if some electrical resistivity (and 

geochemical) datasets were collected before the onset of the wetting phase, likely leading to 

improved parameter estimates.  

 

5. Summary and Conclusions 

In this work we develop a coupled hydrogeochemical-geophysical model that honors a 

variety of data types collected in a field measurement campaign at the S3-Ponds experimental 

site at the Oak Ridge IFRC site. Our approach allows for the simulation of hydrogeochemical 

processes, such as the dilution of subsurface nitrate contamination resulting from high recharge 

events, and the corresponding geophysical responses.  

Coupled inversion of the time-varying water level data, nitrate concentration data and 

electrical resistivity data provided estimates of various hydrogeochemical parameters, such as 

permeability and porosity, and various petrophysical parameters for a number of geological 

layers in the model. The inverse modeling was performed in an incremental fashion, adding data 

sets and increasing model complexity with each step. Inversion of only the hydrogeochemical 

data was first performed using a computationally efficient, simplified 1D representation of the 

HM over a long time series of data, and was then followed by application of a 2D representation 

of the HM that was more accurate but covered a shorter time period. The low permeability 

Saprolite layer underlying a high permeability fill zone was seen to cause intermittent water 

ponding, which is captured in the model, as evidenced by reproduction of the water level time 

series in a perched-zone well and a saturated zone well. In addition, the modeled response of the 

nitrate measurements was also reproduced. We found that the results were highly sensitive to the 
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nitrate concentration profile used to initialize the simulations, necessitating its concurrent 

estimation in the inversion procedure.  

Two different petrophysical relationships for the electrical conductivity of the soil/rock 

mixture were considered: Archie’s law and Rhoades model. (The fluid conductivity was fixed 

based on a relationship between the measured nitrate concentrations and electrical conductivity 

logging data.) We observed that a) spatial variability in the petrophysical model must be 

accounted for, b) a two-layer model appears to be sufficient for describing heterogeneity of the 

petrophysical model at the site, c) the parameter m of Archie’s model was lower than expected in 

one region (the transition zone), and d) based on application of Rhoades model, surface 

conduction may be an important consideration for the subsurface materials at the site (and may 

explain the anomalously low value of m estimated for Archie’s model). The low value of m 

could also be due to immobile porosity which is not taken into account. We also examined non-

uniqueness and uncertainty in the petrophysical parameters by examining the shape of the 

objective function for different cases, which helped identify an acceptable parameterization of 

spatial heterogeneity. The validity of the petrophysical functions inferred in this study will be 

examined using the results from laboratory column experiments that are underway. 

The coupled inversion procedure yielded hydrogeochemical and petrophysical parameter 

estimates that were similar regardless of whether one or two electrical resistivity datasets were 

included, and the inversion was stable when initial conditions were set intentionally far from the 

values estimated in previous steps.  

Overall, sensitivity of the electrical resistivity data to temporal changes in the nitrate 

concentration was found to be somewhat low, but this may simply be a reflection of the limited 
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time period during which the electrical resistivity and geochemical surveys were conducted 

(during a sustained wetting phase).  

While the 2D HM used in this study accounts for flow from a drainage ditch and from 

precipitation-induced infiltration, we assume the model parameters are continuous in the lateral 

direction (though heterogeneous in the vertical direction). To resolve heterogeneity in the 

horizontal direction, a more comprehensive model will be developed for the site that incorporates 

flowmeter and slug test data and spatially distributed geochemistry data (as opposed to only 

using geochemistry data from a single well) as they become available. In addition, the 

contaminant source should be accurately represented, and a dual-domain implementation of flow 

and transport at the site considered. 

This study illustrates the potential for the coupled modeling framework to be used as a tool 

for integrating multiple types of data at the local scale (such as borehole and cross-borehole 

datasets) in order to examine the relationships between recharge, soil characteristics, initial 

contaminant concentration, and transport processes at a contaminated site. Further studies using 

the coupled modeling framework are planned that consider geophysical and geochemical 

datasets collected during a wider range of conditions, for example, during wetting, wet, and 

drying phases. It is expected that applying the inverse modeling procedure under more varied 

and dynamic conditions will increase parameter sensitivity and allow improved understanding of 

the system processes. Subsequent studies will incorporate sparser but more spatially extensive 

datasets (e.g., surface-based electrical resistivity data) for monitoring recharge-related 

hydrogeochemical variations over larger scales. 
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Table 1. Summary of inversion cases and datasets.   

a

Description Case A Case B Cases C.1-C.5 Cases D.1 Cases D.2-D.3 
      
Related section in text 4.3.1 4.3.2 4.3.3 4.3.4 4.3.4 
      
Simulation period for HM days 102362 days 290356  days 290356 days 290356 
      
Models       

Hydrogeochemical 1D 2D  2D 2D 
Electrical resistivity   a  2D 2D 2D 

      
Datasets      

Nitrate conc. in well 
FW120 (at 5.5, 8, and 
10 m)  

Six measurements      
during days  
343356 

Six measurements     
during days  
343356 

 Six measurements      
during days  
343356 

Six measurements      
during days  
343356 

Nitrate conc. in well 
FW120 (at 11.5, 13.2, 
and 15.2 m)  

 Six measurements     
during days  
343356 

 Six measurements      
during days  
343356 

Six measurements      
during days  
343356 

Water level in well 
SG002 

252 measurements     
during days  
102362  

58 measurements       
during days  
290356 

 58 measurements       
during days 
290356 

58 measurements       
during days 
290356 

Water level in well 
FW117 

261 measurements     
during days  
102362  

67 measurements       
during days  
290356 

 67 measurements       
during days 
290356 

67 measurements       
during days 
290356 

Electrical resistivity    One measurement 
survey on Day 345 

One measurement 
survey on day 345  

Two measurement 
surveys on days   
345 and 354 

      

The dash symbol “” indicates that category is not applicable. 
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Table 2. Parameter values of hydrogeochemical model for different inversion cases considered in Section 4.3.  

 

aStandard deviations are given for the parameter estimates after the symbol “±”.  

Parameters Case A Case B Cases C.1-C.5 Case D.1 Case D.2 Case D.3 

Hydrological       
log (kditch [m

2]) -9.95 (±0.02)a -9.91 (±0.05)   Fixedb -9.93 (±0.02) -9.92 (±0.02) -9.86 (±0.02) 
log (kfill [m

2]) -10.29 (±0.02) -9.8 (±0.5) fixed -9.53 (±0.09) -9.49 (±0.2) -10.03 (±0.08) 
log (kupper Sap.  [m

2]) -13.39 (±0.02) -13.47 (±0.04) fixed -13.43 (±0.01) -13.42 (±0.01) -13.43 (±0.01) 
log (klower Sap.  [m

2]) -12.79 (±0.01) -12.6 (±0.2) fixed -12.73 (±0.05) -12.71 (±0.05) -12.33 (±0.09) 
log (k tran. [m

2]) fixed (-10) fixed fixed fixed fixed fixed 
fill fixed (0.15) fixed fixed fixed fixed fixed 
upper and lower Sap. 0.36 (±0.02) 0.33 (±0.05) fixed 0.351 (±0.01) 0.362 (±0.004) 0.382 (±0.004) 

tran.  fixed (0.15) 0.12 (±0.01) fixed 0.125 (±0.003) 0.126 (±0.003) 0.134 (±0.002) 

log ( [Pa-1])c  2.96 (±0.01) fixed fixed fixed fixed fixed 

nd 3.2 (±0.2) fixed fixed fixed fixed fixed 
dPoutflow [kPa] 4.3 (±0.2) 3.9 (±1.0) fixed 3.3 (±0.46) 3.3 (±0.42) 5.15 (±0.34) 

       

Initial conc. (Fig. 6c)       

log Ci=1,8 (d < 10 m) estimatedd estimated fixed estimated estimated estimated 
log Ci=9,12 (d > 10 m) e estimated fixed estimated estimated estimated 

       

Objective function       

Initial value 9037 3138 See Table 3    

Final value 2503 2661 See Table 3 3098 3528 3606 

bFixed indicates the parameter is set to the value in parentheses (if given) or else to the value for the Case (column) to the left.  
cParameters of the capillary pressure function of van Genuchten [1988]. 
dEstimated concentration values are shown in Figure 6. 
eThe dash symbol “” indicates that the category is not applicable. 
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Table 3. Parameter values of electrical resistivity model for different inversion cases considered in Section 4.3. 

Parameters Cases A-B Case C.1 Case C.2 Case C.3 Case C.4 Case C.5 Case D.1 Case D.2 Case D.3 

Model          

 (bedrock) [S m-1] a fixedb (1E-4) fixed fixed fixed fixed fixed fixed fixed 

Fluid electrical 
conductivity w (Eq. 1) 

         

A  fixed (0.0011) fixed fixed fixed fixed fixed fixed fixed 

B  fixed (3.627) fixed fixed fixed fixed fixed fixed fixed 

Archie’s model (Eq. 2)          

n  fixed (2) fixed fixed fixed  fixed fixed fixed 

m1 (fill)  1.01 (±0.01) c 1.72 (±0.01) 1.90 (±0.03) 1.83 (±0.01)  1.62 (±0.04) 1.68 (±0.03) 1.75 (±0.02) 

m2 (upper Sap.)          

m3 (lower Sap.)    1.72 (±0.01)      

m4 (upper tran.)   0.97 (±0.01) 0.97 (±0.01) 0.97 (±0.01)  0.88 (±0.01) 0.85 (±0.01) 0.88 (±0.01) 

m5 (lower tran.)     0.94 (±0.01)     

Rhoades model (Eq. 3)          

logs [S/m])  

   (fill and Sap.)  

 
    -1.77 (±0.04) 

   

logs [S/m])     

   (tran.) 

 
    -1.18 (±0.01) 

   

R1 (all layers)      -0.31 (±0.03)    

R2 (all layers)      0.47 (±0.01)    

Objective function           

Initial value See Table 2 678 678 626 626 619    

Final value See Table 2 539 421 415 417 428  3528 3606 

aThe dash symbol “” indicates that the category is not applicable. 
bFixed indicates the parameter is set to the value in parentheses (if given) or else to the value for the Case (column) to the left.  
cStandard deviations are given for the parameter estimates after the symbol “±”.  
 



Figure Captions 

Figure 1. Depiction of the coupled hydrogeophysical modeling approach. 

 

Figure 2. Oak Ridge Integrated Field Research Challenge (IFRC) site: (a) location in eastern 

Tennessee, (b) unlined surface trenches (the S-3 Ponds) that received approximately 2.5 million 

gallons per year of waste containing acidic nitrate and uranium, among other contaminants, from 

1951 to 1983, (c) parking lot covering S-3 Ponds after they were capped in 1988.  

 

Figure 3. Location of wells where hydrogeophysical datasets were collected, including cross-

borehole electrical resistivity data (FW124 and FW125), water level data (SG002 in the saturated 

zone, and FW117 in an intermittently perched zone), and multilevel sampling geochemistry data 

(FW120). Note the approximate location of the drainage ditch relative to these wells. Surface 

electrical resistivity and crosshole seismic datasets were also collected; while they were not 

considered in this study, their locations are noted for reference.  

 

Figure 4. (a) Measured rainfall rate for the time period considered in this study, with a solid 

black line showing the rate and a dashed red line showing cumulative rainfall, (b) measured 

water level in the drainage ditch next to the site. Days 98 to 365 of 2008 correspond to April 

through December. 

 

Figure 5. Water level data for wells in the saturated zone (FW117) and in an intermittently 

perched zone (SG002). SG002 contains water only when the depth to the water level is less than 

2.6 m (i.e., the well is dry when the water level is at 2.6 m). 
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Figure 6. Nitrate concentration profiles from multi-level sampling well FW120 (a) measured on 

six days of the year 2008 (as noted in the legend), (b) obtained for day 343 using linear and 

nearest-neighbor interpolation of the measurements, and (c) estimated for day 343 in the 

inversion procedure (described in Section 4.3). 

 

Figure 7. Electrical resistivity grid showing (a) the electrodes for one current dipole (blue line) 

and the corresponding measurement dipoles (red lines). An additional 19 current dipoles at 

different depths are also included in the study, each with a different set of measurement dipoles, 

giving 581 measurements per survey. All the considered current dipoles and possible 

measurement dipoles are depicted in (b). In total we consider two surveys from December 2008. 

 

Figure 8. (a) Conceptual model showing main geological layers, recharge sources (precipitation 

and drainage ditch water), water tables in an intermittently perched water body and the saturated 

zone, and two measurement wells; (b) 1D HM grid that accounts for vertical flow in the fill and 

Saprolite layers, and horizontal outflow in the transition zone to a fixed-pressure boundary; (c) 

2D HM grid with outflow in the transition zone to a fixed-hydrostatic-pressure boundary; (d) 

example of output from 2D HM with overlapping 2D GM grid. The location of the electrodes 

used by the GM to simulate electrical resistivity measurements are shown in (c) and (d). 

 

Figure 9. For Case A in Section 4.3.1, measured and simulated (a) water levels in the perched 

zone well (SG002), (b) water levels in the saturated zone well (FW117), and (c) nitrate 

concentrations at three sampling depths in FW120 as a function of time. The simulated results 
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were obtained using the parameters estimated by inversion using the coupled hydrogeochemical-

geophysical model (See Tables 1 and 2). 

 

Figure 10. For Case B in Section 4.3.2, measured and simulated (a) water levels in the perched 

zone well (SG002), (b) water levels in the saturated zone well (FW117), and (c) nitrate 

concentrations at the six sampling depths in FW120 as a function of time. The simulated results 

were obtained using the parameters estimated by inversion using the coupled hydrogeochemical-

geophysical model (See Tables 1 and 2). 

 

Figure 11. Sensitivity of the simulated nitrate concentration evolution to the shape of the profile 

used for initialization at day 343. The results of three simulations are shown, with the only 

difference in input parameters being the initial profile of nitrate concentration, as determined by 

linear or nearest-neighbor interpolation (Figure 6b) or by the result of the inversion procedure for 

Case B (Figure 6c). Both of the interpolated profiles honor the geochemistry data at the sampling 

locations. 

 

Figure 12. Simulated water saturation for parameters obtained by inversion in Case B (Section 

4.3.2) (a) at day 345 and simulated nitrate concentration at (b) day 345 and (c) 354, 

corresponding to the times of the electrical resistivity surveys, and at (d) day 362.  

 

Figure 13.  Shape of the objective function in the vicinity of the estimates of petrophysical 

parameter m of Archie’s law (Equation 2) for the different regions defined in (a) Case C.1, (b) 

Case C.2, (c) Case C.3, and (d) Case C.4. For each curve, the specified parameter is varied and 
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the objective function is calculated, while any remaining parameters are fixed at the values 

previously estimated by inversion (shown with symbols). Details of the inversions are given in 

Tables 1, 2, and 3 and described in Section 4.3.3. 

 

Figure 14.  Shape of the objective function in the vicinity of the estimates of petrophysical 

parameters (a) s for the combined fill and Saprolite layer and for the transitions zone, (b) R1 and 

(c) R2 for Case C.5. For each curve, the specified parameter is varied and the objective function 

is calculated, while the remaining parameters are fixed at the values previously estimated by 

inversion (shown with symbols). Details of the inversions are given in Tables 1, 2, and 3 and 

described in Section 4.3.3. 

 

Figure 15. Measured (red) and simulated (black) electrical resistance values obtained with the 

parameters estimated by inversion of an electrical resistivity dataset for day 345 for (a) Case C.2 

in Section 4.3.3 and (b) Case C.5 in Section 4.3.3. In each subplot, the measurement dipoles are 

shown corresponding to a single current dipole (CD 1 is the deepest current dipole, CD 20 is the 

shallowest; see Figure 7). The code used in this study automatically orders the electrodes for 

each dipole to give positive resistance values, thus allowing for the log transform of the data to 

be used in the inversion. 

 

Figure 16. (a) Measured (red) and simulated (black) electrical resistance values at two survey 

times (days 345 and 354), obtained using the parameters estimated by coupled inversion of the 

hydrological datasets and electrical resistivity datasets (Case D.1), as is described in Section 

4.3.4. (b) Simulated electrical resistance values at days 345 and 365, which corresponds to 11 
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days after the last electrical resistivity dataset was actually collected (at day 354). In each 

subplot, the measurement dipoles are shown corresponding to a single current dipole (CD 1 is the 

deepest current dipole, CD 20 is the shallowest; see Figure 7). The code used in this study 

automatically orders the electrodes for each dipole to give positive resistance values, thus 

allowing for the log transform of the data to be used in the inversion.

 50



 

  

 
 

 
Figure 1. 

 51



 
 
 
 
 
 
 
 
 
 

 
Figure 2. 

 52



 
 
 
 
 
 
 
 

 
 

Figure 3. 

 53



 
 
 
 
 

 
 

Figure 4. 

 54



 
 
 
 
 
 
 
 

 
 

Figure 5. 

 55



 
 
 
 
 
 
 
 

 
 

Figure 6. 

 56



 
 
 

 
 

Figure 7. 

 57



 
 
 
 
 

 
 

Figure 8. 

 58



 
 
 
 

 
Figure 9. 

 

 59



 
 
 
 

 
 
 

Figure 10. 

 60



 
 
 
 

 
 

Figure 11. 

 61



 
 
 
 
 
 
 

 
Figure 12. 

 62



 
 
 

 
 
 

Figure 13. 

 63



 

 
 

Figure 14. 

 64



 

 
 

Figure 15. 

 65



 

 
 

Figure 16. 

 66




