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Abstract 

The conductive and capacitive material properties of the subsurface can be quantified through 

the frequency-dependent complex resistivity. However, the routine three-dimensional 

interpretation of voluminous induced polarization (IP) data sets still poses a challenge due to 

large computational demands and solution non-uniqueness. In this work, we propose a flexible 

methodology for three-dimensional (spectral) IP data inversion. Our inversion algorithm is 

adapted from a frequency-domain electromagnetic (EM) inversion method primarily developed 

for large-scale hydrocarbon and geothermal energy exploration purposes. The method has proven 

to be efficient by implementing the non-linear conjugate gradient method with hierarchical 

parallelism and by using an optimal finite-difference forward modeling mesh design scheme. 

The method allows for a large range of survey scales, providing a tool for both exploration and 

environmental applications. We experiment with an image focusing technique in order to 

improve the poor depth resolution of surface data sets with small survey spreads. The 

algorithm’s underlying forward modeling operator properly accounts for EM coupling effects, 

thus traditionally used EM coupling correction procedures are not needed. The methodology is 

applied to both synthetic and field data. The benefit of directly inverting EM coupling 

contaminated data is demonstrated on a synthetic large-scale exploration data set. Afterwards, we 

demonstrate the monitoring capability of our method by inverting time-lapse data from an 

environmental remediation experiment near Rifle, Colorado. Similar trends observed in both our 

solution and another two-dimensional inversion are in accordance with previous findings about 

the IP effects due to subsurface microbial activity. 

 

Introduction 

The induced polarization (IP) method was originally developed for mineral prospecting of iron-

sulfide (FeS) formations because of strong polarization phenomena at the interface between 

metallic minerals and pore fluids (e.g., Sumi, 1959; Madden and Cantwell, 1967; Van Voorhis et 

al., 1973; Pelton et al., 1978). For a large class of sulfide deposits and other mineral types that 

represent electronic conductors, for example magnetite and graphite, the IP method provides a 

strong indicator. The use of the IP effect to predict hydraulic properties (e.g., Vacquier et al., 



1957) is more indirect and thus ambiguous than in sulfide mineral exploration. Therefore, only 

recently, i.e. during the last decade, has the IP method gained popularity in field-scale 

environmental and engineering applications. Utilized is the sensitivity to lithologic parameter 

changes, such as hydraulic conductivity, surface area, and grain size (Bӧrner et al., 1996; Slater 

and Lesmes, 2002), as well as to pore solution chemistry and microscopic structure (Kemna et 

al., 2000; Hӧrdt et al., 2007; Williams et al., 2009). The ambiguity in interpreting IP effects 

stems from different types of polarization effects which furthermore exhibit a frequency-

dependence. We refer the reader to a recent work by Revil and Florsch (2010) for a 

comprehensive research overview of the governing mechanisms and the related efforts of other 

authors. Recent works indicate that the main IP contribution related to hydraulic parameters, in 

the absence of metallic minerals, comes from polarization of ions within the Stern layer, the 

inner portion of the electrical double layer coating the surface of the minerals (Revil and Florsch, 

2010, and references therein).   

Utilizing the frequency dependence of polarization mechanisms increases the informative value 

of IP data by additional phase lag information, measured between a voltage sinusoid and an 

impressed current sinusoid. Spectral IP (SIP) responses are a complex function of pore solution 

chemistry, surface chemical properties, and microscopic structure. Finding one macroscopic 

parameter for these properties, which describes both conductive and capacitive properties of a 

material, leads to the complex electrical conductivity ( ), or the reciprocal ( ), the complex 

resistivity (CR). Expressed in terms of a magnitude and phase, or by real and imaginary parts, 

one has (i=imaginary unit) 

 

The real component  represents current flow in phase with the injected source field. The 

imaginary (also referred to as quadrature) conductivity  is one of the commonly used 

normalized IP parameters and is derived from the field IP parameter phase, , by 

. The imaginary conductivity relates to the current component out of phase by 90 

degrees with the source current. 

Most related studies about physiochemical parameters controlling complex conductivity 

responses of rocks and soils have been performed at the laboratory scale (Bӧrner et al., 1996; 



Ulrich and Slater, 2004; Williams et al., 2005). Field-scale surface SIP measurements for 

complex tasks such as monitoring biogeochemical processes have only recently been utilized 

(Williams et al., 2009). Challenges are given by geologically complex situations and time variant 

parameter changes. Owing to these complexities, it has been understood that it is important to 

take the three-dimensionality of the Earth into account in order to minimize the errors introduced 

by assuming one- or two-dimensional models. Despite a lot of recent progress in the field of 

surface IP data acquisition and inversion (Kemna and Binley, 1996; Kemna et al., 2000, Weller 

et al., 2000; Loke et al., 2006), key problems remain to be the typically large computing 

demands of 3-D inversions and the non-uniqueness problem given by the highly parameterized 

3-D models. 

Most inversion algorithms for IP data have underlying forward solutions that assume negligibly 

small inductive effects (Oldenburg and Li, 1994; Shi et al., 1998; Yang and LaBreque, 2000; 

Kemna, 2000). These approaches imply sufficiently low measurement frequencies. Higher 

frequencies, as well as higher conductivities and larger transmitter-receiver electrode separations, 

introduce an inductive component which is superimposed on the IP effect of interest and is 

referred to as electromagnetic (EM) coupling. In general, for two electrode circuits at the Earth's 

surface, their mutual impedance Z as a function of angular frequency  is defined as the ratio 

Z(ω)=U2(ω)/I1(ω), where U2 refers to the voltage in the secondary circuit (potential electrodes), 

and I1 refers to the alternating current in the primary circuit (current electrodes). Z(ω) consists of 

a CR contribution owing to the Earth’s polarization, the desired signal, and an induced coupling 

component between the primary and secondary circuits. Traditional approaches treat the 

inductive portion of IP measurements as noise, and hence its removal may be a loss of useful 

information. Furthermore, the removal necessitates additional data processing steps. Much effort 

has been put into the development of algorithms, involving both empirical and physics-based 

models, that separate inductive coupling responses from CR observations (e.g., Wynn and 

Zonge, 1975; Song, 1984; Routh and Oldenburg, 2001; Ingeman-Nielsen and Baumgartner, 

2006). An alternative demonstrated in this work consists of incorporating EM coupling directly 

into SIP data simulations at the expense of higher computational costs. 

The present study aims at further advancing the methodological framework available for 

interpreting field-scale SIP measurements. We have adapted a finite-difference (FD) imaging 



algorithm for controlled-source EM data, introduced in an earlier work (Commer and Newman, 

2008), to handle 3-D SIP data inversion. A hierarchical parallel implementation (Commer et al., 

2008) addresses the large computing demands and makes efficient use of multi-processor 

computers as they are becoming more common for scientific applications. The algorithm further 

features a computationally efficient grid separation scheme, which allows the design of 

optimized FD grids for accelerated forward modeling solutions. The underlying forward 

operators can be chosen to either solve the full Maxwell equations or the Poisson equation for 

complex conductivity which covers a broad range of applications. Treating Maxwell’s equations 

in the forward problem enables the inversion of SIP data for complex resistivity taking EM 

coupling effects into account. 

After briefly introducing the forward and inverse modeling framework, we introduce a method of 

vertical resolution enhancement using a depth weighting scheme. Depth weighting functions 

have for example been applied successfully to inverse problems for static potential field data (Li 

and Oldenburg, 1998). In the present work we experiment with applying both depth and lateral 

weighting directly to the gradient of the inverse solution’s objective functional. This method 

provides a simple way of attenuating the high sensitivities of inversion parameters (in the form 

of model grid cells) near sensor positions, thus achieving a focusing effect at larger depths. In the 

following sections, we first demonstrate the benefit of directly inverting EM coupling 

contaminated data by solving Maxwell’s equations in the forward modeling operator. Then, data 

inversions from the Rifle Integrated Field-Scale Subsurface Research Challenge site (Colorado), 

a research area for studying the feasibility of bio-stimulated environmental remediation, are 

presented. The Rifle study examines the image focusing effect of the gradient weighting scheme 

and further demonstrates the monitoring capability for time-variant complex resistivity 

anomalies.   

 

Method 

The inverse algorithm used in this work involves two methodologies to recover complex 

conductivity structure from frequency-domain IP data. The first one involves a forward operator 

which solves the full 3-D Maxwell equations for the electric field, referred to as the EM problem 



in the following. This approach, while computationally expensive, accounts for EM coupling 

effects. The second forward modeling operator solves the Poisson equation for a complex 

potential field, referred to as the DC problem. Although the latter is formally equivalent to 

solutions to conventional DC resistivity problems, the frequency dependence enters the equation 

through the complex conductivity. Since EM coupling effects are neglected, this approach is 

only appropriate when frequencies approach the static limit. Both methods will be applied to 

imaging problems shown further below.  

Only isotropic complex conductivity models will be studied below. However, with the 

underlying material averaging scheme of the forward modeling operator, outlined in detail in an 

earlier work (Commer and Newman, 2008), an anisotropic formulation of the forward problem 

falls in place (Newman et al., 2010). Therefore, our method also allows simulating fields from an 

anisotropic complex conductivity distribution. 

Forward solution using Maxwell’s equations 

The inversion approach presented here involves a forward solution of the full 3-D Maxwell 

equations for the electric field. Solving Maxwell’s equation in the quasi-static limit for the vector 

electric field, E, one has (Newman and Alumbaugh, 2002) 

    (1) 

In this formulation,  and  denote the free-space magnetic permeability and angular 

frequency, where f is measured in Hz. The complex conductivity is given by the tensor 

 

where , , and denote the directional complex conductivities along the three Cartesian 

coordinates. We define the forward problem as a scattered field formulation for Maxwell’s 

equations, where the total electric field is given by the sum of a background and scattered 

electric field, . In this case, the source vector J is written as  

 



where  is the background’s complex conductivity tensor, and  is the corresponding electric 

field. Because of computational efficiencies, it is common to use half-space or layered (one-

dimensional) background models, for which analytical field solutions exist. The scattered field 

formulation is the preferred way in well-logging applications because of the fact that 

measurements are usually close to the source (Newman and Alumbaugh, 2002). Scattered fields 

have a smoother spatial dependence when source positions are located in the vicinity of 

anomalous conductivities. In the surface case presented here, the electrode configuration covers 

only a few tens of meters and thus the same reason applies for using a scattered field solution. 

Equation 1 is solved in three dimensions using a FD formulation. Discretizing equation 1 on a 

staggered FD grid leads to the linear system 

     (2) 

which is complex symmetric and sparse with 13 non-zero entries per row (Newman and 

Alumbaugh, 2002). The right hand side SEM is a discrete scaled representation of the right hand 

side of equation 1, where one solves for the scattered electric field. We use the QMR (quasi-

minimum residual) method with Jacobi preconditioning for solving the system. For 

computational efficiency, the system is solved on distributed computer systems, using the 

message passing interface (MPI). This is realized by using a FD grid decomposition within a 

MPI communicator with Cartesian topology. Within this communicator, each parallel task is 

assigned to a subcube of the 3D mesh underlying equation 2. At another over-arching level, an 

arbitrarily high number of forward problems can be distributed over a designated number of 

Cartesian solution communicators (Commer et al., 2008).  

A limitation to solving the forward modeling problem of equation 2 is the fact that the system 

becomes increasingly ill-conditioned as frequencies approach the static limit. To address this 

problem, a class of additional preconditioners has been proposed, which are based on a 

Helmholtz decomposition of the electric field in the low induction number regime. We refer to 

the work of Newman and Alumbaugh (2002) and references therein for an implementation of the 

low induction number preconditioner. This preconditioner type was used for all shown imaging 

results which solve equation 2 in the forward operator.  

 



Forward solution using Poisson’s equation 

Without frequency dependence, the electric field is curl-free and thus can be written as , 

where  is a scalar complex potential. The potential field is obtained through solution of the 

Poisson equation, 

     (3) 

where J represents the DC source current distribution. Owing to similar reasons as mentioned 

above, we also employ a scattered field version for the results shown in this work, realized by 

solving the equation 

    (4) 

The resulting complex matrix system  

      (5) 

is solved for the (scattered) complex potential field  via a generalized bi-conjugate gradient 

solver. The scattered field formulation for the potential field utilizes the above mentioned 

background one-dimensional electric fields, , calculated from the background 

conductivity distribution . 

 

Inverse solution 

A detailed formulation of the EM inverse solution as it is used for the present study is given in an 

earlier work (Commer and Newman, 2008, and references therein). Here, we outline the basic 

methodology relevant to treating complex conductivity parameters. The SIP inverse problem is 

formulated by means of an error function to be minimized, 

 (6) 



where * denotes complex conjugation. The first term on the right hand side ( ) contains the 

data misfit between the vectors of observed ( ) and predicted ( ) data, where the latter is 

assessed through a model guess, in geophysical inverse problems often also referred to as the 

starting model. The data vectors have a size of N complex data. The measurement errors enter 

the error functional through the diagonal weighting matrix . Minimization of the objective 

functional is realized by a non-linear conjugate gradient (NLCG) scheme. The initial model 

guess is iteratively refined during subsequent NLCG iterations.  

The second term ( ) of equation 6 regularizes the model roughness, realized by the smoothing 

matrix , where M is the number of unknown FD cell parameters in the inverse problem. 

These parameters are given by the rectangular cells of a 3-D Cartesian FD model grid. In the 

isotropic case, the total model vector m is thus of size 2M and consists of the stacked real (i=1) 

and imaginary (i=2) components of the grid cell conductivities, 

    (7)  

To reduce model roughness in three dimensions, W is given by a FD approximation of the 

Laplacian operator and applied to each model vector component . A balance between data 

misfit minimization and model regularization is achieved by the regularization parameter λ. The 

model regularization can in principal be chosen to differ between real and quadrature 

conductivity in order to account for differing orders of magnitude between and . A typical 

approach for proper selection of λ consists of a cooling approach (Newman and Alumbaugh, 

2002) where one decreases λ successively during the course of several inversion runs until a 

target misfit is achieved. Extended to complex conductivity, a rigorous approach would involve 

two cooling approaches for both and , where the other one is fixed. However, all synthetic 

studies shown below used  and provided satisfactory inversion results. Hence, 

 was also chosen for the field data inversions. 

In addition to the above mentioned hierarchical parallelization scheme, we achieve additional 

computational efficiencies by using an optimized grid scheme (Commer and Newman, 2008). In 

principal, the scheme allows for computing the forward solution on a FD grid which can be 

independent of the grid defining the model parameter space defining the electrical conductivity 

distribution. Both the spatial sampling and size of the meshes used for calculating forward 



solutions can then be adapted specifically to the given source frequencies, profile distances, and 

spatial measurement intervals. The grid separation algorithm involves a proper conductivity 

averaging scheme which has been outlined in detail for real-valued conductivities. This material 

averaging scheme applies in the same way for complex conductivities as outlined for the general 

case of anisotropic conductivities in the appendix. There, we also provide more details about 

methodological extensions needed for calculating the objective functional gradient  with 

respect to complex conductivity parameters, generalized for the anisotropic case. 

 

Spatial gradient weighting 

A well-known problem in the inversion of geophysical surface measurements is a quickly 

decaying depth resolution, compared to resolution properties provided by cross-well data. As a 

result, reconstructed conductivity anomalies may tend to concentrate near the surface. Several 

aspects aggravate this problem. First, the dipole-dipole configurations typically used in IP 

measurements do not have strong depth resolution. Moreover, an overestimated contrast between 

a CR anomaly and its background may result in a smaller than the actual anomaly depth, 

according to the principle of equivalence (Weller et al., 2000). Finally, not properly balanced 

model-smoothing constraints can further weaken the reconstruction of structure anomalies at 

depth. To counteract this behavior, we experiment with applying a 3-D weighting function to the 

gradient of the objective functional in equation 6. The scheme works as follows: Before entering 

the NLCG line-search algorithm, the gradient vector is augmented by a weighting function f such 

that the alternated gradient has the form 

.      (8) 

The weighting function f is chosen in a way that the inherently high sensitivities of the model 

grid cells near the surface, i.e. in the proximity of receiver electrodes, are damped. In principal, 

the weighting behavior of this function aims at compensating for the fact that the NLCG method 

is characterized by less aggressive model updating steps compared to Gauss-Newton schemes, 

the latter typically used, because computationally feasible, in 1-D and 2-D inversion frameworks.  



In addition to depth weighting, the scheme also allows to define a lateral focusing volume for the 

inversion domain. While a variety of weighting functions may be applied in this way, we 

propose exponential types of weighting functions defined over a 3-D volume. Considering the 

vertical coordinate, the desired function behavior for surface measurements is in principle to 

down-weight the gradient vector near the surface (z=0), in our case defining the top of the 

vertical inversion domain, by a factor a<1. With increasing depth z>0, f(z) shall approach a value 

of 1 in order to ease the down-weighting behavior. This can be achieved by combining 

exponential functions to  

      (9) 

In our algorithm, the depth range over which ) changes from a to 1, and thus the steepness 

of the function increase from a to 1, can be chosen by the value of z1. The quantity dz is the 

(vertical) extension of the inversion domain. The behavior of this function is illustrated by the 

blue curve in Figure 1, where the base weighting is a=0.1 and the steepness of the curve is 

defined by z1=5. The vertical inversion domain extends from z=0 m to z=15 m (dz=15 m). Note 

that . The factor r is an internally calculated scaling factor applied to the 

exponential arguments which ensures that . 

One may further wish to define a focusing inversion domain by 

. This is achieved by multiplication 

of f1 with a second function 

     .    

 (10) 

This function has a somewhat reversed behavior of f1. As exemplified in Figure 1 (green curve), 

the choice of z2 (note again that ) defines the rate at which  decreases 

from  to a value of a. Combining these two functions yields 



 

as shown by the black curve. The factor s is a scaling factor which ensures that the maximum of 

 is always 1. Such a focusing function behavior is more reasonable along the horizontal 

coordinates of the inversion domain. Therefore, we combine  and  with the same sort 

of function pairs applied to the x and y coordinates, and obtain 

       (11) 

The 3-D gradient weighting behavior of  is exemplified below. Parameter sensitivities 

usually decay rapidly with depth. In order to avoid down-weighting the gradient components at 

larger depths, in  we simply set z2 to an arbitrarily large number. Then  over the 

whole vertical imaging domain. In an imaging study below, it is shown how a model sensitivity 

map may provide guidance for approaching a specific weighting function. 

Examples 

3-D SIP synthetic data inversion of EM coupling contaminated data 

In mining applications SIP measurements have the potential of discriminating mineral types. 

Mining surveys often deal with large offsets between transmitting and receiving electrodes, thus 

inductive coupling effects between the wire layouts may become significant (Dey and Morrison, 

1973). If not properly accounted for, the inability of not being able to distinguish between IP 

rock responses and EM coupling effects can distort imaging results, particularly if the IP 

spectrum is dominated by EM coupling contributions. Extensive studies have been carried out to 

both simulate and correct for EM coupling effects. To quantify the mutual impedance for dipole-

dipole configurations with respect to dipole separation, dipole length, subsurface conductivity, 

and frequency, a common measure is the percent frequency effect, or PFE (Dey and Morrison, 

1973), 

PFEi= , 



where refers to the direct current (low frequency) mutual resistance of the ith data point, and 

 refers to the data point’s frequency-dependent mutual resistance, which we calculate using 

the full EM forward solution (equation 2). Another measure considered will be the corresponding 

phase difference . 

In the following, we demonstrate the necessity of employing the full EM equations in the 

forward modeling operator when inverting data containing both polarization effects of the 

subsurface material and significant EM coupling effects. A mineral exploration survey is 

modeled, with the survey layout with respect to the target anomaly shown in Figure 2. Five 

dipole-dipole profiles crossing the anomaly are simulated, where a single excitation frequency of 

1 Hz is used. Dipole lengths are 100 m and 50 m for transmitters and receivers, respectively. 

Only receiver dipoles that are in line with the transmitter dipoles are considered. The data set to 

be inverted hence contains 60 dipole sources and a total of N=900 complex data points, 

contaminated by Gaussian distributed noise with a 3 percent relative magnitude. To have 

independence from the forward solution employed in the inversion process, the data was 

generated using a different forward modeling code which uses an integral-equation solution 

(Newman et al., 1986).  

The mineral deposit is given by a conductive (1 S/m) block with dimensions 

 embedded within a more resistive (0.01 S/m = 100 ) half-

space. Its top boundary is at a depth of 100 m. A complex conductivity of  S/m and 

 S/m is assigned to the anomaly and corresponds to a phase of 50 mrad. No phase 

anomaly is attributed to the background. The EM coupling effect is quantified in Figure 3 for the 

true model response, showing both PFE and phase difference. Both quantities show an increasing 

EM coupling effect with increasing transmitter-receiver separation, where the maximum phase 

difference reaches almost 20 mrad.  

Horizontal conductivity transects at depths between z=0 m and z=300 m, obtained from using the 

3-D EM and DC imaging solutions, are compared in Figure 4 (c – f) together with the true model 

(a – b). Although there are some artifacts in the deep part of the image produced, both geometry 

and increased conductivity values of the anomaly are clearly indicated by the EM solution 

(Figure 4, c and d). The DC solution achieves a close reproduction of the deposit’s anomalous 



conductivity magnitude (or real part of the complex conductivity). However, the imaginary 

conductivity image appears greatly distorted, indicating that the solution reaches a local 

minimum. This was also confirmed by the fact that the NLCG algorithm ended prematurely in 

the line-search procedure after 92 inversion iterations without being able to reach a further 

objective functional decrease. The inversion run employing the EM forward solution on the other 

hand was able to proceed to a preset maximum of 500 iterations (Figure 5). The results 

demonstrate that the significant inductive portion of SIP measurements in this case has to be 

taken into account.  

 

3-D SIP field data inversion 

The time-lapse monitoring capability of the presented inverse solution shall be demonstrated on 

a field data set. The following 3-D inversions involve data from an environmental remediation 

monitoring experiment measured at the Integrated Field-Scale Subsurface Research Challenge 

site at Rifle (Colorado), referred to as Rifle site below. The site has been established by the U.S. 

Department of Energy to carry out systematic studies of artificially stimulated biogeochemical 

subsurface processes. Geophysical laboratory experiments proved that sedimentary alterations 

caused by microbe-mediated sulfide mineral precipitation were concurrent with phase changes 

(Ntarlagiannis et al., 2005; Williams et al., 2005). Williams et al. (2009) investigated whether the 

IP method can delineate regions of stimulated (by acetate amendment) iron and sulfate reduction 

caused by the accumulation of electroactive ions such as Fe(II) and dissolved sulfide. The 

authors were able to show that fluids and sediments recovered from regions exhibiting an 

anomalous phase response in IP field measurements showed increased Fe(II) concentrations.   

Based on these findings, a number of SIP field measurements have been conducted to investigate 

the feasibility of monitoring how microorganisms alter their physical and chemical environment 

during bioremediation on a field scale. Williams et al. (2009) produced SIP inversion results 

from Rifle data using a finite-element algorithm that solves directly for conductivity magnitude 

and phase (Kemna, 2000), with the region of interest represented as a 2-D distribution of 

magnitude and phase values. The 2-D approach has been a legitimate approximation, because, as 

will be demonstrated in a sensitivity study below, the data are primarily sensitive to conductivity 



variations along and beneath the measurement profile, with strongly reduced sensitivity to lateral 

or broadside variations. In the following, we employ the finite-element method for image 

comparisons and refer to it as 2-D solution, while our 3-D FD algorithm is referred to as 3-D 

solution for brevity. The SIP data interpreted in this work were collected in the year 2007. 

Although it was found that EM induction effects can dominate the IP spectrum above 10 Hz 

(Kemna et al., 2000), accounting for such effects is neglected, given the frequencies of the data 

(≤4 Hz). For computational efficiency, we therefore neglect EM coupling and solve the scattered 

field version of the DC problem (equation 4) for the underlying forward problems. 

 

Environmental remediation monitoring field site and SIP data collection 

A comprehensive description of the local geology, hydrology and geochemistry of the Rifle site 

has been presented by Andersen et al. (2003).  The site is located on a flood plain in 

Northwestern Colorado. The local aquifer is comprised of approximately 6.5 m of 

unconsolidated sands, silts, clays and gravels deposited by the Colorado River, with the 

uppermost 2 m being an artificial clay-rich cover. The aquifer is heterogeneous but typical 

hydraulic conductivities are 7.5 m/day (8.710-5 m/s). The depth to water table fluctuates 

seasonally, averaging 3.5 m below ground surface; site groundwater flow direction is 

predominantly toward the southwest. The local aquifer is contaminated by uranium caused by 

tailings of a decommissioned uranium mill. 

The measurement layout is sketched in Figure 6. Groundwater was pumped from an up-gradient 

portion of the aquifer into a storage tank and amended with the biostimulating substances acetate 

and bromide.  Ten injection wells, shown in Figure 6, are oriented orthogonal to groundwater 

flow direction and were used to inject the acetate and bromide into the aquifer over a period of 

31 days.  In order to monitor geochemical changes resulting from stimulated microbial activity, 

groundwater samples were collected at 2-5 day intervals from wells down-gradient from the 

region of stimulant amendment (wells D01-D12 in Figure 6). 

Surface SIP data were acquired along two 29 m long transects at five times from August through 

November 2007. Figure 6 shows the two profiles, also referred to as Array A and B in the 

following. Table 1 lists the recording times for both arrays. The transects were oriented 



perpendicular to groundwater flow direction and located 3 and 9 m down-gradient from the 

injection well gallery. Data were acquired using a modified dipole-dipole configuration between 

thirty equally spaced Cu/CuSO4 electrodes, with a dipole spacing of 4 m and a total of 24 

potential dipoles per current dipole. Measurements are given by resistance magnitude and phase 

values and were taken by cycling dipole-dipole configurations through a profile, where for 

example the first transmitting electrode pair is (1,5), and the receiving pairs are (2,6), (3,7), (4,8), 

(6,10), …, (26,30). Contact resistance between the electrodes ranged from 600-1000 Ω.  All 

datasets were comprised of reciprocal data pairs, wherein electrodes used to apply current and 

measure voltage were reversed and data re-acquired. Data were collected using a Zonge GDP-32 

recording device at three frequencies (0.125, 1, and 4 Hz) with a Zonge ZT-30 transmitter (55 V; 

maximum current density of 3 mA/cm2 = 30 A/m2). Modeling the data of one measurement day 

involves solving 52 3-D forward problems (26 transmitter-receiver configurations for each 

profile).  

Since our employed 3-D forward solution generates complex electric field values, we find it 

preferable to convert the resistance magnitude and phase observations to complex electric field 

values. The real and imaginary electric field components, Er and Eq, are obtained from a complex 

datum d* consisting of normalized resistance magnitude |R| and the phase θ by (i=imaginary 

unit) 

     (12) 

This approach has two advantages. First, one avoids additional non-linear transformations which 

would otherwise be introduced into the inverse solution by converting the complex electric field 

predictions into magnitude and phase values. Second, phase discontinuities between ±π in the 

data simulations are rather difficult to handle in terms of calculating misfit errors between the 

observed and simulated data vectors, do and dp. At last, while the behavior of resistance errors in 

electrical resistivity imaging is well understood, a thorough analysis of the phase errors is still 

lacking. Based on the analysis of data sets measured in the frequency range from 1 Hz to 1 kHz, 

Flores-Orozco et al. (2010) propose an advanced model for the description of phase data errors, 

which was adapted for the comparative 2-D inversion carried out in this work. 



In our 3-D solution, in order to assign proper weights wi (by means of the weighting matrix D) to 

the complex electric field data, we use the reciprocal measurements. In practice, the errors 

assigned to each complex datum (Ei
r,Ei

q), are determined using an averaging scheme. The 

inverted data set, comprising all five recording times and all 52 transmitter-receiver profile 

configurations, contains 4158 pairs of resistance magnitude and phase data. We chose to discard 

real electric field measurements with a percentage error, calculated from the reciprocal 

measurements, larger than 5 percent. This amounts to roughly 4000 real electric field values. A 

threshold of 10 percent was chosen for the imaginary components. Data pairs with reciprocal 

differences above these percentage thresholds are given arbitrarily large errors, so that their 

influence on the NLCG minimization procedure is negligible. In a next step, the difference errors 

within the thresholds are averaged, where the Er average turned out to be below 1 percent. A 

minimum of 1 percent was enforced for these data. The average for Eq amounts to 2.26 %. Each 

complex datum (Ei
r,Ei

q) is then given a weight of , where ei
r and 

ei
q are the individual percentage errors of the reciprocal measurements. If a value ei

r or ei
q is 

below its above mentioned minimum, er
min =1 % and eq

min=2.26 %, then ei
r =er

min and/or ei
q 

=eq
min is enforced. 

 

Preliminary sensitivity study and synthetic test inversions 

To quantify the resolution of the survey geometry given by the Rifle SIP data set, a 3-D 

sensitivity map is first generated by a model perturbation method. The underlying half-space 

model is given by the starting model which is used for the field data inversions shown below, 

and has the conductivities r=0.027 S/m and q=0.0001 S/m. These values were found through 

trial and error forward modeling to achieve a rough approximation of the baseline (t0) data along 

Array A. Figure 7 shows the data sensitivities, Sj(r) and Sj(q) (j=1,…,M), obtained by 

perturbing real and imaginary conductivity parameters of each of the shown FD model grid cells 

by a value of 10 percent and calculating the terms 

  and .   (13) 



The summation terms denote the differences between the complex data di (i=1,…,N), generated 

from the perturbed model, and the corresponding unperturbed model response di
0. Note that the 

vector of the data simulations dp comprises the electrode configurations of both profiles (Array A 

and B). The sensitivity map shows a quick decay of the sensitivities by roughly three orders of 

magnitude over the depth range of the local aquifer (down to 6.5 m), confirming the weak 

vertical resolution of this survey configuration. The lateral sensitivity decay between one array 

and the midpoint between Array A and B is less than 1.5 orders of magnitude. These strong 

sensitivity contrasts typically make structures tend to concentrate near the surface and in the 

vicinity of the profile line. Below we will demonstrate that the tendency to concentrate 

conductivity anomalies in areas of high sensitivity can be counteracted by the gradient weighting 

scheme introduced above.  

We first carry out a comparative synthetic data inversion study between our 3-D algorithm and 

the 2-D algorithm employed in this work. The study intends to verify and illustrate the common 

trends in the images obtained from two fundamentally different inversion schemes, as we base 

our field data interpretation below on the common trends obtained from both solutions. For 

synthetic data creation, the field data electrode configuration as described above is simulated for 

one array configuration. Figure 8 (panels a and b) shows vertical cross sections of a simple 2-D 

model from which data is generated, and both model reproductions. Both solutions are given as 

resistivity magnitude and phase. The true model background is characterized by a resistivity 

magnitude of 50  and a background phase of 5 mrad. The anomaly, extending infinitely 

along the y-direction, has the attributes 10  and 25 mrad. To obtain independence from the 

underlying forward codes of each employed imaging algorithm, the synthetic data inverted by 

the 2-D solution is created from our 3-D FD code (using the forward solution represented by 

equation 5), and the synthetic data for the 3-D inversion was generated by the 2-D code. The 

finite element mesh of the 2-D method involves a 10022 (x,z) mesh of rectangular elements, 

where 2079 elements form the actual inversion domain. The 3-D FD inversion domain involves a 

mesh of 804020 (64000) unknowns. Panels c and d of Figure 8 show the (laterally invariant) 

gradient weighting function. The effect of this function is to counteract the natural sensitivity 

decay with depth by down-weighting high sensitivities in the shallow part of the inversion 

domain, thus enhancing the relatively weak sensitivities at depth. This function is realized by the 



parameters a=0.001 and z1=3.5 for  (equation 9) while . Both images indicate the 

anomalous structure. The 2-D solution (e and  f) approximates the shape of the true resistivity 

anomaly in a slightly better way, whereas the 3-D solution (g and h) reproduces a sharper image 

of the phase anomaly. The focusing effect of the gradient weighting scheme is demonstrated here 

by comparing with a 3-D solution generated without any weighting, shown in panels i and j. 

Here, the concentration of the anomalous resistivity magnitude near the surface as a result of the 

limited depth resolution is obvious. This distortion also leads to a weaker phase image. 

A second synthetic study involves a more complex CR anomaly within a horizontally layered 

background. In this example we simulate measurements over a conductive complex resistivity 

anomaly, see Figure 9, using the same layout as given by Array A and B. The anomaly of 

enhanced conductivity is irregularly shaped within the y-z plane and extends for roughly 7 m 

along the x-axis. The x-axis is oriented parallel to Array A (at y=0 m) and Array B (at y=-6 m). 

Using a proper gradient weighting function, it is intended to demonstrate that reasonable 

resolution over a 3-D volume can still be obtained from the relatively sparse two-profile layout. 

The gradient weighting function with the 3-D weighting parameter distribution is illustrated in 

Figure 10. This function is constructed according to equation 11 and has lateral weighting, in 

addition to depth weighting. The chosen function parameters (xa=3, xb=13, ya=-12, yb=0, za=3.5,  

zb=100, base weighting a=0.01) aim at a lateral focusing effect within a target area of interest 

while also damping high near-surface sensitivities. The focus area at x=13 m and y=-6 m is 

chosen assuming some prior knowledge about the extension of the anomalous conductivity 

distribution in Figure 9. The weighting effect is again demonstrated by first carrying out an 

inversion without gradient weighing (Figure 11) and comparing with the result employing 

weighting (Figure 12). The results show a greatly enhanced image for both real and imaginary 

conductivity. Although the result in Figure 12 has a relatively weak imaginary conductivity 

anomaly, the anomaly’s location is clearly improved, compared to the non-weighting result. 

Despite the sparse data coverage, the focusing behavior of the gradient weighting helps to 

reproduce the true depth of the anomaly. We will employ a similar gradient weighting function 

in the following field data inversions. 

 

Computational aspects of field data inversions 



The computational FD grid size used for the environmental field data inversions is 13287149 

(~1.7 million) cells. Each forward solution (including the adjoint solutions for gradient 

calculation) employed 125 CPUs of a parallel cluster with an Intel® Xeon™ architecture, CPU-

speed 3.6 GHz. We used a total of 250 CPUs. The computing requirements for 10 3-D inversion 

iterations of the Rifle data, involving 52 transmitter activations, are 1404 BICG forward 

solutions, also including the adjoint solutions required for gradient calculation. The average 

BICG solution time was 9 seconds. This amounts to 3.5 hours total computing time. As noted 

above, the forward calculations involve the computationally more efficient solution of the 

Poisson equation. In comparison, solving the Maxwell equations in the forward problems, using 

a QMR solver, required an average solution time of 73 seconds, amounting to 24.3 hours of total 

computing time for 10 inversion iterations. 

 

Inversion of data from a bioremediation monitoring experiment 

In this study, we also employ the 2-D solution in order to compare with time-lapse trends 

observed in the 3-D solution. Vertical transects generated by the 3-D and 2-D solutions for 

resistivity magnitude and phase are shown in Figures 13 and 14, respectively. For a given 

recording time (t0 to t4), the 3-D images are produced from jointly inverting the data sets of both 

profiles, while the 2-D images are created by inverting each profile data set separately. Note that 

no measurements were made along Array B for the time t1. We obtained similar image solutions 

for the three different frequencies. Here, we present the results of the frequency f=1 Hz, because 

this data set showed the lowest overall data error in terms of the reciprocal measurements. For an 

image comparison, real and imaginary conductivities of the 3-D solution were converted to 

resistivity magnitude and phase values. We are primarily interested in comparing time-lapse 

resistivity magnitude and phase trends between both methods. Hence, we run all 3-D inversions 

for only ten inversion iterations. This avoids extreme overshoots when converting to resistivity 

and phase images, however results in worse data fits compared to the 2-D solutions. Table 2 lists 

the data fitting errors calculated from the starting model and the final images of each method. 

For a comparison made independent of each algorithm’s internal data weighting scheme, the 

relative percentage error  



     (14) 

is employed. This measure quantifies the absolute values of the unfitted part of the data as a 

percentage of the summed (and absolute) observation values. The stopping condition for the 2-D 

solution was given by a drop of the relative RMS error below the limit value of 0.02.  All 

solutions achieve a satisfactory error level for the resistance magnitudes, while the phase data 

misfits are consistently larger, however can be decreased significantly with respect to the initial 

fits. The solutions are consistent in two aspects. First, the phase images below a depth of 2 m 

show relatively strong responses for the times from t0 to t2 and drop afterwards. Second, during 

t0 and t2 the phase responses are weaker below Array B than below Array A. While the 

resistivity magnitudes || remain relatively constant over the whole measurement time interval, 

the 3-D solution indicates a slight shift of the maximum of || towards Array B. 

 

Interpretation of observed phase responses 

The impact of acetate amendment, starting after time t0, on the SIP signals is interpreted here 

based on the common phase trends observed by using both image solutions. A particular 

outcome of the 2007 stimulation experiment was that, following acetate injection, the phase 

response of the sediments exhibited only modest changes relative to baseline conditions. As 

documented by the borehole data in Figure 15, although Fe(II) increased as a result of acetate 

amendment and the accompanying stimulation of iron reducing microorganisms, variations in 

Fe(II) concentration between the SIP acquisition time points were minimal.  Measurements in 

wells D01-D04 indicated that a slight increase in phase magnitude observed along Array A 

during the t1 acquisition time accompanied an increase in fluid conductivity from 0.245 to 0.295 

S/m, likely the result of the injection. Eleven days later (t2), both phase values and fluid 

conductivities remained elevated below Array A; at the time of this measurement, Fe(II) 

concentrations increased to their highest level in wells D02 and D03.  Both 2-D and 3-D inverse 

solutions indicate decreasing phase responses after time t2. As acetate and bromide (data not 

shown) were eluted from the system following cessation of injection, Fe(II) concentrations 

decreased slightly, as did phase values measured during time points t3 and t4. The smaller 



increases in both acetate and Fe(II) observed in wells D09-D12 as compared to D01-D04 

corresponded to similarly small changes in the phase response along Array B at all time points.  

Increases in fluid conductivity were also smaller in well D09-D12, measurements showed a rise 

from approximately 0.24 to 0.26 S/m during the injection period. 

The observed phase changes along Arrays A and B are in contrast to those previously reported 

for SIP experiments at the Rifle site, where large increases in phase magnitude were found to 

accompany acetate injection and the stimulation of iron and sulfate reducing microorganisms 

(Williams et al., 2009). A likely explanation involves the extent to which baseline Fe(II) 

concentrations were already elevated in the current study area, ranging from 50-100 µM prior to 

starting acetate injection.  This is in contrast to areas of the Rifle site where SIP monitoring has 

previously been undertaken; there pre-injection Fe(II) concentrations were generally ≤10 µM.  

The difference is likely related to the presence of naturally elevated levels of subsurface 

microbial activity in the vicinity of Arrays A and B, which results from localized accumulation 

of buried organic carbon (e.g. wood, grass, roots, etc.) resulting in the accumulation of reduced 

aqueous and mineral species, such as Fe(II), FeS2, and Fe3O4 (Qafoku et al., 2009).  The 

presence of such material in the vicinity on Arrays A and B was confirmed during drilling of 

wells D02-D04, D11 and D12.  As such, the modest increases in Fe(II) concentration above their 

initially elevated level likely minimized the Fe(II)-mediated phase effect.   

 

Conclusions 

We have successfully adapted a 3-D imaging algorithm for industrial-sized controlled-source 

EM data sets, as they are typical in oil and gas exploration, to treat surface SIP data sets. The 

algorithm’s parallel architecture as well as its grid separation scheme make efficient use of 

today’s scientific computing resources.  

SIP measurements generated by frequencies above 10 Hz can contain significant inductive 

coupling effects. The mineral exploration synthetic case provided a demonstration of the effects 

on an imaging solution if not taken into account. EM coupling can be removed by appropriate 

preprocessing procedures. However, the success of such methods strongly depends on a 

reasonable knowledge of the background conductivity in an inversion, which might be time-



consuming to acquire as well. Therefore, we believe that solving the full Maxwell’s equations in 

the forward modeling operator is important in interpreting high-frequency SIP data in a rigorous 

way. The rapid development in computing technology is a good indicator that the high 

computing costs for voluminous data sets reported here can be expected to decrease reasonably 

in the near future. 

The SIP method has the potential of monitoring mineralogical and geochemical changes 

accompanying subsurface processes related to the remediation of mine wastes and bio-stimulated 

contaminant degradation in a minimally invasive way. A rigorous treatment in 3-D is important 

in order to treat arbitrary arrays of current and receiver electrodes over complex geological 

strata. Both the synthetic and field data studies have demonstrated that with adequate computing 

resources, our imaging solution, initially developed for large-scale hydrocarbon and geothermal 

energy exploration tasks, large amounts of (time-lapse) SIP data from 3-D surveys can be 

processed within reasonable timeframes. 

The inversion of the field data and comparisons of the phase trends with an established 2-D 

solution indicate that our inversion approach is capable of yielding assessments of time varying 

phase and resistance magnitude signals collected during future IP and SIP monitoring 

applications. The ability to extend the inversion approach to three dimensions greatly extends the 

range of applications and previously reported results (Williams et al., 2009). The survey layout 

of the data treated here is characterized by a relatively low depth resolution, i.e. longer profile 

lengths would be necessary to increase depth resolution. However, we were able to increase the 

resolution properties by an appropriate gradient weighting scheme, which can be tailored to 

achieve lateral and/or vertical resolution enhancement. The synthetic studies on the Rifle data set 

show that the focusing effect of the gradient weighting scheme basically addresses the non-

uniqueness issue of typically over-parameterized 3-D inverse problems.  
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Appendix 

3-D inverse modeling for complex anisotropic conductivity 

The solutions of the forward problems given by equations 2 and 5 are accelerated by defining FD 

meshes specifically adapted to spatial grid sampling requirements, given by the SIP survey 

geometries and source excitation frequencies. This allows the construction of generally coarser 

and smaller (in terms of their spatial extent) FD meshes than given by the usually larger common 

model grid. The modeling grid defines the inversion parameters, i.e. the real and imaginary 

conductivities assigned to each grid cell. In the following the notation  means that a given 

equation holds for either or , and a similar notation will be used to denote one of the three 

directional conductivities along the Cartesian coordinates x, y, or z. The grid separation involves 



proper grid mapping schemes between the edge space on which the electric field E is sampled 

(S) and the node space given by the common model grid (M) (Commer and Newman, 2008). 

The conductivity averaging functions for calculating the directional edge conductivities on the 

Cartesian FD grid S from the cell conductivities  on M are written in a general form as 

   (A-1) 

   (A-2) 

   (A-3) 

Here , , and   are the directional edge conductivities on S, and dX, dY, and dZ 

are their corresponding edge lengths. The conductivity tensor given above below equation 1 then 

reads   

 

Note that the edge lengths are given by the distances between neighboring nodes on a Cartesian 

FD grid. In principal, the edge conductivity represents a harmonic average of a series of parallel 

circuits. In equations A-1 to A-3, the term in brackets represents a serial connection of parallel 

circuits, where the outer integration (dX, dY, or dZ) is carried out along the edge length. The 

integration section along dx, dy, or dz in turn is comprised as a parallel circuit of all cell 

conductivities  which overlap the parallel circuit’s total integration volume V (with dV being 

the overlapping cell volume). For example, for the x-coordinate V is given by  where S is 

an integration area in the yz-plane defining the volume  over which the edge conductivity 

 is defined.  

To formulate the general case of inverting for complex and anisotropic conductivity distributions 

we redefine the model parameter vector m, now comprised of 6M components, 



 

Recall that M is the number of FD grid cells on the model grid M defining the inversion 

parameter space (usually a subdomain of M). Here one entry  represents a vector with M 

components. It has been shown in recent works (Commer and Newman, 2008; Newman et al., 

2010) how the gradient of the objective functional (equation 6) is related to m. In summary, one 

has the data and model components, 

 

where calculation of the model term is straightforward 

 

In this general case, i=1,…,6 selects one of the six vectors mi=  which comprise m. The 

term involves the derivative of the data prediction vector dp with respect to m, which further 

requires the Jacobian and hence the derivative of the forward modeling operator (equation 2). 

This leads to (Newman et al., 2010)  

 

Since E, S, and K are defined on the edge space S, this term involves application of the chain 

rule,  

The term  involves a transposition of the linear grid mapping operators given by 

equations A-1 – A-3. In principle, for a given cell parameter , the operator  

selects all edge conductivities  which have a contribution from  through application 

of the chain rule to the averaging schemes in equations A-1 – A-3. For illustrative examples of a 



discrete formulation of equations A-1 – A-3 and the corresponding derivative terms , the 

reader is  referred to Commer and Newman (2008). 

 

 

Tables and Figures 

 

Measurement time Array A Array B 
t0 08-06-2007 08-07-2007 
t1 08-18-2007 - 
t2 08-29-2007 08-28-2007 
t3 09-14-2007 09-14-2007 
t4 11-02-2007 11-01-2007 
 

Table 1: Acquisition dates for surface SIP data collected in conjunction with acetate amendment 
at the Rifle Integrated Field Research Challenge site near Rifle, Colorado.  Measurement time 
‘t0’ refers to baseline data collected prior to starting acetate injection, which began 08-08-2007 
and ended 09-08-2007. 

 

 t0 t1 t2 t3 t4 
3-D starting model 52.43 / 37.96 58.24 / 42.16 48.63 / 39.82 46.77 / 28.07 44.48 / 18.66 
3-D final model 6.76 / 18.28 5.75 / 12.11 7.22 / 17.82 7.32 / 18.41 5.62 / 13.68 
2-D starting model 83.83 / 100 85.85 / 100 83.34 / 100 82.83 / 100 81.45 / 100 
2-D final model 0.57 / 10.10 1.76 / 29.53 0.58 / 9.28 1.23 / 9.29 0.82 / 6.66 

 

Table 2: Fitting errors for the data components resistance magnitude |R| and phase. Errors are 
given in percent, using equation 11. The entries are given by the pairs |R| / phase. Compared are 
initial and final data fits between the 2-D and 3-D solutions. Note that before error calculation 
real and imaginary electric field data obtained from the 3-D solution were converted to |R| / 
phase values. Also, the 2-D solution starts with a zero phase guess, hence the initial phase fitting 
error is 100 percent.  

 



 

 

Figure 1: Illustration of gradient weighting functions. The exponential function behavior with 
depth is plotted for two gradient weighting functions, f1 and f2 (equations 9 and 10), and their 
combination f. Here, the function parameter is a=0.1 for both f1 and f2. To obtain a lateral 
focusing behavior, the combined function f can be applied the same way to a horizontal 
coordinate. 



 



 

Figure 2: Survey setup for the simulation of a mining exploration example. The shown anomaly 
contours are from a polarizable body with a depth extension from 100 to 200 m. 

 

 

Figure 3: Quantification of the degree of EM coupling calculated for the true model of the 

mineral deposit example. Percent frequency effect (PFE) and phase difference ( ) are 

computed from the direct current and alternating current mutual resistances,  and .  

 



 

Figure 4: Sections of the model simulating a mineral exploration SIP survey. The model grid 

simulating the earth below the surface (z=0 m) contains 16716784 FD grid cells with a 

minimum grid interval of 12.5 m. The true model has  S/m (a) and  S/m (b). 
Also shown in a and b are the five receiver profiles at z=0 m. Figures c and d show the imaging 



result obtained from using the EM forward modeling operator, whereas e and f are obtained from 
using the DC formulation. 

 

 

Figure 5: Data component of the objective function for the imaging results shown in Figure 4. 
The inversion run using the DC forward operator failed in the NLCG line-search procedure after 
92 inversion iterations. 

 

 

 

 

 

 

 



 

 

 

 

Figure 6: Layout of SIP profiles and injection and observation wells at the environmental 
remediation monitoring site at Rifle (Colorado). The profile length of Array A and B is 29 m. 



 

Figure 7: Sensitivity map obtained from a perturbation approach. The real and imaginary 
conductivity values of the starting model used for the Rifle data inversion were perturbed by a 
value of 10 %. The x-coordinate is parallel to the arrays A and B, and the y-coordinate is roughly 
coincident with groundwater flow which is towards the negative direction. Array A is at y=0 m 
and B is at y=-6 m. 



 

Figure 8: Synthetic data inversion results for a 2-D model anomaly using one profile of the Rifle 
survey (environmental remediation monitoring experiment). Left panels correspond to resistivity 
magnitude, right panels correspond to phase. Our 3-D solutions were converted to resistivity 



magnitude and phase. (a) and (b) show the true model anomaly within a homogeneous half-
space, and the profile layout at z=0 m. (c) and (d) illustrate the (vertical) gradient weighting 

function of our 3-D solution applied to the gradients of r and q, respectively. (e) and (f) show a 
2-D inversion result obtained from a finite-element algorithm (Kemna, 2000). Panels (g) and (h) 
show our 3-D solution using the vertical gradient weighting. The solutions in panels (i) and (j) 
were obtained without gradient weighting.  
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Figure 9: 3-D model used for generating synthetic data simulating a survey at the environmental 
remediation monitoring field site at Rifle. The complex conductivity anomaly has maximum 

values of r=1 S/m and q=0.02 S/m. The background real conductivity is given by three layers 
with 0.01 S/m (z=0-2 m), 0.0077 S/m (z=2-6 m), and 0.01 S/m (z>6 m). The background 

imaginary half-space conductivity is q=510-5 S/m. The red symbols indicate the two-profile 
layout of the Rifle data. 



 

Figure 10: Illustration of 3-D gradient weighting function used for inverting synthetic data of the 
environmental remediation monitoring field site. The red lines at z=0 m indicate the positions of 
Arrays A and B at y=-6 m and y=0 m. The weighing function employed here aims at damping 
high near-surface sensitivities. Moreover, a laterally focusing behavior is enforced along both 
horizontal axes in order to account for the limited lateral resolution of the two profiles.  
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Figure 11: Images for real and imaginary conductivity obtained from inverting the synthetic 
Rifle data. Here, no gradient weighting was applied. 
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Figure 12: Images for real and imaginary conductivity obtained from inverting the synthetic 
Rifle data. Here, gradient weighting as depicted above in Figure 10 was applied. 
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Figure 13: 3-D inversion result of SIP data from a bioremediation monitoring experiment. Shown 
are amplitudes and phases calculated from real and imaginary conductivity images. 
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Figure 14: 2-D inversion result of SIP data from a bioremediation monitoring experiment. Each 
data set corresponding to Array A and Array B was inverted separately.  

 



 

Figure 15: Spatiotemporal change in groundwater Fe(II) and acetate molar concentrations 
following acetate injection; elapsed time refers to the start of acetate injection.  Data from down-
gradient wells D01-D04 and D09-D12 were chosen, as they are located along transects Array A 
and B, respectively (Figure 6).  Sample points corresponding to the SIP acquisition dates 
specified in Table 1 (e.g. t0, t1, t2, etc.) are indicated by open symbols. 
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