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ABSTRACT
We show how target mass corrections can be incorporated
to all orders of the QCD parton model, for leading and non-
leading logarithms. This algorithm reporduces the & scaling
analysis of totally inclusive leptoproduction. Target mass
corrections to semiainclusive leptoproduction are computed.
We show that the simplest final state variable to use is

'B
Wy = = ££m§iz, where P' dis the observed hadron'’s momentum,

H
Q
We define double moments for this process for which scaling

viclations and factorization breaking are target mass

independent.
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INTRODUCTION
The usual treatment of the QCD parton model neglects all con-

tributions which are suppressed by powers of ;%-, where Q 1s the

Q

(large) momentum scale of the process. Included in this category are
kinematic corrections associated with the mass m of an initial
state hadron, which are of order m2/Q2, In the case of a target
nucleon, these corrections may be significant even when Q2 is large
enough so that perturbation theory in @S(QZ) is reliable. The other
neglected effects (e.g. the amount by which the partons in the target
are of f shell, coherence effects ete.) should all be characterized by
the fundamental scale of the strong interactions Mb (e.g. the inverse
size of the proton or A) and are therefore of order Mi/Qg, Since
Mi/m2 Rﬂ”égzgg for nucleon targets, 1t makes sense to neglect the
latter effects while keeping the target amss corrections.
Target mass corrections are anomalously importazt(ggin thSy
s

proton

Q2

compete with higher order QCD corrections, Since
at Q2 ~ 6.5 GeV2> any attempt to see higher o?der corrections
at a moderate value of Q2 must take proper account of the target
mass. For Instance in electroproduction at Q2 = 5GeV2, ¢ scaling
(target mass) corrections account for about 35% of the total scaling
violation in the fourth moment (QCD scaling violations are an order
a,  effect).

The paper is organized as follows: In section I, we present the
algorithm for including target mass corrections in the QCD parton

model. In section II, we use this algorithm to rederive the & secaling

analysis for totally inclusive electroproduction. In section IIT, we



analyze semi~inclusive leptoproduction. We show that the use of the

variable Wy instead of the usual 2z, leads to the simplest result.

H
Scaling violations and factorization breaking are studied using double
moments which are constructed to give target mass Independent resulis,
I. A, THE QCD PARTON MODEL
The standard parton model predictions for cross-sections involving

an initial hadron of momentum P are of the form

1
do,(P) = Egdn a0, (W), (1) (1.1)

where dGH(k) is the hadronic (parton of type k) cross-section,

and fk(n) (the parton distribution function) is the probability of

finding within the hadron a parton of type %k with momentum p where
p = NP (1.2)

The QCD perturbation theory expansion for 40

X is plagued with

infrared (IR) singularities. In order to preserve the usefulness

of eq. (1.1), we must factor these singularities out of dOk and

absorb them into a redefinition of f To regulate these singularities

=
while keeping the quarks massless, we will take p2 < 0. The following
factorization theorem has been proven to all orders of QCD and for
all 1ogs[1"2}

d0,(p) = % (La8 o (gp, L ( P2> 0(p°) (1.3)
P de dJBp,?)TjkB,F + 0(p 1.3
@]



The "renormalized" cross section d8j is to be evaluated at
p2 =0 (it is IR finite). All of the p2 dependence (and thus all
of the IR sensitivity) resides in . M is an arbitrary scale
which is introduced to allow factorization of the logs.
Equations (1.1) and (1.3) can be combined to give

1 2.
a0, (P) = ﬁ an a5, (nP, Ly (0 1) (1.4)

Q
where the T factor has been absorbed into a scale dependent

"renormalization” of f

1 2
~ dg p n
(N Nﬁ = 3 B 2= ), (= )
gy = 2 [ R B g () (1.5)
Equation (1.4) gives the hadronic cross-sections in terms of
renormalized partbnic crogs-sections (which can be calculated in

[£2

perturbation theory) and process independent , rencrmalized
distribution functions. The latter must be inferred from experiment:
however their M2 dependence is calculable in perturbation theory
from the following equation:

w g 5708) - 2 iR Eed R o) (1.6)

(n)

where vy is defined by



2+ (&) Fy r'® (;}2 E0F))

(1.7)

<n><g<M2 BB, gaf))

We have implicitly chosen M 1o be the renormalization point of the

e th . .
theory. The index n denotes the n moment of a functlon, i.e.

h<n)£§jﬂ-un°lh(u) do, (1.8)

(@]

B. THE COVARIANT QCD PARTON MODEL
We now seek to extend this analysis to include target mass L£3]
effects. FEquation (1.2) must be modified, since it makes sense only
if the initial hadron is massless. Further, it is assumed in eq.(1.1)
that the partonic and hadronic fluxes are the same. This is true
only if both the parton and hadron are massless,

The latter difficulty is easily handled by considering squared
amplitudes W dnstead of cross sections. The most general statement
consistent with inccherence is then

W(P) = ij‘dz*p 5(5%) 0 (0% W (p)6y (9,P) == (1.9)

where WH(k) is the squared matrix element for an initial state hadron

(type k parton), Gy describes the decomposition of the hadron into

an on-shell, massless type k parton plus anything else, and m 1is



the hadron's mass.
Gk must be a dimensionless Lorentz invariant quantity. The

[f£4]

only possibility for spin averaged iritial states is

G (p,P) = G (u) (1.10a)

y=z2p-P

2
m

Let P be in the 3 direction. Defining light cone coordinates

v Z v tv (1.11)

we then define n via

n=rp /P (1.12)

which is analagous to eq. (1.2). We then find

2 4 2 L do
m

__).
where ¢ is the azimuthal angle of D (the component of 5

T

orthogonal to the 3 direction).
Kinematic 1imits can be placed on u and n by requiring
that the momentum of the hadron's fragments (P - p) correspond to

a positive energy, positive mass state. This gives



O<n <1 ; n<u:n+w§»<1 (1.14)

Equation (1.14) thus gives rise to kinematically generated

partonic transverse momenta bounded by

fp, o 7> (1.15)

At this point, it is easy to see why we cannot (as of yet) include
corrections involving the mass of a produced hadron in a semi-inclusive
process. This would involve a covariant description of the decay of
an on-shell massless parton into the massive hadron plus a positive
energy, positive mass state. This is kinematically impossible. Thus,
to Include these corrections, we would have to take the parton off

. _ . R . . Of e
shell and extend the factorization theorem to include the (p”) terms.

With u, n and 0 as integration variables, eq. (1.9) becomes

1 v
W(P) = 2 f du fdn %%\’Jk(p)(}k(u) (1.16)
k "o o] ’

This equation (with W,_ replaced by its Born approximation) is

k
e 1 ot . [ 5]
the usual covariant parton model .

We seek to extend this to the
QCD  covariant parton model by allowing Wk to be calculated to all
orders of QCD, factorizing out the IR sensitivity, and absorbing
it into a renormalization of G, 1In analogy to the massless case.

The essential point in this argument is that the factorization theorem

of eq. (1.3) has nothing to do with target masses; 1t is simply a



property of QCD perturbation theory.
Tt is easy to rewrite eq. (1.3) in terms of W's rather than
cross~sections since these differ only by trivial flux factors. Under

gecalings of p

W (p) ~ pdo,(p) (1.17)

. 1
the extra 7 being induced by the flux factors. Thus we must replace

I' in eq. (1.3) by fg i.e.

15 Lo, 2
7 ) jk(lev) op

W (p) = fdﬁw(ep, ) (1.18)
O

~

where Wj is to be evaluated with p2 = (.

We now show that I can be absorbed into G. From eqs. (1.16)

and (1.18)

1 1 u . . 2
W, (P) = fk j; %@ j; du jz dnf W (Bp, ;) rjk(g, i—?)ek(u)
(1.19)

et © =8p, =0u, n=gn, and ¢ = ¢, then eq. (1.19) becomes

) g~ 1P 1 2
W (P) = = j;du { dn f%%wj@, ?)fé %%ij(gf%)@k(

(1.20)

Wi

Equivalently



1 U ~ .
W (P) = Zj du fdnf%% Wj(p, Iﬁ% ) G,(u, ) (1.21)
J o ¢ Q
where
. 2

p an . D u
G, )= 32 B (5, B )ya(d) (1.22)

/ K ﬁ; g7 T KB

Ag in the massless case, all of the IR sensitivity has been
absorbed into the definiton of scale dependent distribution funotionéfﬂu
The scale dependence dictated by eq. (1.22) is given by

ég’“)(m%:g Ly 2gady) dMof) (1.23)

W k
which is the analogue of eq. (1.6).

Equations (1.21) and (1.23) constitute the covariant QCD parton
model. As in the massless case, hadronic quantities (WH) can be
computed in terms of partonic quantities (Wj) which have IR finite
perturbation expansions, and scale dependent, process independent
functions of a single variable (ék), one for each parton type. The
only complications are kinematic.

The extension of thls analysis to semi-inclusive processes

(neglecting the mass of the observed hadron) is trivial. Fquation (1.16)

becomes
dw (P Pr) 1 aw. .(p,p")
zf duf dn§ j 'ZdWDk( )%LWG(,H)
d% /P( J,k e} (0] [¢} - pyp! J
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dWH de,
where = — ( o JO>is the squared hadronic (partonic)
d7pr/PtT AaTpl/p!

matrix element involving a final state of a hadron (type k parton)
of momentum P'(p') plus anything else. The decay function Dk(n’)
is the probability of the decay of the final state parton into the

final state hadron where thelr momenta are related by

Pt o= ntp! (1.25)
o . . 11,21
The relevant factorization theorem 18
aw 1 1 2
kj ( i - dB’ p'
; == P, P ) - Z dB i It (Bi,* m)
dpt /ot z,m‘g; 5 e K e
aw 2
= A o(Bp, B'p', M—z r (8, Py O(pzy pe) (1.26)
> p/p! Q RS

Manipulations analagous to those leading to eq. (1.20) give

2
o M
aw.(P, p") 1 u o ph IOV aw  (p,p',== ).
-~~3f§w5w%a = 2 fdn 5 dngg%f n?an D, (n hTS )m?fﬁ-wa@mw&m G (M)
d ﬁ/P bk o o o d”p'/p" J
(1.27)
where
~ H 1 dB! H pxz
Bn, W)=z L 0 (T )Ty ler, B (1.28)
L1 M



B

Thus the factorization of IR singularities assoclated with

p2 + 0 and their reabsorption into G 1is unchanged. The singularities

. o 2 . , .
associated with p'" ~ 0 are absorbed into the decay functions

exactly as in the massless case.

Taking M to be the renormalization point, the scale dependence

~

of the moments of D dis given by

Hi

ud D ey - Zf)n)(l\/[g)y J50°)) (1.29)
k

1 (.
n) . .
where vy (o) is defined via

2
(g + 8a00) 2" B g af))
M

~ b r'<ﬂ>(

2
9 e 7]

P, & 0f) )y, PGP (1.30)
M

The extension of eq. (1.27) to the case of several incoming and
or outgoing hadrons is obvious.

Il. INCLUSIVE LEPTOPRODUCTION

It has been shown elsewherekj] that the QCD parton model and
the twist-two operator product expansion (OPE) descriptions of
inclusive leptoproduction are equivalent in thé absense of target mass
corrections. These corrections are easily ldentified in the twist-two
OPE. They arise in the nucleon matrix elements of the twist-two

operators as follows



v . u

R (n) 1 n
< P|O P >= A (P Tees PO~ traces) (2.1)

The traces in eq. (2.1) are uniquely determined by the tracelessness

of the operators; they involve powers of P2 = mga

Teking account of the traces gives rise to the & scaling
formulae of refs. 3 and 4. It is our purpose to derive these results
[£6]

from the QCD covariant parton model

The squared matrix elements relevant to leptoproduction are

=

i

..{.4
uv 1 4o dgex u v
wE g fat et (x)07(0)| P> (2.2)
where the J's are electromagnetic or weak currents. FEquation (1.20)

becomes

d 2
W j;du j;dnj b v (p)C,(u, %) (2.3)

H

by a type J parton; and we have chosen M, Q, and the renormalization

point to be identical (thus W has an implicit Q2 dependence through

where W?V is defined by analogy to W with the hadron replaced

50°)).

We now introduce the usual Bjorken scaling variables

2 2
- Q - q
5T 3pvg YT (2.4)
, . . [£71
and trade the integration variable n for x . Then eq. (2.3)

becomes



—
A

Py -r z f & [ [

Pt €)% J (p q) G (u,0%) (2.5)

where & is the usudl & variable

2%
H
g = — (2.6)
/ 2
1+ 1+ 4@ Xé
Q° F
the determinential factor R is
R = e ammmi%fmmw (2.7)
. m 2
f+wx PrES

and we have made use of the kinematic comstraint O < x <1

We define the usual structure functions as follows

2 VW
Vo P v v P 2H 2
W= S (e g By (07 4 ¥ ) 2 (n,07)
(Peq) Q Q i
(2.8)
[EERY
R | 5 HVAR A p
with analagous definitions for %r k(X), r =1, 2, 3.
k4
We now form two projections of WEV which determine the non-
parity-violating structure functions WiH and W2H:
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2 W
u = 411'1 2 ZH — = .
W™ (1% ) i, " 2 Y T P
Q
(2.9a)
1 1 o L
= R Zf ax f du W%(X)Go(ll,@z)
-* 2 Jum
Jje x5 &/x
ny
4 PUWHQPv LR Q;’Xé‘ ;WEE - Wy 7 Wy
Q Q *y
1 1 P WY (x)P
. dx 2 U ~ 2
=k {5 [ eur® L2 )G (u, Q)
¢ X &/x Q
(2.9b)
The partonic contractions are given by
il
S R
Ju 2X 1k (2.102)
P WP W 2 2 i
N R R m- oM 2]
4R Q2 2% Wij v AR QQ [(ux-£) +R 2 (uxmgﬁ‘ 2%
(2.10p)
vwg, ~ 5
Since ZXJ and Wij depend only on x (and of course g(Q) ),

these contractions are ¢

been dropped in eq.

independent, thus the ¢

(2.9). Note also that the

contractions is explicit and trivial.

integral has

u dependence of the



Equation (2.9) involves integrals of the form

1 1
L) =f % [ au Wau)(ux )" (2.11)
3

These can be simplified by introducing functlions éj defined by

it

1
B.(0,0°) ,ag au & (u,q%) (2.12)
J ; J

Note that, in terms of moments (defined by eq.(1.8))

~(n) Ry o L aln+l) 42
gy Q%) = 2 BT (2.13)

thus the scaling law of eq. (1.23) becomes

(n-1)
d (n) 2y _ - 2 ) A2
g @) -y et (2.14)

We now prove the following theorem

1 1 1 da . (OL ) o
IY((C:‘,) - n!n dOLl dO(2 er e f n+l (W n+l \4 1 ) (2«15>
0 : o, o ]
g oy O i+l nt+l n+1

This is easy to show for n = 0. The result for larger n can

follows by induction since both sides of eq. (2.11) obey

ar_(&)
e L (2.16)

and the boundary condition

L(1)=0 (2.17)
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Equation (2.15) shows that the distribution functions g always
appear in convolutions with partonic structure functions, This leads

us to the following definitions

1
~ 2y - dB S0PV (& @
hl(oz‘,Q )*‘4 ?jé: B‘?Wlﬁj(B}g(Q ))gj(B ) Q ) (20188,)
~ —, 2
B 1. v, L(B,e(Q7))
2y = g 2,3 o ol
h =z, zf & (Y :
H(@,07) =4 j’i % 0%, Q) (2.18b)
or, in terms of moments
O A L WA CCRd D (2.192)
J 3
N W, . (n-1)
@) -4 B (2 @@ ™M) (2.19b)
J

Then, from egs. (2.9)>(2.11), (2.15), and (2.18) we obtain

B R 2
Mg = Mgy = 7 B [0y(6,0) - 30,(g,07)(2.20a)

2 L
1o 2y 7 2 .2
Wy = 7 R (E,07) - 0 (6,Q7) + 41-‘%—2— { h,(g',Q% )ag"
P 2
L fae foart By(emQ7) (2.20b)
A

Equation (2.20) has exactly the same form as the ¢ scaling

£8]

equations of ref. (3)[ , with the replacements
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h1ﬁ2-> F1’2 (2.21)

The F's of ref. 3 are defined in terms of their moments:

p{n) 92y - (n-1) A(n=1)0 2
Fiy (@) = fc@@)g(g(@ DATHQT)

ofn)

where the are the coefficient functions of the twist two

operators of spin n, and the A(n) are the corresponding reduced

matrix elements defined in eq. (2.1). The index J completes the
identification of the operator; there is one j for each relevant
parton type.

The Q2 dependence of the A(n) is governed by the anomalous

dimension matrix v (n) of the associated operators

a0 2y .

Q 3y A z:’““”(@ Nalmee?) . (2.23)

k
The coefficent functions and anomalous dimensionsg of the OPE
can be related to the W and vy of the parton model by computing
Wﬁv from the OPE and comparing the results to eq. (1.18). Using a
particular definition of the operators 7}We see that the following

£9]

is a possible realization of eq. (1k17)[

Wil (n)
2k ~ (
(° 2x ) - Z’Cgi>’ (Wlk>( n) 4 1E> (2.24a)



=y (2.24b)

Then from eq. (2.19), we see that the results are equivalent if

we choose

A He?) - g7 (2.25)

The Q2 dependence of these quantities is governed by the same

. , . ~(n-1 n-1 . .
anomalous dimension matrix y( ) = Y( ); so the equivalence is

preserved at all qu
The analysis of the W, structure function is entirely analagous.

3

The result is

2 2 1
”I{ = ;;,Bm h 2 2m " t.’" ' 2 . :
Wiy = 7 o= (8, W) + —5 R ] d€'n,(8,Q7)ae!] (2.26)
H Q £
where . ,
L oge VW, (8,8(Q7))
h 2y - g __3J a2
h3<°"Q )= 4 X B B gJ( g @ ) (2.27a)
J o
or
B 0,6) - 4 200, P @@ M) L e

J

L9l

The Nachtmann moments of the structure functions extract out
the contributions of the operators of a given spin. In the parton
model language, they extract out the contribution of a given moment

of ﬁ, The Nachtman moments are
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I
s

- () - 3" &)1 )
J

£
(2.284)
2
(n), .2 L1 * T}i, 6 ? :
USKCOIEY W=y 1+gma >{ Fi T
o w2 (1+ '%-522)
6(n+1) ﬁﬁg <
(m2(n+3) (1+ ﬂi€2 )2
QWW.. (n) (2.28b)
1l (1) 2y 2 ~ (n+1)
= 70,70 % s=4) (g(Q%)ey ()
2.2 T 2
g (1 +%2> 2%52
Mén>(Q2> Eﬁagm“%i ngﬁ Q2 _ Q
0 (1 -1 &) (n+ 21+ 55
Q@ Al
1 x(n+l), 2y L ~ \(n), = N(n+1)
= 7 hy (Q°) = ?(vw33> (5(0°))E (%) . (2.28¢)

The Nachtmann moment have the following important virtues:
firstly, they give target mass independent results, so that all scaling
violations are logarithmic. Secondly, each Nachtmann moment depends
only on a single moment of the decomposition functions. These have

the simple scale dependence dictated by eq. (2.14).
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IIT. SEMI-INCLUSIVE LEPTOPRODUCTION:
A. DOUBLE MCOMENT ANALYSIS

Consider the process
BY(q) + N(P) > M(P') + X (3.1)

where B 1s a spacelike gauge boson (photon, wt or W), N is a

[ £10]

nucleon and M ds a light meson Suppose we charaterize the

meson momentum P' by a single invariant w. The relevant squared

H
matrix element is then
V)
aw . . 3§,
dH =g 2 d*xe' Xj.__%_;__é,, §(wy - wy(PiP,q))
Wy X (2m) 2p! !

‘14'
el x| P, x><Pr,x]3V(0)| P >

where J dis the appropriate weak or electromagnetic current.
Equation (1.26) gives the covariant QCD parton model prediction

for this matrix element, Schematically

dwg’lU dﬁ’i\f

, } N 3 .
et t 1 ; - ! D 1 t t . ™
oy (P,q,wH) jZk sgédpdp ap (S(u)H wH(P ’P’q”"z«:(P ,P) de,(p,p ;q)GJ(pyL)

Equation 3.3 describes the hadronic process in 3 steps: a) The
decomposition of the hadron (momentum P) into a J parton of

momentum p plus anything, described by éj(p,P)



21

b) Scattering of this parton to produce a k type parton of mementum
n - » dw}m°

p' and anthing else, described by ﬂaE%’(P,p'yQ),
¢) Decay of the final parton into a meson of momentum P' and anything

else, described by 5K(P’,p’).

The final state momentum P' enters only in step ¢ (the decay function),
the initial state momentum P enters only in step a (the decomposition
function ).

Ir Wy depends on P, the ¢ function ties the argument of the
decay function to P. This obscures the 3 step nature of the process
and therefore leads to unnecessarily complicated results.

Thus we choose Wy to P independent. The only possibility

which scales with P' (this makes for simple moment statements) is (up

to trivial scalings)

_ - 2P'eq

{
D)
~
(SN
I~

“H
The partonic analogue of this variable is

- 2 tle 1
w = wmé%*«g—: ﬂ'mH; nt o= %ﬁ (3.5)

where T' is the argument of the decay funetion in eq. (1.27).
Kinematic limits can be placed on W

i

of eq. (3.1) be a positive energy state with mass > m (baryon number

by requiring that the X

conservation). This, and analagous considerations for the partonic

process, give
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S S p— (3.6a)
X — H-x
X i 1 A X
H ' 3 H
S X oy <n (3.6b)

The factorization theorem breaks down in the initial parton frag-

mentation region, 1.e. whenever

p'=ap; a >0 (3.7)
This dmplies
we= -2 8 g (3.8)
X
Q
We must therefore study only those values of Wy which cannot
arise from outgoing partons with w < 0. From eq. (3.5), and from
1
the restriction n' > 0; this requirement beeomes[f’l]
w, > 0 (3.9)

With this restriction, and with eq. (3.5), eq. (3.3) becomes

1 1 g w ik }
1 d d > H 2 kj b 2
T =R Z "’325" f duf% % Dk(&‘;”‘“’aQ ) T{jl(p’q"w> Gj(u;Q )
H bk & x Ux Wy g

' (3.10)
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where we have parameterized p by u,x, and ¢; and p' by w. Note

that all of the dependence on resides in the convolution in curly

(DH

brackets. Thus, taking moments with respect to w

dwg\) (m) 1 m-1 dW%\)
(P ’q) = ﬁ; deU)H de (PRQJU)H)

g glves

1 1 it (m)
= R .Z %g g%> du,{%%’ Eim)(Qg) “E%%ﬁg,)éj(quz)
by
(3.11)

This equation has exactly the same form as eq. (2.5) with the

replacements

(PJQ) (3.1123)

Thus if we take Nachitman moments of the structure functions of

LV
dw!
“ﬁ%m,’ we get simple results. By analogy to eg. (2.28a), we get
H
2 1 aw aw
(m,n), .2 Nj; n-1 m” 2 -1 LH TH
w7 = e ap (L Y Wy | - 2
0 AR H H
" - (m,n)
g\)w.zkj) ' s ) |
_ ~(m | 2x ~ 2 < lkjs ~ n+l) ..
- = 5 O 22— @@ -s3(2L) @dprg

(3.13)
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Analagous equation are trivially derived from egs. (2.28b) and (2.28¢).

awHv awHv
The structure functions of i and w§%4~ are defined by analogy
H

to eq. (2.8). The superscripts (m,n) of the partonic structure

functions in eq. (3.13) denote their double moments with respect to

% (nth moment ) and w (mth moment ) e.g.
aw. . \(m,n) dW
lk3> TS0R)) = o=l , lkJ - 2
(m (8(0°) 'E dx x Edww —(x,0,8(07)) (3.14)

The double moments -Mﬁm,n) (r = a,b, ¢) have all of the virtues

of the Nachtmann moments in the inclusive case. They give rise to

target mass independent results Involving only one moment of the

distribution and decay functions. The latter quantities have scaling

violations governed by simple algebraic equations (egs. (2.14) and (1.29))
In appendix T, we will discuss the kinematic complications which

o ) . - PteP . S ,
occur when the variable ZH = TP 1s used instead of wH, and Xy

moments are used instead of Nachtmann moments.

B. Factorization Breaking

To zeroth order in as, the kinematics of the Feynman diagram of

fig. 1 gives
dﬁﬁ{j
o = - (1 - w)+ .1
= Akjé( 1-%)8(1 - w+ 0(o) (3.159
dﬁi.
where d£J stands for any of the three partonic structure functions
~ Wore s -
Wy ay 52Ky AVl )
g s - and e Thus the double moments of this
dw do ’ dw

quantity are independent of n and m %o zerath order, i.e.



, df«rkj (m,n)
dw = Ay * Olag) (3.16)

If we take appropriate non-singlet differences (which are desribed
in appendix I1), only one linear combination of distribution and
decay functions will contribute, so the sum over parton types in

eq. (3.13) collapses to one term. The result is then [£12]

m,] ~ 2y (n+l 2 2
™) = 3?0 + ota (@) (3.17)
, . ‘ 2 (m,n)
where A is a pure number (independent of m,n and Q°), and M
is any of the three types of double moments.
The lowest order result factorizes into a function of m and a

[ £13]

funetion of n . This factorization does not persist in higher

orders, since the x =1, w =1 kinematic constraint no longer applies.
[ 10]

Sakal has proposed a double moment ratio whose deviation from

unity measures the breaking of factorization. It is

m}n;k,ﬁ _ M(mﬁn)M(ka')

R = ;&W . (3@18)

~

From eq. (3.13), the moments of D and g drop out in this ratio,

giving
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Rm,n;kﬁv: <%%>(1 y(%w.)< R) =1+ OLS:Q2) Bmyn;ksg”"o (Ol'i) (319)
~T{k,n) .~ (m, T
@ (&

Where v%;- is the (linear combination of) structure function(s)
appropriate to the Nachtmann moment being taken.
The ratioc R hag the following useful properties
1. It measures the QCD induced factorization breaking in a target
mass independent way.
2. It involves no decay or dlstribution functions, thus A is

the only necessary phenomenological Input.

nymslc, & correspond to the non-leading logarithm in cl

dw
H

(the unrenormalized structure function)., Thus R measures a

3, The B

non-leading log effect.

~

Sakaitu)] has calculated the relevant parts of %%u which arise
, . ri
from the graphs of figure 2[ ]A]n The results for the three types

of Nachtmann moments are

B

(m,n;k,2) i i<m-l 1 n-1 1 m+1 1 n+l >
N 3 : :

+{ (m,7n>b—>‘(kﬂg’>] “‘”[(mﬁn) > (kyn)] - [(m,n) e (myﬁn (3*203)
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B 3 Ttz T ) L ETS)

(m,n;k,%): é. mi} i,nil 1 mt+ 1 i'ngl 1 6 6 >
je1 9 oi=1 T g=1 do4e1

+ [(mn) » (k,2)] - [(mn) > (k,n)] - [(mn)~>(m,2)]

(3.20b)

N TR | G

(]
A

B(m)n;k,ﬁ) } §<I1£:1 ngl 1 Il;"zl 1 mgl _]; 2 E
5 - A

+ [{mn) » (k,2)] - [(mn) > (k,n)] -~ [(m,n)~ (m,2)]
(3.20¢)
The subscripts a, b and ¢ refer to the type of Nachtmann moment used.
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APPENDIX I: THE VARIABLE Z

H
[1,11]

Many treatments of semi-inclusive leptoproduction use the

variable ZH:

Z__EW . (1.1)

For massless targets, P = np, so

o t o 1
Z Ep P-:ﬂ‘gﬁs—%@:ﬂ‘zu (1,2)

Thus, in this 1imit, ZH 1s effectively Independent of P, and the

relationship between ZH and Z 1g trivial. Equations for double

moments with respect to Xy and ZH can be derived which are

analagous to eq. (3.13), and the results factorize to ZercfDh order.
We now show how target mass corrections alter the zero order

0’ ZH double moments.
From eq. (1.24). we get

X.

s(7 »n'P p')

q

- .
aw (5 %50 >: Rgldu j‘l@i fld”‘gdzp[
a7k E Su e b 2pfo"’

>4

aw(p,p',q) -
°D(ﬂ’ Wf?m“WM“(KU> (13>
a’p'|ep:

where we have taken a trace of the gauge boson indices and suppressed

the parton type indices.



The relationship between ZH and XH,N‘,u,x,wﬁ and 7 is very
oomplex{f15],

However, if we work to zero

order in a , the kinematics
simplify since
p' = p+q (I.4)
thus
7 »n'p!aP :P?Q(erq)oP =n'(1 + E_li) (1.5)
H oy TN T, n iy 2 '
Equation (I.3) becomes
aw
H 1 ~ 2
e dx \ ooy aW(x,7Z) 5 5 o m
dZH RE, f ? jﬁ ch fdz D(T] )’—”“awzm G(u) ZH n (l+uXH 5 .
= i/u 7 o o Q
(1.6)
The zeroth order structure funcltions are kinematically constrained
to be )
aw
) - § -
o (1 - x)6(1 - 2) (1.7)
Thus
<) (1.8)

Note that the argument of the decay function depends on the variable
u, whic

which describes the initial hadron's decomposition, so the three
step nature of the process is obscured
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Taking double moments with respect to x
2
only terms up to O (EiJ gives

Hq and ZHy and keeping

2
aw,, (mmn) : aw(x.,%.,Q7)
%mi Eg%ﬂfﬁﬁ%dﬁ: HH H

dZH 1 "H "H dZH

2
« B2 >%g(“*l><cf> - 1 ) HmD)nt 3y |
: :

4
2
+ 0 (Z) + 0(ag(Q7)) (1.9)
Q s
m2
The term proportional to ~§x(n + 1) comes from taking Xy moments
Q

instead of Nachtmann moments, and the term proportional to

n+3 m2 . ,
(m -~ 1) == — comes from using 7., instead of w,. Both of these
n+2 QZ ’ H H

terms give rise to kinematically generated scaling violations, the
latter term also breaks factorization.

To get a quantitative estimate of these effects, we will take a
distribution function of the form

3
5(2) o iin;gla (1.10)

2
so that

§<n + 3) B m(n B l)

M B CIE ) XY (1.11)
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The QCD induced scaling violations to lowest order are given by (ref.1)

(m)

Q"a% ﬁ(m>(Q2) = - mwg%mjﬁ 5(m)(Q2) (I.11a)
1og(Q% A7)
o d gt gty - L 20Dy ()
a0 Log(°[A”)
MCONNNAN R (1.12)
27 e nin + 1
j=1
o 2
Thus, to lowest order in ocq(Q ) and %
) Q

d Wy (m n{! 2(a(®) 4 glm)y
QM:L (‘“““s"’) ? = e
aa Og{ iz, Log( 2 12)

2
m n(n - 1) N n+3
m2?(n+3)(n +4>[(Il+l) (m”1>n+2

4 2
- 0(a2(6%), Bp 0 (0%) B ). (1.13)
Q Q
a 2 2
For m=3,n=14, Q =5GV and A =°5 GV we get

sa(m)  g(m)

=+ 93 (I.14a)
log (QZIAg)
2m2 n(n - 1) (n+ 1)+ ( l>n+3 - .55
FEFaNm v 47 |0 SN

(I.14b)



a2

Thus, even at a moderate value of Qg, the target mass corrections
are important. Furthermore, at large m and n, the target mass
corrections go like m + n, whereas the logarithmic QCD scaling
violations go like log(mn), so the target mass corrections become
increasingly important.

We now proceed to compare target mass corrections with higher order
QCD  corrections as sources of factorization breaking. The treatment
of the QCD corrections, neglecting the target mass proceeds by direct
analogy to the derivation of eq. (3.19). The® order g corrections
have been computed in ref. (11). The result of this

£0 (%Vzl (mﬁn)

analysis is

- (m,n) (X, 2 )
‘dZH az, )
(kﬁ'l) ) (mqﬁﬂ -
%> {dwﬂ>, |
dZH dZH _JQCD
i Zﬁ, g'{mg} i*ng} £,+ mg} i. n;} £’+ 1 _‘3;]
LA I B O O S IR I (m+1){(n+1) m

+ [<m,n>-><k,z)'} - |(m,n) > (k,nﬂ - |m,n) > (w,2)]

(1.15)
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The target mass correction to this ratio, to zeroth
2

and first order in E§= is, from egs. (I.9) and I.10)

Q

order in as

a \(m,n) (k9|

G R

dZH ( dZH .

k,n) o A (I, %) -

(@ @

az av-
- H H =Jtarget mass

. m n{n - 1)

- ;“Wﬁ (m - 1)+ [(mn)>(k,2) - [(mn)=(k,n)j

~ [ (m,n)+(m,)] (1.16)

Consider again Q2 =5 GeV2 and»lA = 5 GeV. A typlcal case
involving low moments is m=n =4, k = & =2, Then the QCD
correction of eq. (I.15) is <084, while the target mass correction
of eq. (I.16) is °058. So once again, target mass corrections are

important at a moderate value of Q2°
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APPENDIX II.

In this appendix, we discuss quantities which depend only on one
linear combination of distribution and decay functions, so that the sum
over parton types effectively collapses to one term,

The symmetries of the strong interactions which are relevant to
arguments about distribution and decay functions are those which

interchange parton types. The only possibilities are charge conjugation

(c)

C: gq<++q
(11.1)
G+~ G

(where q 1is any quark and G is a gluon) and an isospin rotation by

7 about the vy axis (R)

a
= = ) . IT1.
R: o = 7 Others unchanged (I1.2)

,14
Consider the difference between the structure functions for 7
- ot - . .
and final state hadrons. The w , 7 difference 1s odd under
both R and C. This implies that only one linear combination of

decay functions 1s relevant
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Dy - - = AD (1.3)
where
lk=u
, -1k =4
k- -1k =u s (4
1k=4d

0 otherwise

In order to sﬁudy the symmetry properties of the initial state,
we will consider seperately the cases of electromagnetic and weak currents

A. FElectromagnetic currents:

In schematic form, eq. (3.10) reads

a, _ dﬁikj
— . 2 D g, . (11.5)
de K, k dw =

Taking a w*, m  difference for the final state

de”"*’ aw, " ai,_,
- —— ~ D T ) —dg (11.6)
.l Yy k,J w
aw,
The partonic structure functions de are even under charge
H

conjugation since the electromagnetic current is C even. Since Xk
is C odd, only the C odd part of éj contributes, thus Initial
state gluons are irrelevant. Thus the relevant graphs to order o

are those of fig. (2) and the interference between the graphs of
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figs (1) and (3). But all of these graphs have the following parton-

type structure

kj _ dir P 2
o T 6Kij (ocs) (11.7)
thus
Ty T_
aw. aw Y
H H .~ = dw . 2
Ao - aiT D a‘z‘u“ g + O(O{,S) (1108)
H H
where
o~ 2.~
g=2 Q.r.g. . (11.9)
j J Jdd

Thus, up to order ai terms (which govern next-to-leading
order scaling violations and factorization breaking and thus are
virtually unobservable), the difference between the structure

functions into ﬁr and 7  involves only the linear combinations

B. Charged Weak Currents:

The situation here is complicated by the fact that the cos@cand
sinf, currents(®cisthe Cabibo angle) have different flavor structures.
However the resulting sinzec terms make a negligible contribution to
theﬂjL - difference. Consider first the case of an initial quark
(or antiquark). The final partonic state, up to order ai is a quark
(antiquark) with or without a gluon. The final state fermion must

carry 1sospin %= in order to contribute to the WT‘WYF difference.
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However, the sin@c current carries isospin %3 so the initial
quark must be an isosinglet (sea) quark. Thus the contribution of
quarks (antiquarks) struck by sinec currents is suppressed by sir?%z
times sea quark distributions or sinZQGai . Initial gluons struck
by sin@c currents are suppressed by ussinzece

By gimilar reasoning, the charm-strange part of the cosec
current does not contribute until order aia

Thus the relevant current for neutrino scattering is

M = cosg(tyMa - TMIa) = 9y - gy . (1T.10)
The vector current (JV) and the axial-vector current (JA)

ahve simple transformation properties under RC

v Vv
(I1.11)
RC J +$;A
de,
The parity conserving terms in de (i.e. the 1 and 2 structure
functions) come from V -V and A - A terms, thus
aw, .\’ aw, .
kj) ( kJ)
RC: (__.._,., > . (IT.12)
Iy
d p.C. o 0.C.
| AWy
The parity violating terms (i.e. de ) come from V - A

interference, thus
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o aw af
. 3k _ T 3kj
RC: - 1 (IT1.13)

The W*, m  difference is given by eq. (I1.6) (onsider the

parity violating case. By definition, Ak is even under RC. But

aw... .
3kj

dw

contributes, so initial state gluons are irrelevant.

gince

is odd, only the part of éj which is RC odd

Thus the relevant graphs to order o, are those of figs. (1),

(2), and (3) which have the parton type structure

aw.. \Y aw
< 3k3> R O(ui) (11.14)

where
1 j=4d%k-=
/15 =0k-= (11.15)
% o otherwise
V
m, ™ N
Wy Wy |~ 5 (11.16)
W " @) Pan &t oley)
H ¥y
where
~\ Ay ~ - ™ ¥
g = z e % 5 gy g (11.17)
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For antineutrine scattering, we need only interchange u with

d in eq. (II1.15), so the relevant distribution functions is

€ T 8,783 , (11.18)

The analysis of the parity conserving structure functions for
the ﬂ*, m  difference is complicated by the fact that both initial
state gluons and quarks contribute. The gluon contribution can be
eliminated by also taking the difference between proton and neutron
initial states. Then, by steps analagous to those leading to eq. (II1.6),
the combination éd + ga contributes to neutrino scattering, and
«éu - éa contributes to antineutrinc scattering. A neutrino-
antineutrino sum may be used instead of the proton-neutron difference.
The resulting dﬁkj/dw is even under R (which exchanges v and V),

but Ak is 0dd under R, so only the R o0dd part of éj contributes,

and initial gluons are irrelevant. The relevant distribution function

8By - Byt E &g
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FOOTNOTES
This i1s based on the phenomenological analysis of scaling violations
in electroproduction in ref. 3. Clearly the scale Mb will be
process dependent, so the situation in other processes may be better
or worse.
The proof of the factorization theorem shows that the I''s can
be chosen to process independent. Thus eq. (1.5) preserves the
process independence of the £ for all MQ,
By "target™ mass, we mean the mass of any initial state hadron.
It is easy to incorporate the spin of the initial hadron. For
instance, if the hadron has spin %x(represented by the spin

4=vector SE), eq. (L10a) becomes, by the parity invariance of
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the strong interactions.

where the superscripts o and 1 represent respectively the
hadron-spin-zero and the hadron-spin-one components of the
distribution function, and h dis the helicity of the parton.

°Pp
The spin sensitive varilable T is Invariant under scaling

of p, thus it has no effect on the factorization of the infrared
sensitivity.

This reabsorption of IR singularities is very similar to that
similar to that of ref. 6.

It 1s shown in ref. 5 that the covariant parton model (i.e. the
QCD  parton model to zeroth order) gives rise to the &-scaling
formulae if all logarithmic scaling violatlions are ignored. These
gsealing violations do not appear in the parton model until the
second order.

The variable x 1s independent of ¢ in any frame In which P
and E are collinear.

We must take account of the fact that the definition of ng
adopted In ref. 3 is twlice our definition.

The predictions of the OPE are invariant under changes in the
definition of the operators. Similarly, the predictions of the
QCD parton model are invariant under changes in the choice of T.

Thus we need only prove that the predictions of the two methods
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colncide for one set of choices. These matters are discussed in
ref, 7.
We choose a 1ight meson because we do not know how to include
final state mass corrections.

This kinematic cut was used by Sakai (ref.10). Altarelli
et. al. (ref. 11) object to it on the basis that the point
Wy = 0 dig "arbitrary". Our argument shows that is is not; any
w <0 Includes contributions from the fragmentation region;
w, >0 does not.

The lowest order scaling violations of the non-singlet moments

é(n+l)

of eq. (3.17) are easy to unfold: the scale with anomalous

~(m)

dimension yhj) and the D

scale with vy there 1s no
destinction between uncoming and out going anomalous demensions
to lowest order]. Thus, using the lowest order quark anomalous

dimension and the lowest order B function gives

2 2 m%f%n
B Ry - <&2_9_2_L,.§_> [1 + o(a,)] M<m’n><Q§)
n QO]A
where
4 s L_og._2
D = T??jESFT %'jzi ; 3 nin+15§

where nf, is the number of flavors.
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This type of factorization is not to e confused with the
factorization theorem.

Initial and final state gluons are irrelevant because we are
taking non-singlet differences. Further, the vertex correction
graph of fig. 3 does not contribute to order O because it
has the same kinematic structure as the zeroth order graph

of fig. 1.

The actual relationship 1s

2 2
Zy = n'{Zrx] (22-w)ux %7 - %-/§(Z:~57Vj g§(ux-€>2+ %(UX=€> cosd]

where ¢ of the azimuthal angle between the components of 5*
’* .—> e o o 13 .P>
and % orthogonal to the p, 9 axis in a frame in which p and
'+ °
g are collinear.

FIGURE CAPTIONS

Fig. 1. Zero'™ order amplitude for the process q(q) + B+ q(q).

Fig. 2. First order amplitude for the process q(q) + Bv +ql(q)+G.

Fig. 3. Second order amplitude for the process q(g) + B°~q(q).
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Figure 3



