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ABSTRACT --------

Schwinger-Dyson equations are used to study the large N 

limit of U(N) gauge theory on several small lattices. 

Explicit solutions are found which are beyond the reach of 

existing steepest descent technique. They show a phase 

transition in a three placquette model at coupling 

resembling the known transition in the one placquette model, 

and lending support to expectations of a similar transition 

in the four dimensional lattice theory. 
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l <> Introduction - .. ---~------

The U(co) lattice gauge theory differs qualitatively from the U(!'J) 

or SU(N) theories in having an infinite number of internal degrees of 

freedom per unit volunn of space-t.ime4>- Gross and \~'itten 1], using the 

steepest descen technique of [2], solved exactly the large N limit of 

U{N) gauge theory on a single placquette and found peculiarities attri-

butable to just this difference. The free energy and correllation fLmc-

t].ons depend analytically on the coupling constant except at a single 

critical value, which marks a continuous transition between weak and 

strong coupling phases.. The average eigenvalue distribution of the 

placquette variable (an NxN unitary matrix) covers the entire unit cir-

cle in the strong coupling regime, but for small coupling constant is 

excluded from a neighborhood of -1. 

This paper presents some new exact results for U(co) gauge theories 

on small lattices. The mai~ result is for a three placquette model 

which consists essentially of two unitary matrices governed by the 

action S(U
1

, The steepest descent 

method (in the form used in [ and 2]) fails here because the number 

of true degrees of freedom goes as rather than N. We look instead to 

the Schwinger-Dyson equations recently derived for lattice gauge 

theories[3,4]. Because of symmetries special to the three placquette 

lattice, the N~ Schwinger-Dyson equations close on a manageable subset 

of the correllation functions, Extending a technique suggested by Foer-

ster [5], and employing an ansatz suggested by nur.1erical calculation of 

the strong coupling expansion, we find in closed form the unique solu-

tion of these equations which is consistent with the strong coupling 

expansion and analytic in the coupling constant in a neighborhood of 
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infinity. This solution cannot be continued below a critical value of 

the coupling constant, and the behavior of the one placquette spectral 

density is qualitatively similar to that found by Gross and Hitten. 

The same techniques are used to calculate the spectral density at 

N~ of the product of two independent placquette variables with action 

S=-~lltr(U 1+U 2+adjoints). Again qualitative aspects of the one plac-

quette model are confirmed. 

In only one small respect does the one placquette model seem to be 

atypical. The phase transition there is signaled by a change in the 

asymptotic behavior at large k of the k-th Fourier coefficient of the 

average spectral distribution of the placquette variable. In the strong 

coupling phase the coefficients vanish identically for large k; in the 

weak coupling phase they diminish as a power of k. But the strong cou-

piing behavior is anomalous; in the more complicated models the Fourier 

coefficients decay exponentially in k, the rate of decay vanishing at 

the transition point. 

These results are presented to serve three purposes: to add confi-

dence that the phase transition found in the one placquette model will 

also be present in more realistic models; to refine slightly expecta-

tions of the location and characteristics of the transition; and to give 

complete, non-terminating strong coupling expansions for correllation 

functions in a U(co) lattice gauge model, to be used as sources and test 

cases for conjectures on the general structure of the strong coupling, 

1/N double expansion. 

The organization of the paper is as follows. In Section 2 the use 

of the Sch\/inger-Dyson equations to calculate correllation functions is 

demonstrated on the one placquette model. The results of Gross and 
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Hi tten are :reproduced. Sect ion 3 contains a derivation of of the 

Schwinger--Dyson equations for the three placquette model. In Sect ion 4 

the strong coupling solution is presented and some of its properies dis-

cussed. Section 5 gives the spectral density calculation for two 

independent placquette variables. Section 6 is a discussion of the 

results. 

2. The on~ placquette model 

We are interested in the probability measure on U(N) given by 

* [~N(trU+trU )]dU (l) 

where dU is Haar measure, ~=l/(g 2N), g the standard coupling constant, 

and Z provides normalization. Conjugation by unitary matrices leaves 

unchanged so it is sufficient to consider expectation values <f(U)> o_f 

functions invariant under conjugation. These are generated by the func-

tions • On evidence from strong and weak coupling expansions 

we expect factorization in the large N limit. That is, if f and g are 

invariant functions then <fg>=<f><g> at infinite N. So it is enough to 

find <N-
1
tr(Uk)>. These numbers are real because is invariant under 

replacement of U by its complex conjugate. And, since is :i.nvariant 

under , only k>O need be considered. 

Foerster pointed out[S] that the N~ Schwinger-Dyson equations for 

the one placquette model become algebraic when expressed in terms of the 

analytic function 

R(z) [ ( >, (2) 
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which completely describes the model in the large lir;-rit.. R(z) is 

holomorphic in the interio::· of the unit disk because as a po~1er series 

in z all its coefficients > lie between -l and L 

The Sch1vinger-Dyson equations are efficiently derived using a dev-

ice due to Guth[6]. Let X be a skew adjoint NxN matrix. Start from the 

quantity 

[X( ] , (3) 

then change variables from U to et'\;. Hear measure is invariant under 

left multiplication, so 

(; -tX 
JdU exp[ e )] [X( ]=0 (4) 

or 

{ [X( [X(l-zU)-lzXU( }=0. (5) 

Contract with the invariant quadratic form on the Lie algebra of U(N) 

(i.e., use ~(X ) . for an appropriately normalized basis 
a a J 

{Xa} of the skew adjoint matrices) to get 

* { [(U-U )( [( ] [U( }=0 (6) 

or 

-1 -1 p(z -z)R(z)-pz (1-zU) l (7) 
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In the large li·mit this becomes 

or 

where 

R(z)
2
+[ 

-1 
-z)-l]R(z)-

-1 
l+p(z-z 

-1 
F(z)=[p(z+z )+l] 

( 0)- ~z (8) 

(9) 

(0)-p). 00) 

R(z) must be analytic inside the unit circle, so the unknown R'(O) 

must be chosen to ensure that F(z) has no zeros or poles of odd order 

there. ~~en 0< the only possibility is R'(O)=p, giving R(z)=l+pz. 

When l/2<p the analyticity condition is less restrictive, forcing only 

l-(4 ( ll) 

A unique solution is obtained by noting that the boundary value of 

R(z) on the unit circle must satisfy the positivity condition 

2Re(R(z))-l~O 02) 

or equivalently 

Re \lF(z)i o • (13) 
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This is just the positivity of spectral distributions, and can be 

thought of as following from 

. * 
(~ciU1 ) . ) ]~0 for all {c1 }, (14) 

l J 

which implies 

~dz (2Re(R(z))-l) c(z) 1 2~0 for all c(z), 05) 

where the integral is taken around the unit circle. 

We determine when (11) and (13) can be satisfied simultaneously. 

Under conditions (11), the line {z: F(z) real negative} divides the unit 

disk in two. The square root in (9) must lie on different sheets on 

either side of this line. F(-1) and F(l) are both non-negative real but 

on opposite sheets of the Riemann surface of the square-root, so 

and 1) cannot both be positive. F(l) is always positive so F(-1) 

must be made zero. This requires 

R'(O)=l-(4 (16) 

giving 

-1 .12----::r---·----
R( )~z +2<r -l)z+lJ. 07) 

~F(z) is imaginary along the arc , lz =1, so the spectral 

density 2Re(R(z) )-1 vanishes there. As this arc grows to fill the 

whole circle, and R(z) approaches ( , corresponding to a spectral 
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distribution concentrated at z=l. 

The correllation functions of the one placquette model are analytic 

in ~ except at the critical value • At they have continuous 

first derivatives but not second derivatives. A signal of the transi-

tion is the asymptotic behavior for large k of the Fourier coefficients 

-1 k 
<N trU > of the one placquette spectral density. In the strong cou-

pling regime, , the large k Fourier coefficients vanish identi-

cally. In the weak coupling regime they decay as • To see this, 

use the residue formula to write 

-1 k ~ R( z) <N tr(U )>= dz --­
k+l z 

(18) 

where the contour of integration is a small circle around the origin. 

Deform the integration path until it surrounds the branch cut of ~F(z), 

then use steepest descent to find the large k behavior. 

1· Schwinger-Dyson ~uations for the three placquette. mo<;lel 

Consider a lattice consisting of two vertices, three links connect-

ing them, and three placquettes, each Yith a different pair of links as 

boundary. The link variables are u
2

, and and the action is 

S(U 1, u
3
)=- ). (19) 

Gauge invariance c4n be used to eliminate giving a two matrix ver-

sion: 

S (U l, )=- ( 20) 
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but the three matrix version better revea1s the symmetries of the model., 

The measure of interest is 

(U
1

, u
3

)=Z-lexp[-S dU ( 21) 

The gauge transformations take (D
1

, " i'\1' ' v 

and Win U(N), and leave invariant. The factorization assumption 

says that <fg>=<f><g>+O(N-2
) for gauge invariant functions f and g with 

nontri11ial large N limits. Thus the only expectation values of interest 

at N=o:> are of the form <N-
1
trU(L)>, where U(L) is the product of link 

variables along a closed loop L. 

The first step in applying the analytic-algebraic technique is to 

notice that the N9D Schwinger-Dyson equations close on the correllation 

functions generated by 

-1 * -1 R(w, [ ( 0-zU 
1 
U 

3
) - l > • ( 22) 

To see this, start from the quantity 

* -1 * -1 [X(l-wU
1
u

2
) (l-zu

1
u

3
) ]>, ( 23) 

replace with and proceed as in (4)-(6) to arrive at 

(24) 

where 
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* -1 [(U 0-zU 1J
3

) ]> (2.5) 

-1 -1 * -1 
B=<N tr(l-wU 1-wU (l-zU

1
U

3
) ]> (26) 

-1 -l * :..1 -1 
C=<N tr[( (l-zU

1
D

3
) ]tr ]>. (27) 

Some algebraic manipulation gives 

-1 -1 -1 
A=(w +z -w-z)R(w,z)-w R(O,z)-z O)-A1-A

2 

where 

Al > 

-1 
A

2
=<N tr 

Cyclicity of the trace gives 

J >. 

-1 
>+<N tr ( J>. 

* * The symmetries and u 2~u 2 , u 3~u 1 then yield 

A1=R 1(0,0)+zR1(0,z) 

where 

R
1

(w, z). 

(28) 

(29) 

(30) 

( 31) 

(32) 

(33) 
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Similarly 

(0, 0)+wR
2 

(w, 0). (34) 

Hare algebraic manipulation combined with the factorization assumption 

for N=ro gives 

B=R(w,O)R(w,z)-R(w,O)R{O,z) 

and 

C=R(O,z)R(w,z)-R(w,z). 

Write R(w) z R(w,O), note that the symmetry u2~u 3 , u3~u2 implies 

R(w,z)=R(z,w), and collect all of the above into the N=ro algebraic 

Schwinger-Dyson equation 

]R(w,z)=R(w)R(z) 

[w (z)+z (0, (w,0)+2R' (O)J. 

(35) 

(36) 

(37) 

Equation (37) refers only to information contained in R(w,z); this is 

the closure property claimed above. 

A more useful form of (37) is obtained by the following manipula-

tions. Expand both sides of (37) in power series in w and use 

R
1

(w,z)=R
2

(z,w) to get 

Define 

-1 
R

1
(0,z)=(l-z) [ 

- 12 -

2 -l (R(z)-R(z) )+z (l-L(z) )+zR(z)+2R' (0)]. 

D(z)=R( - 1-z)-1/2. 

(38) 

(39) 

Use (38) and (39) and a considerable amount of algebra to rewrite (31) 

as 

R(w,z)=l/2 l+w+z)-( (40) 

-l 
+( 0-z) 0-wz)S (w,z) 

where 

S(w,z)=[D(w)+D(z)] z) (4l) 

and 

2 -1 
T(w,z)=D(w)D(z)-~ (1-w)(l-z) )+2 (42) 

Now the problem is to find D(z) such that zD(z) is holomorphic in the 

interior of unit disk with value p at the origin, and such that R(w,z), 

given by (40)-(42), is holomorphic in the bidisk I <1, I zl <1. A neces-

sary condition is that T(w,z) vanish on the curve C defined by 

D(w)+D(z)=O. 
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4. f;: §.2.!.~-~.2_~ g_f -~~ Schwj_~g_e_!-PE~!. -~-a_J;:_!_clE 

There is a clue to a solution in the strong coupling expansion. If 

R(w,z) is expanded in a triple Taylor series in ''• z and p we know that 

will appear only if k~l+m. Using this fact and the Schwinger-

Dyson equation ( 3 7) we can calculate the coefficients of the triple Tay-

lor series recursively. We notice among the terms contributing to R(z), 

i.e. those with 1=0, a curious pattern holding to quite high order: 

after pz, only terms with k-2m divisible by three appear. Take as an 

ansatz that this is the exact truth, or, what is equivalent, that D( 

depends only on u and • He find that there is a unique solution to 

our problem for which this ansatz holds. 

Define the curve C' in (u,v) by D( By hypothesis, C' 

depends only on Rearranging (42), 

-1 -1 3 
T ( [D ( -u v ] + p [ u+v- p uv] (43) 

+2 p2. 

T(pu, can vanish along C' only if both expressions in square brack-

ets are functions only of p there. Equivalently, along C: D(w)+D(z)=O, 

we must have 

-1 -1 
D(w)D z )+a(~)=O (44) 

and 

-1 -1 -1 
w +z -wz+p b( ( 45) 
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where a( pl and b( pl actually depend only on p3 • Substituting for D(w) 

-1 
and w in (44) we find that, on C, 

2 2 -2 
D ( z) = p z +b pz (46) 

Near the origin the curve C looks like w=-z+O(z
2
). Thus (46) must hold 

for all z near 0. But zD(z) is analytic inside the unit circle, so (46) 

must be identically true. This is compatible with (39) only if b=l. He 

are left with 

D(zl=pz (4 7) 

where 

. (48) 

To see the constraints on a(pl imposed by the analyticity of 

R(w,z), use (47) and (48) in (40)-(42) and simplify to arrive at 

-1 
l+w+zl+p(w-z) [( l+z) -(l+w) • (49) 

R(w,z) given by (49) is analytic whenever and \JP(z) are. So the 

only constraint on a(p) is that P(z) must have no zeros of odd order 

inside the unit circle. Let the three zeros of P(z) be z
1

, z
2 

and z
3

• 

Since z
1

z
2

z
1
=-l the only admissable possibilities are: 

z 2=z 3, I z 2 (50) 
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or lz
1

1=1z
2 

= z
3

i=l. (51) 

Alternative (50) is equivalent co 

2 -2 
a( p (z

2 
-2z

2
) (52) 

where z
2

(z) muse satisfy 

3 -1 
Q(z 2)=z 2-p z 2-2=0, I z 2 !.5_L (53) 

For l/3<p or all "three roots of Q(z) lie outside the unit circle, 

making (53) impossible to satisfy. But for there is exactly 

one root inside: 

22 ( j3) 
-1 

sin ( 0j3) ], -l VI 
0.5_sin (.).5_z· (54) 

It is easily seen that a(p) defined by (52) and (54) depends only on p3 

and is analytic in p near 0. It follows that R(w,z) defined by (47)­

(49) is also analytic in p near 0. The condition k~l+m in the triple 

- k 1 m Taylor series R(w,z)=~p w z 

-1 
R( p u, =l+u+v+uv+O( pl. 

is verified by noting that so 

Since the Taylor series coefficients of 

R(w,z) can be calculated recursively froo (37), given this fact about 

the strong coupling expansion, there can be no other solution of the 

Schwinger-Dyson equation (37) compatible with the strong coupling expan-

sion and analytic in p near 0. 

The second alternative, (51), requires a( and,. for real 

p, either or This contradicts the original ansatz~ but the 
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derivation of (1,.9) depended only on ( 38), not on the particular form of 

a(p).Soa( ( -l p2 does give a solution of (37) outside the strong 

coupling regime. Unfortunately it must be discarded for violation of 

the spectral positivity condition 

Re(D(z) )_::0, I zl=l, (55) 

on the boundary value of D(z). 

The solution determined by (50) gives a one placquette spectral 

density 2Re{R(z))-l, zl=l which is strictly positive as long as 

-l<p<l/3. -1 * k Its Fourier coefficients <N tr(U 1U
2

) >go as 

( [-k(ln( )] for large k. At where , the 

spectral density acquires a zero at z~l and stops being smooth there, 

and the Fourier coefficients go as • At the spectral density 

has two zeros, one at z=-1 and the other at z=l. The second zero 

reflects the frustration caused by negative p· 

2· The two placguette mod~. 

This is a model of two independent unitary matrices. It can be 

thought of as a piece of the full two dimensional lattice model or as 

the three placquette model with one placquette, but no links, left out. 

The action(in terms of the independent matrices) is 

S(U , (56) 

\Je sketc'b here a computation of the spectr:!.l distribution for the pro-

duct matrix u2' i.~a, of 
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-l -1 
il(z)=<N tr(l-zU 

1
u

2
) >. (57) 

The N"'CC spectral distributions for and u
2 

are the same as for the 

unitary matrix of the one placquette model, so 

r: * -1 H(z)= .)dV [(l-zUVUV ) ] (58) 

where U has the spectral distribution found in section 2. Thus M(z) 

could in principle be calculated directly, but there seems no convenient 

way to do so. 

Instead we again look for a convenient set of correllation func-

tions which include those generated by M(z) and on which the Schwinger-

Dyson equations close. We use 

-1 0-zu
1
u

2
) >. (59) 

The Schwinger-Dyson equations are obtained by now familiar manipulations 

of the expressions 

an4 

after replacing 

<N-1trX( ( 

-1 
<N trX( 

tX_~ withe ~lJ 1 • 

-1 
(l-zu

2
u

1
) >, 

They lead directly to the results 

(60) 

(61) 

- 18 -

p..::: lfz : 2 2 
(2M(z)-l) =(l+4j3 z) ( 62) 

p> : -1 1 2 2 
=4 {2(z+l) } -'/ z] }, (63) 

where '/=1-(2 • 

In the strong coupling regime, p< , the spectral density 

Re(2M(z)-l),!zl=l is smooth and positive. The Fourier coefficients 

-1 k -3/2 <N tr(u
1
u

2
) > go for large k as k exp[-k(ln(4 )] • \Vhen p~ the 

spectral density vanishes along the closed arc Re(z)<-1+2'/2, and the 

Fourier coefficients go as k-312 • 

6. !l_:i_s~io~ 

Note first that the correllation functions of the one placquette 

model at N~ are completely determined by the Schwinger-Dyson equation 

(8) and the positivity condition (12). The steepest descent technique 

is more powerful, however, because the Schwinger-Dyson equations have 

nothing to say about the free energy. 

The situation for the three placquette model is not so clear. 

Equations (40)-(42) state that the joint generating function R(w,z) is 

determined by the one placquette generating function R(z). From the 

rest of the Schwinger-Dyson equations it can be argued all of the 

correllation functions can be calculated once R(z) is known. But it is 

not clear what analyticity and positivity conditions beyond (40)-(42) 

and (55) are needed to fix R(z) uniquely. 

The strong coupling solution presented here, in (47)-(54), requires 

information beyond the Schwinger-Dyson equations: the lowest order in 

the strong coupling expansion at which each correllation function can 
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begin, and analyticity of the N=co correllation functions in f3 near 0. the result suggests that the change in spectral properti.es seen in the 

Moreover, to actually find the solution required an ansatz which does one placquette model will occur simultaneously for all loop variables in 

not seem at all obvious. the general lattice model. 

It might have been \Wndered whether the inter-placquette interac- In all three models the strong coupling( p< spectral densities 

tion in the three placquette model( 20), '"hich renders the steepest des- are smooth and positive, the k-th Fourier coefficient going asymptoti-

cent technique unuseable, would have a qualitative effect on the phase cally to c( [-r( (In the one placquette model c( .) 

transition. It seems not to. The strong coupling solution for R(z) in At r(p) vanishes. In the one and two placquette models, c( is 

the three placquette model looks much like that in the one placquette nonzero and the Fourier coefficients go as for But in the 

model. The corresponding spectral density 2Re(R(z))-l, lz =1 is ana- three placquette model c( d h F . f. . . -5/2 an_ t1e our1er coe 1c1ents go as k 

lytic and positive for p< ~ c, starting constant at and becoming more at the transition pointo 

and more biased to;:..ra.rds eigenvalue z=l as ~ increases, until~ at Considering the ordering influence of the lattice action in more 

a zero occurs in the density at z=-1, and differentiability fails there. than two dimensions it is plausible that an order-disorder transition 

Actually this was to be expected. The interaction between placquettes should always occur at The three placquette example at least 

strengthens the ordering effect of the action, so ought to encourage the encourages this expectation, And it is plausible that the strong cou-

phase transition to occur at an even smaller value of ~c than in a pling phase should be characterized by spectral densities with exponen-

model ·,;i th independent placquettes. This is exactly what happens: tially decaying Fourier coefficients(c.orresponding to generating func-

~c=l/3 in the three placquette model, in the one placquette model. tions z) analytic in disks of radii greater than .) But the simple 

The two placquette calculation gives the spectral distribution of global analytic structures of the toy model generating functions at and 

the product of two matrices ;vhose individual spectral distributions are bey.ond the transition to the weak coupling phase seem tied to the fact 

fixed but which are subject to extreme relative disordering, as that they are solutions of a finite set of algebraic equations in a fin-

described in (58). It seems possible that the additional disorder would i te number of variables. This does not seem likely to be the case for 

produce a smooth spectral density even in the weak coupling phase. But even slightly larger lattices. 

this does not happen. Hhenever the individual placquette matrices are 

forbidden a range of eigenvalues around -1 the product matrix is also; i'£':.':nowle~~men~ 

the extra disorder is expressed only in a broadening of the range of I am grateful to D:i.etricb Foerst:zr for inspirational conversation., 

eigenvalues covered by the product" Because this model maximizes rela- Since the co;:nple'tion of this ~,;ork I have learned that Brezin, Itzykson 

tive disorder among the placquette variables making a loop variable, and Zinn-J"ustin 7 alsc solved the one pla.cquette model (and 
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others) by techniques similar to those used in section 2. 
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