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ABSTRACT

A semi-analytical solution is presented for the problem of drawdown
distribution in a two-layer aquifer when the system is pumped from a well
that is partially penetrating in one of the layers. The solution is used to
illustrate the effects on aquifer behavior of partial penetration as well as
the effect of a contrast in flow properties between the two layers. The
validity of the solution has been verified against four available limiting
cases. A method for analyzing field data is proposed and an example is given

to illustrate the procedure.

INTRODUCTION

Most aquifers in nature are more or less heterogeneous. A very common
type of heterogeneity is found in stratified formations where the hydraulic
properties of the porous media change from one layer to another. It is of great
interest to predict the behavior of such aquifers, when subjgcied to either
withdrawal or injection operations. ‘

Because of mathematical difficulties, the analysis of transient fluid

flow in multi-layered aquifers has not received a great deal of attention.



A rather simple case is that of a two-layer aquifer with no crossflow, i.e.,
the hydraulic connection between layers occurs only at the pumping well.
Lefkovits, et al. [1961] solved this problem for a bounded reservoir composed
of two or more horizontal layers when the pumping well is fully penetrating and
the rate of discharge is held constant. Papadopulos [1966] has studied the
above case for two aguifers of infinite radial extent and Woods [1970] has
examined the same problem from the pulse-test approach.

A more complex case of a layered aq;ifer occurs when the layers are
hydraulically connected throughout their interface. Katz [1960] and Russell
and Prats [1962], using different methods, have handled this problem for a
bounded reservoir composed of two or more horizontal layers with a pumping well
that is fully penetrating and a fluid Tevel that is kept constant in the
pumping well (constant terminal pressure). Due to a convergence problem,
Katz's solution does not lend itself to numerical evaluation when the
radius of the well is less than ten times the thickness of the aguifer;
and, consequently, it cannot be applied to groundwater problems.

A more practical case occurs when the rate of discharge, rather than the
water level, is hé?d constant. Jacquard L 19607 has solved this problem when
the pumping well penetrates the total thickness of the aquifer. So far, no
numerical results have been obtained directly from his equations. Pelissier
and Sequier [1961] have been able to invert the expression which Jacquard
derived in the transform domain, to obtain the pressure history at the well
only. More recently Boulton and Streltsova [1977a, 1977b] have investigated
the problem of flow in two layer systems where one of the layers is fractured.

In addition to the above analytical studies, there have also heen several

numerical approaches to the layered aquifer problem. Vacher and Cazbat [1961]



have used a finite difference method to obtain pressure distributions in a two
Tayer system with cross flow when a fully penetrating well is pumped at constant
rate. Javandel and Witherspoon [1968a, 1969] applied the finite element

method to solve problems of flow in multilayered aquifers.

It often happens that the pumping well does not penetrate or is not open
over the whole thickness of the aquifer. The problem of partial penetration in
a multilayered aquifer is one of the most complex to handle analytically
Clegg and Mills [1969] have considered a two-layer aguifer where both layers
have finite thickness, and the pumping well completely penetrates the top
layer. They found that even for this special case, the final solution could
only be obtained when both layers had the same formation parameters. In effect
this converts the problem into a single layer, partial penetration problem that
was solved much earlier by Hantush [1957].

Pizzi et al. [1965] used an electric analog model to study the effect of
stratification on the performance of a well when it is only partially penetrating.
This study revealed that the effect of stratification within the aquifer on
the behavior of a partially penetrating well appeared to be like that of an
extremely high, so called, "apparent skin factor." Kazemi and Seth [1969], have
applied a finite difference technique to study the effect of anisotropy and
stratification in a reservoir on pressure transient behavior of well with
restricted flow entry.

The above workers have been primarily interested in effects at the pro-
ducing well because this is important in the field of petroleum engineering.

In groundwater studies, however, one is often interested in the behavior of the
aquifer away from the pumping well. Boulton and Streltsova [1975] have examined
this problem for flow to a partially penetrating well that produces from an

aquifer overlain by an aquitard.
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In this paper, we shall present a semiwaﬂaiyiic§1 sofution for drawdown
distribution in a two Tayer aquifer drained by a we?? which partially penetrates
only the top layer. The Tower layer is considered to be very thick relative to
the upper layer. Since evaiuation of the final solution is quite difficult,
numerical inversion of the Laplace transformation has been applied to evaluate
some practical cases and to study the effect of the parameters involved. A
typcial example where such a problem is commonly encountered involves
relatively thin sands which overlay thick chalk in the London aquifer.

THEORY

Let us consider a mathematical model consisting of a system of a two&Tayered
aquifer. As illustrated in Figure 1, each layer has its own flow properties and
extends radially to infinity. The top layer has a finite thickness h and the
lower one is relatively very thick so that mathematically it behaves as a semi-
infinite medium. It is assumed that both layers vremain saturated throughout
the period of investigation. It is also assumed that the initial drawdown is
zero throughout the system.- We require that the interface between the two
layers have a perfect hydraulic contact and the upper boundary of the top
layer to be impermeable.

A well with infinitesimal radius has been placed in the top layer and 1is
open along the length 2 from the top of the aquifer. This well will be pumped
at a constant rate Q over a period of time, t. The problem is to determine the
drawdowns at any point of the system as a function of time.

The differential equation and initial and boundary conditions for this

problem can be written as:
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s, and s, as given below represent the drawdowns in the Laplace transform
domain due to a continuous point sink with unit strength at the point (z = Zg»
and v = 0), in Tayer 1 and 2 respectively.

[ee]

— £d, (Er)M Bz -vz

S‘] (Y\sz 9n> = Z’TT}C(Z M.Y+B dg (9)
2 ,
~Ed (Er)

Ty = [0 Y slzezgly o My=B o(zbzg )y

S,(ryz,n) d§ﬁ4ﬂﬂ&2 § el eolt 4 Mg & 0 de (10)
0

Eﬁ and'529 as given above, satisfy equations 1 through 4 as well as 6 and
7 in the Laplace transformed domain, (Javandel and Witherspoon, 1968b). An
examination of the above two equations reveals that if we consider the whole

system to have the properties of layer 2, drawdown in the top layer of this

system is due to a sink of unit strength at the point z = Zg S well as a sink
at the point z = - 2, but with a strength Df'%%i%} Drawdown in the lower layer

is due to a sink at z = ZO/%fﬁgOf strength %gggu Since Ei is expressed in the

transformed domain in equation 9 , the apparent location of this sink is at
z = %«zoe In this latter equation the whole system has the properties of the

Tower layer. One can now introduce the well known method of images to satisfy
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the existence of the no low boundary at z = h. As a result, if we now set
A = %%i%< the following two equations are obtained which will also satisfy
condition (5).

— gd_(&r) Y Y )
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Integrating equations 11 and 12 with respect to Zg from h-2 to h, and
adjusting for the strength of the sink, leads to the following equations

which represent drawdown distribution due to a well of infinitesimal radius

operating at constant rate.
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If we introduce the following dimensionless terms: Sp = g tD =

n = r/h, ED = /h and z. = z/h, equations 13 through 16 can be written
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Analytical inversion of equations 18 and 19 is quite tedious and once

obtained the results do not Tend themselves easily to numerical evaluation.



Therefore, in order to draw meaningful results from these equations one can
apply numerical methods of inversion.

NUMERICAL TINVERSION OF RESULTS

Numerical inversion of the Laplace transform has long been used for
solving all kinds of engineering problems [Belliman, et al. 1966]. Several
different methods are available which can be employed for numerical inversion,
depending on the characteristics of the function to be inverted and the degree
of accuracy that is required. A brief review of some common methods together
with their application to groundwater problems is given elsewhere (Javandel,
1976).

Here, a method after Bellman has been utilized for the inversion of %b,

In this method, the inverse of"éD

be obtained from the following formula:
N-]
I SD(k+1) i=1,2,3...N (2n)

at a specified dimensionless time tD may
i

In the above equation, Xi are zeros of the shifted Legendre polynomial and

ﬁDi = =n Xi (22)

Extensive tables of the matrix a; are given by Bellman et al. [1966]. The
zeros of the shifted Legendre polynomial are bounded between zero and unity, and
thus, one would expect to cover a time range of (0,o]. In practice, however,
only a small range of time is obtained. In order to expand the range of t09

one may note that:

o]

L {SD(atD)} = e ''D SD(atD) dtD = (23)
0 _ —
SD(T/a) sD(Z/a)
Hence, if in equation 21 one uses 3 . 3 s . . . in place of
§D(’l)s §b(2)9 .« ., the values of t at which each numerical inversion is
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calculated would become:

t

D, = - a an X, (24)

Throughout this study N=15 has leen used in equation 21. Since the reliability
of this method rests on the accuracy of the calculation of SD(kH)9 integration
of equations 17 through 19 has been performed by a forty point Gauss-Laguerre
quadrature formula. Elements of the series in equations 17 and 20 each
represent the contribution of imaginary sinks above and below the top layer

of the aquifer and therefore will vanish very rapidly when the sinks are at
greater distances from the zone of interest.

At this point, a short discussion about the stability of this procedure
may be helpful. The unboundedness of the Laplace inverse operator is reflected
in the behavior of the matrix 35 in equation 21. As the dimension of
this matrix increases, the magnitude of its elements, which have different
signs, also increases. As a result, if one fails to calculate §b with
sufficient accuracy, the corresponding Sy calcutated by (21) will contain
large errors, However, in cases like ours, where Ez can be determined to
any degree of accuracy, one can be confident of cbtaining correspondingly

accurate values of sy [Bellman, et al. 1966].

VERIFICATION OF THE SOLUTION

Results obtained from equations 17 through 20 were verified against four
fimiting cases.

(1) The present solution should converge to the Theis solution if we
set the depth of penetration of the pumping well equal to the total thickness
of the top Tayer and the permeability of the lower layer vanishes. This has
been checked analytically by letting by = 1 and A =1 in equations 18 and
19. It has also been checked directly by letting RD = A= 1 1in the

program and the results are shown on Figure 2. Agreement between the Timiting
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case of the present solution and the Theis solution for a single layer is
excellent.

(2) When the permeability of the lower layer is set to zero, the solution
should match the case of Hantush's [1957] solution for partial penetration in
a single layer. This will lead to A = 1, and Figure 2 includes a comparison of
our solution with the single layer solution for QD = (.5, rp = 0.1 and ZD =
0.8 and 0.0,

(3) If flow properties of both layers are identical, then the solution
should merge to the one given by Saad [1960], for a thick artesian aquifer.
This can easily be verified by Tetting M =D = 1, which will lead to A = 0.

(4) When the pumping well penetrates all the way through the top aquifer
and K1 << Kzg one would expect that, at Teast at early time, our solution
should agree with the leaky aquifer theory of Hantush [1960] for an infinitely

thick caprock. We examined this by Tetting ry = 0.1, KZ/KT = 625, and 352/551 =13

Hantush's g parameter can then be computed from

Figure 3 shows the good agreement between Hantush's solution and ours for 8 = 0.001.
As the g parameter of Hantush increases, however, this agreement will only occur at
early time. To demonstrate this, we set ry = 1.5, KZ/K1 = 10, and 532/551 = ]

for which g = 0.118. Figure 3 shows how results from the two solutions deviate

as tD > 1. These differences are to be expected because Hantush assumed

vertical flow in the confining layer, and this will not hold when KZ/KQ1 is as

small as 10. Our new solution can thus be used to determine limiting conditions

for the applicability of Hantush's [1960] leaky aquifer theory and the subsequent

work on this problem by Neuman and Witherspoon [1969a, 1969b].
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DISCUSSION OF RESULTS

From equations 17-19, we note that in order to investigate the variation
of drawdown with time, we must consider the effects of five parameters: zDg D
Z s Mand D. It is not practical to attempt to tabulate solutions to these
equations here, but an extensive table covering a wide range in the parameters
is being prepared as a separate report. A limited number of results will be
presented in the form of graphs to illustrate some important points.

At small values of time, drawdown in the aquifer (layer 2) is similar
to that of the single layer partial penetration problem. This can be seen
on Figure 4 where curves for Zp from 0.2 to 1.0 all coincide with the single
layer results for tD < 50, At longer times when the contribution of the Tower
layer becomes significant, the amount of drawdown drops below the corresponding
value for a singie layer partial penetration problem. At larger values of Zp
the effect of the lower layer is sensed at a later time which in effect causes
a larger value for departure time. These results were obtained for g = 0.1
and Figure 5 shows the effect of increasing to y = 0.5, To avoid crowding
the figure, the solution of the single Tayer partial penetration problem has

been shown only for z, = 1. At greater distance from the pumping well, the

D
family of nondimensional curves for drawdown is more compact (note that the
vertical scale on Figure 5 has been enlarged by a factor of two). This indicates
that the effect of partial penetration diminishes with distance from the pumping
well. One may also note that the time of departure of the single layer from the
two layer solution has been decreased to a tD about 25 times smaller than

that for the case of ry = 0.1. In fact an approximate formula for departure

time may be given as

(b)), =t (25)
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When Ly = T, which means the pumping well is open all the way through
the top Tayer, the solution applies to the case of an aquifer which is overlain by
a relatively thick, Teaky confining layer. This solution does not have the restric-
tion that is considered in almost all available solutions for leaky aquifers where
flow is assumed to be only vertical in the aquitard and only horizontal in the
aquifer itself. Figure 6 shows the variation of dimensionless drawdown versus
dimensionless time at the top and bottom of the top layer, where KZ/K1 = 10 and
ry = 0.1. The Theis curve has also been shown for reference purposes. This
figure shows that in fact, equipotentials are not always vertical in the aquifer.

In the case of single layer partial penetration, it was observed that at
relatively large distances from the pumping well, (r greater than 1.5 times the
thickness of the aquifer), the effect of partial penetration vanishes and the
aquifer behaves as if the pumping well were fully penetrating [Hantush, 1957
and Javandel and Witherspoon, 1967]. The same phenomena is observed, in these
results except that the effect of leakage from the lower layer will still be
manifested. Figure 7 illustrates this for a partial penetration of ﬁD =
0.2 at ry = 1.5; the corresponding curves essentially coincide with the
case of full penetration for QD = 1.0, rp = 1.5.

As mentioned above, at early time after the start of pumping, the response of
the aquifer is as if the lower layer were absent. However, at later times the
behavior is completely different, and the amount of deviation from the single
layer case depends on the contrast in permeability between the two layers.

Figure 8 shows the effect of permeability contrast for the case of RD = 0.5,
Zy = 0.4, and ry = 0.1 In order to illustrate the effectiveness of the

lower layer in terms of leakage, Figure 9 has been prepared for the same parameters

as that of Figure 8. Figure 9 shows the difference between drawdowns in the
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single layer and that of the two Tayer case relative to the single layer solution.
At any given time, the area under each curve indicates the percent of the total
volume of fluid produced that has been drawn from the lower layer at S 0.1

One may note that, for the sake of convenience, the ratio of specific storage
in the two layers has been assumed to be unity in all of the sbove examples.
Other storage values are easily investigated without introducing any complexity.
For example, Figure 10 shows the effect of varying the contrast in specific
storage from 0.01 to 100, which goes well beyond the Timits usually observed in
the field, for the particular case of & = (0.1

= 0.5, 2, = 04, r

D D D
and KZ/K15 A comparison or results between Figures 8 and 10 indicates that

the effect of varying the contrast in specific storage has much less effect than
variations in the permeability contrast. This can also be seen from equations 18
through 20. The term corresponding to the contrast in specific storage appears
only in fD where its total effect compared to the first two terms of the

integrand is of much smaller magnitude.

INTERPRETATION OF FIELD DATA

As discussed above, drawdown vs. time is a function of £D§ 'pe Zps M and
D. To assist in the interpretation of field data, it was found that the problem is
greatly simplified if observation wells are provided with the same depth and amount
of penetration as the pumping well. There are two advantages in such a procedure.
First, it is usually simpler to construct an observation well over some part of
the agquifer than to install a piezometer. Secondly, the solution for drawdown
in such an observation well is much simpler than that for a piezometer (as given
by equations 17-20). This can be demonstrated by integrating equation 19 with
respect to Zy and dividing the result by the length of the observation well which |
in this case is XD@ In the Laplace transform domain, the solution takes the

following form in which drawdown vs. time is now only a function of QDg o and M.
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The results on Figures 4 and 5 show that the drawdown behavior at early
time occurs as though there were only a s%ﬁgie layer. Therefore, the proper-
ties of the single (upper) layer can readily be established using conventional
methods. An analysis of the results indicates that in setting up a pumping
test, one should select the tTocation of observation wells so that " < 0ebo
One should also note from (25) that for a given QD and Zpys the closer
the observation well is to the pumping well, the longer the single layer response
will Tlast.

After determining the results for the upper {pumped) layer, the variations
from the single layer response at later times can be used to determine the
properties of the lower {unpumped) layer. To do this, one can choose the
parameters g and ry and calculate the variation of dimensionless
drawdown as a function of dimensionless time for various ratios of Kz/KTQ
The difference between these values of drawdown and the corresponding drawdowns
for a single layer solution, which we shall call ASpy, can then be plotted on
semi-1og paper for different values of KZ/Ki” Figure 11 shows such a
family of curves for p = 'p = 0.2. When other values of rp are
needed, the same families of curves will result for the same value of %D
except that there must be a shift in the time axis. As a result, the curves
shown on Figure 11 are independent of h and when used together with type
curves for a single layer partial penetration case can be employed to interpret
field data for i = 0.2. It will be necessary to generate different families

of curves for values of QD other than 0.2.
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The following example will illustrate the procedure to be used in
interpreting field data. Table 1 shows results for drawdown vs. time from a
hypothetical field test where the aquifer consists of two layers. The top
fayer is 40 m thick and the bottom layer is very thick by comparison. Both
the pumping and observation wells are completed in the top 8 m of the upper
layer and the distance between the wells is 4 m. The rate of discharge is
0.02 mg/seco The problem is to determine the flow properties in both layers
of the aquifer.

Table 1. Drawdown vs. time from two-Tlayer pumping test.

Time, Drawdown, Time, Drawdown,
minutes metars minutes meters
2 0.70 180 2.24
3 0.94 360 2.50
5 1.22 720 2.60
10 1.58 1440 2.70
15 1.75 2160 2.79
20 1.85 2880 2.81
40 2.07 7200 2.91
60 - 2.18 14400 2.98
90 2.26 28800 3.03
120 2.30

The following procedure should be used in the interpretation of these data.

1. Prepare a log-log plot as shown in Figure 12 for the average dimensionless
drawdown for an observation well with Ly = 0.2 versus dimensionless time
for QD = 0.2 and rp © 0.1 from the single layer solution of Hantush [1961].

2. Plot the data of Table 1 for drawdown versus time on another sheet of
log-Tog paper with the same scale per log cycle.

3. Find a match point by superposing the two plots being careful to use
only early time data. The coordinates of the arbitrary match point

chosen here are t = 1600 sec for tﬁ = 10 and s = 0.2 m for Sp = 1.
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4. From the definitions of tD and Sps find KZ = 00,0002 m/sec and Qy = 0.1
mz/secn
5. With the two curves superposed, read the values of Sp = gé - Sp for
several different values of iDu
6. Plot the values of ASD Versus tD on semi-log paper with the appropriate
scale and superpose as on Figure 11,
It is necessary to shift the two curves in Stage 6 parallel to the tD axis
in order to obtain the best match with the curves of KE/K1G In this way one
can then estimate the value for the peymeability ratio. From the data tabulated
in Table 1, we obtain a result of KZ/K1 = 10. At this point two comments may be
helpful. First, there must be an appropriately long period of pumping in order
for the drawdowns to deviate from single layer behavior. Secondly, after the
properties of the top layer have been determined, it may prove more accurate
to convert the pump test data into dimensionless results and subtract them
from corresponding values of SD* for the single layer case. This should
lead to a better result than will be obtained in attempting to determine Aspy
directly from the log-tog results shown on Figure 12. Finally, one may note
that the accuracy of this approach decreases as the ratio KZ/KT increases.
CONCLUSIONS
A semi-analytical solution has been presented for the problem of drawdown
distribution in a two-layer aquifer when water is pumped from a well that
only partially penetrates one of the layers. The validity of the solution has
been verified against four available limiting cases. Analysis of the results
has reveaie& several important peints. At small values of time, drawdown in
the pumped layer is similar to that of the case of partial penetration in a

single layer with the same properties. The effects of partial penetration
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disappear as distance exceeds 1.5 times the thickness of the pumped layer, very
much the same as in the case of a single layer aquifer. Available type curves
for the standard case of partial penetration when combined with families of
curves such as shown in Figure 11 can be used to determine the hydraulic proper-
ties of both lavers. The contribution of water from each of the layers can be

determined through an application of the type of curves illustrated in Figure 9.
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NOTATION
Dimensions
My - 8 -
A My + B
p 2 ]
o1
h thickness of the top layer L
J@(X) Bessel's function of the first kind and zero order -
Kng? permeability of layers 1 and 2, respectively L/T
) depth of penetration L
M KZ/K? -
Q rate of discharge LB/T
r radial distance L
D r/h -
Sq95, drawdown of Tayer 1 and 2, respectively L
*D 4k, hs . /Q -
= ,i \2 JT@
Ss sSS specific storage of Tayer 1 and 2, respectively Lm1
1 72
sé dimensionless drawdown for a single layer aquifer -
t time T
N 2 _
ty azt/r
¥4 vertical coordinate L
Zy z/h ~
Zg vertical coordinate of a point sink L
0y 50l diffusivity of layer 1 and 2, respectively Lé/T
g (2 )2 -
v (8272 -
VZ Laplacian operator -
n Laplace transform parameter -

€ Hankel transform parameter -



REFERENCES

Bellman, R. E., Kalaba, R. E. and Lockett, Jr., Numerical Inversion of the
Laplace Transform, Elsevier, New York, 1966,

Boulton, No Wo and T. D. Streltsova, "New equation for determining the
formation constants of an aquifer from pumping test data", Water
Resources Research, 11 (1), 148-153, 1975.

Boulton, N. S. and T. D. Streltsova, "Unsteady flow to a pumped well in
a two-layered water-bearing formation", J. Hydrology, 35, 245-256, 1977a.

Boultgﬁg N. S. and T. D. Streltsova, "Unsteady flow to a pumped well in a
fissured water-bearing formation", J. Hydrology, 35, 257-270, 1977b.

Clegg, M. W. and M. Mills, "A study of the behavior of partially penetrating
wells", Soc., Petrol. Engrs. J., 9 (2), 189-203, 1969.

Hantush, M. S., "Non-steady flow to a well partially penetrating an infinite
leaky aquifer", Proc. Iragi Scientific Soc., 1, 10-19, 1957.

Hantush, M. S., "Modificaticn of the theory of leaky aquifers", J. Geophys.
Res., 65 (11), 3713-3725, 1960.

Hantush, M. S., "Drawdown around a partially penetrating well", J. Hydraulic
Div., Proc. ASCE, 87 (HY4), 83-98, 1961.

Jacquard, P., "Etude mathematique du drainage d'un reserveir heterogene”,
Rev. Inst. Francais du Petrole, XV (10), 1384, 1960,

Javandel, I., and P. A. Witherspoon, "Use of thermal model to investigate
the theory of transient flow to a partially penetrating well", Water
Resources Res., 23 (2), 591-597, 1967.

Javandel, I. and P. A. Witherspoon, "Application of the finite element method
to transient flow in porous media", Soc. Petrol. Engrs. J., 8 (3),
241-252, 1968a.,

Javandel, I. and P. A. Witherspoon, "Analysis of transient fluid flow in
multilayered systems", Contribution 124, Water Research Center,
University of California, Berkeley 1968b.

Javandel, I. and P. A. Witherspoon, "A method of analyzing transient fluid
flow in multilayered aquifers", Water Resources Research, 5 (4), 856-869,
1969.

Javandel, I., "Application of numerical inversion of Laplace transformation for
solving groundwater problems", Proc. of International Seminar on Regional
Groundwater Hydrology and Modelling, Venice, Italy, 373-401, 1976.

Katz, M. L., Fluid Flow and Heat Transfer in Stratified Systems, Ph.D. Thesis,
University of Michigan, 1960.

Kazemi, H. and M. S. Seth, "Effect of anisotropy and stratification on pressure
transient analysis of wells with restricted flow entry", J. of Petrol. Tech.

XXI(5), 639-647, 1969.



Lefkovits, H. €., P. Hazebrook, E. E. Allen, and C. S. Mathews, "A study of the
behavior of bounded reservoirs composed of stratified layers," Soc. Petrol.

Engrs., J., 2 (2), 43-58, 1961.

Neuman, S. P. and P. A. Witherspoon, "Theory of flow in a confined two-aquifer
system," Water Resources Research, 5 (4), 803-816, 1969a.

Neuman, S. P. and P. A. Witherspoon, "Applicability of current theories of flow
in Teaky aquifers", Water Resources Research, 5 (4), 817-829, 1969b.

Papadopulos, I. S., "Nonsteady flow to multiaquifer wells", J. Geophys. Res.
11 (20), 4791-4798, 1966.

Pelissier, F. and P. Sequier, "Analyse numerique des equations des bicouches",
Rev. Inst. Francois du Petrole, 16 (10), 1182-1187, 1961.

Pizzi, G., G. M. Ciucci and G. L. Chierici, "Quelques cas de remontéesﬁde
pression dans des couches hetérogénes avec penéiration partielle etude
par analyseur electrique", Rev. Inst. Francais de Pétrole, XX (12),
1811-1846, 1965,

Saad, K. F., Nonsteady Flow Toward Wells which Partially Penetrate Thick
Artesian Aquifers, M. S. Thesis, New Mexico Institute of Mining and

Technology, 1960,

Vacher? Jo P? and V. Cazbat, "Ecoulement des fluids dans les milieux poreau
stratifies resultat obtenus sur le modele du bichouche avec communication",
Rev. Inst. Francais de Petrole, XVI (10), 1147-1163, 1961.

Woods, E. G., "Pulse-Test Response of a Two-Zone Reservoir", Soc. Petrol.
Engrs. J., 245-256, 1970,




This report was done with support {from the
Department of Energy. Any conclusions.oropinions
expressed in this. repott represent solely those of the
author(s)and not necessarily those of The Repentsof
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy,

Reference to a company or product name does
not imply approval -or recommendation “of the
product by the University of Califernia or the U.S.
‘Department of Energy to the exclusion of others that
‘may be suitable.

o




TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720



