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ABSTRACT 

The "hot chocolate effect" was investigated quantitatively, using 

water. If a tall glass cylinder is filled nearly completely with water 

and tapped on the bottom with a softened mallet one can detect the lowest 

longitudinal mode of the water column, for which the height of the water 

column is one quarter wavelength. If the cylinder is rapidly filled 

with hot tap water containing dissolved air the pitch of that mode may 

descend by nearly three octaves during the first few seconds as the 

air comes out of solution and forms bubbles. Then the pitch gradually 

rises as the bubbles float to the top. A simple theoretical expression 

for the pitch ratio is derived and compared with experiment. The agreement 

is good to within the ten percent accuracy of the experiments. 



1. INTRODUCTJ.(J)N 

Put an ounce of dry hot-chocolate powder in a mug; fill the mug 

with hot water; stir. Now start tapping on the bottom of the mug th your 

knuckle, Listen for a note that slowly rises in pitch, (My record: a tave 

rise from the initial low pitch to the final high pitch,) It take~; 

about a minute for the pitch to stop rising. Now stir As th~'. 

spoon accidentally hits the inside of the mug you will hear the tch 

descend once more and the experiment can be (vJith each 

there is a smaller pitch lowering, as can be 

verified by performing the experiment while sitting at a .) 

I discovered the effect accidentally just before Christmas, 1974, 

while having hot chocolate with my friend Nancy Steiner, (She noticed H: 

first.) 
1 2 3 4 5 Several years later I found that the effect is well known, ' • 

It works for any liquid into which you can introduce gas bubbles 

trapped in powder, or carbon dioxide in soft drinks or beer,) After 

stirring, the bubbles fill the liquid volume; the velocity of sound in the 

bubb mixture is then reduced below that of the bubble~free liquid and the 

pitch is correspondingly reduced. As the bubbles float to the top of the 

mug a smaller fraction of the volume has the reduced sound and 

the pitch rises • reaching the value for the bubble~free liquid v1hen most 

of the bubbles have floated to the top. 

2. OBSERVATIONS WITH HOT WATER. THE INVERSE EFFECT. 

In order to have simple experiments and theoretical predictions it 

would help if the effect worked for the simplest case imaginable-~air bubbles 

in water. I might therefore have been discouraged to read in Ref. 1 that 

"almost any powder could produce the effect in cold or hot water, but 

water alone would not", if I had not already tried it and found a 



effect in water. Perhaps those authors did not try hot tap water. Not 

only does hot tap water give a fine effect, it gives something new that 

I call the "inverse" hot chocolate effect. 

To observe the inverse effect turn on your hot water faucet and 

watch the water stream as you wait for the cold water to run off and the 

water to become hot. Suddenly you may see the water become cloudy (full 

of small air bubbles). At that time fill your mug rapidly, turn off the 

faucet and start tapping. For the first few seconds you may hear the 

pitch descending. That is the inverse effect. After a few seconds the 

pitch starts to rise--the "normal" effect. To see what is happening replace 

the mug by a tall transparent glass or jar. Look at a light through the 

glass as you tap. You will notice that during the inverse effect (descending 

pitch) the water is getting cloudier. That is because air that was in 

solution under high pressure iri the hot water pipe is coming out of solution 

and forming bubbles. The greater the amount of air in the form of bubbles 

the lower the pitch. As you continue to watch and tap you will see the 

bubbles rise under gravity, A clear region grows at the bottom of the 

glass, with a rather sharp boundary between clear and cloudy regions, As 

the boundary rises the pitch rises (the normal effect). When the boundary 

has reached the top surface of the liquid the water is clear and the pitch 

stops rising. 

No ,effect is seen (no cloudiness) or heard (no pitch changes) with cold 

tap water. That is because the dissolved air remains in solution. 

Using hot tap water the largest pitch lowering that I have observed is 

a factor of about seven in frequency-~nearly three octaves. That was 

achieved using a tall graduated cylinder. With a coffee mug the most I can 

get out of hot tap water is about one octave. That is because the bubbles 



have only a short distance to float to reach the top of the mug, and 

reach the top before all the air has had time to come out of solution to 

form bubbles. With a tall cylinder the bt::bbles can have floated up one 

coffee~mug height and nevertheless still occupy most of the volume. Then 

there is time for the inverse (pitch lowering) effect to be nearly 

before the normal effect takes over. 

The effect works on most of the hot water faucets I have tried., 

The largest effect (cloudiest water and greatest pitch ·lower:tng) :ts 

obtained w:tth the faucet valve partially closed. 'The growth of the small 

bubbles is apparently triggered when the supersaturated hot water flows 

past a constriction (th~ partially closed faucet) where the pressure is 

suddenly released. 

The bubbles are due to dissolved air, not air entrained at the nozzle. 

That is shown as follows: If I submerge the nozzle in water while it is 

emitting hot cloudy water there is no decrease in the cloudiness. Also, 

there is practically no effect with a cold..,.water faucet, even though the 

air entrainment should be essentially the same as for hot iAYater .• 

If I open the hot water valve completely the cloudiness goes away 

and the water starts to run clear again. Under these circumstances 

is sometimes no effect. Sometimes there is a small delayed inverse effect 

where ~he water in the rapidly filled jar remains clear with no pitch 

lowering for a few seconds, and then suddenly gives a small pitch lowering 

and bubble formation, but with fewer and larger bubbles than with the 

constricted valve. The question naturally arises: when I get no effect 

with the wide open hot water valve, is it because the bubbles have 

been formed far back in the pipe somewhere and then for some reason 

become "lost" before I detect them? Or is the air instead still 

in solut:ton :tn the hot water? I tr:ted adding sand to the clear hot water 



to stimulate bubble growth, without success. It occurred to me to 

try sound waves. I borrowed a "supersonic11 cleaning device having a 

6~inch by 6-inch basin that can be filled three or four inches deep with 

water. Sound waves of about 11 kHz fill the liquid volume and agitate 

whatever is inserted there. I used a 250 ml volumetric flask to hold 

my water samples. The flask was first filled completely and then tipped 

sufficiently sideways so that bubbles rising in the main volume would be 

trapped in the domed top of the tipped main volume rather than traveling up 

the neck of the flask. When I filled the flask rapidly with hot cloudy 

water emerging from the constricted faucet the effect of the sound~wave 

agitation was to rapidly coalesce the small bubbles into larger bubbles 

which rapidly rose to the top and were trapped in the dome where I could 

measure the diameter of the flattened single large coalesced bubble. 

When I again used hot cloudy water but did not turn on the agitation I 

had to wait several minutes for the many small bubbles to rise and coalesce 

into a single trapped bubbles; but I found the same final size for that 

bubble as when I agitated the water. When I filled the flask with hot 

clear water obtained with the faucet wide open I found that after waiting 

for several minutes I still had practically no air bubbles, but if I 

agitated I immediately started to generate bubbles. After about ten 

minutes of agitation I got no more bubbles, At that time the total amount 

of trapped air in the single coalesced bubble was the same size as I 

got from the bubbly hot water obtained from the constricted valve. I 

conclude that the clear hot water from the wide open faucet is still 

supersaturated with air and in fact contains the same amount of air in 

solution as the cloudy hot water contains in the form of small bubbles. 

The fact that the two methods give the same result suggests that in each 

case all of the excess air (above that which is in equilibrium at 1 

atmosphere at the hot temperature) is coming out of solution. It would 



be implausible for these two very different methods to have the same 

efficiency for getting rid of excess air unless that efficiency is close 

to 100%. (This expectation was later confirmed; see Sec.7.) 

3. A SIMPLE MODEL: LONGITUDINAL OSCILLATIONS 

Since the pitch~lowering effect works for air bubbles in water we 

should be able to make quantitative comparisons between experiment and 

Unfortunately, the theory given in Ref. 1 is rather sophisticated. It 

involves the flexing modes of the glass container, perhaps because those 

authors tapped on the side of the mug rather than on the bottom in 

to the effect. Their opredictions depend on the container diameter and wall 

thickness and on the elastic constants of the glass as well as on the 

properties of the liquid. 1. Perhaps because of this complexity I did not 

pursue the problem for several years. But recently (1980) my interest 

revived. (I drink a lot of hot chocolate.) It occurred to me that whether 

or not the flexing modes are present I might search for other modes based on 

a much simpler hypothesis, I made the assumption that the pitch I hear when 

I tap with a soft mallet (my knuckle) on the bottom of a tall cylindrical 

glass container has almost nothing to do with the container but is simply 

the pitch expected for a cylindrical column of liquid undergoing 

longitudinal vibration in its lowest longitudinal mode. Since the top 

surface of the liquid is free, and the bottom, in contact with the glass, 
ed 

is fixed, I expect/\the height of the water column to be exactly one quarter 

wavelength for sound waves. in the liquid, both for the case of the bubble~ofree 

liquid and for the case where the liquid is uniformly filled with bubbles 

(before they have had time to float to the top).·. 

I tested this hypothesis. Since my sense of pitch can easily be wrong 



by an octave, I used a microphone and an oscilloscope. I found that I 

needed a suitably softened mallet--a piece of wood with several layers of 

masking tape over it--in order to avoid distracting high frequency 

sounds from the glass container. Starting with cold tap water (20°C) 

in a 250 ml graduated cylinder I found that with a cylindrical water 

column of height 0.28 m my gentle tapping on the bottom of the cylinder 

excited damped oscillations having a frequency of about 1300 Hz. Assuming 

the water column to be one quarter wavelength gives a sound velocity 

v = Af = 4x0.28xl300=1460 m/sec, which agrees well with the handbook 

value of 1470 m/sec. Thus my simple hypothesis was verified. ( I also 

checked that when I poured out some of the water the frequency increased 

by the expected amount, and that the frequency did not depend on the 

diameter of the cylinder.) 

Going over to hot tap water from a partially contricted faucet I found 

that I could get a frequency decrease by a factor of about 7 during the 

inverse effect. When the bubbles all rose to the top the pitch was essentially 

the same as for cold water. (For the same length of water column the frequency 

for the :hot water should actually be about 8% higher than for the cold water. 

My oscilloscope measurements were only good to about ± 10% and I did not 

check that point.) Since the pitch decrease during the inverse effect has 

to compete with a small simultaneous pitch rise due to the rising of the 

bubbles, I estimate that my experimental pitch-lowering factor of 7+ 0.7 

should be corrected to 7.5+0.8 , for the pitch-lowering I would get if the 

bubbles did not rise. 

Once I had learned how to detect this longitudinal mode with the tall 

graduated cylinder using both my ear and the oscilloscope then I was able 

to recognize it also for water in a coffee mug, where I had difficulty in 

determining the pitch by ear alone. For a cold water column of height 6.8 em 



I observed damped oscillations of 5000 Hz. That makes the water column 

0,23 wavelengths high, agreeing with the expected 0.25 within my 

measurement errors, That shows that the effect observed "naturally" in 

the kitchen (i.e., in a coffee mug) is the same as the one 

observed with tall glass cylinders. 

4. QUALITATIVE EXPLANATION OF THE LARGE PITCH RATIO 

The velocity of sound in air is about one fourth of its velocity in 

water, Therefore if you completely replace the water column by an air 

column of the same height the pitch goes down by a factor of about 4. 

How can it possibly be that if, instead, you replace only a tiny fraction 

of the water volume by air bubbles, the sound velocity goes down not by 

a tiny fraction of 4 but by a factor of nearly 8? That is a surprise, if 

we are expecting to find sound velocity in bubbly water to be given by 

some kind of "interpolation" between the velocities in pure air and'' 

pure water. 

Further thought makes it less surprising, Sound speed in a liquid or 

gas depends on two physical quantities: compressibility and mass density. 

It helps to think in terms of slowness rather that speed, Let us define 

slowness = 1/speed. (Slowness is measured in units of seconds per em, 

or hours per mile.) The slowness of sound is greater (L e. the sound travels 

more slowly), the greater the inertia (mass density) of the gas or liquid. 

Greater compressibility (weaker "return force") also gives greater slowness. 

Slowness turns out to be the square root of the product of the density times 

the compressibility. Water has about 800 times the density of air, so we 

might expect it to have greater sound ·slowness than air. However, air is 

about 15,000 times more compressible than water. Thus air wins the 

"slowness race" by a factor of the square root of 15,000/800, which is 4.3, 



and sound travels 4.3 times slower in air than in water. Now suppose that 

the water is filled with air bubbles distributed homogeneously throughout 

the liquid but occupying only a small fraction of the total liquid volume. 

The density will then be essentially that of water. That gives a large 

slowness contribution, But the compressibility will be practically all due 

to the air in the form of bubbles. That also gives a large slowness contri~ 

bution. It should not surprise us that by combining the large slowness 

contribution of the water (its inertia) with that of the air (its compressi~ 

bility) we can get a slowness that is greater than that of either water or air. 

5. A SU1PLE QUANTITATIVE THEORY 

We need a theoretical expression for the velocity of sound in a 

homogeneous mixture of water and air bubbles, in order to compare with 

our experiments. The exact theory is rather complicated. 6 It predicts 

that the sound velocity in the mixture depends on the bubble radii. I made 

only very crude measurements of bubble radii. However, I did measure the 

fraction of the liquid volume occupied by bubbles. (The method is described 

later.) It turns out that that is all we need to know, for our sound wave 

frequency and our bubble~size regime. What follows is a very simple theory 

that can be compared with my measurements. 

The velocity of sound, v, in a homogeneems liquid or gas depends on 

the mass density p and the compressibility K as follows: 

2 
1/v = Kp (1) 

where the compressibility K is defined as 

K=(dV/dp)/V,. (2) 



Here V is the volume and dV is the volume decrease due to the pressure 

increase dp in the sound wave. Now consider a homogeneous mixture of water 

and air bubbles. We will only consider sound frequencies where the wavelength 

is large compared with the bubble radii and the spacing between bubbles. 

Then Eqs. (1) and (2) should still apply. Use subscripts w and a, for water 

and air, and no subscript for the mixture. Since the fractional volume 

occupied by bubbles is very small we take the density of the mixture to be 

that of water: P""P • The total volume in Eq. (2) is essentially that of tb.e 
w 

water: V=V • For the volume change dV we take dV=dV +dV • Then Eqs.(l) 
w w a 

and (2) give for the mixture 

1/v2 = (p /V )(dV /dp) + (p /V )(dVa/dp). (3) 
w w w w w 

The first term in Eq. (3) is just l/vw2
, according to Eqs. (1) and (2). :Multiply 

2 Eq.(3) by v • Then multiply the numerator and denominator of the scconc 
w 

term by V and define V /V a a w 
, where f is the fractional volume occupied 

a 

by air bubbles (for f small compared with unity.) The second term 
a 

becomes v 2p f K , which also equals f K /K • Then Eq.(3) becomes 
wwaa aaw 

~ 2 ~ 
v /v = [l+(K /K )f ] 2 = [l+v p f K ] 2 

• (4) w awa wwaa 

We now make a simplifying (and possibly wrong) assumption. We neglect 

the possible dependence of K on bubble radius, surface tension, water vapor, 
a 

heat of vaporization, thcrnnl conductivity of the nir, etc., and take Ka 

to be the same as one takes for sound velocity in normal air, which is the 

adiabatic compressibility of dry air. That gives K =1/yp, where y=l.40 is 
a 

6 2 
dry air and p=l~OlxlO dyne/em at 1 atmosphere the ratio of specific heats for 

3 
For water we take p =1.0 gm/cm and v =1470 m/sec. w w 

That gives 

2 4 
K /K = v p /yp = 1.49xl0 • 

a w w w 
(5) 



Then Eq, (4) becomes 
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4 k 
v /v = [1+1.49xl0 f ] 2 

w a 
(6) 

For f =0, Eq,(6) says that the sound velocity reduces to v, as it must. 
a w 

(The dissolved air molecules have no effect. It is only when they collect 

in bubbles that they increase the compressibility.) For f =0.01, Eq. (6) 
a 

predicts that in the bubbly mixture the sound velocity is about 1/12 of the 

velocity in water, or about 1/3 the velocity in air, That agrees with our 

qualitative discussion in Sec. 4, 

The formula for v /v given in the more sophisticated theory of Ref,6 
w 

reduces to my Eqs.(4), (5), and (6) in the limit where the sound frequency 

is small compared with the natural oscillation frequency for radial 

oscillation of the bubbles, That is indeed the case for my observations. 

(See the Appendix.) 

6, COMPARISON OF THEORY AND EXPERIMENT 

In order to measure f and the pitch ratio I separated the experiment 
a 

into two parts performed one after the other with several repetitions within 

a few minutes, so that the hot tap water would not have time to change its 

properties. For measuring frequency ratios I used a 250 ml graduated cylin~ 

der. This was tall enough so that bubbles rose by only a small fraction of 

the height of the water column during the "inverse" effect while they were 

forming. To measure·f I needed a suitable "volume magnifier", so I instead 
a 

used a 250 ml volumetric flask having a tall narrow neck (the magnifier). 

I taped a ruler onto the neck so that I could read the position of the liquid 

meniscus. After first filling the flask with hot bubbly tap water I would 

quickly read the meniscus. This first reading was a bit difficult, since the 

water was cloudy with bubbles and the meniscus was "frothing" with the arrival 

of new bubbles floating up from below. (An improved method described later 



eliminated the ne.ed. for this difficult first rea:ding,) Nevertheless I 

could read it to about ± 1 mm. After most of the bubbles had risen to 

the top (it takes two or three minutes) I found that the meniscus had 

dropped by about 4 mm. That corresponded to a volume decrease of 

3 0,8 em ~ which I take to be the volume of air that was in the form of air 

bubbles when I first read the meniscus immediately after fi.lling the flask, 

-3 That gives f =0.8/250 =(3.2+ O.S)xlO • Inserting this value of f into a ~ a 

Eq.(6) gives a predicted velocity ratio v /v = 7.0+0.8. Since I assume 
w -

the column of liquid is one quarter wavelength, both for the pure water and 

for the mixture, the predicted velocity ratio is the same as the predicted 

frequency ratio. My measured frequency ratio was 7.5+0.8. Thus I found 

good agreement between my observations and the simple theory. (An 

improved measurement off is described in Sec.7.) 
a 

7.EXPECTED VALUE OF f , 
a 

Some weeks after measuring f it occurred to me that I should be able 
a 

to predict its value. Assume the air goes into solution at the cold water 

temperature of 20°C and reaches the equilibrium concentration for water at 

20°C in contact with air at 1 at pressure. After the water gets into the 

pipes it sees no more air, The dissolved air fraction remains constant. 

(These assumptions were supported by conversations with East Bay Municipal 

Utilities District engineers.) When the water is in my hot water pipes it 

is under gauge pressure of about 50 psi. Therefore the air remains in solution. 

When it emerges from the hot water faucet it is suddenly again at 1 at pressure 

and is supersaturated with air, because the hot water cannot hold as much 

dissolved air as the cold water. If suitably "triggered", the excess air 

will come out of solution in the form of rapidly growing bubbles. When all 

of the excess air has come out of solution the bubbles stop growing. (That 
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terminates the in'."erse effect.! We then have a calculable fraction f of 
a 

the volume in the form of ai~ Jubbles. 

Here is the calculation. According to the Handbook of Chemistry 

and Physics (35th Edition) fo-: pure N2 at 760 mm Hg pressure in contact with 

water at 20°C, the equilibric amount of N2 in solution is 0.01545 cc of 

0 N
2 

gas when reduced to STP (s~ndard temperature and pressure, 0 C and 760 mm Hg) 

for each cc of water. At 40°: it is 0.01184 cc (at STP) per cc of water. 

Taking the difference we fine ).0145-0.01184 = 0.00361 cc (at STP) per 

cc of H
2
o , that should come mt as bubbles. The bubbles are not at 0°C 

but at 40°C so they occupy a ~rge volume in the ratio (273+40)/273=1.146. 

Also, when the N
2 

went into srlution the partial pressure of N2 was not 760 mm Hg 

but only 78% of that, for no~2l air. Thus the amount in solution is reduced 

by a factor of 0.78. 
0 Also, a= 40 C the vapor pressure of water is 55 mm Hg, 

The total pressu~e of air pluzwater vapor in the bubble should be 760 mm Hg, 

so the air need o::1ly furnish -I:J0-55= 705 mm Hg pressure, That increases- the 

volume of the bubble by the :~tio 760/705=1.078. (Surface tension may contri-

bute an additiona~ correction :o the pressure. See the Appendix.) 

The amount of N
2 

I expect to :ome out as bubbles is therefore 

-3 fa (N2 ) = 0.00361 2: Lll;6 x 0. 78 x 1.078 "" 3.5 x 10 , (7) 

For pure oxyge-::1. at 760 mm lg pressure the equilbrium amount in solution 

at 20°C is 0.03102 cc of o2 
(rt STP) per cc of H

2
o. At 40°C it is 0.02306. 

Taking the difference, conve~ing to volume at 40°C and 705 mm Hg, and 

multiplying by the fractiona~?artial pressure of oxygen in air, 21%, we get a 

predicted value 

fa(o
2

) = (0.03102-G02306)xl.l46 x 0.2lx 1.078= 2.1 xl0-3 , (8) 

We can compare the predi~ions (7) and (8) with my observed value 

-3 off =(3,2+0.8)xl0 , 
a -

of the predicted total 

My obs~rved value was just (57:!:-14)% 

- -3 , f ~.6x10 • given by the sum of (7) plus (8). 
a 



At first I was delighted by this fairly good agreement, But then I was 

struck by the fact that my observed value would be in excellent agreement 

with the predicted excess for N2 alone, as given by (7). Was it possible 

that my bubbles were pure nitrogen, with no oxygen? I r.eceived support: 

for thi.s fascinating hypothesis by noticing that at both 20° and 40° 

the solubility per molecul.e of oxygen is t1:.;rice that of nitrogen, (For 

example at 20° the ratio of the two numbers 0.03102 and 0.01545 given 

above is 2.01.) If water "likes" oxygen twice as well as it does nitrogen, 

might not that inhibit the speed of diffusion of the oxygen through the 

water to reach the surface of the growing bubble, relative to that of 

nitrogen, or inhibit its evaporation into the volume of the bubble., 

relative to nitrogen? 

Perhaps I should have just asked a chemist, but I was afraid the answer 

might discourage me. I needed to learn how to measure oxygen content in 

water and air. Fortunately I soon contacted Prof. David Jenkins and 

Mr. Bruce Jacobsen of the U.C. Sanitary Engineering Departmemt, who are 

experts at that measurement. Rather than bring samples of water to their 

laboratory I worked with Mr. Jacobsen, using samples frdm tlJ.eir faucet, since 

their faucet gave nice cloudy hot water (when the valve was constricted) and 

a fine pitch-lowering effect. ' 0 We found that the cold tap water at 22 C 

had the predicted amount of DO (dissolved oxygen) for water saturated with 

air at 22°C and 1 atmosphere. The hot water at 56°C that had been "debubbled11 

by passing it through the constricted faucet had exactly (within measurement 

errors) the reduced amount of DO expected for water at 56° saturated with 

air at 1 at. That is, a supersaturated oxygen residue was not being left 

behind in the water when the bubbles formed. This showed that the debubbling 

was practically 100% efficient at removing excess oxygen, and "shot down" 

my fascinating hypothesis. As a further check we measured the oxygen fraction 
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of the gas that came off as bubbles from the water emerging from the 

constricted hot water faucet. The gas was not pure nitrogen. It had the 

normal fraction of oxygen found in air. This 11drove the last nail in 

the coffin" and my fascinating conjecture was laid to rest. 

That left unanswered the question as to why I was only getting about 

60% of the predicted amount of air in bubbles when I measured f . I suspected 
a 

that I was losing air in larger than average bubbles that were floating up 

and being lost either before I made my first meniscus measurement (the 

difficult "frothy" one) or during it. To eliminate this first meniscus 

measurement I designed an improved flask for measuring f • 
a 

The flask was 

made by joining a pear shaped flask at its narrow end to a 5 mm (inside 

diameter)calibrated pipette. The flask is stoppered at its broad end, 

which I'll call the bottom. The pipette can be corked at its end (the "top"). The 

end of the cork defines the end of the pipette volume. 

In use the flask is corked at the top, inverted, filled to overflow through 

the bottom, stoppered to overflow at the bottom, reinverted so the top 

is up, immersed in a hot bath at the temperature of the hot tap water until 

all the bubbles have risen (five minutes), and then read. Only one meniscus 

reading is needed because the cork defines the end of the pipette and its 

location replaces the "frothy meniscus" measurement. The magnification is 

also larger on this flask; the air occupies about 50 mm along the pipette 

rather than the 4 mm of the earlier technique. 

With the improved flask I find(for 20° cold and 40° hot water) 

-3 
f =(4.1 + 0.4)x10 • 

a -
(9) 

Inserting this value of into Eq,(6) gives a predicted pitch ratio 

v/vw = 7.9~0.4, which is still in good agreement with my measured value 
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of 7.5+0.8. My "efficieney11 for catching the excess air, with the improved 

flask, is found by dividing (9) by (7)+(8), to get 4.1/(3..5+2.1)""0.73. 

Part of the "missing" 27% may be lost during the filling of the flask, 

before it gets stoppered, since this is a somewhat turbulent process and 

large bubbles released during the filling can rise rapidly and be lost 

before I finish filling, and insert the stopper. Another possibility i.s that 

the predictions (7) and (B) ~re too high, because I have not corrected the 

pressure (and hence the volume) for surface tension. (See the Appendix.) 

Whatever losses that may occur during measurement of f should also occur 
a 

during the filling of my graduated cylinder to make the pitch-lowering meas··~ 

urements; therefore no correction factor need be applied to the result (9) 

before using it to predict the pitch ration. 

8. FURTHER OBSERVATIONS 

If one starts with an empty graduated cylinder and taps the bottom 

with a knuckle the pitch heard by ear (or observed on the oscilloscope) is 

of course that oF the air column, with the length of the air column being 

approximat~ly one quarter waveleng·th for sound in air. As one adds cold 

water to the cylinder the air column shortens and its pitch rises. One 

can now start to listen for a high note due to longitudinal vibrations 

in the water column. But this note is difficult to hear until the cylinder 

is nearly full. It is masked by the much louder note from the air column. 

If instead one sfarts with the cylinder completely full of water then there 

is no air column p,nd one can easily identify the pitch of the note due 

to the water column. As one now pours out water a little at a time one 

can keep track of this note as its pitch ascends, and can start to hear a 

note from the air column. Since the velocity of sound in air is roughly 

one quarter of the velocity in water, then, when the air column at the top 



of the cylinder is about one quarter the height of the water column the 

pitch of the water vibrations will equal the pitch of the air vibrations, 

For even less water the louder and lower air vibrations make it difficult 

to hear the water vibrations. In order to hear the water vibration it now 

helps to ruin the air column by stuffing a wet paper towel into the air 

space so as to damp the air vibrations, Alternatively one can use a 

stethoscope with its detector just under the water surface, to enhance 

the water note. 

By judicious tuning of the water level in the region where the 

air column is about one quarter of the water column one can, using the 

oscilloscope, observe beats between the simultaneous air and water notes 

when the bottom of the cylinder is tapped, Because of the poor impedance 

match at the water-air surface it is hard to get the water note out of the 

water, and the water note is weak compared with the air note, Therefore 

the beats are not strongly modulated. I can see them with a microphone and 

oscilloscope but cannot hear them by ear. 

In the Appendix, I examine the dependence of the sound velocity on 

bubble radius and conclude that for our regime of bubble radii and sound 

frequency the assumption of adiabatic oscillation of the air bubbles is 

probably not valid, If that is indeed the case and the oscillations are 

isothermal that would increase my predicted pitch ratio by about 18%, 

Experiments more accurate than those I report here could settle that 

question, I also show in the Appendix that surface tension can probably be 

neglected for our bubble sizes. I also show that a model where the 

number of bubbles remains roughly constant while each bubble grows with 

time agrees both with the appearance of the water (increasing cloudiness 

during the inverse effect) and also the time duration (of order 10 seconds) 

of the inverse effect, 
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9.APPENDIX. DEPENDENCE OF SOUND VELOCITY ON BUBBLE DYNAMICS 

The radial oscillation of gas bubbles in water was investigated 

theoretically and experimentally by Minnaert.
7 

By equating the maximum 

potential energy (at maximum compression) to the maximum kinetic energy 

(at the equilibrium radius,a), and assuming that the compressibil was 

the adiabatic compressibility of dry air, namely K ;1/yp, Minnaert derived 
a 

the expression 

(10) 

where wR=2TifR' and fR is the natural oscillation frequency. Minnaert 

verified Eq. (10) experimentally for bubbles having radii between 1.5 and 3 mm. 

He also verified the need for the factor y=l.4 for air bubbles, and verified 

the dependence on the factor y by using other gases besides air. If the· 

oscillations had been isothermal the factor y=l.4 would be replaced by tinity 

in Eq. (10). Moxe generally. we let y denot?the 11polytrope" index, which should 

equal the ratio of specific heats, 1.4, if the oscillations are adiabatic, 

should equal 1.0 if they are isothermal, and may lie somewhere between if 

they are neither. Minnaert's experiments demand y=l.4 and rule out l.Ot 

for his bubble sizes. 

Md · 
6 

· f 1 I e w1n g1ves a ormu a for v vw which is the same as our Eq.(4), 

except that his expression for Ka depends on frequency. If we ect his 

damping term (which is only important close to the resonance frequency fR) 

his result can be written 

2 2 2 2 K =[Z /(Z -1)](3/a p w ) 
a w R 

(11) 

where Z=wR/w, and w=2Tif , where f is the driving frequency. If we 

substitute Minnaert's value of wR from Eq.(lO) we obtain 
. 2 2 
Ka= (1/yp)Z /(Z -1). (12) 

For driving frequency f much smaller than the resonance frequency fR 

we have Z>>1. Then Eq. (12) becomes K =1/yp and Medwin's formula reduces 
a 

to my Eq. (6). 
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My observations were at sound frequency f=l.3 kHz. For a bubble 

radius 0.1 mm, Eq.(lO) predicts fR=33 kHz. Most of the bubbles that 

contribute to my observations appear by eye (with a pocket magnifier) to 

have radii about 1/50 mm. Thus my measurements at 1.3 kHz should lie in the 

low frequency regime of Eq. (12) and I expect my Eq. (6) to be sufficiently 

accurate at my level of experimental accuracy. 

Should one use the adiabatic compressibility in calculating the 

resonant frequency fR when the bubble radius is less than 0.1 mm? Minnaert 

verified y=L 4 in Eq. (10) for bubbles with radii greater than 1. 5 mm. But 

for sufficiently small bubbles and for sufficiently low frequency f there 

will be time for heat to flow by diffusion from the center to the surface 

of the bubble during a half period T/2 = l/2f. Air molecules can there 

quickly exchange energy with the water. Thus for sufficiently small bubbles 

we should replace y=1.4 by 1.0 in Eq.(lO), and therefore in Eq.(l2) and 

in my Eqs. (5) and (6), If we replace y=l.4 by 1.0 in Eq.(S) that replaces 

the "1.49" in Eq,(6) by 2.09, and changes the predicted pitch lowering in 

my experiment from 7.9+0.4 to 9.3+0.5. I cannot quite distinguish between 

those two predictions with my experimental accuracy; partly that is because 

of uncertainty in my technique for measuring f (where is the ''missing" 27%?) a 

and partly because it is difficult to determine the lowest frequency to 

better than 10% during the simultaneous frequency decrease (as bubbles form) 

and increase (as they rise). 

At what bubble radii do we expect heat flow to become important at our 

sound frequency? Let the collision mean free path for the air molecules 

bel\ ; let the rms molecular velocity be c, and let the molecules diffuse for 

a time .t. Then the mean square radius R
2 

of diffusion of an air molecule is 

given by 

(13) 
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Taking A~6xl0-6 em, c=300 m/s, and t=T/2 = 3.9 x 10-4 sec for f=l.3 kHz 

gives R=0.08 mm. This is four times greater than our estimated average 

bubble radius of about 0.02 mm. Therefore for our bubbles the adiabatic 

assumption should break down, whereas at Minnaert's radii of greater than 

1.5 mm the adiabatic assumption should be valid. (I reach this same 

conclusion when I substitute into the more complete formulas derived 

in the thorough theoretical discussion of oscillating gas bubbles 

by c. Devin, Jr. 8) 

Experiments less crude than those reported here could examine the 

transition between adiabatic and isothermal oscillation. 

What role does surface tension play? That depends on the bubble radii. 

The gauge pressure p-p inside an air bubble of radius a, when applied to 
0 

the cross sectional area 'IT a2 of a slice through a bubble great circle, ·must 

balance the force o2 'IT a due to surface tension exerted across the perimeter 

2 'ITa. That gives 2 (p-p )rr a = o2JT a , or 
0 

p=p +(20/a)=p [1+ (2o/a p )(a /a)], 
0 0 0 0 0 

where a is the final bubble radius. For water we have 0=75 dyne/em. 
0 

Taking a =2x10-3 em (my estimate using a pocket magnifier), and 
0 

6 2 = 1 at= l.OxlO dyne/em , Eq,(l4) becomes 

p•[l + (0.075)(a /a)]p • 
0 0 

(14) 

(15) 

Let us first apply Eq.(lS) to the predicted value of fa. For a=a
0

, Eq.(15) 

predicts that the pressure inside the bubble is 1. 075 at. tJe neglected that 

factor in the main text. The predicted volume is therefore reduced by 

a factor of 1/1.075. The sum of (7)+(8), multiplied by 1/1.075, is 

[(3.5+2.1)/1.075]xl0-3 
= 5.2x10-3 , which is to be compared with my measured 

-3 value o£(4.1± 0.4)xl0 • Suppose now that my estimate of a was biased in 
0 

that I notice the largest bubbles most easily. If the average value of a is, say, 
0 

0.5xio•3 em instead of 2xl0-3 em then the 0.075 should be replaced by 0.3~ 

in Eq. (15). -3 In that case the predicted~~alae cif fa becomes 4.3xl0 ,in 



by diffusion 

given by 

a region of radius R . 
0 

2 
t ""R /A.c. 

0 0 

According to Eq.(l3) that time is 

(l9) 

The cho.ncc tho.t during the exploration of this region the air molecule will 

be captured in the bubble should be proportional to the time spent in the 

bubble volume; that time should be proportional to the bubble volume. Thas, 

without worrying about factors of two (the bubble volume is not constant) 

we multiply Eq,(l9) by the volume ratio R 3/a 3 • That gives our estimated 
0 0 

clean~out time t: 

5 3 
t = R /a A.c. 

0 0 
(20) 

Since the ratio R /a is fairly well known (it depends only on our fairly 
0 0 

well measured value of f ) but a is poorly measured, we put in our value 
a o 

R /a =5 and write Eq.(20) 
0 0 

as t For the mean free path A. of 

the air molecule diffusing in water we take the edge length of the cube 

occupied by one water molecule in the liquid: A.=3xlO~S em. Taking c=300 m/sec 

(thermal velocity), and our crude value a = 2 x 10~3 em, we find an estimated 
0 

bubble growth time 

t = s5 (2xl0-3) 2/(3xl0-8)(3xl04) = 14 sec, (21) 

Because of the large uncertainty in a , 
0 

the better~than-order-of-magnitude agreement of (21) with my observations 

has to be pure luck, But the order-of-magnitude agreement is not, and 

supports the model with practically constant number of bubbles, each 

growing larger with time because of the capture of diffusing air molecules. 

Finally, what is it that determines the initial number of bubbles 

per unit volume, N ? (That is what determines the final bubble radius a ,) 
v 0 

I believe there is a very simple concept that would enable me to predict 

N . But I haven't found the concept. 
v 
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