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ABSTRACT

The orthonormal version of the Method of Integral Relations (MIR) was

applied to solve for a two-dimensional incompressible turbulent boundary

layer. The flow was assumed to be nonseparating. Flows with favorable,

unfavorable, and zero pressure gradient were considered, and comparisons

made with available experimental data. In general, the method predicted

very well the experimental results for flows with favorable or zero pres

sure gradient; for flows with unfavorable pressure gradient, it predicted

the experimental data well only up to a certain distance from the initial

station. This result 1S due to the flow not being in equilibrium beyond

that distance. Finally, the scheme was shown to be efficient in obtaining

numerical solutions.
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Introduction

In the vast body of literature dealing with turbulent boundary layer

calculations, two major methods have been employed: the so-called integral

method and the differential method. In this report, we investigate a parti-

cular solution procedure for the two-dimensional incompressible turbulent

boundary layer via the Method of Integral Relations (MIR). In particular,

the efficiency and versatility of this method, as applied to turbulent boun-

dary layer calculations, is studied.

Formulation

The method of integral relations has previously been applied to two-

dimensional turbulent boundary layer calculations by Abbott and Deiwert [1]

and by Murphy and Rose [2] at the 1968 Stanford Conference on turbulent boun-

dary layer calculations. Unfortunately, it was found inferior to other pre-

diction methods presented at the same conference. Here, we shall reformulate

the problem by using the modified version of MIR developed by Fletcher and

Holt [3]. As a result, most of the shortcomings indicated by Murphy and Rose

are overcome.

We start with the two-dimensional incompressible boundary layer equations

in the usual notations:

(1)

where u and v are the mean velocity components in the x and y directions

respectively and p is the mean pressure; p is the density of the fluid and

v its kinematic viscosity. The eddy viscosity, s, is defined as
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" au-p u v ::: E-ay
(3)

where - p U'V' 1S the so-called Reynolds stress. The following non-

dimensional variables are chosen.

uU :::
u

e
v :::

u
e

x R 1/2
L~

1
U

e

u
e (4 )

where 1 and u are the characteristic length and velocity scales respectively,
00

U 1S the velocity at the outer boundary layer edge, and the Reynolds number
e

Re 1S defined as

u 1
00 (5)

The pressure gradient is related to the outer edge velocity by Bernoulli's

equation:

Using (4) and (6), the original governing equations (1) and (2) become

UaU + v au :::
-

dX ay

1 dU
e

U 
e dx

2 1 a
(I-U ) + - 

Ue ay
0)

3U + 3V
- -ax ay

U dUe
- ----

Ue d~

(8 )

such thatdependent functions

To apply the Method of Integral Relations, we define a set of linearly In-

\ f. (U)Il:t ,

f.(l):t o , i 1, 2, •••• N , (9)

where N is the order of approximation.
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Multiply equation (8) by f. and equation (7) by f:, defined as the first
1 1

derivative of f. with respect to U, add and integrate from y "" 0 to Y~ 00:
1

-
dX

""
_1 dUe Jva I 2 1

f. O-U ) dy -
U - 1 Uee dx 0

<(0) (d~)
dy a

"f.
1 dU

')() 00

1 [ .s) (~U )2 " 1 dB Jo + f. dy - - ~ Uf.dy
U jJ d1 1. U - 1-e e dx 0

Change the variable of integration from y to U and define Z as:

-1
Z "" (d U )

dY

and equation (0) can be written as:

~x L dB L[( 1-U 2) Uf i ] ZdUf. UZdU
1 e

f. -"" ---
1 U - 1-

e dx 0

1 11

€U (1 + v:)
e 0 Z

(0)

Equation (12) is the basic integral relation in the present analysis.

We now further define If i i as a set of orthonormal functions constructed

from the Dorodnitsyn functions (l-U)k, k=1,2,3 ••• by the Gram-Schmidt

procedure [4]. Hence:

1.

and

f. (U) "" L
1-

k=l

(3)

(4)



with 0kj being the Kronecker delta.
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Z is then represented by:

N-1

b
O

+ r b. f. (U)
=1 J J

Z =
1-U

where b
O

' b
1

, b
Z
"'" are unknown coefficients to be found. Substitute

(15) into (lZ) and invoking (14), we obtain an explicit set of ordinary

differential equations in the coefficients bO' b1, ••• ,bN_ 1:

(5)

1
Ue

and

I

1 fi(O)
------

U
e

"f.
O+~) 1 dU

jJ Z
i=l, 2, ••• N-l

(16a)

d~Ot fNU dU fl I

1 e fl_U
2

) f N -Uf~ ZdU- dU ---U -
dx 0 l-U e dx 0

(l6b)
1

1 I 1 -~ 1 (l
E 1 "- fN(O) - + --) - fNdUU 20
jJ Ze e 0

which can be integrated subject to appropriate initial conditions at some

station x = x .. We shall discuss the initial conditions later.
1

The above formulation 1S similar to that in a laminar boundary layer

(Dorodnitsyn, [5J). Apart from the difficulty of evaluating the integral
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1 "f. (u )dU
Z 1.

case.

1.n which some kind of eddy viscosity model for E has to be used, one problem

1S that the approximation of Z given by (15) is not accurate unless N is

rather large. This is mainly due to the highly inflected velocity profile

in a turbulent boundary layer as opposed to the smooth profile in the laminar

Thus, Murphy and Rose [2 ] pointed out that the usual sequence (l-U)j,

j=1,2, .• is not quite satisfactory, even when a four-parameter profile is

used (i.e., N=4). Instead, they judiciously assigned much larger exponents

to the factor (l-U) and determined in the course of their numerical solution

the optimum values of those exponents. This of course destroys the complete-

ness requirement of the original method of integral relations, and it does

not guarantee in principle that the approximation will converge to the exact

solution if the order of approximation tends to infinity. The sole purpose

of their scheme is, to our knowledge, to better represent the Z profile in

a turbulent boundary layer while using as few parameters as possible, since

the traditional method of integral relations is quite impractical when too

many parameters are used. However, the present orthonormal version circum-

vents this "high order" difficulty and enables one to preserve the complete-

ness requirement while still using as many parameters as possible to represent

faithfully the Z profile. Indeed, it has been applied to the two-dimensional

laminar boundary layer to as high as N=15 with little computer expense [3J.

It is therefore believed that the present formulation would be efficient

even for large values of N.
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Turbulence Modeling

In order to calculate the last integrals in equations (16a) and (16b),

a model for the eddy viscosity s/w is needed. We use the following expres-

sion for the wall region:

~ ::::: 0.04432 [eO. 4U+ - I - 0.4u+ - 0.08 u+ 2]

which was first deduced by Spalding [6J and later found independently by

Kleinstein [7J. For the wake region, the Clauser model [8J is used.

on

(8)

+where u ::::: u/u and u
l l

defined as

~~j~ the wall frictional velocity. Reo*

u 0>'<::::: e
\!

is

-!(
with 0 being the usual displacement thickness.

The wall shear stress, lW' is given by:

TW = (1'+")0 (~~)

°where the subscript °denotes the wall.

(20)

Experimental data shows that the wall region extends to where the non-

dimensional velocity U assumes a value of roughly 0.7 (Bradshmv, [ 9]). In

general, we denote this value by U. The determination of U will be dis-
m m

cussed later. Hence the last integral in equation (16a) and (16b) can be

evaluated as

11 ( .•• ) dU :::: rUm ( ••• ) dU + r1

o Jo J~
(. •• )dU
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where ( .•. ) represents symbolically the integrand.

Before discussing the method used to calculate (21), we first derive

+ +
express~ons of u and y in terms of the present variables Z and U. We begin

from equation (20):

L
W

Since s ::::: 0 at .y ::::: 0, we have:

( ) ( dU)::::: ll+s 0
dY 0

Using the definition of Z and the nondimensional variables defined ~n (4),

it can be shown that:

u+ - u~ R/72

or

Hence,

and

L W IRe
--'-:,-- =:

2
PU oo

U
e

Z
o

+y

U R 1/2
e e

y (24)

Thus the eddy viscosity can be written in terms of Z and U as follows:

For 0 .:;;; U < U
m

[

0.4U" r;;;Re1/2
~ ::::: 0.04432 e VUeZo

and for U .:;;; U .:;;; 1
m

~I -0.4 U~Ue Zo Re
l/2

- 0.08u2UeReI/2zo]'

(25)

(26)
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and the displacement thickness 8* has been wri tten as

Evaluation of Integrals

~) dy
u

e

1

:::: _L_ J (t-U)ZdU

Re l / 2 0

The integrals in equations (16a) and (16b) can be computed exactly except

for the shear integrals, which appear as the last term in the equations. At

present, these shear integrals are evaluated by using a method based on the

Gaussian-Legendre rule whose algorithm is available in the Sandia Mathematical

Library.

Determination of U
ill

Up to now, we have only denoted the outer boundary of the wall region

by U. As mentioned before, experimental results indicate that U is roughly
m m

0.7. However, this value of U may not produce a continuous curve for E/W
m

across the whole boundary layer. To be consistent with the present formula-

tion, then, U must be found by determining the intersection of the E/W in
m

the inner region with that 1n the outer region. Hence, equating the two

expressions (25) and (26), we have:

0.04432 [eO. 4U j~e~:;eii2 -I -0.4uAz
o
ReI/2 -0.08U~eZoReI/2]

0.0168 U
e

Re l / 2 JCl (l-U)ZdU

o
(28)

The above equation can be solved iteratively to yield U. The advantage of
m

using Spalding's model becomes clear: this model is explicit in U and hence

makes it eaS1er to determine U. The solution is sought 1n the neighborhood
m

of 0.7. In the case of flow with adverse pressure gradient, the wake region

becomes substantial and U is found to be smaller than that of the flow with
m



favorable pressure gradient or without pressure gradient.
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Once U
m

mined, the shear integrals can be evaluated as mentioned earlier.

Initial Conditions

is deter-

The system of ordinary differential equations (ODE) resulting from

our formulation of the MIR must be provided with initial conditions on the

parameters b
O

and b
j

at some initial station, which can be taken as zero

by suitable translation of the origin. Unlike laminar boundary layer flows,

where the initial conditions are usually given by exact solutions (similarity

solution), we have to rely on experimental data to determine the appropriate

initial conditions. The easiest way in the present formulation is to calculate

these initial values from experimental data. In general, among the experimental

data, velocity profile U, boundary layer thickness 0, displacement thickness 0*,

momentum thickness 8, and skin-friction coefficient Cf are available. One

then faces the problem of choosing the most "effective" data. Our suggestion

on these choices is as follows:

(a) The skin-friction coefficient, Cf , is the most effective for ensuring

the correct behavior of the velocity profile at the wall.

(b) Second in effectiveness is 0, the boundary layer thickness. Although

equation (15) satisfies the boundary conditions dU/dy + 0 automatically

as y + 00, the value of the boundary layer thickness would not generally

match the experimental data. Hence, to match the boundary layer thickness

is to secure a more correct boundary condition at the outer edge of the

layer.

(c) Displacement thickness, 0*, ~s our third choice of data. In (a)

and (b), we specify the boundary conditions at the wall and at the outer

edge of the layer. By matching the displacement thickness, we expect to
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get a correct global behavior of the velocity profile ~n the boundary

layer.

It was found that using the above three conditions (i.e., Cf , 0, 0*,

for N == 3) to compute the flow over a flat plate, a very satisfactory result

was obtained. In the case of higher approximations, more data are needed.

Generally, a trial-and-error procedure is needed to choose other "effective"

data. However, one can pinpoint these data after several attempts by noting

that good initial conditions should behave as jb 0 1 > 1 bll > I b21 ••• in equation

Os) . Since U o at the wall, equation (IS) becomes:

N-l N-l j

2
0

== b
O

+ Lb. f. (0) == bO + L b. ( L C )
j==l J J j=l J k==l jk (29)

In the course of constructing orthonormal functions from (l-U)k by the Gram-

Schmidt procedure, we found that

I~
I k=l

<
j

I
k==l

Intuitively, the contribution to Z from the subsequent term in equation

(29) should become smaller as the order of approximation gets higher.

Therefore, as noted, we expect that good initial conditions should yield

Results and Discussion

Three kinds of flow are tested by the present formulation: (1) flow

with zero pressure gradient, (2) flow with adverse pressure gradient, and (3)

* In our calculations, however, this condition was not always met.
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flow with favorable pressure gradient. Results for each case are plotted

and compared with the experimental data that can be found in Cole and Hirst[10J.

Flow with zero pressure gradient (ID 1400).t Figures 1 to 5 show compari-

sons between the predicted and measured values of the various flow quantities.

Surprisingly good results were obtained with the approximation N ::::: 3 just

by using the initial conditions that matched C
f

, 0, and 0*. This supports

* .the "effectiveness" of the data C
f

, 0, and <5 1n the determination of initial

conditions. The computer time of this approximation is about 5 sec in a

CDC-7600 machine. Results of the approximations for N = 4 and N = 5 also

show excellent agreement with measured values.

It should be pointed out that the CPU time for N = 5 (45 sec) is much

greater than that for N ::::: 4 (8 sec). This is due to the stiffness of the

system of ODE's in equations (16a) and (16b), in which the coefficients

of Cik ln equation (13) get larger as N gets higher. Nevertheless, the CPU

times for the present formulation are smaller than those quoted in Murphy

and Rose [2J, taking into consideration the different computers used.

Flow with adverse pressure gradient (ID 1100). The flow, ID 1100, 1S

not an equilibrium turbulent boundary layer beyond x = 3m, which was indi-

cated by Murphy and Rose [2J. This is because the experimental data for e,

H, C
f

show that they cannot satisfy the momentum integral equation.

IX de dx f (2+H) ~ dUco dx
{X Cf

dx
(30)

-dx U dx 2
co

x
0 0 0

Hence, we shall not discuss the predicted results beyond x ::::: 3m since the

flow-satisfying equations (1) and (2) must satisfy equation (30).

t The identity number refers to that used in Reference 10.
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Figures 6 to 10 show comparisons between the predicted and measured

values. The case N = 3 could not predict this flow accurately, unlike the

first case. It was found that the wake region was substantial in the stream-

wise direction. In order to represent the velocity profile more accurately,

one should use high-order approximations. Results of N = 5 show good agreement

with the measured values.

Flow with favorable pressure gradient (In 1300). This is a simple flow

that can be accurately predicted even in the case N = 3 with the initial

*conditions matching C
f

, 0, and 0. Results are shown in figures 11 to 15.

No attempt was made to use high-order approximations in this case.
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Conclusion

The application of the orthonormal version of the Method of Integral

Relations to turbulent boundary layers has been examined. The present

method circumvents the "high order" difficulty and preserves the complete

ness requirement.

Three sample runs have been given. Results are shown to be in good

agreement with experimental data. In addition, solutions for these flows

require only 8 sec on a CDC-7600 computer when N = 3 or 4. This is very

rapid.

A manner of determining the initial conditions from the experimental

data at the initial station has been suggested and has proven to be effective.

A shortcoming of this method, however, must be mentioned. It appears diffi

cult to find initial conditions when we use higher-order approximations,

say N=6, since the velocity profile is quite flat in turbulent boundary

layers near the wall region. This high-order interpolating polynomial may

be oscillatory. Furthermore, the corresponding system of ODE'S becomes

quite stiff and difficult to integrate. This shortcoming remains to be

overcome in future research.
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FIGURE CAPTIONS

Fig. 1. Initial velocity profile and its development (ID 1400). (This and

subsequent ID nrnnbers are from Ref. 10. )

Fig. 2. Skin-friction coefficient (ID 1400) •

Fig. 3. Shape factor (m 1400) •

Fig. 4. Displacement thickness (rn 1400) •

Fig. 5. Momentum thickness (ID 1400) •

Fig. 6. Initial velocity profile and its development (ID 1100) .

Fig. 7. Skin-friction coefficient (m 1100) •

Fig. 8. Shape factor (ID 1100).

Fig. 9. Displacement thickness (m 1100) •

Fig. 10. Momentum thickness (ID 1100) •

Fig. 11. Initial velocity profile and its development (m 1300) .

Fig. 12. Skin-friction coefficient (ID 1300) •

Fig. 13. Shape factor (ID 1300) •

Fig. 14. Displacement thickness (ID 1300) •

Fig. 15. Momentum thickness (m 1300) .
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