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Abstract 

This paper develops a set of algorithms for the computer generation 

of nuclear spin species and nuclear spin statistical weights potentially 

useful in rrolecular spectroscopy. These algori thrns generate the nuclear 

spin species from group structures known as generalized character cycle 

indices (GCCI's). Thus the required input for these algorithms is 

just the set of all GCCI's for the symmetry group of the molecule which 

can be easily computed from the character table. The algorithms are 

executed and illustrated with examples. 



In recent years cherrdcal applications of non-numerical 

computational techniques are becorrdng important in several areasl-4. 

Generation of discrete structures such as graphs and combinatorial 

structures has been made possible with the advent and rapid growth of 

algorithms and computational techniques. Randicl-3 has pioneered some 

such cherrdcal applications of discrete non-numerical computational 

techniques. In this paper we consider another important application of 

combinatorial algorithms to a problem in molecular spectroscopy that has 

been of considerable interest for several decades. 

An experiment or theory in molecular spectroscopy typically 

concerns with possible spectral lines and the intensities of such 

possible lines. The intensities of allowed inter-rovibronic transitions 

depend upon the nuclear spin statistical weights of the rovibronic 

levels.S-6 The conventional technique for obtaining the nuclear spin 

statistical weights is to find the character of the representation 

spanned by all the possible nuclear spin functions of the molecule and 

then break it down into irreducible components. For a molecule containing 

b1 nuclei of the same kind with a1 spin states, b2 nuclei of the same 

k . d . h . h bl b2 1n w1t a2 sp1n states etc., t ere are a1 a2 •••• nuclear spin 

functions. For 12c triphenylene this number is 4096. Thus the technique 

mentioned above is quite difficult for polyatomics. The objective of 

the present paper is to develop very efficient algorithms that would 

generate nuclear spin species and statistical weights from a minimal input. 

The statistical weights of rotational levels in the rotational 

subgroup have been discussed by Placzek and Teller?, Wilson8-9 and 

MizushimalO. Hougenll correlated these to the point groups of molecules. 
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Galbraithl2 obtained the nuclear spin statistical weights using the 

unitary group approach and Schur's theorem. Recently, Weberl3·~14 

discussed the nuclear spin statistics of spherical top molecules 

belonging to the point groups Dnd or Dnh (n~6). The present author15 

recently developed a general method for the nuclear spin statistics of 

molecules belonging to any symmetry. In Sec. 2 we briefly review this 

method. The present authorl6-24 has been interested in group theoretical 

methods for problems in chemistry. Even though this paper is written 

with the intent of making it self-contained, a more extensive account 

of preliminaries and definitions can be found in text books.l6-19 

This paper uses a theorem of Williamson20 for characters of one 

dimensional representations which was recently generalized by Merris21 

to characters of higher dimensional representations. 

In Sec. 2 we outline the theoretical methods, and in Sec. 3 we 

describe the set of algorithms for nuclear spin statistical weights. 

2. Th~ 

Let D be the set of nuclei of the same kind in the molecule and 

let R be the set of possible spin states of the nuclei in D. In this 

paper we shall treat each kind of nuclei (such asH, 13c, 19p, etc.) 

separately, obtain the nuclear spin species of each kind of nuclei and 

eventually the overall nuclear spin species are obtained as direct 

products of each kind of nuclear spin species. Let F be the set of all 

maps from D to R. The image of F is the set of spin functions. For 

example, for a set of spin 1/2 nuclei, R would be a set consisting of 2 

elements which can be denoted by a (spin up) and t3 (spin down). A map 
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f1 from D to R is shown below. 

fl(l) = 8 

fl(2) = a 

fl(3) = 8 

fl(4) = a 

The spin function thus generated by f1 is 8aSa. The group G is the 

point group or more generally, the permutation inversion group of the 

molecule. G acts on the elements of F in accordance to the following recipe. 

g(f(i)) = f(g-li) for every i£D. 

To illustrate if g is the permutation (12)(34), then g-1 = (12)(34). 

Consequently, f1 shown above is transformed as 

gf1(1) = f 1(g-11) = f 1(2) =a 

gfl(2) = fl(g-12) = fl(l) = ~ 
gf1(3) = f 1(g-13) = f 1(4) =a 

gfl(4) = fl(g-14) = fl(3) = 8 

Thus, the spin function 8a8a is transformed into a8a8 by the action 

of g = (12)(34). Define the cycle representation of a permutation g£G, 
b b 

containing b1 cycles of length 1, b2 cycles of length 2, etc, as x1
1x2

2 ••• 

For example, the cycle representation of the permutation (12)(34), 

is x~. The cycle index of G, denoted as PG is defined as the sum of 

all cycle representations of g£G divided by IGI , the number of elements 

in G. In symbols, 

In order to book-keep the number of various spin states in a spin 

function, let us introduce the concept of weight of a spin function. With 



each n:R, let us associate a weight w(r) v 

that differentiates the various spin states in the set R. TI1en the 

the corresponding images. Symbolically, 

W(f) = 1r w(f(d)). 

To illustrate, the map f1 defined above which maps 4 nuclei tl1e 
2 2 

spin function Ba.Sa would have the weight a. S if the weight of the 

states a and S are a. and s, respectively. 

in G. Williamson treated x as the character of one dimensional 

representations and Merris generalized to characters of higher 

represenations. Define the generalized character cycle (GCCI) 

corresponding to the irreducible representation r whose character x as 

follows. 

Then using the theorems of Williamson and Merris, it can be shown that 

the generating function for nuclear spin species which corres~;nds to 

the irreducible representation r ~'7hose character is x, is given 

Theorem 1: G.F. = P2(x +I (w(r))k) 
k n;R 

bl b2 . The coefficient of a typical term w w ••••• 1n the G.F. gives the fre 0 

1 2 
quency of occurrence of the irreducible representation r in the set of 

bl b2 spin functions with the weight w w ••••• The beauty of this method is that 
1 2 

it did not require the character of all spin functions of dimension 
b b 

a la 2 • • • • • to decompose into irreducible components. All that we need tbe 
1 2 

set of GCCI's of the group which can be obtainedoimmediately by exami 
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the character table. 

If one is interested only in finding the irreducible representations 
spin 

occurring in r , the reducible representation spanned by all spin 

functions, then all one needs to do is to set all the weights to unity. 

Then theorem 1 reduces to corollary 1. 

Corollary 1: The number of times the irreducible representation r occurs 
. spin . . , 
ln f lS g1ven by 

X 
PG(X + IRI) 

k 
where IRI is the number of elements in the set R. 

3. Algorithms 

Theorem 1 has simplified the problem of obtaining nuclear spin 

species with great elegance. Yet one needs to expand several multinornials, 

combine them, and collect the total coefficients corresponding to all 

possible weights. For example, if one looks at an aggregate of bosons 

with spin 2 arranged in~ symmetry, the GCCI of Tlg representation and 

the corresponding G.F. are shown below. 

GCCI(Tlg) = _l (3x1
6 - 3x2

3 + 6x1
2x4 - 9x1

2x2
2 + 6x2x4 - 3x1

4x2) 
~ 2 2 2 2 2 

G.F. = 1 3(a + 8 + y + o + E)6 - 3(a + 8 + y + o + E )3 
48 

2 4 4 4 4 
+ 6(a + S + y + o + E) (a + 8 + y + o ) 

22 2 2 2 2 2 2 2 2 2 
- 9(a + 8 + y + o + £) (a + 8 + y + o + £ ) 2 + 6 (a + S + y + o + E ) 

4 2 2 2 2 2 
- 3(a + 8 + y + o +E) (a+ 8 + y + o + E ) 

4 4 4 4 4 
(a + S + y + o + E ) 

where a, s, y, o and E are the weights of the 5 spin states. There are 

210 terms in the above G.F. One has to collect the coefficients of all 

tl1e 210 terms in order. to obtain the nuclear spin species. Thus, one 
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can see the necessity of an algorithm for computer generation of G.F. 1 S 

and, subsequently, nuclear spin species. Let us describe a set of 

algorithms which will take GCCI's as inputs and generate nuclear spin species. 

A. Composition Algorithm 

Let n and k be two positive integers. Then a composition of n 

into k parts is an ordered sum 

where t ;) 0. 
i 
To illustrate, all the 10 compositions of 3 into 3 parts are 

shown below. 

3+0+0, 0+3+0, 0+0+3, 2+1+0, 2+0+1, 

1+2+0, 1+0+2, 0+1+2, 0+2+1, and 1+1+1. 

The algorithm described here is the one given in Nijenhuis and Wil£22 

which is based on a method which actually constructs such an arrangement. 

Suppose one wants to distribute n indistinguishable balls into k labelled 

cells such that any cell contains 0, 1, 2 •••• upton balls, then each 

such distribution yields a composition. This can be accomplished by 

constructing the boundaries of cells as follows: Consider a big cell 

with two walls containing n+k-1 available spaces, the two walls occupying 

the 2 spaces in the extremities as shown below. 

The number of ways of distributing n balls in the available n+k-1 slots 

can be seen to be 

After distributing these balls, one can construct the cell boundaries 

in the rest k-1 available spaces. Such an arrangement contains exactly 

k cells among which we have distributed the n indistinguishable balls. 
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Thus, we have obtained a composition of n into k parts. Therefore, the 

number of such compositions C(n,k) is given by 

C(n,k) t~-~ = t~~ll) 
The process described above is equivalent to finding all the possible 

k-1 - subsets from a n+k-1 subset. The following algorithm describes a 

way of generating k - subsets from a n - set in a lexicographic order. 

For example, we list below the 2 - subsets from a 3 - set in a 

lexicographic order. 

1 2 

1 3 

2 3 

Let a1, a2, ••• , ak be a given k- subset. Then all the k- subsets 

are generated in a lexicographic order by the following algorithm. 

Algorithm 1: 

Al.l: (Initial set) aj + j (j=l, k)i go to Al.2· 

Al.2: (Subsequent sets) h + min£jlak+l-j ~ n+l-j, j=l, k}. 

if a1 = n-k+l, stop. 

Let us now illustrate the above algorithm with example 1. 

~xCI!llple !_: All 3 - subsets from a 5-set. 

Al.l: Produces ar=l, a2=2, a3=3. 

Al.2: step 1: h ::: 1; m1 = a3+1-l = 3; a3 = 4. 

step 2: h = 1; ml = 4; a3 = 5 

step 3: h ::::: 2; ml:::: 21 a2 = 3, a3 = 4, etc. 

step 9: h :::: 3; ml = 2; al = 3; a2 = 4; a3 = 5 

since a1 = n-k+l = 3. stop. 
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Now let us proceed to generating compositions in a lexicographic order 

using the algorithm 1 by finding all the possible k-1 - subsets from a 

n+k-1 - set. When one translates the language of subsets into the 

language of composition, Al modifies to A2. 

Algorithm 2: 

A2.1: (Initial entry): t1 + n; ti + o (for i=2, k); go to A2.2 

A2.2: (Subsequent entries): h + min{i/ti 'I o}; r + th; th + 0; t1 + r-1; 

th+l + th+l + 1; if tk=n, stop. 

The algorithm 2 is illustrated with example 2. 

Example 2: Compositions of 3 into 3 parts. 

A2.1: tl=3, t2=0, t3=0. Produces the ordered vector (3,0,0) 

A2.2: step 1: h=l; r=tr=3; tl=2 . t2=1. Produces (2,1,0) 

step 2: h=l; r=2. tl=l. t2=2. Produces (1,2,0) 

step 3: h=l; r=l. t1=0. t2=3. Produces (0,3,0) 

step 4: h=2; r=3. t2=0. tr=2. t3=1. Produces (2,0,1). etc., 

step 9: h=2; r=l. t2=0. t1=0. tJ=3. Produces (0,0,3). 

The algorithm A2 produces all possible terms in the multinomial expansion 

(x1 + x2 + •••• + xk)n. A typical composition vector (a1,a2, ••• ,ak) 
~ al a2 ak 

such that.L ai= n, corresponds to the term x1 x2 ••• xk in this multinomial 
1=1 

expansion. 

B. VECI'OR Algorithm 

The algorithm which we call "VECI'OR" essentially picks up the 

compositions generated by A2 and "multiplies" them and collects the 

coeffients and the overall vector in an expansion of the form 
bl bl bl nl b2 b2 b2 n2 

(al + a2 + ••. + ak ) (al + a2 + ••• +ak ) 

Let max n1,n2,... be m. Then the number of terms in the above expansion 
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is given by the number of compositions of minto k parts. This algorithm 

calls A2 for each term in the product with n=ni, obtains the composition 

vector for each term, the coefficient for each term and the overall 

coeffient and the vector. Let the number of terms in the above product 

bet. Algorithm VECTOR generates the overall vector array vec(i,j), 
t 

i=l, k and j=l,,llni and the corresponding coefficients c(j} in the expansion. 
1=:1 

The vector array is the total vector generated as a result of multiplication 

of all the terms in the expansion 
t ~ b· n· 

. !!l (2.laJ.1) 1 
1- J-

11 12 For example, a typical vector (11 , 12, ••• ) stands for the term a1 a2 ••. 

in the above expansion. The resulting coefficient is a product of 

several multinomial coefficients. 

c. Poly Algorithm 

Poly is the main algorithm which calls the VECTOR algorithm for 

each term in the GCCI. This algorithm obtains the vector for each 

term in the GCCI and matches it with the initial vector generated by 

VECTOR for the initial term (a1 + a2 + ••• +ak)n. When there is a match 

it adds the product of the corresponding coefficient in the GCCI and 

the appropriate coefficient generated by vector to the already existing 

inventory of coefficients. When Poly e~1austs all the terms in the 

GCCI, the resulting vector and the corresponding coefficients give the 

generating function with the vector {14f2,···> representing the term 
1 1 

a1
1a2

2 ••• Then it calls an algorithm SPIN described below which 

generates the spin species from the generating function. 

D. SPIN Algorithm 

SPIN algorithm takes the generating function and the value of 

the nuclear spin quantum number for the states whose weights are in the 
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generating function and gives the nuclear spin species. Let the spin 

values of the states whose weights are a 1, a2, •.• ak be m1, m2, •• ., ffik. 

Then the total spin quantum number of a term a~1a~2 ••• a~ is 

m1b1 + m2b2 + ••• +ffik~· The corresponding coefficient in the generating 

function gives the frequency of occurrance of the irreducible representation 

r in the set of spin functions with the total spin quantum number 

m1b1 + m2b2 + ••• +ffik~· The spin algorithm first sorts the coefficients 

in the generating function in accordance to their total spin quantum 

number. Let Cj be the array of such coefficients sorted in accordance 

to the total spin quantum nurrber. Let A. be the multiplicity of the i th 
1 

species and let di be the corresponding frequency of occurrence. Then 

the algorithm described below generates the nuclear spin species from 

the sorted coefficients. Let n be the total number of nuclei in the 

molecule whose spin species are under consideration. 

Dl. Algorithm Spin 

For Bosons 

for i=l, n, do 

A + 2i-l 
i 

j + k+2-i 

if i=l, dj + Cji else dj + Cj-Cj+l 

final exit 

for Fermions 

if n is odd, f + n+l. 

for i=2, f, 2, do 

A + i 
i 

j + n+3-i 



final exit 

if n is even, f + n+l 

for i=l, f, 2, do 

A.+ i 
i 

j + n+2-i 
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if i=l, dj + Cji else dj + Cj-cj+2 

final exit. 

E. A complete example: A1 proton spin species of rigid butane. 

Algorithm 'POLY' with the help of VECTOR and A2 generate the total 

generating function corresponding to the Al representation of the C2v 

group which is shown below. 

Coefficient Vector 

1 (10, 0) 

3 9, 1) 

15 8, 2) 

32 7, 3) 

60 6, 4) 

66 5, 5) 

60 4, 6) 

32 3, 7) 

15 2, 8) 

3 1, 9) 

1 0,10) 
7 3 

where, for example, the vector (7,3) stands for a 13 (a and S being the 

weights of the spin states a and 13 of protons) and the corresponding co-
~ ~ 

efficients in the generating function is 32. The algorithm spin now 

sorts the coefficients according to their total spin value. In this 
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in the G.F. and the array Cj· Now algorithm Dl is called for ferminons 

with n=6, Dl sets A =1, A =3, ••• , A =11. The corresponding dj's are d1=6, 
1 2 6 

d2=28, d3=l?, d4=l2, ds=2 and d6=1. Thus the proton species which 

correspond to A1 representation are 

1A1(6), 3A1(28), 5A1(17), 7A1(12), 9A1(2), and llA1(1). 
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