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ABSTRACT. The phenomena of fluid flow in fractured rock is dominated by the fact that is not all parts of 
the domain are in hydraulic communication. In theory, it is possible to determine connectivity and permea­
bility from stochastic parameters that describe the fracture geometry. When this approach is applied to the 
field we find it very difficult to sufficiently determine the geometry which controls the flow. Simulated 
annealing, an inverse technique which focus on finding the pattern of conductors may provide a better way 
to characterize these systems. 

1. Introduction 

In cases where the matrix rock can be considered impermeable, fluid flow in fractured rock is controlled by 
the geometry of ,the fracture network. If the fractures are not interconnected, then flow will not occur. If 
they are highly interconnected. then fluid flow in the rock will resemble fluid flow in a porous media. 
Between these two extremes, the flow system will be complex and can not necessarily be treated as an 
equivalent continuum. 

This paper examines the problem of representing the fracture network with an equivalent flow sys­
tem. Numerical techniques are used to examine how the fracture geometry determines how the system can 
be represented as an equivalent continuum. In particular we use equivalent media theory to look at how 
connectivity (or the degree of interconnection) in a network controls the permeability. The obvious next 
step is to try to determine fracture geometry in the field and use this information to predict the hydrologic 
behavior. Experience with this approach has shown that there are major difficulties in leaming enough 
about the fracture geometry to define the hydrologic behavior. 

How can we then develop models of these partially connected fracture systems? We need to 
somehow represent the fact that the fracture network is partially connected without requiring all the details 
of the geometry. A new approach is under development which blends information from geology, geophy­
sics and hydrology in an inverse method designed to determine a percolation lattice which behaves the 
same way that the real system is observed to behave. An example application of this idea is described as 
the last part of this paper. 

%. Theoretical Studies 

We can easily study the way in which geometry of a fracture network controls the hydrologic behavior 
using numerical models and a simple conceptual model for the fractures. For example, we have looked at 
two-dimensional systems where we assume the "fractures" are one-dimensional, finite line segments. In 
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other words. two-dimensional pipe networks. In fact, this may not be a bad model for three-dimensional 
fracture networks if most of the conductance is in the intersections between fractures or the flow in the 
fractures is channelized. 

We next must decide some rules about how to put the fracture "pipes" on the plane, and how to dis­
tribute their length, orientation and conductivity. Further, we may decide on rules for truncating fractures 
where they intersect other fractures. Given these rules, realizations of hypothetical fracture networks can 
be generated. For each realization, we know the conductivity of each pipe and how the pipes are con­
nected. Therefore, we can use a simple algorithm to calculate flow in the pipe network under any boun­
dary conditions we wish to apply. If necessary. we could create many realizations of the same statistical 
system at the same scale to determine how variable the flow systems might be. More importantly, we can 
see how the statistical parameters which control the generation of the network control the hydrologic 
behavior. 

Studies of this type have been done by Robinson (1984), Dershowitz (1984), Long (1983), and Long 
and Witherspoon (1985). Most recently Hestir and Long (1989) have looked at a limited class of these 
models called Poisson models, and developed an analytical expression for permeability as a function of the 
statistical parameters controlling the generation of the network. This work is discussed here. 

The Poisson model is one of the simplest models for two-dimensional fracture networks (Long et aI., 
1982). In this model, the fractures which are line segments are located in the plane using a Poisson pro­
cess. Practically, this means that we choose a square region of a specified size, L x L and pick x- and y­
coordinates for a specified number of line centers from a uniform distribution, U[O,L]. Next, we choose 
the orientation distribution for the lines. This can be any distribution. The lines are then assigned lengths 
according to a length distribution and finally conductance is assigned to each line. In the cases described 
here, all fractures are assigned the same conductance. Fractures are truncated at the boundaries of the 
region, but no other truncation rules are applied to the fractures. 

For given statistical parameters, we can generate fracture networks and then calculate their permea­
bility. Parameter studies can be designed to determine the effect of the statistical parameters and the effect 
of scale of measurement on the permeability. It turns out that these studies are a member of a class of 
problems known as percolation problems or equivalent media problems. Percolation and equivalent media 
theories therefore provide the basis fur developing an analytical expression for permeability and the scale 
of the Representative Elementary Volume (REV). 

2.1. PERCOLATION THEORY AND EQUIVALENT MEDIA THEORY 

Percolation theory and equivalent media theory are usually applied to problems on regular lattices (e.g. 
Figures 2.1a-d). 'lWo types of problems can be defined: bond percolation or site percolation. In either 
case, percolation theory and equivalent media theory describe the equivalent permeability of the lattices as 
the bonds or sites are randomly filled with probability. p. 

The amount of literature covering percolation problems is massive and one author points out that the 
number of publications per year is growing exponentially. Perhaps the most important reason for this that 
the relationships derived from percolation theory are largely heuristic. There is a small but growing body 
of mathematical proof to support such conclusions (Kesten. 1987). However, it is mostly the weight of 
evidence from numerical studies that leads to the belief that these relationships are valid. Percolation prob­
lems are often studied with a Monte Carlo approach. For a given value of p. realizations of lattices of a 
given size are created and their properties studied. The expected value of permeability, K, of such systems 
is a function of p and the size of the lattice used, i.e •• scale of measurement 

As p increases, clusters of bonds or sites are formed and these clusters increase in size with increases 
in p. At the critical probability, Peril. at least one cluster suddenly becomes infinite in size in what is called 
a critical phenomenon. Percolation theory looks at the conductance of these lattices when p::: Peril' 

Equivalent media theory is applied to cases where P is significantly larger than Peril' 
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If we could observe these systems on an infinite scale, percolation theory tells us that we could 
immediately tell whether the value of p was above or below critical. Above critical, the lattice would be 
percolative (or conductive). i.e., have at least one infinite cluster. Below critical. all clusters would be 
finite in size. However, we can only observe at finite scales. At finite scales some conductive graphs will 
be created even when P <: Peril' Also, for some cases that are above critical, the realization will not be con­
ductive. As we increase the scale of measurement we should find that the frequency of conductive realiza­
tions decreases for systems that are below critical, On the other hand if the system is above critical, 
increases in scale will increase the percolation frequency. An estimate of Peril is often made by finding the 
value of p for which the percolation frequency at any finite scale is 0.5 (Englman et al .• 1983). 

As p increases. K increases, Relationships between p and K have been deduced through Monte 
Carlo studies. From percolation literature. Orbach (1985) for example gives for P :::: Peril in bond percola­
tion: 

-L "" (p_p .)' 
K em 

, .. I 
(2.1) 

where K,al is the permeability alp'" 1. 

For most two-dimensional bond percolation on regular lattices. Peril depends on the particular lattice 
and is between about 0.35 to 0,65. The exponent t is considered to be a universal constant, i.e. it is 
independent of the lattice type. Monte Carlo results usually indicate that t is about 1.1 but various calcula­
tions have t between 1.1 and 1.3. 

A second important relationship is for ~. the scale on which homogeneous behavior is observed. In 
hydrology. we call ~ the "REV". Orbach gives this relationship as: 

(2.2) 

where v is thought to be exactly 4(3 for two-dimensional systems and C is a constant which is of the order 
of the lattice element. Between the scale of C and ~ the medium has fractal properties in that similar look­
ing clusters of lattice elements occur on all scales. Because Equations (1) and (2) are conjectures based on 
numerical study the symbol "",," is loosely defined and can be read as "goes as", It can mean anything from 
the ratio of the two sides tends to 1 to the ratio of the logarithms of the two sides tends to one (Kesten 
1982). 

From the equivalent media literature. Kirkpatrick (1973) for example. one can find another relation­
ship between K and p for the case where P :> Peril: 

-L ... 1- O-p) 
K,ml (1-21%) 

(2.3) 

where z is the coordination number defined as the number of bonds coordinated with a site. For example, 
on a square lattice, z is four. This expression predicts a linear relationship between p and K. Kirkpatrick 
supports this relationship with perturbation analysis of the matrix equation for values of potential in the 
lattice. 

In summary we have: 

(1) Permeability on the infinite scale becomes non-zero atp:>pcril 

(2) For P :> Peril permeability initially increases exponentially in P-Pcril (percolation theory) and 
then becomes linear in p (equivalent media theory) for constant values of coordination number, 
z. 

(3) The REV increases exponentially as P approaches Pc' 
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2.2. PERCOLATION AND EQUIVALENT MEDIA THEORIES APPLIED TO FRACTURE NETWORK 

In applying these theories to fracture networks we must resolve the following problems: What is p and 
what is 1.? The probability, p. is well defined for a lattice problem. In any given lattice it can be simply 
estimated by dividing the number of bonds (or sites) present by the total number available to fill. In ran­
dom fracture networks it is not so clear what p is. Likewise, the definition of coordination number, z, is 
clear on a regular lattice. On a random system it may be that z is not an integer. 

In percolation problems on a lattice. an upper bound for conductivity exists for the case where 
p == 1. When all the lattice elements are filled (Figure 2.1d). For any case of p S; I, the resulting permeabil­
ity can be normalized against the case of p == 1. Thus the normalized permeability will be 1 when p ::::: 1. 
For random fracture networks, there is theoretically no end to the degree of fracturing. Each time a frac­
ture is added to the system, the permeability increases ad infinitum. For fracture systems considered in this 
manner, there is no upper bound on permeability and it would be difficult to normalize the results of 
parameter studies. In other words, the fracture system which corresponds to the lattice with p ::::: 1 is 
difficult to identify. As there is no obvious case which represents a "completely filled" lattice, we cannot 
determine how "relatively filled" a fracture network is. 

We have solved the problem of defining p for a random system by comparing systems which have 
the same linear fracture frequency, Al (the number of fractures that intersect a line of length unity 
corrected for orientation bias). This way of looking at the system turns out to be the key to finding p. If Al 
is fixed, then the permeability of the fracture network will be a maximum if the· fractures are infinite in 
length. This, in fact, is exactly the case studied by Snow (1965, 1969) where the fracture frequency was 
known from borehole observations and Snow made the assumption that the fractures were infinite in 
length. Thus Snow's permeability can be taken as the permeability equivalent to the lattice case where 
p:::::1. 

The fact that Snow's permeability is an upper bound can be seen through heuristic arguments. Con­
sider a two-dimensional Poisson network of line segments with random orientations given by the probabil­
ity densit,y function rate, f (q,). The Poisson process of fracture centers has rate, AA and the ~verage line 
length is I. The rate of line segment intersections on a given reference line (i.e. a borehole) is AI. Terzaghi 
(1965) gave the relationship between these parameters as 

where q, is the angle between the poles of the fractures and the borehole and 

£ 
2 

E (cosq,)::::: f cosq,f (q,)dq, . 
o 

A line frequency corrected fOf orientation can be defined by: 

i l 

which simplifies the above relationship to 

(2.4) 

The quantity AI is equivalent to the average linear fracture frequency when all fractures are perpen­
dicular to the borehole, i.e. as if q, "'" 0 fOf all fractures. The value of AI can be calculated from borehole 
data using the observed fracture frequency and the orientation of the fractures relative to the borehole. 
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From Equation 2.4 it can be seen that a variety 0tsystems which all have the same A/ can be con­
structed by increasing the mean length of the fractures, I, by the same factor that the number of fractures 
per unit area, AA is decreased or visa versa. In other words, a system with a lot of short fractures and a sys­
tem with a few long fractures look the same from the borehole. 

Now to see that Snow's permeability is an upper bound we suppose that we have a two dimensional 
system of dimension LxL with AAL 2 lines of finite length I <: L. To build a system with the same Al and a 
higher permeability we can rearrange the same lines such that they have the same Al in the following way. 
Place the lines end to end to form one line of length Lo. Clearly, Lo = I AAL2. Now break this long line 
into N lines of length L where N =LoIL and for convenience suppose that N is an integer so that we can do 
this evenly. Stack these N fractures in parallel across the medium so they look "infinite" in length because 
they transect the entire LxL region (Figme 2.2). Let the line rate of the rearranged system be AI'. AI' is 
equal to Al because 

A I B 
I 

C I 0 
I 

XBL 888 10395 

Figure 2.2. Rearranging fractures such that they appear "infinite". 

Obviously this is the most efficient way to arrange lines for flow so the average permeability (Ks) of this 
rearranged "Snow" system must be an upper bound. These arguments also imply that the directionally 
averaged Snow's permeability only depends on A,: 

(2.5) 

where ko is a constant that depends on units and the conductance of the line segments. 

As we have found a way to define a maximum permeability, oW' work is reduced to finding a rela­
tionship between the parameters which control the geometry of the network and p and z such that the 
observed permeabilities can be explained with percolation and equivalent media theories. This we do in 
three steps. First, we derive an expression for connectivity. ~. in terms of the geometric parameters. Then, 
we propose relationships between connectivity and p and connectivity and z. Finally, we use oW' parame­
ter studies conducted with constant AI to verify that the proposed expressions for p yields relationships for 
permeability which fit Equations 2.1 and 2.3. 



- 7 -

2.3. A MEASURE OF CONNECI1VITY 

Several authors have used the average number of intersections· per fracture, ~,as a measure of the connec­
tivity in a random line processes (Robinson, 1984, and Charlaix et al., 1986). In this section we give ~ as a 
function of the statistical parameters governing the network and describe a few of its properties as shown 
in Hestir and Long (1989). 

Let I (I) denote the probability density function for line length and let g (e) denote the probability 
density function for orientation. We assume that line orientation, length and placement are statistically 
independent and we take 0 S 9 <: 1t and 0 measured counter clockwise from horizontal. Choose a particu­
lar line segment of length 10 and orientation eo. The expected number of segments intersecting this line is: 

11: 

"" AA1o/! sin I 00 - Olg(O)dO 

where .. 
1 "" E ( I ) "" I II (/)dl 

o 

To randomize 10 and 00 we take an average over all values of 00 and 10 , This gives: 

11:11: 

~ == AA(/)2 !! sin I eo - 0Ig(e)g(00)ded90 

We can write this equation as: 

(2.6) 

where 

11:11: 

H (9) "" [[sinl 00 - 0 I g (O)g (Oo)dedOo 

We will call H(9) the orientation correction factor. We give two examples of values of H (9) for different 
orientation distributions. When 9 is uniformly distributed on [ 0 , 1t ] ie., g(9) "'" 11'11:, then 

2 
H(9)== - . 

1t 

For two orthogonal sets of lines of equal frequency we don't have a probability density but we can still 

evaluate the integral taking g(O) "" ~ 0(0) + ~ 0(9 - ~) where 5 is the dirac delta function. This yields: 

We have shown that C is directly proportional to AA (1)'1.. There is a nice heuristic reason for this that 
follows from the fact that ~ is a dimensionless quantity. The reasoning goes like this. Let A.A be the areal 
rate of line centers as used above. A natural thing to do is to rescale the line system so that the average 
line length is one. Let A.~ be the area rate of line centers in the in the rescaled system; we will call this the 
normalized density. One easily shows that A.~ "" A.A(1)'2. SO ~ is proportional to the normalized density 
which we can intuitively relate to connectivity. 
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To study cases with varying , we note that 

So we can vary , and still keep AL constant. For example in Figures 2.1 e-h, we increase T by the same pro­
portion that we decrease AA. As I approaches infinity, Al remains constant but' increases, and the permea­
bility approaches the limiting case described by Snow (1965) (Figure 2.lh). Further, as any value of AI can 
be rescaled to any other value, studying anyone value of Al should allow one to predict permeability for 
any other value. 

2.4. A FUNCTIONAL FORM FOR K1Ks 

In this section we present a functional form for normalized permeability, KIKs. This requires finding 
expressions for p and z in terms of ,. This expression is substituted into Eqn. (2.1) or (2.3) to obtain an 
expression for K 1Ks in terms of ,. We test this functional form against numerical studies. The expression 
is not a mathematical fact but rather a guess based on analogues with other systems. Similar work has 
been presented by Robinson (1984) and Engtman et al. (1983). However Hestir and Long (1989) have 
shown that these other models do not work as well for variable fracture length cases. 

We find p as a function of , by finding the average length of a line in the regular lattice bond model 
as a function of p and the average length of a line in the random line model as a function of, then equat­
ing the two averages. First consider the bond percolation model where p is defined as the probability that 
a particular bond is present. Think of a given existing bond as a piece of a line in a random line system 
(Figure 2.3a). Let b denote this bond. To make b a piece of a line which is k bonds long we would have to 
attach a total of k -1 bonds to b followed by no bonds on the ends. This can be done a total of k different 
ways each with probability pk-l(1_pYZ. Thus the probability that b is in a line k bonds long is 

A 

. . 

B 

............. ...... ............ +~ .......... -.. . . . . . 

Fracture which is 
4 "bonds· long 

Figure 2.3. Correspondence of "average run length" between the regular lattice model and the Poisson 
model. 
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The resulting average line length in units of bonds is 

Now consider an arbitrary line in the random line system. One can view that line as being made up of 
bonds. each bond being a piece of the line between two intersections, Figure 2.3b. The average length of a 
line in units of bonds is then the average number of intersections per line plus 1, that is C + 1. 

Equating the two average lengths described above gives 

or 

p "'p(O.,. -f- . 
",,+2 

(2.7) 

This expression for p(C) yields the following expression for permeability based on percolation theory 
(equation 2.1): 

(2.8) 

where 1( is a constant. 

In order to use p(O in equation (2.3) for equivalent media theory it is necessary to calculate a 
modified coordination number % (C), for a random line system. The coordination number of a regular lat­
tice is the number of bonds connected from a site. In the rectangular lattice in Figure 2.1a-<1 the coordina­
tion number is z ::: 4. In a random line system (Figure 2.le-h) we propose an average coordination 
number: 

(2.9) 

The reason for a coordination number smaller than % ::: 4 is shown in Figure 2.4. Here we can see 
that the two fracture intersections on the ends of a typical line only have coordination number z ::: 3; the 
ends of the line do not count because they will never contribute to flow. The sites in the center of a line 
segment will have coordination number % ... 4. In fact, the sites on the end of a line can have coordination 
number z ::: 2 if that site is also on the end of the other intersecting tine as shown in Figure 2.4. For the 
same reason sites in the center of a line could have coordination number 3. The average fraction of center 
sites is (~-2)/~ and the fraction of end sites is 21~. Hence a site on the end of a line will have average 
coordination number: 

C-2 2 2 3-( ) + 2·- ::: 3 - -etC 
Similar reasoning gives an average coordination number of 

'-2 2 2 4·( ) + 3·- ::: 4 - -c c c 



- 10-

XBL 8812-8648 

Figure 2.4. Coordination numbers in a Poisson model. 

for a site in the center of a line. Finally. because the average fraction of center sites is (~-2)/~ and the 
average fraction of end sites is 2/C, we obtain an overall average coordination number of 

C-2 2 2 2 1 
%(~) - ( ). (4--) + - . (3--) "" 4(1--) 

- ~ ~ ~ ~ C 

This modified coordination number, given by equation (2.9), coupled with p(~) in equation (2.7) 
then yields: 

..K. :: 1 _ % (C)(1-p{C» 
Ks %(0-2 

(2.10) 

Figure 2.5a shows a plot of, vs K1Ks derived from our parameter studies for cases above the critical 
limit. Each point on the plot is an average permeability measured as close as possible to the scale of the 
REV from a realization of a random line system (Hestir and Long, 1989). The dotted curves are calculated 
from the theoretical relationship between t and average permeability from equivalent media theory (Equa­
tion 2.10). The dashed curves are from percolation theory (Equation 2.8) with a fitted value of lC==4.01. 
Figure 2.5b and 2.5c show the same information plotted as a function of p. The curves in Figures 2.'sb and 
2.5c have the classic shape seen in the literature. 

Details of the parameter settings used for each point are given in Hestir and Long (1989). In each 
case a different seed was chosen for the pseudo-random number generator used to create the realization. 
The parameter values for the different cases were chosen to illustrate the fact that , can be used to predict 
permeability for a wide variety of random line systems. We briefly describe these below. 

To begin with. eight cases were chosen with approximately the same value of A/ == 0.576 and the 
same orientation distribution. The orientation distribution is a mixture of two normals, one with an aver­
age of 0° and an standard deviation of 20°. and the other with an average of 90° and a standard deviation 
of 20°, This orientation distribution is equivalent to generating two sets of fractures where each set is 
assumed to have the same areal density and constant length. A numerical calculation gives H(8) "" 0.62 in 
this case. Each case has the same value of Alt but different values of AA and I such that AI == AA • I. 

Four cases have the same area rate, AA. and constant line lengths. I, but the standard deviation of the 
orientation distributions is varied. Each of these cases has a normal orientation distribution with different 
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Figure 2.5. a) Results of the parameter studies plotted against C. b) and c) plotted against p. 

standard deviations which has the effect of changing H (8) and hence ~. This tests the effect of the orienta­
tion correction factor H (8). 

Four cases have the same normal orientation distribution with a standard deviation of 70° yielding 
H (8) '" 0.58. They have a value of ;.,/ approximately equal to 0.288 which is about half that of the other 
cases. This tests the effect of using a different ;.,/ which is equivalent to changing Ks. 

Three cases are included which are near the critical limit and these are shown most clearly in Figure 
2.4c. Each of these cases has a uniform orientation distribution which gives H (8) '" 2/11'.. In addition to 

this data. a percolation frequency study of near critical Poisson graphs indicated that percolation frequency 
was 50% when C equals 3.6. By fitting all this data to Equation 2.8, we obtain a value of /;en, '" 3.6, 
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11::::4.01. Pc =0.64 and the exponent t "" 1.1 which conforms to values found in percolation literature. In 
other words: 

.!£ ::: 4.01(-L - .64)!'! 
Ks ~+2 

One other set of cases for variable fracture length is included in this figure. Four cases have lognor­
mal distributions for length with different coefficients of variation (ratio of standard deviation to mean). 
One has an exponential distribution for length. Each of these cases has the same orientation distribution as 
that used in the first eight cases. The way in which ~ is calculated for these cases is a special case dis­
cussed below. 

Figure 2.5 shows that on the whole, we are able to calculate permeability well with our model. 
From Figure 2.530 and 2.5b we see that for all values of ~ significantly greater than ~ri" the data fit the 
equivalent media model. The percolation model fits much better for values near ~ril up to values of, of 
near ten or twelve. One anomalous value is for the smallest value of ~ shown. In this case, the value of 
permeability measured is too high for either of the models, but this is most likely due to the fact that it was 
not possible to measure a large enough sample. 

2.5. GENERAL EXTENSION TO THE VARIABLE LENGTH CASE 

The reason that variable length systems are a special case is that studies have shown that eliminating the 
shortest fractures up to some cutoff value, c, has no measurable effect on the per.!!leability (Hestir and 
Long, 1989). However, eliminating all fractures shorter than a cutoff c will increase I and decrease AA and 
thus will change the value of ~. This means that we could have many networks with the same permeability 
but different connectivities which would imply a non-unique relationship between connectivity and per­
meability. In order to avoid this problem, we define the connectivity of the variable length system to be 
the C for the system with the maximum truncation of short fractures that still has the same permeability as 
the original network. We use this value of ~ to extend the above percolation and equivalent media models 
to random line systems. 

Figure 2.6 illustrates the definition of , fOf a random length system. Data for this plot is derived 
from a fracture network with a negative exponential distribution of fracture lengths. In Figure 2.630, K and 
, are plotted as functions of the cutoff c. We define the connectivity of the system to be the value of C(c 0)' 
marked by the dashed vertical line. This is exactly the point at which K(c) starts to decrease. The net­
works corresponding to the untruncated system and the system truncated at Co are shown in Figures 2.6b 
and 2.6d. The respective conducting portions of these systems are shown in Figure 2.6c and 2.00 where 
dead ends and non-conducting elements have been removed. One can see by inspection that the reduced 
networks (2.6c and 2.00) are nearly the same which explains why the small fractures have a negligible 
effect on permeability. 

To find an expression for ,(c) we first find expressions for fracture density and average length as 
functions of c. To calculate the fracture density, we need a correction factor G(c) such that after trunca­
tion at c the density will be AA G (c): 

... c 

G (c) == f f (l)dl ::: 1 - f f (l)dl 
c 0 

Similarly. to find the average length, we calculate the correction factor F(c): 

... c 

F (c) == f If (l)dl "" 1-f If (l)dl 
c 0 
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Figure 2.6. a) Definition ~ for a random length system, b) untruncated network. c) conductive part of (b). 
d) system truncated at Co. e) conductive part of (d). 

This gives average line length after truncation at c to be 

.EJ£l 
G(c) . 

Substituting into Equation 2.6. truncation at c will yield a new value for ~ given by 

(2.11) 
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and a new value of Snow's penneability: 

(2.12) 

where ko is a constant detennined by the units and the conductance of the fracture elements. Taking c ::Co 
and substituting this into Equation 2.11. we have the model based on Equation 2.10 

K(co) 
(2.13) 

where K (co) is the penneability of both the untruncated and the truncated system and Kico) is given by 
Equation 2.12. In order to find an analytical expression for Co in tenns of ,. Hestir and Long (1989) show 
that Co is the root of a fourth degree polynomial in , which corresponds to maximizing K (c) in 

K(c) == Ie F(c)"- C(c)(C(c)=4) 
o A ,2(c)-4 

2.6. CONCLUSIONS 

Above we have summarized work which allows one to calculate the value of penneability for a two­
dimensional Poisson fracture system where the fractures all have the same conductance. The model works 
for any distribution of fracture length. density and orientation. It remains to extend the model to the case 
of variable fracture conductance. Variable conductance can also be thought of as a kind of connectivity in 
that fractures with small values of conductance fonn bottle necks and thus decrease the degree of connec­
tion. This is a problem that was partially solved by Charlaix et al. (1986) for constant length fractures. In 
this case. one can order the fractures from the largest to the smallest conductance. By placing the fractures 
in the network from the smallest to the largest. Charlaix showed that the conductance of the fracture at the 
critical limit of connectivity controls the conductance of the network. However. the case of variable length 
combined with variable conductance is more complicated because the high conductivity fractures may be 
short and thus not contribute much to the connectivity. This problem has not to our knowledge been 
solved. 

Work such as this shows that if we know the conceptual model which describes a fracture network 
and the parameters of the statistical distributions which govern the connectivity of the network. we can 
know the connectivity and therefore something about the hydrologic behavior. For this reason it is attrac­
tive to make measurements of fracture geometry in the field and from this data try to build a model of a 
fracture network. The Poisson model is probably not a good basis for the conceptual model because it is 
too simple. Fractures often occur in related clusters and this violates the rules of a simple Poisson process. 
In the next section we briefly review work done to predict hydrologic behavior from a geometric analysis 
of the fracture pattern where we have used a complex Poisson model called the Parent-Daughter model. 

3. Field Experience 

The theoretical work described above shows how fracture geometry statistics can be used to understand 
the hydraulic behavior of a network of fractures. If statistics describing the geometry of a real fracture net­
work can be specified. we have good reason to believe that the hydrology of this network can be under­
stood. Below. we describe the types of data that can be obtained and summarize our experience with using 
this geometric information to build a model of a real fracture network. 

The fundamental problem in modeling fracture hydrology is that the medium does not behave as a 
continuum. Parts of the rock have no hydraulic communication with other parts. In the case where the 
matrix rock can be considered impenneable. this fundamental behavior is governed by the geometry of the 
fracture network. If a connected cluster of conductive fractures links point A and point B, there can be 
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flow between the two points. If not, then there. is no flow. This heterogeneous connectivity is very com­
monly observed in fractured rock. As a consequence of ahls observation, attempts at building a fracture 
hydrology model should be focussed on reproducing. a least in a statistical sense, the geometry of the frac­
ture network. This involves determining at statistical rule for locating fractures, determining their orienta­
tion, size and conductivity. Then the interconnections between the fractures can be found and flow pat­
terns calculated. 

Data available for fracture hydrology models might include: 

1. Fracture trace maps from drift walls or surface exposures giving fracture location, orientation. 
trace length. coatings, roughness etc. 

2. Fracture logs from boreholes giving fracture location, orientation, coatings, roughness etc. 

3. Bore-hole geophysical logs 

4. Single-hole packer tests 

5. Cross-hole and reflection geophysics 

6. Cross-hole hydraulic tests 

An interpretation was made of the data at the Fanay-Augeres mine in France (Billaux et al., 1989) 
using data which included samples from numbers 1. 2 and 4 above. The analysis was based on assuming 
the fractures were disc-shaped and uniformly permeable in their plane. In order to represent the clustering 
of fractures. the arrangement of fractures in space was a complex Poisson process called the Parent­
Daughter process. Geostatistical techniques were used to fit the parameters of the model based on data on 
trace lengths, orientation and fracture frequency. A pattern of fractures in a 100m cube was determined. 

Conclusions from ahls effort were very slrildng. First we found that the use of one- and two­
dimensional data to infer three-dimensional geometry is an impossible task. Many three-dimensional 
geometries can account for the same one- and two-dimensional data. Second. no matter how the three­
dimensional geometry was determined. there were far 100 many fractures to account for the lack of con­
nectivity known to exist. Figure 3.1 shows the fractures greater than one meter in diameter that were 
predicted to intersect a 205m sphere for two parts of the drift, S 1 and 52. If all the fractures were present 
and hydrologically active the medium would have behaved like an equivalent continuum. However, 
cross-hole hydrologic and tracer test results showed that ahls was definitely not the case. 

In order to make ahls geometric approach successful we need somehow to constrain the three­
dimensional geometry and more importantly we need to find some way to account for the parts of the frac­
ture system which do not conduct water. We suspect that many cases are similar to Fanay-Augeres in that 
the fractures are relatively pervasive and the real problem is finding what parts of the system actually con­
duct. 

Fanay-Augeres offered one other key fact in ahls regard. The two drifts were mapped in this mine: 
one wet (S1), one dry (S2). For both drifts the fracture geometry seemed to indicate highly connected 
fracture networks. However, in the wet drift, a major fault ran through the block of rock surrounding ahls 
portion of the drift. It seems that the hydrology of the site is controlled by major features i.e. fracture 
zones. This observation is certainly not confined to Fanay-Augeres. Investigations at the Stripa Mine in 
Sweden reported on by Olsson et al. (1988a) found that 94% of the hydraulic transmissivity is found in 4% 
of the tested rock. Similar conditions exist at many other sites. This provides strong evidence for the role 
of fracture zones in controlling the hydrology. Further, cross-hole hydraulic responses are often very 
non-uniform. For example, at the 5tripa mine, geophysics have indicated that a disproportionate number 
of fracture zones intersect a particular borehole called W2. While this borehole was being drilled, the 
observed heads in the entire vicinity dropped significantly and a similar response is observed each time 
W2 is opened or closed whereas the drilling or opening of other holes had little effect (Carlsten et al., 
1988). Another example comes from Hsieh et al (1985) who performed cross-hole hydraulic tests in a ubi­
quitously fractured granite but found that certain zones had no hydraulic connection to others. It is possi­
ble to find many other references which describe the same phenomena. From these facts we infer that the 
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Figure 3.1. Fractures greater than 1m in diameter predicted to intersect a 25m sphere for a) Sl. and b) S2 
at Fanay Augeres. 

hydrology of many fractured sites is controlled by a finite number of major conductors that form a three­
dimensional network of unknown configuration. It is often likely that a few major features dominate the 
entire hydrology of a given site. 

3.1. CONCLUSIONS 

Our experience so far has indicated that focussing on the details of fracture geometry staUStlCS is 
equivalent to "not seeing the forest for the trees". If fracture zones control the hydrology, then efforts 
should first be aimed direcuy at locating and characterizing fracture zones. Further, one should concentrate 
on determining the hydrologic characteristics of the zones. We expect that zones are not continuous and 
that the permeability structure within the zones is complex. Therefore, we propose a different approach for 
building a fracture hydrology model. This approach concentrates on identifying the location of zones and 
the nature of permeability within the zones. To obtain a model of the first order hydrologic behavior, we 
model only the major hydrologic features. We assume that these features are associated with the fracture 
zones. A fracture zone is then assumed to be consisted of a two-dimensional network of hydrologic con­
ductors. 

For location of the zones, we rely heavily on the recent advances in geophysics that have allowed 
fractures zones to be "seen" inside the rock. Then, based on these we build a hydrologic conceptual model 
of the the rock which we call a template. The template should contain all the likely major conductors and 
is the basis for fluid flow calculation. We infer as much as possible about the qualitative hydrologic attri­
butes of the zones through geology and geomechanics. Finally, we throwaway conductors in a manner 
that conditions the model to observed well test behavior. In other words, within the template we identify 
patterns of conductance that can explain the observed hydraulic behavior. We do this in two ways. First, 
we identify the fractal dimension of flow using Barker's (1988) analysis and relate this to the connectivity. 
and the connectivity to the percentage of conductances present in the template. Second, we use simulated 
annealing to arrange the conductances such that they explain observed distributions of head, observed 
fluxes, or observed tracer test results. 
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This model building approach that is currently being applied to data from Stripa and another data set 
from the Grimsel Rock. Laboratory in Switzerland. The experience at Stripa will be summarized below and 
is given in detail in Long et aI. (1989). 

4. Fracture Flow Modeling at Stripa 

Investigations related to the geologic storage of nuclear waste have been ongoing at the Stripa Mine in 
Sweden for more than ten years. The latest of these investigations is called Phase III and is sponsored by 
OECD Nuclear Energy Association (NEA) as an international cooperative effort managed by the Swedish 
Nuclear Fuel and Waste Management Company (SKB). 

The Stripa Phase III project includes the Site Characteri.z.ation and Validation (SCV) experiment., 
which is designed to test current abilities to characterize fractured rock before it is used for nuclear waste 
storage. The effort is centered on a block of rock 150 x 100 x 50 m in size at a depth of about 330m. The 
block lies between previous experimental sites. the Macro-permeabilityl Buffer Mass Test site and the 3-D 
Migration site (Figure 4.1). One aim of the SCV work is to predict the inflow into a drift. called the "Vali­
dation Drift" before the drift is excavated and the inflow is actually measured. We present a preliminary 
prediction below. 

The Validation Drift has not yet been excavated. but the prediction of inflow described here can be 
compared to a measurement that has been made of inflow into five pilot boreholes which have been drilled 

......... "" .. 

Future 
validation 
drift 

3D migration drift 

.:tU-

Site 1 
characterization 
and validation 

drift 

Figure 4.1. Perspective view of the SCV block. Dotted area in the upper left is the mined out stopes (after 
Olsson, 1988a). 
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along the periphery plus one in the center of the future drift (the D-holes). As our prediction does not 
account for the effects of excavation (such as stress effects or the effect of an air-interface at the drift wall), 
the comparison of our prediction with the borehole inflow is in some ways better than the comparison with 
the actual inflow to the drift. 

The prediction is based on data from a series of boreholes drilled throughout the block. Data from 
six boreholes (N2, N3, N4, WI, W2, and V3) include fracture ciwacteristics, stress, single borehole geo­
physical logging, cross-hole and reflection radar and seismic, and single hole packer test measurements. 
Maps of fracture traces on the drift walls have also been made. Olsson et al. (1988a) gives background 
information describing the site and the results of the borehole investigations. Cross-hole hydrologic tests 
are planned in the near future. 

The interpretation of seismic and radar tomography data has predicted six major fracture zones. We 
have compared the zones with the single hole hydrologic tests to see if the geophysical zones could 
account for the hydrologic anomalies. Based on these studies we developed a hydrologic conceptual 
model where all the conductive elements of the model are confined to fracture zones. Based on examina­
tion of the boreholes and drift walls, we have modeled the zones as planes with a square grid of conductors 
that form the possible paths for fluid flow. 

In order to determine which of the grid elements are active and which are inactive, we can employ 
two techniques. First, a technique is under development for determining the percentage of grid elements 
likely to be present based on cross-hole well test response. In this technique we assume that the connec­
tivity of the grid elements is reflected in the well test behavior as a fractal dimension. Thus given the frac­
tal dimension from a well test response, we could determine the percentage, p, of grid elements that would 
give the same fractal dimension. This technique has not yet been applied to the Stripa data, but it is 
described in Long et al. (1989). 

A second technique is called "Simulated Annealing". Simulated annealing is an inverse technique 
which is used to find the pattern of conductances which cause the model to behave in the way the the insitu 
tests behaved. First, well tests that were performed insitu are numerically simulated in the model using the 
network generator. CHANGE plus the fracture flow code. 1RINET (KarasaId. 1988). Then the "Simulated 
Annealing" algorithm is used to modify the model until the behavior of the model matches the observed 
behavior. This is done by randomly eliminating or restoring a conducting grid element and recalculating 
the response to the well test with 1RINET. We compare the behavior of the new model to the old and 
decide whether or not to keep the change. This process is repeated many times until the model matches 
the observed behavior. The algorithm is designed to find an arrangement of conductors that responds to 
the well test in nearly the same way that the real well test was observed to respond. This final 
configuration of the grid can be considered as an averaged. "rastorized" version of a possible conductance 
geometry. Finally. the boundary conditions imposed on the model GlaD be changed in order to make pred­
ictions of flow that have not been measured. 

At the current stage of the project, there are no cross-hole hydrologic data available on which to 
base the annealing. As a result a preliminary analysis was made by developing a synthetic cross-hole test 
based on various sources of information. The results are preliminary. but the exercise provides a good 
description of the methods. At a later date we will use the actual cross-hole tests to re-calculate inflow 
into the D-holes. 

Below we review the data and the development of the conceptual model. Then we explain the theory 
behind annealing and the construction of the synthetic cross-hole test. Finally we give the results of the 
modeling effort and show how they compare to the actual analysis. 

4.1. IDENTIFICATION OF FRACTURE ZONES WITH GEOPHYSICS 

An extensive geophysical data set has been collected in the SCV block at Stripa in order to locate and 
characterize fracture zones. These are described in Olsson et al. (l988b). Both radar and seismic methods 
were used. For both techniques cross-hole tomographic and reflection data was collected. 
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Seismic signals are sensitive 10 changes in rock density, porosity. and water cootent as well as fmc­
ture stiffuess and orientation. Both slowness and attenuation tomograms can be produced, but attenuation 
IOmograms are often unreliable due 10 poor source and receiver coupling and nOfHepeatability of the 
source. Radar signals are sensitive 10 changes in dielectric constant and electrical cooductivity (Sen et al., 
1981). Both the electrical conductivity and dielectric constant increase with the water content. The radar 
slowness IOmograms depend only 00 cootrasts in dielectric constant and attenuation depends on the ratio 
of the dielectric constant 10 the cooductivity. As there is more contrast between values of electrical coo­
ductivity than between values of dielectric constant, the attenuation tomograms are subject 10 fewer errors 
and the image is more clear. In granitic rock, it is assumed that most rock matrix properties are relatively 
constant so that hydrologic features such as fmcture wnes and increased porosity and water cootent will 
show up as the anomalies. For this reason the geophysics allows us 10 "see" into the rock and predict 
where the major fluid conduclOrs are. However, rock properties are not always coostant and sometimes 
the identified anomalies have little 10 do with hydrology. 

An example tomogram from the Stripa site is shown in Figure 4.2. An integrated analysis of these 
IOmograms plus all the other geophysical data was used to make an interpretation of the locatioo and 
extent of major features in the block. This resulted in the identification of five major fracture zooes called 
A. B. C, Ha, Hb and I. Zones A, B, C, strike approximately North-East and dip about 45 degrees to the 
South-East. The Ha, Hb, and I zooes are nearly vertical and strike North-South (Figure 4.3). A further 
feature, called Q was identified as a circular feature just south of the B zone at the west end of the block. 

4.2. THE HYDROLOGIC CONCEPTUAL MODEL 

Figure 4.3 (after Olsson et al., 1988a) gives an example from hole N2 of the summary of the borehole data 
acquired for the N- and W-holes. Hydrologic wnes are marked in the right hand column. The geophysical 
features are shown on the plots as horizontal bands. Under the hydraulic conductivity column, we have 
blackened in those conductivities greater than 10-' mis. Ten meters is a reasonable width for a fracture 
zone in rock at Stripa. If the geophysical features are taken 10 have a hydraulic width of about ten meters, 
they account for about 60% of the measured hydraulic transmissivity measured in the boreholes. Almost 
all of the remaining 40% of the transmissivity is accounted for in three zones: at 80 meters in borehole 
W2, 152 meters in N2 (see Figure 4.3) and from 80 to 90 meters borehole N4. By revisiting the original 
geophysical data we can see that there are strong radar and seismic anomalies at each of these zones. 
These anomalies were excluded in the process of making the geophysical interpretation because they are 
not substantiated in all the data. For example, Figure 4.4 shows another radar tomogram which has a 
strong anomaly near 100m in borehole N4. This anomaly is not present in Figure 4.2. 

The simplest way to account for the remaining hydrologic anomalies in N4 and N2 was to add 
another zone, B'. Figure 4.5 shows a perspective plot where wnes B and C are represented as dots located 
on planes. In this figure we are looking along the B and C planes so that the zones appear as dots clustered 
along a line. In this perspective, one can see that the hydrologic anomalies in N4 and N2 lie on a plane 
roughly half way between zone B and zone C. For this reason, we chose B' to be a plane between B and C 
and parallel to the A, B, and C zones. The addition of B' increases the percentage of transmissivity 
accounted for to about 78%. 

The new zone intersects the hole N3, but there is no similar hydrologic anomaly in N3 at this point. 
The fact that a wne is not uniformly conductive is not a problem for this model. This can easily be 
accounted for if no permeable channel from B' intersects N3. We are more concerned with insuring that 
channels are possible where hydrology has been observed. Extra channels can always be made inactive in 
the annealing process described below. 

The B' zone also fits in well with the geophysical results. The radar results show a very strong low 
velocity zone in the section N4-N3 slowness tomograms corresponding to the feature at 90 meters down 
borehole N4 (Figure 4.4, from Olsson et al., 1988b) as well as single hole radar reflectors on either side 
(Olsson et aI., 1988b). 
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Figure 4.2. Example radar attenuation tomogram between holes N4 and N2 showing predicted fracture 
zones A, Band C (Olsson, 1988a). 

The B' feature may be related to the RQ feature shown on Figure 4.2. This tomogram shows the B' 
(or RB) anomaly begins to peter out about 20 meters from the borehole. It appears that it may intersect the 
South edge of the RQ feature. The feature B then skirts the North edge of RQ and produces the largest 
hydrologic anomaly in N3. It may be that RQ is a step between en echelon fracture zones represented by 
B' and B. This would also explain the lack of hydrologic activity in N3 at B', However, it does not 
explain why B' is again the largest anomaly in N2 unless there is another step in the opposite direction. 

One remaining anomaly in W2 between wnes H and B (called HB* in Table 4.1) accounts for 
21.7% of the transmissivity. If we allocate this transmissivity partly to H and partly to B, then we have 
accounted for 98.7% of the observed transmissivity with a zone model. This makes a certain amount of 
sense when we consider that the transmissivity measured in the boreholes is not strictly additive because 
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Figure 4.3. Summary data sheet for N2. Hydraulic conductivities greater than 10-8 m/s have been black­
ened in. Hydrologic zones are marked in the right hand column (after Olsson, 1988a). 
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Figure 4.4. Example residual radar slowness tomogram for the borehole section N3-N4 made with a center 
frequency of 22 MHz (Olsson,1988a). 

successive borehole tests are actually sampling some of the same transmissivity. It is easy to imagine that 
the high conductivity found between zones H and B in W2 is due to a few conductive features that are 
related to Hand B and possibly related to the intersection of Hand B. 

The resulting hydrologic zone model is shown in Figure 4.6 in a perspective view from the North­
West Zones A, B, B', C, Ha, Hb and I are shown. Gridding on the planes represents the hydraulic con­
ductors of the template used for annealing. The wnes are disc-shaped planes. As we do not expect the 
zones to be uniformly permeable, the zones are discretized into flow channels within the region of interest. 
Any type of discretization could be used. The choice of grid is made with the support of geomechanical 
investigations of the shear wnes explained below. 
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Figure 4.5. A perspective view of the SCV block looking up to the North-East showing zones E and C and 
that two hydrologic anomalies lie between these zones in the plane parallel to them. 

XBL 896-2396 

Figure 4.6. The hydrologic zone model shown in perspective from the North-West looking down. Zones 
A, E, E', C, Ha, Hb and I are shown. Gridding on the planes represents the hydraulic conductors of the 
template used for annealing. 
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Table 4.1. Hydraulic Thmsmissivity Distribution 

Hydraulic Thmsmissivity (l~ m2/s) 

Zone WI W2 N2 N3 N4 Total % oflOta1 

A - 99 - 0 1 100 3.2 
B 0 88 20 12 5 125 4.0 
B' · . 80 0 450 530 17.1 
C · . 36 0 0 36 1.1 
H 120 950 · - · 1070 34.5 
I 25 510 · . · 535 17.2 
(HB$) · 670 · . · 670 21.6 

Sum 145 2317 

Total transmissivity 3100 100 

$ Transmissivity between zones H and B in borehole W2 

4.3. GEOMECHANlCAL INTERPRET AnON OF THE SHEAR ZONES 

We have evidence that the major zones are fault zones under reverse dip-slip motion. Associated with slip 
in the zones, secondary fracturing has been observed. For the NE-striking, low dipping zones (A.B, B',C), 
the secondary fractures are sub-horizontal. and for the N-S striking, steeply dipping zones (Ha, Hb, I), the 
secondary fractures strike N-S and dip 1()..4()° to the east Numerical modeling indicates that under the 
present stress stale in the SCV block, the sub-horizontal secondary fractures could be open and have a 
much higher conductivity than other fractures in the SCV block. This, along with the higher fracture den­
sities in the zones, may explain why the conductivity in the zones is greater than the surrounding ground. 
Also, this will cause anisotropy in flow in the zones, with preferred pathways in the direction of the secon­
dary fractures. Though nol discussed in this paper, there is evidence that zone intersections may be impor­
tant in controlling flow through the 5CV block. 50, we model these intersections as one-dimensional con­
ductors. 

The possible high conductivity of secondary fractures in the zones, compared with slickensided frac­
tures in the zones and fractures outside the zones is supported by the results of the numerical example 
shown in Figure 4.7. We have considered a simplified two dimensional elastic model under far field 
compressive horizontal and vertical stresses 01 and 02' According to Chan et al. (1981) and others, the 
maximum principal in-situ stress is horizontal and has a magnitude of approximately 24 :MPa on the 360 m 
level. This stress is oriented northwest and is therefore perpendicular to the NE-striking zones. The 
minimum principal stress is vertical and has a magnitude of approximately 9 :MPa on the 360 m level. In 
Figure 4.7a, nine randomly distributed fractures are subjected to these stresses. For simplicity it is 
assumed that the fractures do not cross each other, and each of these fractures have been given a length of 
one meter. In Figure 4.7b we look at the same system of fractures, except now two long fractures 
representing the through going slickensided fractures are added that dip 40°. The long fractures each have 
a length of 16 m and are separated by 7 m. Thus in Figure 4.Th the nine fractures are subjected to the 
stress state within one of the NE-striking, low dipping zones i.e. the A, B, B' and C zones. 

Due to the application of the in-situ stresses, the modes I and II crack-tip stress intensity factors, 
KJ and KJ/. respectively. have been calculated at each of the crack tips utilizing a numerical algorithm 
based on the work of Kachanov (1987). This algorithm has been modified to account for cracks that are 
closed by the compressive stresses but can still shear (frictionless surfaces are assumed for closed cracks). 
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Figure 4.7. a) Nine randomly distributed fractures subjected to the maximum horizontal and vertical 
stresses on the 360m level at Stripa. and b) two long fractures representing the slickensided fractures in the 
NE-striking zones are added. Table lists average Modes I and II stress intensity factors for each crack for 
the two cases. 

The Kj and KII for each crack is presented in the table below Figure 4.7. Each crack has two crack tips, 
and in Figure 4.7. we only show the average of the two crack tips. KJ is an indication of the opening of the 
crack, and KJI is an indication of the shearing of the crack (Lawn and Wilshaw. 1975). KIJ can have both 
negative and positive signs indicating shear in one direction or the other, while K/ can be either positive or 
zero. KJ :::: 0 indicates that the crack is closed. 
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Figure 4.7a and 4.7b demonstrate the imponance of shear zones in localizing flow in the rock mass. 
In Figure 4.7a, each of the fmctures are under different amounts of shear but they are all closed (K1 "'" 0). 
In Figure 4.Th, however, due to the localization of shear from the long slickensided fmctures. fmctures 
with certain orientations have a positive KJ, and are therefore open. These fmctures are sub-horizontal, 
which agrees with the expected orientations. 

Figure 4.7 gives the stress intensity factors for the long fmctures. and they remain closed. The sign 
of KJI for the long fractures indicates a reverse dip-slip motion, as the field data suggests for the NE· 
striking zones. Thus this numerical example supports the idea that the conductivity is greater in dilatant 
fractures in the zones rather than the main throughgoing fmctures that are sub-parallel to the zone. 

Figure 4.7 also points out a technical difference between a fault zone and a fmcture zone. A fracture 
zone may contain a high density of fmctures. but under compressive far field stresses, the fractures will be 
closed, as in Figure 4.7a. A fault zone, on the other hand, by containing dilatant fractures, can be more 
conductive, even if the density of fractures is lower. 

In the numerical model, the grid elements are constructed along strike and dip lines. In this way we 
allow for the horizontal conductors indicated by the geomechanical observations. So, if the geomechani­
cal observations are correct, we expect that fewer of the dip direction elements will be active, i.e. perme­
able than those in the strike direction. 

4.4. SIMULATED ANNEALING 

After the conceptual model, or template has been constructed, it must be calibrated such that it behaves 
like the real rock. In other words, we alter the model using inversion techniques so that the model predicts 
the observed hydraulic responses. LBL has been developing an inversion technique called "Simulated 
Annealing" which can be used to construct a system which is functionally equivalent to the observed sys­
tem: i.e. a model which simulates the same behavior as the observations we have. We describe here how to 
use annealing to find an equivalent fmcture network model. The fracture network model is "annealed" by 
step-wise modification of the base model, or "template" such that the modified systems behave more and 
more like the observed system. 

Hydrologic inversion models developed in the past. such as the conjugate gradient method, or max­
imum likelihood method (Carrera and Neuman, 1986) were focussed on determining the conductivity 
values when the pattern of conductors is known or when everything is well interconnected as in the porous 
medium case. Annealing could theoretically be used to do this type of inversion, but would be relatively 
inefficient in this role. On the other hand, these porous medium techniques work poorly when they are 
asked to completely turn off the conductivity of a portion of the region. Thus they are not the technique of 
choice for fracture systems when we wish primarily to determine how the conductive features are con­
nected. 

Our annealing algorithm is specifically designed to determine an appropriate pattern of conductors 
among a set of possible configurations. In fracture hydrology, we think that the pattern of conductors is 
responsible for the first order behavior. In other words, it is most important to know how the system is con­
nected. Annealing is designed to find connections equivalent to those in the field. This is achieved through 
methodically searching patterns to see which ones behave like the observations in the field. Simulated 
annealing is actually the statistical technique which controls the acceptance or rejection of trial 
modifications. The job of simulated annealing is to find near optimal solutions on a complicated function 
with many possible solutions and local minima. 

The set of possible configurations is based on a template or base model which specifies all of the 
possible connectors. We made the assumption that the behavior is controlled by fracture zones, so we only 
allow connectors to exist within the zones. This approach has the advantage that it is efficient because it 
uses the information gained from geophysics and geology a priori. A second possible approach is to use a 
three-dimensional regular grid of conductors as the initial template. This approach has the advantage that 
the hydrologic responses drive the result more directly but the allocation of conductors may be inefficient. 
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For either approach, the resolved pattern is not guaranteed to be the same as the one in field, and for 
this reason we call it an equivalent system. The equivalent systems are non-unique. This means we can 
find a range of systems which behave the same way the real system behaves. The range of systems can 
then be used to make a range of predictions and quantify prediction error. 

Annealing employs an analogy between optimizing a function with many local minima and the pro­
cess of annealing a metal to reach its lowest energy state (Kilpatrick. et al., 1983; Tarantola, 1987). Simu­
lated annealing can be viewed as a process of minimizing an energy function over a set of possible 
configurations of elements. The process of annealing is summarized as follows. In-situ well tests are simu­
lated on the model using TRINET. We then define the "energy," Q(C) of our current model configuration. 
C, as the squared sum of the differences between the measured and simulated heads, h, taken at a set of 
locations at discrete time intervals, j: 

where 

Q(C) .. l:[h (OJ) - h(sj)J2 
j 

OJ .. a vector of observed responses 

Sj "" a vector of simulated responses 

(4.1) 

Next we change the model by switching a randomly chosen channel "on" (i.e. conducting) if is it is 
"off" (i.e. non conducting) or visa versa and then repeat the well test simulation. If the changed model. C', 
gives simulated well test data closer to the real measured values, i.e. Q(C) is decreased, then the changed 
model is kept. However, if Q(C) is increased by the change, then the change will be kept with a certain 
probability, P, which is a function of a weighting factor, T, (called the "temperature"), and Q(C). 

At each iteration k, given C, C. and T. the temperature, we can find a matrix of transition probabili­
ties. The probability we will move from configuration C to C', given our current configuration C is equal 
to the probability that we select C • to compare with C, multiplied by the probability that the system would 
make the transition to a given C. That is: 

ifC'¢. C 
P(C' I C)'1 Q(C)- Q(C) ~ 0 

P{C~CIC} "" (4.2) 

I Q(C}:Q(C)] 

P(C'IC) 'e- T ifC'¢. C 
Q(C) - Q(C) :> 0 

The temperature is decreased as the number of iterations increases to make it more and more 
unlikely that an unfavorable change will be accepted. At first, a high value of T allows the algorithm to 
jump up out of local minima and continue searching for a better configuration. Later, lowering the tem­
perature tends to confine the search for a minima, so the algorithm can converge. 

At this time, there is a theory which relates the temperature schedule to the convergence properties 
of annealing. This theory (Hajek, 1988) shows that a temperature schedule which is inversely proportional 
to the log of the iteration number will converge in probability to a set of minimum energy states, i.e. the 
optimal configuration. However, a temperature schedule of this type is prohibitively slow. Further, we do 
not necessarily want to find the minimum energy configuration. We are only interested in finding several 
good solutions, not in certain convergence in probability to a set of minimum energy states. Therefore. use 
of Hajek's temperature schedule is over constraining for our purpose. 
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The temperature schedule we use here is only justified heuristically: it works. We have followed the 
suggestion of Press, et al. (1986) and decreased the temperature whenever 50 changes have been accepted 
at the current temperature. Each interval of the schedule with constant temperature is called at step. At the 
end of each iteration, le, the temperature, Tk • is decreased using at geometric series. 

(4.3) 

where 

0<1<1. 

The initial temperature is chosen such that it is of the same order of magnitude as the energy 
difference between the first two configuration. This is done in an attempt to scale the energy difference 
between successive configurations to something between zero and one. Other choices of temperature 
schedule are possible and these are currently the topic ofresea.rch. 

A synthetic example of annealing results is shown in Figure 4.8. Here we have created a synthetic 
fracture system (Figure 4.8a) and used it to create synthetic well test data. Then, we create a regular grid to 
use as a template (Figure 4.8b) and apply annealing to find a configuration which matches the synthetic 
well test data (Figure 4.8c). This example shows that the annealed result roughly reproduces the connec­
tion between the wells. Major gaps similar to those in the "real" system have analogous gaps in the 
annealed system. 

A fuIl suite of synthetic cases is being developed to study the effect of template geometry. tempera­
ture schedule. weighting functions etc. This suite will give us experience that can be applied to cases 
where the true geometry is really unknown. 

XBL891-6142 

Figure 4.8. a) A synthetic fracture network where we have generated synthetic data on well test in hole A 
and monitoring in holes B through G; b) template model, and c) the pattern of conductors resulting from 
annealing. 

4.5. PREDICTION OF INFLOW TO THE D-HOLES 

At this stage in the hydraulic investigation of the SCV site. there are no formal. well controlled cross-hole 
well tests available. In order to gain experience with the annealing technique and produce a preliminary 
estimate of the flow into the D-holes. a synthetic cross-hole test was produced based on a variety of data 
available for the SCV site. This data consisted of ad hoc cross-hole tests performed by British Geologic 
Survey (BGS) and the record of heads in the boreholes. 
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BGS conducted three ad-hoc cross-hole tests by opening W2 and monitoring sections in N3. N4. and 
WI. Some zones did not respond and some responded very quickly. The test durations were too short to 
achieve steady-state conditions and the transient data was at best qualitative. However. these tests offer 
valuable information about the major hydrologic features in comparison to the single hole tests because 
the scale of these cross-hole tests is much more representative of the oveml1 size of the SCV site and the 
large hydrologic features. 

The transient data do not warrant annealing. However. based on the transient results plus the record 
of hydraulic heads in the holes. a synthetic steady state test was fabricated. The steady flow rate from W2 
was extrapolated to estimated the steady-state flow rate of 10 liters/min. The corresponding estimation of 
steady state head in N3. N4. and WI was found by extrapolating the head values in those holes during the 
period when W2 was opened for prolonged period of time. Wherever possible, these heads were assigned 
to specific zones in the boreholes based on the responses observed during the ad hoc test. In other words, 
during the ad hoc tests, the observation holes were divided into several sections. Some sections did not 
respond to opening W2, whereas others responded very rapidly. In these cases, the responding zone was 
assigned the observed head. 

The annealing case is summarized in Figure 4.9. Figure 4.9 shows the N- and W-boreholes, plus the 
"fins" that are used to connect the boreholes to the hydrologic zones. Each fin represents the intersection of 
a zone with the borehole. The black fins are those where we have determined a value of head to use in the 
calculation of annealing energy based on the ad hoc cross hole tests plus the head record. The gray fins in 
W2 are held at zero head to simulate the opening of W2. The white fins are those for which we have no 
record of response to opening W2. Therefore, the value of head at these fins. as well as throughout the net­
work are calculated but not used in the annealing process. 

The choice of boundary conditions is based on head observations in the boreholes. The SCV block 
is situated in a large zone of depressed heads which represent the steady drainage created by the mine. 
Therefore, whatever perturbations there are in the SCV block must be superimposed on this existing condi­
tion. Shut-in heads throughout and around the SCV block are surprisingly consistent and centered about 
200m. Therefore we choose the alternative of making the boundary conditions constant head equal to 
200m. Although we do not expect the boundary conditions to be uniform around the edges of the zones 
we have too little data to have any more resolution than setting the boundary conditions to one estimated 
figure. These boundary conditions do represent a degree of approximation consistent with the rest of the 
assumptions we have made so far. In order to get a better representation of the hydraulic conditions in the 
block, we connected each zone to boundaries set at 200 m head far away from the block. 

As a starting configuration we randomly removed 20% of the conductors within the block in order to 
enhance the speed of convergence to a low energy. We expect that annealing will remove many of the 
conductors in the template in order to match the observed behavior. Making "holes" a priori improves the 
speed of convergence because if we start with the full grid, the annealing process will tum off every con­
ductor it examines at the early stage anyway. The percentage and the pattern of the starting configuration 
can be preconditioned using various techniques such as the fractal dimension as mentioned earlier, how­
ever, in the present case we chose to do random preconditioning and an arbitrary percentage of 20 instead. 

A temperature schedule was chosen as: 

(4.4) 

with 

(4.5) 

and the temperature was changed every 20 successful iterations. The annealing program was initiated and 
continued running for 931 iterations during a period of one week. At that time an inefficient algorithm in 
the program was detected which was causing the annealing procedure to occasionally retain the previous 
configuration unnecessarily. This is evidenced in Figure 4.10 between iteration 1 and 931 by the regions 
on plot where there are two values of energy plotted for the same iteration. At the same time, we found 
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THE ANNEALING CASE 

·Observed" heads (m) based on synthetic steady flow from 
W2, used in calculating the energy for annealing. 

Value of head nOI "observed", predicted by annealing. 

Open hole, $ " 0 
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Figure 4.9. Summary of the synthetic well test results used for annealing. 

that the head in N3 had been left out of the energy calculation. Hence, the process was stopped and res­
tarted with a refreshed temperature schedule, the current minimum energy fracture configuration, the error 
corrected, and the fourth well included. 

The added well sharply increased the energy level at this point (Figure 4.10, iteration 932). With the 
process correctly functioning the procedure continued for another five days until the temperature schedule 
was exhausted and the procedure terminated normally at iteration number 1813. The energy at this itera­
tion was 1.74. To see if we could get the energy closer to zero, the annealing program was restarted with 
an extended temperature schedule at the current configuration. Also, the annealing program was altered to 
increase the number of iterations at each temperature from 20 to 50. This change is reflected in the 
decreased slope of the receding energy function. The process was stopped at iteration number 3749 and 
energy equal to 0.005661. 
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Figure 4.10. Record of energy versus iteration for the SCV synthetic wen test case. 

Figure 4.11 shows an example configuration of the channels in :wne A, including the complete set of 
possible channels. the initial configuration of channels at the start of annealing, and the configuration of 
channels at the last iteration. The percentage of elements did not change much from the initial 
configuration to the final one. We presume that this is because the synthesized annealing case did not con­
tain enough information to warrant changing the percentage. There are some indications that the annealing 
routine was beginning to find patterns. For example. on zone A. we see that connections between N4 and 
N3 have become a little sparser after annealing which reflects the fact that zone A responded to W2 in N3 
but not in N4. However, none of these changes are very striking and we suspect again that we simply do 
not yet have enough information to discern the channel pattern. 

Table 4.2 gives the heads that were calculated with the final configuration resulting from annealing. 
We see that the annealing routine has managed to match the observed heads very well. At the end of the 
annealing process, we have determined several configurations of conductors within the zones all of which 
result in matching the observed head data extremely well. The match has been achieved solely by arrang­
ing the conductors. As all the channels have the same conductance, kA • any value of k,.. will result in the 
same head distribution. 

So, at this point we must calibrate the conductance of the channels such that the model will predict 
the correct value of flow from W2. To do this, we use the annealed model to calculate the flow from W2, 
QW2,.. with conductances equal to k,... Then we take the ratio of measured flow to calculated flow to find 
the conductance of the channels, kW2 which would produce the correct amount of flow into W2 (QW2M ): 

(4.6) 
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Figure 4.11. Grid elements in zone A. The top is the full template. the middle is the initial configuration, 
and the bottom is the final configuration after annealing. 

For the final configuration of the model, the value of QW2A is 3.14 m3 /s. and kA is 0.42 m3/s. so for the 
case of QW2M = 10 l/min, we require that kW2 "" l.34l/min or 2.2x 1(Jsm3/s. 

Now we rearrange the numerical model, closing the hole W2. and adding the open D-holes and cal­
culating the outflow from the D-holes. We repeat this for seven different configurations of the model. The 
resulting calculations of inflow to the D-holes are given in Table 4.3. It is clear from these results that the 
prediction of inflow to the D-holes is largely governed by the measurement of flow from the W2 hole. In 
fact, by the scaling equation above, the flow into the D-holes is directly proportional to the flow from W2. 
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Table 4.2. Annealing results at the final iteration ... 3749 

Hole Zone Observed Heads Predicted Heads 

N2 B,B',C 90 90 

N3 A,B 80 79 
B' none 65 
C none 65 

N4 B' 55 55 
C none 83 
B none 49 
A none 49 

WI Ha,C 65 65 
HI> none 65 
B' none 65 
B none 65 

Table 4.3. Inflows to the D-Holes Predicted for Ten 
Different Configurations of the Model. 

Rank of Iteration Energy Inflow to the 
Likelihood D-holes (Vmin) 

1 3747 0.005 8.9 
2 3568 0.096 9.0 
3 2910 0.63 9.1 
4 2498 1.32 8.9 
5 949 2.94 8.8 
6 847 3.13 8.8 
7 300 4.62 8.9 

This indicates that the prediction of D-hole inflow is extremely sensitive to the measurement of flows. The 
calculations given in Table 4.3 depend on a single measurement of flow, and we suspect that this measure­
ment is anomalous in that the transmissivity in W2 is much higher than the other holes. This points out that 
other flow data available for the SCV block would be very useful in modifying this prediction and this is 
discussed below. 

One further set of data is available to aid in the prediction of inflow to the D-holes. This data was 
also collected, also on an ad hoc basis, by BGS (D. Holmes, personal communication) and consists of 
measurements of outflows from the other N- and W-holes after they had been left open for periods of time. 
Table 4.4 gives this data. 

First, we note in Table 4.4 that the measured inflow to W2 is 12 J/min. Our best estimate of the 
steady flow to W2 in 10 Vmin, or about 83% of that in Table 4.4. This is because the values in Table 4.4 do 
not yet reflect steady flow. To correct for this, each of the measurements of flow is reduced by 17%. We 
call these flows QiM where i stands for the holes, N2, N3. N4, WI, and W2. 



- 34-

Table 4.4. Open Hole Inflows to N- and W-holes 

Hole Flow (J./min) Comment 

N2 0.60 Measured flow after 6 hoID'S open 

N3 0.45 Measured flow after 4 hoID'S open 

N4 2.55 Measured flow after 2 hoID'S open 

WI 1.30 Measured flow after 2 days of 
chemical sampling 

W2 12.0 Measured flow after 3 hoID'S open 

Now. we can use the final annealed configuration of channels with conductance. kA • to calculate the 
inflow into each of these holes, QiA' To do this we simply close W2 by making the nodes at W2 internal 
nodes, then sequentially open each of the other holes by assigning their nodes zero head. In each case we 
calibrate the channel conductance in the same manner as previously described such that the model 
correctly predicts QiM: 

(4.7) 

This results in five different predictions of channel conductance. which in tum results in five different pred­
ictions of D-hole inflow. These predictions are given below in Table 4.5. 

Table 4.5. Predictions of D-Hole Inflow Based on Annealing and 
Measured N- and W-Hole Inflows. 

Hole Measured Adjusted k;/kA Predicted 
Flow Flow D-hole inflow 

(J./min) (J./min) [ 11m 1 
m3 /S 

(J./min) 

N2 0.60 0.50 0.16 1.3 
N3 0.45 0.37 0.12 0.6 
N4 2.6 2.1 0.67 3.4 
WI 1.3 1.1 0.35 1.3 
W2 12.0 10.0 3.2 8.9 

Mean 3.4 2.8 .89 3.1 

Standard 
Deviation 4.9 4.1 1.3 3.1 
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In summary, our prediction of inflow to the D-holes has mean 3.1 I/min and a coefficient of variation 
(standard deviation divided by the mean) equal to about one. We do not Irnow the form of the inflow distri· 
bution function, but if we make a guess that inflows are distributed Jogenormally, then we can calculate 
that the flow will be between 0.44 and 11.4 with 95% confidence. Actual measurement of inflow into the 
D-holes was about 2 Jlmin. 

4.6 SUMMARY OF RESULTS AND CONCLUSIONS 

Based on the preliminary data available at this time. the inflow predicted for the D-holes is 3.1 JIm with a 
standard deviation equal to 3.11/m. The actual measured value is about 2.0 I/m. The results are most sensi­
tive to the measurements of inflow. We think that this is particularly so due to the fact that the annealing 
case was so limited and only steady state data was used. Based on synthetic examples. we expect that mul­
tiple transient annealing will be able to discern channel patterns much more effectively than steady state 
annealing. The estimate is sensitive to flow measurements and as it is flow we are predicting, we have 
confidence that this approach gives answers that make some sense. 

Questions remain about weighting some data over others and the effect of different starting 
configurations of the model. Such a studies are underway using synthetic examples and will include a 
study of different configurations at the same initial percentage of conductors and well as a study of 
different percentages of conductors. Along the same lines, we are very interested to try initial 
configurations that have been conditioned by the fractal analysis. Also, it is not surprising that preliminary 
synthetic cases show much better resolution of pattern when the template reproduces the orientations of 
the real conductors. This fact supports the need for the a priori definition of the template using geology 
and· geomechanics approaches. 

This example should be considered preliminary at best However, we find the approach very attrac­
tive in that the resulting models will contain more information about connectivity than an equivalent con­
tinuum model, but are not requiring us to Irnow all the actual details of the geometry. These new models 
can be considered to be "equivalent lattice models". They reproduce the essential lack of connection pre­
valent in fracture networks without trying to reproduce every fracture. The modeling effort is concentrated 
on reproducing the behavior of the observed system rather than the geometry. We think this makes sense 
because the reason for having a model is to predict behavior, not geometry. 
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