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This thesis is concerned with the study of the light 

reactions of photosynthesis by electron paramagnetic resonance 

spectroscopy (EPR). The author's original contributions are 

primarily in two areas; development of magnetic resonance 

formalism, and utilization of theoretical formulations to 

interpret EPR spectra arising from photosynthetic systems. 

The latter analysis has provided information about the orien­

tations, interactions, and identity of the electron transport 

cofactors involved in the photosynthetic light reactions in 

both green plants and photosynthetic bacteria. 

The first two chapters present introductory material. 

Chapter l briefly outlines the magnetic resonance formalism 

which is used throughout; Chapter 2 is a short introduction 

to the light reactions of photosynthesis. These sections are 

intended to serve as a review for a reader familiar with 

these topics, or as a guide for one who is new to them; 

more extensive references are provided. 

In Chapter 3 a general method of determining the 

orientational distribution function of a partially ordered 

ensemble of paramagnetic systems from its EPR lin~shape is 

developed. The formalism represents a significant departure 
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from the usual technique, expansion of the distribution 

function in Wigner rotation matrix elements. Instead, a 

model for the ordering is constructed from the symmetry 

operations of the ensemble, and the EPR lineshape is simulated 

by varying parameters which can be assigned expli t physical 

interpretations. A prescription is also given for determining 

the relationship of the principal magnetic axis system (PMAS) 

of the paramagnetic species to the preferred alignment di-

rection of the ensemble if this is not already known. The 

approach is currently being extended to other types of 

spectroscopy, e.g. linear dichroism. 

In Chapter 4 the theory of Chapter 3 is applied to a 

partially ordered ensemble of triplet states localized on the 

primary donor in photosynthetic bacteria. Ordering is achieved 

by magnetic field orientation (Rps. viridis and Rps. paZustris) 

or magnetophotoselection (Rps. spheroides). An 'analysis of 

the spectrum from a randomly oriented ensemble allows deter-

-mination of the D and E values of the triplet and the relative 

intersystem crossing rates K :K :K · the parameters so ob­x y z' 

tained are then used in conjunction with a model for the 

distribution function to determine the orientation of either 

the normal to the photosynthetic membrane (magnetic field 

alignment) or the appropriate optical transition moment 

(magnetophotoselection) in the PMAS of the plet. 

Chapter 5 is an analysis of a spin polarized EPR signal 

arising from photosystem I (PSI) of higher plants which can 

be observed in chloroplast suspensions. The chloroplasts can 
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be oriented by means of a flow gradient; this causes an 

alteration in the polarized EPR lineshape. 

A radical pair theory of spin polarization for systems 

of membrane bound radicals with anisotropic g tensors is 

developed, and used to explain the orientation dependence of 

the lineshape of the polarized signal. The quantitative 

features of the oriented and unoriented signals can be 

satisfactorily reproduced only if the sequence of electron 

transport cofactors in PSI is taken to be 

P700 + A1 + A2 + P430, 

where Ai is an isotropic radical with a g value close to 

that of P700+ (probably a chlorophy anion) and A2 is X, 

an anisotropic species which can be observed in steady state 

EPR experiments at low temperature when P430 1s reduced. 
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INTRODUCTION 

The app cation of physics and chemistry to biology has 

produced a s entific revolution of astonishing dimensions 

during the past twenty years. Enormous quantities of detailed 

structural and functional information have been obtained con~ 

cerning a wide variety of biological entities: chromosomes, 

enzymes, membranes, etc. Our picture of the biological 

micro~world has undergone a gestalt-switch to a sharper focus. 

In a certain sense, it is the structural information 

which has primacy ln biological theory construction; function 

often can be deduced directly from structural considerations, 

as ln the obvicus conclusions drawn immediately from the 

Watson-Crick double helix structure for DNA, or the elucidation 

of enzyme mechanisms from the geometry of the active site, 

Where structure does not lead directly to function, it can 

often suggest key experiments needed to provide mechanistic 

information, 

X-ray diffraction has, to date, been the most important 

and successful method for determining the structures of 

components of biological systems. Macroscopic bodies like 

large protein molecules have been crystallized, and their 

three~dimensi onal structures refined to within a few angs trams 

by the use of heavy-atom derivatives. The wealth of data 

obtained by this technique has been of incomparable value ln 

constructing a model of the way things are in biological 

systems, and the way they work. 
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Nevertheless, there are serlous limitations of the 

application of x~ray diffraction techniques to biological 

studies. Preparation of crystalline material requires iso~ 

lating and purifying the component of interest; even if this 

can be successfully accomplished, crystallization may prove 

to be impossible. Furthermore, the structural determination 

must be carried out in a chemical environment which is vastly 

different from the natural biological state. Not only is this 

likely to distort the structure from the in vivo one, but it 

prevents determination of the spatial relations between the 

molecule of interest and neighboring molecules. Such relations 

can be of crucial importance in discovering biological function. 

The above considerations suggest that it would be valuable 

to perform structural determinations on biological components 

in vivo. Unfortunately, this presents a far more difficult prob­

lem than the determination of the geometrical arrangement of 

crystalline material. Any single crystal, even one of a 

complex protein, possesses a great deal of symmetry: the 

repeating unit cell, It is this symmetry that allows one to re~ 

construct the spatial arrangement of atoms within a single unit 

cell, because the scattered x~rays from diverse cells interfere 

coherently and in predictable fashion. 

Biological structures are normally dispersed in aqueous 

or lipid phases in a more or less heterogeneous manner. An 

ensemble of particular entities (e.g. a group of cells suspended 

in solution, or protein molecules bound to membrane fragments) 



3 

will at best be partially ordered with respect to one another. 

Furthermore, the entire intact system contains many types of 

molecules in various environments. To sort out information 

obtained from such a system, and obtain quantitative conclu­

sions, is a problem which appears on the surface to be so 

difficult that one is tempted to give up before starting. 

The most common method of probing molecular properties 

2n solution has been the use of appropriate frequencies of 

electromagnetic radiation. Microwaves will interact with 

paramagnetic species (either nuclear or electronic spins, 

depending on frequency) and provide information about the 

environment and identity of these species. Infrared radiation 

induces vibrational transitions, while optical wavelengths 

stimulate electronic transitions; the location, width and 

intensity of the absorption bands can be related to the mole-

cular entities present in the sample. Optical rotation and 

circular dichroism are more subtle probes which can be utilized 

to study molecules which possess a fundamental asymmetry. Light 

scattering, particularly Raman and resonance Raman measurements, 

is also a useful investigative method. 

Nevertheless, the detailed structural information obtained 

from such experiments on biological systems has been remarkably 

scarce and uncertain. Molecular species can, in principle, be 

characterized by their EPR or absorption spectrum, but these 

can change appreciably with environment, particularly in a 

protein matrix, Also, chromophores are often aggregated 2n 



some fashion, with consequent changes in their observed 

properties. Finally, there is often the problem of specificity; 

the absorptive regions of different species may overlap~ making 

it difficult to sort out the signal due to an individual mole­

cule. A typical absorption profile of a biological system is 

a superposition of heterogeneous signals; some from identical 

molecules in different environments, others from different 

molecules. 

This thesis will be concerned with a specialized problem; 

investigation of the light reactions of photosynthetic systems 

Vla EPR spectroscopy. All of the difficulties described above 

are evident in this work. Some can be alleviated by suitable 

experimental techniques, e.g. judicious sample preparation) 

observation methods, etc. However, the focus will be on the 

theoretical aspects of the problem ~ the use of quantum 

mechanical formalism to extract structural and interactional 

information from the EPR signals in photosynthetic systems. 

From this viewpoint there are two major hurdles to overcome; 

(1) Formulation of fundamental theory. 

This involves creating a correct quantum mechanical 

formulation which can actually be applied to the problem at 

hand. Sometimes such a theory already exists, but often it 

is necessary to modify an existing formalism or construct an 

entirely new approach. The theory of CIDEP of membrane­

bound radicals in Chapter 5 is an example of the former sort, 

while the theory of partially ordered systems developed in 

Chapter 3 contains a new conceptual framework. 
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( 2) Application of the theory to experiments, 

The critical factors here are building a physically 

reasonable model and having a good intuitive feel for how to 

extract the maximum useful quantitative information from it. 

With the theory in hand it is then a matter of technique to 

utilize computer methods to obtain the desired results. Of 

course, one must also have relevant experimental results to 

interpret; I have been fortunate in my career at Berkeley to 

have been able to work with a number of careful and imaginative 

experimentalists who were able to provide such data. 

The material in the following chapters is of importance 

for an understanding of photosynthesis and as an advancement 

of fun admen tal EPR theory; as such 5 it can be evaluated in 

the appropriate independent context. What I wish to suggest 

here is that it also represents a contribution, albeit a small 

one, towards structural determination in heterogeneous media. 

I expect that ultimate solution to this problem will involve 

.the combined use of a number of spectroscopic techniques; 

unfortunately 5 this is beyond the scope of the present work, 

What is here, though, can be thought of as a paradigmatic 

step along the path which must be followed. 
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CHAPTER 1 

INTRODUCTION TO EPR THEORY 

The theory of electron paramagnetic resonance has been 

explicated by many authors. A wide range of treatments 

ranging from introductory textbooks to advanced treatises 

and specialized journal articles are available, and we shall 

not attempt here to replicate in detail material that has 

already been presented. Our approach will be to briefly out-

line the development of magnetic resonance formalism, with 

particular emphasis on topics which Hill be needed later. 

Refer'ences 1-5 provide a starting point for those who wish 

to work through the theory more comprehensively. 

1.1 Phenomenological Description of Nagnetic Resonance 

The process characteristic of all magnetic resonance 

experiments is absor•ption of microwave radiation by a para-

magnetic species. The experimental EPR apparatus is designed 

to measure and quantify this absorption process, in the presence 

of an external magnetic field H which is applied at right 
~o 

angles to the crowave magnetic field direction. An EPR 

spectrum consists of a set of measurements of microwave ab-

sorption for different magnitudes of H . 
~o 

The microwave radiation 1s produced by a klystron; a set 

of standard frequency ranges (e.g. X band~ 9.0 GHz, Q band 

~ 35.0 GHz, Kband ~ 25.0 GHz) are available. All of the 
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experiments relevant to this thesis were done at X band. 

Detailed discussion of the klystron, microwave cavity, and 

detection system can be found in reference 5. We shall 

assume simply that the sample experiences a uniform oscillatory 

microwave field of frequency 9.0 GHz, and that net absorption 

of radiation is quantitatively measured. 

The absorption of radiation is due to transitions among 

the spin sublevels of the paramagnetic system. The simplest 

case is that of a single, unpaired free electron (S = 1/2). 

In the absence of an applied magnetic field, the two spin 

sublevels are degenerate. In the presence of H , the system 
-0 

is characterized by two distinct eigenstates, a and B, 

corresponding to S aligned parallel or antiparallel to H . 
-0-

The energy splitting between these states is g S I H I, e -o 
1 where 2 geS is the intrinsic magnetic moment of the free 

electron. The EPR spectrum of an ensemble of non-interacting 

free electrons would thus consist of a delta function located 

·at hv = g SH . e o By substituting hv = 9 GHz, we obtain the 

resonant magnetic field for a free electron in an X band 

experiment; 

H ::: 
0 

= 3227 gauss (1-1) 

For more complicated systems, we need to investigate the 

total y of the magnetic environment of each of the unpaired 

electrons in the ensemble. Our program will be to formulate 

a magnetic, or spin Hamiltonian for· each paramagnetic system 
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under consideration, and then diagonalize it to obtain 

transition energies and resonant field positions. The 

observed EPR spectrum will be an ensenilile average over all 

species in the sample. 

1. 2 .Hagnetic Resonance Formalism 

We shall restrict consideration to systems with at most 

two electrons; generalization to multi-electron systems ~s 

straightforward in principle. The spin operators for the 

two electrons are 

~1 :: (Slx sly slz ) 
( 1-2) 

~2 :: < s2 x s2y s2 z) 

The total spin ~s 

( 1-3) 

or, in terms of components 

The spins are coupled to the external magnetic field H 
-0 

(Zeeman field) by the g tensors ~l and ~2 , and to each other 

by the dipole-dipole coupling tensor, D, and the exchange 
A 

tensor, J. Interaction with paramagnetic nuclei is represented 

Vla the hyperfine tensors A1 and A2 . The spin operators for 

the nuclei are I = (I I I ) , and the z component eigen-x y z 

values are M. 
lZ 
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The theory of electron paramagnetic resonance consists 

of determining the experimental EPR signal (as defined in 

1.1) from a knowledge of the elements of the vector and 

tensor operators defined above. The procedure we shall 

employ is as follows: 

(1) Characterization of a spin Hamiltonian in terms of an 

effective spin, S 1 , which includes spin-orbit coupling 

effects. 

(2) Diagonalization of the Hamiltonian matrix to obtain 

eigenvalues, eigenvectors, transition energies and 

oscillator strengths. 

(3) Convolution of the "stick spectrum" obtained in (2) 

with a broadening function to phenomenologically take 

into account random dipolar interactions, lifetime 

broadening, etc. 

(4) Ensemble averaging over all orientations, hyperfine 

states, and distinct species to obtain the desired 

experimental signal. 

1.3 The Spin Hamiltonian 

A. Effective Spin 

Our first step 1s to incorporate the orbital and 

intrinsic magnetic moments of the electron i into an effective 

magnetic moment character'ized by a new spin operator S!. A 
~l 

free electron has no orbital angular momentum (i.e. L = 0) 

so that here S! - S.. When we constrain an electron to a 
-l -l 

bound state (as in an atom or molecule), other values of L 



10 

are possible, and there will be a corresponding orbital 

moment associated with the circulation of charge. The inter-

action between the orbital and intrinsic magnetic moments 

gives rise to a term in the molecular Hamiltonian 

JC = x(r)L•S 
soc (1-4) 

where JC is the spin-orbit coupling operator, and x is a soc 

parameter characterizing the magnitude of the interaction 

as function of electron position. This term will mix basis 

states th differing L and S quantum numbers, z z 
The tot interaction of a magnetic field H with the 

electron can be written as 

U = SH·L + g SH·S 
~ - e - -

(l-5) 

where B is the Bohr magneton, and g B the magnetic moment of 
e 

i1 free electron, We wish to combine the two terms on the 

gh t hand side of eq, ( l-5) into a single term; i.e, 

U = SH·g·S' (1-6) 

VJhere S 1 l.S the effective spin, and gS represents an effective 

:1agnetic interaction which may be anisotropic. 

In the absence of spin-orbit coupling it can be shown 

that <1/J ISH·LilJ! >:: 0, for t!1e ground state (1/J) of a molecule 
g - - g g 

th e1n unpaired electron. Therefore, spin-orbit mixing of 

the ground state wave function with other (L,S) states provides 

the only orbital contribution to the effec ve g value, 
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In the first order of perturbation theory the new ground 

state with S parallel to H is given by 

Jn> (1-7) 

where 1jJ is the ground state space part of the wave function, 
0 

and n runs over all excited states, i~cluding I1JJ 0 s > 
~ 

states. 

Similarly, I1JJ S> is altered to 
0 

In> (1- 8) 

The I+> and 1-> states are the new eigenstates of the 

molecule; the effective spin is defined to act on the I+> and 

1-> states ln the same fashion that S acts on Ja> and IS>, 

i o e . 

S' I+> z 
1 

= 2 I+> 

1 
::: 2 

The elements of the g tensor are given by 

<1jJ ILo I1JJ ><1jJ jL. I1JJ > _ ~ o l n n J o 
gij :: ge E - E 

n o 

.where i,j = x, y, or z. 

(1-9) 

( 1-10) 

In the sections that follow, we shall drop the prime and 

always understand S to be the effective spin, I a> and IS> to 

be the j+> and 1-> states, and ~ to be the g tensor as 

defined above. 
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B. Zeeman Interaction 

We shall use the term "Zeeman field" to mean "static 

R field" (usually produced by an electromagnet which is 

part of the experimental apparatus) and shall label this 

e ld by H • 
-0 

In the laboratory axis system, H is normally 
-0 

taken to be in the z direction. 

The Zeeman interaction is the magnetic interaction of 

the Zeeman field with the magnetic dipoles of the paramagnetic 

electrons. If the two electrons have distinct g tensors 

(e.g. they are on different molecules), the Zeeman term in 

the Hamiltonian lS 

'JCZ"'eman = [H •gl• 81 + H •g2 •S2] 
c ~o ~ ~o ~ 

(1-ll) 

If the electrons have identical g tensors, we can write 

X = SH •g•S 
Zeeman ~o -

(l-12) 

If the g tensor is isotropic, eq. (1-12) further simplifies 

to 

:K = SH gS Zeeman o z 
(1-13) 

where gS lS the sc isotropic value of the magnetic 

moment. 

C. Dipolar Interaction 

The dipolar interaction lS the mutual magnetic energy 

of two coupled magnetic dipoles, averaged over the spatial 

wavefunctions of the two electrons. The interaction is 
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represented ln the spin Hamiltonian by the term 

A 

Jedipolar ::: S • D• S (1-14) 

A 

where D lS the dipole-dipole coupling tensor, or the zero-

field splitting tensor. Elements of D can be calculated 

from the spatial wavefunctions ~l and ~2 of electrons 1 and 2, 

e.g. 

D 
xy 

( 1-15) 

where x
12 

and y 12 are operators for the x and y separations 

of electrons 1 and 2. 

The other elements of D can be constructed in analagous 

fashion by examination of the standard dipole-dipole interaction. 

The tensor D can be diagonalized by an appropriate coor-

dinate transformation; in this new reference frame, the dipolar 

interaction becomes 

;tfdipolar (l-16) 

A 

where X, Y, and Z are the principal values of the D tensor. 

It can be shown that X+ Y + Z = 0; it is therefore possible 

to simplify eq. (l-16) so that it contains only two energy 

parameters, D and E; 

Jfdipolar 
2 l 2 2 = D(S --lSI ) + E(S z 3 -I X 

where 

1 
D = 2 (X+Y) - Z 

1 E = -2 (X-Y) 
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D. Exchange Interaction 

The exchange interaction is a consequence of the re~ 

quirement that the total wave function of a mul ti~electron 

sys tern be an tisymme tri c upon exchange of electron coordinates 

(Pauli principle). Suppose we write the total wavefunction 

cp as 

cp - </J X ljJ 
space s 

(l-18) 

The parity of ¢space will clearly depend on that of 

\jJ • , so that the overall cp will be antisymmetric. spJ_n 

For a two-electron system, we can use as a basis set 

three symmetric functions (triplet states) and one anti-

symmetric function (singlet). Because of the above consider-

ations, the space part of the triplet manifold will be different 

from the s glet; this results in a different electronic energy 

when the space part is evaluated in the molecular Hamiltonian. 

This energy di rential is represented phenomenologica1ly 

the sp Hamiltonian by the term 

or, by rearr~mgement 

(l-20) 

Note that t:he exchange term is mathematically isomorphic to 

the dipolar interaction. For isotropic exchange, we obtain 
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and the triplet manifold is split from the singlet by energy 

2J. If direct exchange is the dominant mechanism, 

the electronic exchange matrix element. However, exchange 

often is due to superexchange pathways (6,7); in this case 

it is difficult to write down the exchange energy directly. 

E. Hyperfine Interaction 

The generalized interaction between the electron and 

nuclear spins in a molecule with 1 electron can be written as 

(1-22) 

where A. is the hyperfine tensor for nucleus i, and I. lS the 
l -l 

operator for the ith nuclear spin. We shall consider only 

isotropic hyperfine interactions; then 

'JfHF::: 2:: A.S•I. 
' l- -l 

(1-23) 
J. 

where A. lS now the isotropic hyperfine coupling constant 
l 

for nucleus l. 

This interaction lS proportional to the square of the 

electronic wavefunction at nucleus l, i.e. 

an I 12 A. = --
3 

g8g S ¢(0) 
l n n 

(1-24) 

where g is the nuclear g value, g tne electron g value (we 
n 

assume an isotropic g value here) and ¢(0) the electronic 

wavefunction at r = 0. At high field the nuclear spin lS 

quantized in the direction of H (z direction); then 
-0 
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:KHF 

The effect of hyperfine interaction on the EPR energy 

levels is normally evaluated using first-order perturbation 

theory. The procedure is to first diagonalize the remaining 

spin Hamiltonian and obtain energy levels E
1 

, , . En; then, 

associated with each transition E. lS a manifold of hyperfine 
l 

states with energy 

E! = E. 
l l 

L: A1m . 
Zl 

l 

where mzi ranges from max!I
2

j to -maxji
2

j ,­

(1-26) 

Transitions 

can now be computed between hyperfine manifolds using the 

selection rule L'lm. = 0, For the simple case of two energy 
lZ 

levels and one hyperfine nucleus of spin ~ we obtain four 

energy levels; 

E 

E
1 

- A/2 @ 

E2 + A/2 CD 

E ~ A/2 
2 

and two transitions, 

with energy (E1 - E2 ) +A 

with energy CE1 - E2 ) - A 
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The single transition (in the absence of hyperfine interaction) 

at (E1 ~ E2 ) is thus split into two transitions separated 

by 2A. 

It is possible to include the hyperfine interact~on 

directly in the Hamiltonian or to go to higher orders of 

perturbation theory. The above treatment is valid if 

[A/(E1-E
2

)J is small; otherwise, one may go to higher orders 

of A/~E. In certain cases, it is convenient to treat the 

hyperfine manifold phenomenologically as an inhomogeneous 

broadening. 

F. Random Perturbations and Motional Averaging 

The preceding sections have all been concerned with 

interactions that are not explicitly time dependent; all 

involved intramolecular interactions. In a large ensemble 

(e.g. sol uti on, crystal, eta. ) molecules may be perturbed by 

magnetic fields from neighboring molecules; these lds 

will vary in time with molecular motions. 

The quantum mechanical. treatment of such random dipolar 

or exchange perturbations is quite complex; interested 

readers are referred to references (8-10). We shall adopt 

a phenomenological approach and treat these effects as a 

broadening of the individual transitions with a Gaussian 

or Lorentzian function. The width of this function can be 

estimated from theoretical and empirical considerations. 

In situations where there are many, cl.osely spaced transi­

tions, this linewidth parameter has littl.e effect on the 

EPR lineshape. 
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1.4 Solution to the Spin Hamiltonian 

A~ General Approach 

We shall be considering only Hamiltonians which are 

explicitly time~independent; the problem is therefore to 

solve the time~independent Schroedinger equation for the 

magnetic Hamiltonian X ; 
.m 

'Jf 1/J. = E. 1J;. 
m l l l 

r the eigenvectors 1/J. and energies E .. 
l l 

'Jf is given by 
m 

Jf =X +X. +X 
m zeeman dlpolar ex 

(1-2 7) 

0-28) 

(hyperfine interactions are added in afterwards, as explained 

in sec. 1.3). The general procedure for solving eq. (1-27) 

for an n-spln system is 

(1) Choose a basis set {rp.} which spans the spln space of 
l 

( 2) 

( 3) 

the Hamiltonian. 

Calculate matrix elements H .. = <cjl. I X I cp. > for all i, j. 
lJ l m J 

Diagonalize the Hamiltonian matrix to obtain energies 

Ei and eigenfunctions 1/Jk = l: c~ cpi, where the c~ are 

coe c:ients of the basis functions. 

We illustrate this procedure with a paradigmatic example, a 

molecular state with two unpaired spins. 

B. Hole cular Two- Spin State 

VJe assume that the g tensor is isotropi·c, that J is 

isotropic, and that the molecule under consideration is 

rigidly xed at a particular orientation with respect to 



the Zeeman field H • 
-o 

Then, the spin Hamil toni an lS 
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(1-29) 

We transform to the principal axis system of the zero~field 
A 

splitting tensor D; then 

( 1-30) 

where H lS no longer along z but may lie in any direction, 
·~O 

We take H to be 
~o 

H = (H H H)= H (sinesin¢ sinecos¢ cose) (1~31) 
~o x y z o 

If H were equal to zero the solutions to the Hamiltonian 
-0 

would be eigenfunctions of s2 . s2 and s2 . these states (the 
x' y' z' 

zero~ field states) are as follows: 

(l) s :: 0 

( 2 ) 

There lS only one solution, the singlet state 

s = 

The 

'I' :: 
X 

'I' :: 
y 

T = z 

s 

1 

1 [a(l)S(2) - a(2)8(1)] 
12 

zero-· field triplet manifold lS 

1 [B(l)S(2) a(l)a(2)] - -
./2 

_l_·i[S0)B(2) + a(l)a(2)] 
.fi 
1 [a(l)S(2) + a(2)f3(1)] 

12 

(1-32) 
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The energles of these states are 

Es ;:; +J 

Ex ;:; ~J+X 

(1- 34) 
Ey ;:; ~J+Y 

Ez ;:; ~J+Z 

The Zeeman field mlxes the three triplet sublevels 

but not the singlet state. The singlet is therefore still 

an eigenfunction, with energy +J (since S = 0 for a singlet). 

The triplet Hamll tonian matrix with the zero-field states 

as a basis set becomes 

<T I 
X 

<T I y 

<T I z 

IT > 
X 

I 
X~J 

~::::z 
y 

IT > y 

-igSH z 

igSH 
X 

IT > z 

igSH 
y 

-ig8H 
X 

Z-J 

We set the zero of energy at -J to simplify the ensuing 

( 1-35) 

calculations. The eigenvalues of JC are found by setting 

I JC - ,\I I = 0 (1~36) 

where ,\ is the ei value and I the identity matrix. This 

yields a cubic equation for ,\; 

(XY + YZ + XZ)] 

- XYZ = 0. 

Y . 28 . 2 z 28) + Sln Sln ¢+ COS 

( 1- 3 7) 



where we have set 

Hx ;:; H sine cos¢ 
0 

H ::; H
0
sin Ssin ¢ y 

H ;:; H cos e z 0 

This equation cannot be solved analytically in the 

general case. We must thus choose one of the following 

alternatives; 

(l) numerical solution 

( 2) perturbation theory (utilizing the inequality 

gSH ;p X, Y, Z ln a high-field EPR experiment) 
0 
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(3) Exact solutions are available when H lies along 
-0 

a principal axis (x,y, or z). 

Method (1) is convenient for computer simulations, and is 

also the most accurate. Method (2) can be used to obtain 

an approximate analy cal expression for the transition 

energy; 

where 

and 

E(6,¢) = o[3cos 2 e - 1- n(sin 2 8cos2¢)] 

+ gBH 
0 

6 = 

This function was used by Bloembergen and Rowland to obtain 

an orientatio~ally averaged triplet spectrum in analytical 
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form (11), Method (3) gives some qualitative insight into 

the behavior of the energy levels as a function of 

orientation. The subspectra generated when H ~ x,y, or z 
-0 

are known as the canonical spectra; these orientations are 

led canonical orientations. The maxima of the observable 

peaks in the first derivative of the orientationally averaged 

triplet spectrum lie at the canonical transition energies. 

Each canonical orientation yields two transitions, 

symmetrically positioned on either side of gSH , 
0 

The splitting 

between the two canonical energies is, to first order, 

+ H-) 2j Dj gS(H ::: 
z z 

+ 
H~) I Dl 3IEI (1-39) gS(H ::: + 

X 

f3 ( H + - ) IDI 3jEj H ::: -g y y 

+ + + where H-­z , rC, and H- are the resonant field positions for 
X y 

the z, x and y canonical orientations respectively. Figure 1-1 

shows a randomly ordered plet spectrum with the canonical 

field positions labelled below. 

Once the energies are found, the eigenvectors ¢. are 
l. 

easily obtained from the matrix equation 

JC¢. ::: A.¢. 
l l. l 

(1-40) 

At high field, the three energy levels will be close to the 

high eld states, i.e. one state will have energy~ gSH
0

, 

another- 0, and a third~ -gSH . We designate these 3 
0 
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Figure 1~1. Simulated absorption (top) and first derivative 

(bottom) EPR spectrum of a randomly ordered ensemble of 

triplet molecules. Figure taken from reference (12). 
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levels the Ta, T8 , and TY states; clearly Ta- T+l' TS- T0 , 

and Ty - T_ 1 . The variation in energy for the canonical 

orientations can be determined from eq. (1-39); for the general 

case, numerical diagonalization or eq. (l-38) can be utilized. 

IT > ~- r. 
a i=x,y,z 

IT > l: 
I f3 

i =x,y, z 

IT > ·~ L: 
y i=x,y,z 

c~ I'L> 
l l 

c~ IT.> 
l l 

cY ITi> l 

energy = E a 

energy = E
8 

energy ::: E 
y 

(l-41) 

This constitutes the triplet spin manifold at orientation 

(8,¢); the coefficients a S y c., c., c., 
l l l 

and E will depend upon 8 and ¢. 
y 

The allowed transitions are obtained from the oscillator 

strength equation 

IJJ··I2 = IHl<lJ;.jSl +S2 I1J!.>I2 
lJ l X X J 

(l-42) 

vmerc H 1 ~ the mlcrowave magnetic field, is assumed to be in 

the x rection. At high field, we obtain 

1 
2 

(l-43) 



25 

We then have two allowed transitions of approximately 

equal stre~gth, one at energy lEa - E
8

j, the other at energy 

For the canonical orientations, these energies 

are given by eq. (l-39). 

Thus, a discrete orientation of the two-spin PMAS yields 

two lines, broadened as described 1n sec. 1.3, For a gid 

ensemble of such systems, the observed spectrum will be a 

superposition of all such possible transitions, We discuss 

this in more detail in sec, 1.5. 

1.5, Ensemble Averaging 

A. General Discussion 

A typical EPR experiment is performed on a macroscop1c 

sample which is placed in an EPR tube. The entire set of 

paramagnetic entities in this sample which can absorb micro-

wave radiation from the H
1 

field constitutes an ensemble of 

sp1n systems. The observed EPR lineshape will be determined 

by an ensemble average of the complex magnetic susceptibility 

over all elements of the ensemble, We begin by considering 

only chemically homogeneous ensembles (i.e. each member of the 

ensemble has the same chemical identity). Any ensemble can 

be partitioned into subsets of such homogeneous ensembles; 

each of these can be examined separately, and the resultant 

subspectra superimposed to give the experimental lineshape. 

The members of such an ensemble will, of course, be variable 

in other respects. 
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The most important of these are: 

(1) Electronic state of the mo cule (including local 

electronic perturbations), 

(2) Magnetic environment (i.e, perturbations due to 

neighboring molecules), 

(3) Hyperfine state, 

(4) Orientation of the molecule with respect to the 

Zeeman field. 

We shall consider (l) and (2) only by the use of a 

phenomenological broadening function (see sec. L 3) for 

individual transitions. This effectively shifts the transition 

(with a probability given by the lineshape function) away 

from the unperturbed value, thus mimicking the effect of 

environmental electronic and/or magnetic perturbations. 

The procedure used to average over hyperfine states follows 

directly from the discussion in sec. 1.3; all pos~ible values 

of the z component of nuclear spin are considered, and a 

resulting set of transitions are calculated from the manifold 

of hyperfine states superimposed on the basic electron spin 

resonance eigenvalues. 

It is item (4), however, which presents the most 

teresting problem in ensemble averaging in magnetic resonance, 

In section B below we give an elementary introduction to 

orientation averaging; in Chapter 3 we develop a sophisticated 

theory for partially ordered ensembles; in Chapter 4, this 

theory is applied to a photosynthetic system. 
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B. Orientation Averaging 

The nature of orientation averaging that needs to be 

performed depends upon the nature of the sample one is 

working with. If the molecules in the sample are tumbling 

rapidly in comparison with the inverse of the orientational line~ 

width, each molecule sees a time·-averaged Hamiltonian; here 

the orientational averaging process must be used to compute 

this average X from X (t), i.e. m m 

X = J X [8(t),¢(t)]dt m m 
(l-~44) 

where e and ¢, the angles specifying the orientation of H 
-0 

1n the molecular fixed axis system are now expli t functions 

of time. If all molecules are in other respects equivalent, 

an observation on such an ensemble should yield a single 

set of molecular EPR transitions obtained from solving the 

Hamiltonian equation 

Jc l/J. = E.l/J. m 1 1 1 
(1-45) 

We shall be concerned with the opposite extreme, i.e. when 

molecular motion is very slow compared to absorption of a 

photon, Such an ensemble will exist at low temperature 

(frozen sample) or when the molecules are bound to membranes 

which tumble slowly, 

In this case, each molecule is effectively frozen in its 

orientation for the duration of the measurement; the ensemble 

must now be described by a distribution function P 
0 

, giving 
af-'y 
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the probability that a molecule picked from the ensemble at 

random would be related to a laboratory-fixed coordinate 

sys tern by an Euler rotation matrix A ( aSy). If the spin 

Hamiltonian contains orientation-dependent terms, the EPR 

spectrum due to a member of the ensemble will depend upon 

CJ,, S, and y; the observed EPR intensity for the ensemble 

when the Zeeman eld has magnitude H will be given by the 
0 

ensemble average 

I(H ) = !JJ I(a,S,y,H )xP(a8y) dad8dy 
0 0 

v-1here I(a,S ,y ,H ) is the net EPR absorption at field 
0 

(l-46) 

strength H for a molecule with orientation aSy. If the 
0 

spln Hamiltonian yields n transitions and these are convoluted 

with Gaussian broadening functions, we obtain 

I(a,S,y,H ) cc 
0 

x 0. (aSy) 
]_ 

n 
E 

i=l 

~[H 
0 

e 

2 2 
Ca,S,y)J /o 

(1-47) 

' l1 re [. (a, i3, y) lS the orientation- dependent energy of the 
l 

on, 8 is the broadening parameter, and 0. (aSy) the 
l 

oscillator strength of the ith transition. 

Orientation will affect the spin energy levels of the 

mole cu1e through the Zeeman interactions. Thus, a more useful 

way of describing the orientation is to spec.ify the angles 

8 and ¢ which orient the Zeeman field in the principal 

magnetic axis system (PMAS) of the paramagnetic species. 

The explicit dependence of X on orientation is now apparent; 
.m 
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sines in¢ 

~ = H S g• sinecos¢ •S Zeeman o 

cose 

We can thus rewrite eq. (1-46) as 

YCH ) = JJ 1(6,¢,H ) D(S,¢) d8d¢ (1-49) 
0 0 

where D(8,¢) specifies the probability that H has orientation 
~o 

(9,¢) in the PMAS of a randomly chosen member of the ensemble, 

and 

1(8,</l,H ) o:: 
0 

n 
l: 

i=l 

-[H -E.(9,ljl)]/o 2J 
0 l e xo. ( e, ¢) 

l 
(l-50) 

Full knowledge of JC and D ( e, ¢) penni t one to determine 
m 

I(H ) in straightforward fashion, either analytically (if the 
0 

integral can be done) or numerically. For two extreme cases 

D(8,¢) can be written trivially; 

(1) For a random ensemble, 

D(8,¢) = sine 

(angular volume element) 

(2) For a single crystal, 

D(9,¢) = 1: 6(8-8.)6(¢-¢.) (1-52) 
. l l 
l 

where the sum runs over all molecules in the unit 

cell, and 6 is the Dirac delta function. 

In the general case, when D(8,¢) has an unknown 

functional form, one usually w hes to work backwards, movlng 

from the experimental EPR lineshape to determination of 

molecular ordering. This complex problem is the subject of 

Chapter 3. 
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CHAPTER 2 

INTRODUCTION TO THE LIGHT REACTIONS OF PHOTOSYNTHESIS 

The photosynthetic process has been extensively described 

ln books (1-4) and review articles (5~7), and fundamental 

knowledge of all but the most recent results is accessible front 

these sources. The tr>eatment of the subject hepe will there~ 

fore be quite cursory and will focus on the particular 

featur>es of photosynthesis which aPe studied ln this thesis. 

Of primary interest will be the ear>ly light and electron 

transfer reactions, and inves gation of these events via 

optical and EPR techniques. Many of the topics presented 

here are discussed in det 1 ln a revlew by Sauer (5) of 

the light reactions in photosynthesis. 

2.1 General Overview of Photosynthesis 

The net result of all forms of photosynthesis is the 

conversion of light energy into chemical energy. The chemical 

energy is normally stored by photosynthe c organisms in the 

form of starches and sugars. For green plants, the overall. 

reaction can be written 

hv 
-+ 

Bacterial photosynthesis does not involve the splitting of 

water> and evolution of oxygen; the chemical transformation 

in this case is 
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where H2A is an appropriate hydrogen donating specles (e.g. 

H
2 
S). 

Most of the organic chemistry of the photosynthetic 

process occurs in the so-called dark reactions, after the 

light energy has been used to split water and/or been 

converted to ATP. We shall be concerned exclusively with 

the initial steps of the production of useful chemical energy 

from light. In green plants, there are two systems which 

perform this function; they are referred to as photosystem I 

(PSI) and photosystem II (PSI!). PSI converts light energy 

to stored chemical energy, while PSII is involved in 

splitting water into molecular oxygen and reducing 

eq ui valen ts. Bacteria contain only one system which lS 

analagous to PSI. 

The initial event in each of these systems is the ab­

sorption of a photon by a chlorophyll-containing species, 

produ ng an excited state of the chromophore. The excited 

electron then undergoes a series of electron transfer 

reactions, residing in turn on a number of acceptors along the 

tosynthetic electron transfer pathway. 

Figures 2-l and 2-2 display current schemes for this 

process in bacteria and green plants, respectively; note that 

PSI and PSII are linked in a 0 z-scheme". In the following 

sections we discuss in more detail several of the above 

components, and investigate the nature of the initial light 

reaction and charge separation. 



, Cyf b5eo 
UQ(IFe) 

!~ -

2-1. (a) Overview of electron transfer in bacterial 

photosynthesis. 

\ 
I 

><&.751=5022 
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)(BChl); BPheo- QFe 

t 
>(BCtu); BPheo Qfe 

+ -(BCh1)2 BPheo Qfe 

Photosyntlwsis 

(BChl)
2 

BJ'heo Q.Fe 

Figure 2-l. (b) Electron transfer scheme for the early events 

in bacterial photosynthesis. The back reaction to the (BChl) 2 

triplet occurs when the Qfe acceptor is reduced, The (BChl) 2 

specles is designated as P, the BPheo as I, and the QFe as X 

in the notation currently in use in the literature. 
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2-2. Electron transfer scheme for Photosystems I and· 

II in photosynthesis. 
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2.2 Physical Organization of Photosynthetic Systems 

A. Organization at the Cellular Level 

The photosynthetic light reactions in both bacterial 

systems and higher plants are localized in membrane structures. 

In bacteria, the membranes are dispersed throughout the cell, 

while in green plants they are confined to a discrete organelle, 

the chloroplast. These membranes can be observed directly 

by electron microscopy; figures 2-3, 2-4, and 2-5 display 

micrographs of various fragments of photosynthetic bacteria 

and chloroplasts. 

The membranes ln chloroplasts and in ~orne photosynthetic 

bacteria appear to lie in a regular fashion. In chloroplasts, 

the thylakoid membranes are stacked in parallel sheets in­

side the disk-shaped organelle (see fig. 2-5). In the 

bacteria Rps. viri dis and Rps. pa lus tris, the membranes 

form concentric sheets in the cylindrical cell (figs. 2-3 

and 2-4). This regular arrangement of the membranes allows 

us to observe orientation effects in photosynthetic systems 

(Chapters 4 and 5). 

The organization of the active components of photosynthesis 

in the membrane is complex; some aspects of this 

topic are 1.nves gated in the remainder of this thesis, In 

the next section a general overview consistent with the ex-

pe ntal data to date will be presented. 



Figure 2~3. 

ordering of internal 

cell 

memb:rances (from reference 
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XBB 783-2830 

Figure 2~3. (b) Transverse view of Rps. viridis reference 
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XBB 784~4210 

Figure 2~4. (a) Longitudinal view of Bps. paZustPis cell showing order 

of internal photosynthetic membrances (from reference 10). 
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XBB 784-4211 

Figure 2~4. (b) Transverse view of Rps. pa (from reference 10). 
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XBB 740~7521 

Figure 2-5, Elect:ron micrograph of chloroplast displaying the 

arrangement of the thylakoid membranes (from reference 8), 



B. Structure of Photosynthetic Membranes ~ The Pebble 

Mos c Model 

The foundation of the photosynthetic membrane is a 

lfpid bilayer (11). By various chemical treatments (e.g. 

42 

solubili g with detergent) it is possible to isolate intact 

components from the membrane. These components include 

reaction center preparations and antenna (bacteria) 

chlorophyll~proteins (12-14). The reaction center contains 

the primary donor and the initial electron acceptors; all 

photochemistry begins with excitation of the reaction center 

chlorophy 11. The antenna (bacteria) chlorophyll proteins 

serve as photon absorbers which ultimately donate their 

energy to the reaction center via an energy transfer 

mechanism. 

The detailed organization of the bulk antenna and its 

relation to the reaction centers is a subject of controversy 

(particularly in green plants, where the existence of two types 

of reaction center, PSI and PSII, complicates the issue), and 

several models (15-17) have been advanced. However, the 

general characteristics of most reasonable models have some 

common features, The antenna proteins are dispersea throughout 

e membranes; the reaction center particles are associated 

with groups of antenna molecules. A reaction center plus its 

group of antenna molecules are designated a photosynthetic 

unit (PSU). The PSU also contains other molecula~ species 

(e.g. carotenoids). 
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Figure 2~6 displays a hypothetical structure for a 

photosynthetic membrane in green plants ~ the pebble mosaic 

modelp This model can be taken seriously in terms of general 

features, but it lacks at present specific structural ln~ 

formation about the geometrical arrangement of the most 

important components. Elucidation of information of this 

sort is one of the subjects of the chapters which follow. 

The reaction centers appear to nave some regular 0 entation 

with respect to the membrane surface (this is actually demonstrated in 

the results of Chapters 4 and 5). Figures 2~7 is an electron 

micrograph of the membrane surface; it see~s reasonable to asso~ 

ciate the photosynthetic units with the regular array of 

bumps or protuberances, 

C. Description of tl1e Antenna and Reaction Centers 

The bulk antenna is composed primarily of chlorophyll 

(green plants) or bacteriochlorophyll (bacteria) proteins. 

In general, bacteriochlorophyll-containing aggregates have 

their long wavelength absorption shifted further to the red, 

and have different redox potentials. The two chromophores 

do fill identical roles, and tl1 r similarities are more 

important than their differences, Chlorophyll is present 

in two forms, chlorophyll a (Chl a) and chlorophyll b (Chl b); 

bacteriochlorophyll exists in two analogous forms, BChl a and 

BChl b. 

The reaction center is distinguished from the antenna in 

that it contains the machinery for charge separation. The 

composition of the reaction center is much better known 
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XBI-729-4781 

2~6. ical representation of the pebble 

mosaic model in green (from reference 18), 



Figure 2-7. Electron 

regular surface 
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of an Rps. Viridis membrane showing 

(from refence 
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for bacteria than green plants (because more 11 enriched" 

preparations can be extracted), so we shall discuss only 

the bacterial reaction center in detail. 

The Rps. spheroides reaction center, for example, 

cont ns 4 BChl a molecules, 2 bacteriopheophytin (BPh), 

1 or 2 quinones, iron and pep des of 21, 24, and 28 kdaltons 

(5). Two of the BChl a molecules form P870, the special 

pair which is the primary donor in bacterial photosynthesis; 

they are contained in a protein moiety and presumably are 

rigidly fixed with respect to each other and to the membrane. 

The Fe and quinones are part of the acceptor X (see fig. 2-1), 

and are also organized in a protein structure. One of the 

BPh is presumably r, the function of the remaining BChl a and 

BPh molecules is unclear. 

It seems logical to suppose that the reaction center 

components have some particular, xed orientations with 

respect to one another so as to facilitate efficient charge 

separation. The elucidat the structure and inter-

ac ons thin the reaction center should therefore provide 

a key to the understanding of ho111 plants convert light 

energy to chemical energy; this knowledge could be profitably 

<tpplied to man 1 s attempts to utilize solar power. 
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2.3 Light Absorption and Electron Transfer in Photosynthesis 

A. Bacterial Systems 

We shall be concerned with the initial absorption of light 

and with electron transfer to the two earliest acceptors, I 

and X. 

The normal course of events in vivo is simply; 

PIX hv 
-+ P*IX 

+ ~ 
P IX 

The prlmary donor, P, is known to be a BChl dimer 

(BChl a or BChl b, depending upon the organism). The major 

optical bleaching upon absorption of light is at 870 nm for 

BChl a containing species (e.g. Rps. spheroides) and 960 

nm for BChl b containing species (e.g. Rps. viridis). 

Evidence for strong coupling of the two BChl molecules lS 

provided by EPR linewidth narrowing of~ 1//2 relative to 

the BChl monomer) ( 19) and absorption and circular dichroism 

studies, which show evidence of exciton splitting of the opti~ 

·cal transitions (20,21) Figures 2~8 and 2~9 display 

steady state light-induced EPR signal and optical spectra, 

respectively, from bacterial reaction centers. 

I is a transient acceptor which was first seen by 

Parsons et al. via nanosecond flash spectroscopy in Rps. 

spheroides reaction centers (22). These authors observed 

+ -
the P I (PF) state by blocking photochemistry via chemical 

reduction of the X acceptor with dithionite. Examination of 

the optical difference spectrum as a function of wavelengtn 

leads to the conclusion that I is a BPh molecule (23) 
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Figure 2-8. 
. + . 

Compar1.son of the EPR spectrum of BChl Wl th 

that of the oxidized primary donor of R. rubrum (from 

reference 19). 
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Figure 2-9. Reaction center complexes from Rps. sphe~oides, 

R-26 mutant, at room temperature. Absorption spectra (top) 

and CD spectra (bottom) foP samples either in the dark 

(solid curves) OP under cross-illumination by an actinic 

beam (from reference 20). 
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Picosecond studies sho~tJ that the PF state is generated 

even when photochemistry is not blocked. A value of - 200 ns 

+ ~ 
is obtained for the lifetime of the P I state; the formation 

of the radical palr occurs less than 10 ps after absorption 

of a photon by P870 (24,25). 

The X acceptor l.S believed to be an iron~quinone complex 

(FeQ); iron~ubiquinone in BChl a organisms, iron-menaquinone 

in BChl b organisms ( 2 6). Reduction of X is associated with 

optical changes and an EPR signal with a first derivative 

peaks at g = 1.82 (positive) and a higher~field negative 

peak ( 2 6). The precise nature of the QFe complex is unclear. 

A current hypothesis is that there are two quinones associated 

with &I iron, and that two stable paramagnetic species are formed; 

The two states appear to have 

different locations of the high-field EPR peak; g = 1.75 

= for QAF'eQB-' and g = 1.67 for QA-FeQB ln Rps. viridis (27). 

B. Photosys tern I 

We shall be concerned. with the three earliest acceptors 

PSI CA 1 ,A2 , P4 30) and the primary donor, P70 0. Both P700 

m1d P430 have been studied for many years and are well charac-

terized. A1 and A2 are more recent addi ons to fig. 2-2; 

1n ct, some of the work presented in Chapter 5 of this 

thesis has been important establishing their existence. 

A full discussion of and A
2 

will therefore be deferred to 

Chapter 5. 
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P700+ was first observed by Kok by optical methods (28) 

and by Commoner <2 9) via EPR. Figure 5-2 contains a steady-state 

EPR spectrum of P700+ (signal I) obtained under conditions 

of continuous illumination. Figure 2-10 is an optical 

difference spectrum of P700 obtained upon illumination. 

Analysis of signal I leads to the conclusion that P700+ 

is a Chl a dimer in which the unpaired electron is fully 

delocalized over the two constituent molecules. The peak 

to peak linewidth of signal I is 7.5 G ± 0.5 G, 

whereas that of a Chl a monomer is ~ 10 G ( 30). The reduct ion 

in linewidth can be explained by delocalization over more than 

one molecule; the equation for a dimer is (30) 

l>H dimer monomer 

This equation fits the observed linewidth narrowing within 

the limits of experimental error. 

Evidence for strong coupling between two or more Chl a 

molecules in the reaction center also is present in optical 

studies, particularly circular dichroism. Figure 2-10 

displays the absorption and circular dichroism spectra of 

PSI enriched preparations isolated from spinach chloroplasts. 

A typ:i.cal exciton circular dichroism bandshape is observed. 

P4 30, the rst stable photoreduced species, has been 

characterized in optical experiments by Ke and co-workers (31). 

Kinetic analyses have correlated P430 with two light-induced 
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Figure 2-10. Absorption (top) and circular dichroism 

(bottom) difference spectra of enriched P700 pa~ticle 

preparations isolated from spinach chloroplasts (from 

refer>ence 38), 
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EPR signals arising from centers A and B. The two EPR 

centers are distinguished by their different midpoint po­

tentia+s in redox titrations (585 mv and 540 mv, respectively) 

(32). 

The evidence to date suggests that this acceptor complex 

1s a bound ferredoxin species (33), Centers A and B appear to 

be 4Fe ~ 4S centers which are closely coupled (34), A more 

detailed discussion of the electrochemical and orientational 

properties of these species can be found in reference (34), 

C. Mechanism of Electron transfer 

Electron transfer in the early reactions of photosyn­

thesis appears to proceed via a quantum mechanical tunnelling 

process. This is suggested by the lack of a dependence of 

the transfer time on temperature for a wide range of tempera­

tures. The best known experimental results are those of 

Devault and Chance on electron transfer from cytochrome c 

550 to the primary donor in Chromatium vinosum (35). More 

recently, picosecond techniques have allowed measurement of 

the transfer rates of a variety of photosynthetic processes 

as a function of temperature (24,25). 

\ 

The Theoretical treatments by Hop ld (36) and Jortner (37) 

have attempted to predict the absolute rate and temperature 

dependence of electron transfer in Chromatium; Hopfield 

employed a model isomorphic to Forster's energy transfer 

theory, while Jortner used a non~adiabatic multiphonon 

formalism. Both theories successfully fit the experimental 
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data by varying adjustable parameters; these results are 

encouraging but are certainly far from convincing. 

The point here that is relevant to this thesis lS the 

non-adiabatic nature of the transfer. This implies, in 

particular, that the spin state of the electron is unperturbed 

by the transfer process, We shall assume the validity of 

this hypothesis in the ensuing chapters. 
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CHAPTER 3 

DIRECT CALCULATION OF THE ORIENTATIONAL DISTRIBUTION FUNCTION 
OF PARTIALLY ORDERED ENSEI1BLES FROM THE EPR LINESHAPE 

3.1 Introduction 

In a recent paper Hentschel et aZ. (1) presented a 

general method for determining the orientational distribution 

function of partially ordered ensembles of spin systems. The 

fundamental equation which is the starting point of such 

calculations can be written as 

I(H ) ::: 
0 

J P(aSy) I(a,S,y,H ) dadSdy 
0 

where P(aSy) is the probability that a member of the ensemble 

can be generated by an Euler rotation with angles a, B, and 

y. I(a,S,y,H ) is the EPR intensity at field position H for 
0 0 

a member of the ensemble specified by ( aSy), and I (H ) lS the 
0 

experimental intensity observed at H . 
0 

Hentschel et aZ., (1) follmving McBrierty, (2) began by 

expanding the orientational distribution function P(aSy) ln 

terms of the elements of the Wigner rotation matrices. 

where 

p 
£mn 

P( aSy) 

21T l 
J J 
0 ~l 

21T 
J D£ (a,S,y) P(aSy) dad9osSdy 
0 mn 
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is the ~mnth moment of the distribution function. When 

equation (3-2) is substituted into equation (3-l), the 

lineshape is expressed in terms of the moments P~mn· By 

lineshape fitting with the moments P~mn as adjustable 

parameters, it is possible to determine these moments. 

This method is advantageous two reasons: [1] If the 

distribution function lS of a suitable form, only a few terms 

in the expansion need be considered. For example , in an 

axl ly symmetric ensemble, P 0 is zero if m I 0 or n :/. 0, )\,mn 

and we can write 

P(a(3y) 
Q, 

::: 2: p£00D00(0,8,0) 
£ ( 3-3) 

- l: P£OOP£(cosS) 
Q, 

[2] If the LPR intensities I(a,S,y,H ), can be written (or 
0 

approximated in closed form, the integral of eq. (3-2) now 

consists of integrals over rotation mat x elements and some 

angular fun ons. These tegrals can sometimes be 

evaluated analytically, allowing one to calculate subspectra 

corresponding to the various moments P£mn' 

In practice, one may encounter distribution functions 

which do not rapidly converge when expanded in rotation matrix 

elements. In such a case, the existence of many of the mo-

ments P £mn would preclude a meaningful lineshape analysis. 

In addition, some EPR intensities have to be computed nu-

merically for each orientation, which makes consideration 



60 

[2] above irrelevant. In other words, it is not possible 

to calculate subspectra. 

Another difficulty arises when the relation between the 

molecular axes undergoing partial ordering and the principal 

magnetic axes is not known, (e.g. the relation between a 

partially oriented membrane and the principal magnetic axes 

of a membrane bound molecule). It is then best to pick trial 

distribution functions based on a model and attempt to fit the 

lineshape by treating the relation between axes as an adjustable 

parameter. 

For these reasons, there is a need for a different, 

albe equivalent, approach to determining distribution 

functions of partially ordered ensembles. Our approach is to 

reduce eq. (3-1) to a double integral over the magnetic 

variables 8 and ¢, specifying the orientation of the external 

magnetic field H in the principal magnetic axis system. The 
~0 

form of I is then 

I(H ) = !! D(8,¢) I(8,¢,H ) d8d¢ 
0 0 

wnere I(8,¢,H ) is the EPR intensity measured at eld 
0 

( 3-4) 

position II when the orientation of the external magnetic 
0 

eld is given by 8,¢. D(G,¢) is a density of states function, 

gl ng the probabi ty that the external magnetic field has 

angular orientation between 8 and 8+d8, and¢ and ¢+0.¢ in 

the principal magnetic axis system. 
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Rather than expanding D(8,~) in a series of moments, 

we proceed by calculating the form of D(8,~) directly from 

considerations of a physical model. In some cases, this 

process is trivial, e.g. a Gaussian distribution about an 

axis of symmetry yields 

( 3-5) 

where ~ is a disorder parameter. In the general case, 

expression of the distribution function in terms of 8 and 

~ is more difficult. 

We describe here a general method for calculating the 

density of states D(8,~). The partially ordered ensemble is 

generated by a set of distinct symmetry operations R1 ... Rn 

with arbitrary weighting functions g1 ... gn; the density 

of states D(e,~) is obtained as integrals over the weighting 

functions which can be evaluated numerically. This method lS 

appropriate for any functional form of the distribution 

function and for any type of magnetic Hamiltonian. It also 

explicitly provides for the determination of geometrical 

information (e.g. the relation between the molecular axes 

undergoing partial ordering and the magnetic axes) if this 

information is not known. In Chapter 4, the method is applied 

to the particular case of a polarized triplet signal observed 

in the photosynthetic bacterium Rhodopseudomonas viridis, 

whole cells of which have been aligned by magnetic field 

orientation. 
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3, 2 Theory 

A: General Form of the Distribution Function 

We first define a set of coordinate systems needed for 

the ensuing derivation. Our approach is essentially the same 

as that of Hentschel et aZ. (1) The only difference is that 

we do not define an s system equivalent to their "laboratory 

system" I,Jhich has the external magnetic field, H , along its 
~o 

z axis. We instead define a 11 laboratory axis system" equi~ 

valent to their n sample sys tern". In our "laboratory axis 

system", is a constant vector, 

The three coordinate systems are then-given as follows: 

its z axis defined by the direction of the external forces 

that have produced orientation in the sample. In magnetic 

field ignment, the alignment field H , is along the z axis. 
~a 

The orientation of various _members of the ensemble of spin 

sys terns J.s spe ed with respect to this fixed reference 

frame. 

2 ) The 

system ch the dipolar Hamiltonian X= S•D•S is diagonal. 

It is related by a xed set of Euler angles, a', S' andy', 

to the terme ate ax1s system. 

3) The intermediate axis s stem serves as a bridge between 

the laboratory frame and the magnetic axis system. One can 

think of the magnetic system as being enclos~d in a cube; the 

unit vectors of the intermediate axis system (x' ,:( ,z') lie 
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is applied to A I 

X ' y' and A I 
z ' the result lS 

x' R~ 1 (a ) -1 :;:; R
1 

Ca
1

)(1,0,0) 
n n 

~~ R~ 1 <a ) ~l ( 3~ 7) :;:; R
1 

Ca
1

)(0,1,0) n n 

z' R~ 1 (a ) -1 
:;:; R

1 
(a

1
)(0,0,1) 

n n 

The external magnetic field in the intermediate axis 

system, H', is now easily found to be 

Rearrangement usJ.ng equations (3-7) yields 

= R
1 

( a
1

) • , • R (a ) H n n ~o 

( 3-8) 

We denote the coordinates of H' by the following functions 

H' 
y 

a ) 
n 

H' = F (a
1 

, .. a) 
z z n 

(3-10) 

The externa1 magnetic field in the magnetic axls system, 

H11
, is then 

H" = A(a' ,S' ,y' )·H' ( 3-11) 

where a',, S 1 and y 1 are constants, perhaps w1known. 
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~ow we_can write down the EPR intensity at magnetic field H 
0 

directly as an integral over the variables a 1 a o 

n 

I(H ) 
0 

f 
a· 

n 

I(H 11 ,H 11 ,H 11 )g
1

Ca
1

) o o• g (a) x y z n n 

( 3-12) 

where N is a normalization constant, and H" and H" are x' y 

functions of a 1 ... an' a', ~~,andy'. 

The set of points {(a.) such that H112 + H112 + H" 2 = H 2
} 

l X y Z 0 

lS a two dimensional manifold in (n+l) space. We therefore 

transform to a new set of variables in whieh H" H" and H" 
X' y' Z 

are functions of only two variables 8 and ¢, This trans for-

mation involves mapping the old manifold into a two dimensional 

manifold in three space, 

This transformation can be accomplished by defining a 

new set of variables v1 o •• vn_ 2 to complement 6 and¢; e and 

¢ are defined to be the magnetic variables giving the location 

of H
0 

in the principal magne c axis system; v1 
v 2 must 
n-

be chosen to satisfy the formal requirements of the coordinate 

trans formation. We thus perform the transformation 

. •. a)+ (H ,cp,v1 ... v 2 ,e) n o n-. 

under the constraints 

H" = sinecos¢ 
X 

H" ;:: sines in¢ y (3-14) 

H" = cose z 
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and e and¢ are determined by the rotation angles a
1

, ... an' 

a', S', andy'. Application of the n~dimensional-change-of-

variable theorem to equation ( 3-12) yields an integral in 

terms of the new variables 

I(H ) 
0 

- l !! I[H"(8 .-h) H"(8 "') H11 (6 '"')]d8drh 
H X '"' ' y '"' ' z '"' 't' 6¢ 

n 
J IT g . [a . ( ¢, v

1 
• • • v 

2 
, 8 ) ] 

1 1 n-v i:: 1 
n-2 

X 

a 
n 

v 2' n-
( 3-15) 

where ( oal ... ani a¢, vl ... vn-2' e) is the Jacobian of the 

coordinate transformation. 

By inspection, we can set 

n 
D(8,¢) J rr g. [a. ( ¢' vl , , , v 2 ' 8) J 

i=l 1 1 · n-
vn-2 

X (3-16) 

Equation (3-16) is the key result of this Chapter. Tnis 

equation expresses the distribution function of H in any 
~o 

axis system that has a fixed relation to the intermediate axis 

system (e.g, Euler rotation angles ex', B', andy'). In par-

ticular, it gives the distribution of H 1n the intermediate 
-0 

axis system when ex' = 8 1 = y' = 0. For use in equation (3-4), 

one specifically needs D(G,¢) for the distribution of H in 
0 

the pr1n pal magnetic axis system. 



67 

B. Generalized Coordinate Transformation 

Our procedure will be to use equation (3~16) to calcu~ 

late a distribution function in the intermediate axis system, 

D'(e' ,~'),where e' and~~ specify the orientation of H ln 
~o 

the intermediate axis system, and then construct D(8,~) for 

the principal magnetic axls system by use of the Euler rotation 

matrix A(a', S', y 1 ). This approach is advantageous because 

one does not have to worry about the angles a', S', andy' 

when calculating D'Ce',¢'). Also, careful choice of an 

intermediate axis system simplifies the calculations. In 

particular, one should choose an intermediate axis system 

s~ch that the first rotation Ca1 ) is about the laboratory z 

axis. Then, from equation (3~9) 

H' 

0 0 

0 

1 

R
2

Ca
2

) ... R (a )H (3~17) n n o 

More exp1ici t1y 

where 

H' = s 
X 

e' cos¢ 1 

H' 
y 

n-1 . n-1 
= sine'sin¢' =-Fx slna1 + Fy cosa1 

H' = cos e' 
z 

R ( ) R ( )H (Fn~1 Fn-1 Fn~1) 
2 a 2 . .. a = , , n n ~o x y z 

n~1 n-l Fn-l and F , F , and are functions of a 2 ... a x y z n 

(3-18) 



The following transformation is convenient. 

al :::: fl(¢',vl ... v 2 'e, )-n-

a2 :::: vl 

{il 

.,. 

{il 

a :::: v 
n~l n-2 

a = f2 ( vl . , . v 2'8') n n-

where a is defined by solving the equation 
n 

cos e' = F <a z 2 
a ) 

n 

for an &!d setting a 2 ... an-l equal to v1 ... vn_ 2 . 

and 

Clearly, 

()a. 
l = 

v. 
J 

8a. 
J_ ::: 0 w 

2~i,;;;;;n-l 

l 'f. 1 

Then, from equation ( 3-18) 

. d SiD 8 I COS ¢ I 
--~~~-8-¢-1 --- = -sin8'sin¢ 1 

aal 
X---

{jcfl' 
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(3-20) 

(3-22) 

(3-23) 

( 3-2 4) 
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a a 
' 8' ' ,hi ' 8' ' ,hi ( 1) -s~n s~n~ = s~n s~n~ acp' ( 25) 

or 

(3-26) 

( 3-2 7) 

Using equations (3-22), (3-23), and (3-26), the Jacobian, 

J, simplifies to 

I Jl ( 3-2 8) 

which can be obtained from (3-18) by differentiating both 

sides with respect to 8 1
, 

-sine' = (3-29) 

or, 

I Ji ( 3- 30) 

with a 2 .•. an replaced by their transformed variables 

v1 · · · vn_ 2 ,f2 Cv1 ... vn_ 2 ,e'). Substitution into equation 

(3-16) yields 

X gn [ f 2 ( V l • • • V n- 2 ' 8 I ) J 

n-2 
n g.(v.) dv. 

i=l l l l 
( 3- 31) 
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If g 1 Ca 1 ) = 1, we have an axially symmetric distribution 

function [i.e. D' ( e', ¢.1 ) 1.s a function only of e 1 ]. If we 

have a randomly oriented system, it can be shown that 

D'(e' ,¢') =constant x sine' ( 3- 32) 

Clearly, one has some choice about which variables to 

set equal to the V. IS' which to set equal to ¢' and which to 
J_ 

set equal to a function of vl ... v n-2' and e'. In te lli gent 

dec 1.ons in this regard can be used to simplify equation 

(3-31). 

It 1.s now necessary to transform the distribution of H 
-0 

the intermediate axis system to one in the principal 

magnetic axis system. The Euler rotation matrix A(a' ,S' ,y') 

ln equation (3-ll) establishes the transformation from 8 1 and 

¢' to 8 and¢. Since A(a' ,S' ,y') is a constant rotation matrix, 

sinO/s 8' is the Jacobian for the transformation. Therefore 

where 

and 

speci 

D(O,¢) sine D, ( e, , ,~, , ) 
~~ sin 8' 't' 

-1 
El = cos (H"/H ) z 0 

the orientation of H 11 in the principal magnetic ax1.s 

system. H" H" and H 11 are found from equation ( 3-11). The 
X' y' Z 

angles a.', S', andy', which establish the relation between the 

intermediate axis system and the principal magnetic axis system 
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can be treated as adjustable parameters if they are not 

known, In conclusion, in this section, we have outlined a 

prescription for computing D(8,¢) for all values of 8 and ¢. 

3.3 Conclusion 

Our method of determining the orientational distribution 

function of a partially ordered system from the EPR lineshape 

is, in a sense, conceptually different from that of Hentschel 

et aZ. (l) This latter treatment makes no physical assumptions 

about the form of the distribution function other than that it 

can be conveniently expanded in the ldigner rotation matrix 

elements, and the effectiveness of their parametrization of 

the distribution function is thus dependent upon how rapidly 

the series of moments P~rnn converges. Furthermore, no explicit 

prescription is given for extracting geomet cal information 

(i.e. relation of the principal axis system to the preferred 

alignment direction), although presumably it would be possible 

to introduce parameters specifying these quantities. 

Our method is based on constructing a distribution 

function which from the first takes into account tne mathe­

matical nature of the ordering in the system, and the symmetry 

properties of the ensemble. The choice of fitting parameters 

can thus be tailored to one's physical intuition about the 

ordering of the system and not restricted to a rigidly 

prescribed expansion. In the problem described in Chapter 

4, for example, the distribution function was fit to a single 
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Gaussian parameter, ~' whereas expansion ln angular functions 

could require many terms (and thus require fitting many 

parameters) to insure convergence. We were also able to fit 

two geometrical parameters specifying the orientations of 

the normal to the membrane in the principal magnetic axis 

system of the triplet (see reference 3). The twas 

relatively sharp when compared to experimental error, i.e. 

only a small set of values of the three above parameters gave 

an adequate fit of the theoretical spectra to the experimental 

EPR ensity measured parallel and perpendicular to the 

alignment field. 

It was also possible to include in our calculation 

orientation-dependent intersystem crossing to the ground 

state singlet (see reference 3). This phenomenon makes a 

moment analysis very difficult, because analytical 11 subspectran 

cannot be easily worked out for this case. 

Our approach has particular appeal in applications to 

ological problems. In many simpler systems (e.g. crystals, 

1 uid crystals) high degrees of ordering are common, and 

ical distribution functions are trigonometric terms with 

little random variation; here, expansion in Wigner functions 

is straightforHard and fruitful. Our method would probably 

yield equivalent results, but would be unlikely to produce a 

significant saving in computer time or gain in conceptual 

understanding. 
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Biological systems, however, are comp x heterogeneous 

structures and often contain inhomogeneous ensembles which 

have small but significant statistical variations. Such 

variations blur the observation of orientation effects, 

making the oriented EPR spectra look more like a random spec­

trum and less like that of a single crystal. 

The resulting smaller and less sharp effects make it 

difficult to extract meaningful quantitative information 

about such systems. It is in this regard that we hope that 

our formulation will prove valuable. We have shown that 

it is possible to take into account the raftdom disorder that 

lS characteristic of biological ensembles and still extract 

sharp values for the relatively invariant properties of the 

ensemble members; we have also obtained a good estimate of 

the degree of disorder present. These results (3) were 

achieved with a modest amount of computer time, and from a 

conceptual viewpoint that is perhaps more intuitive and 

easily understandable than the Wigner rotation matrix 

formalism. 

The method described here can be applied to calculation 

of other properties of partially ordered ensembles. For 

example, optical properties like linear dichroism ca~ be 

determined if the distribution function can be modeled 

effectively. 
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CHAPTER 4 

STUDIES OF ORIENTED TRIPLET SIGNALS 

FROM PHOTOSYNTHETIC BACTERIA 

4.1 Introduction 

It is possible to block photochemistry in bacterial 

systems by chemically reducing the X (QFe) acceptor 

(see g. 2-1). If this is done, an illuminating flash 

+ -
of light will result in formation of the radical palr P I 

followed by a back reaction to the neutral state PI. It 

is observed that a substantial fraction of the primary 

donors, P, in such an experiment are prepared in a triplet 

state. 

The high triplet yield of the radical recombination is 

due to the time evolution of the spin wavefunction of the 

radical pair P+I- via the radical pair mechanism (RPM). At 

high field (i.e. 

·the RPM leads to 

gSH > hyperfine energies or g anisotropy) 
0 

S-T mixing exclusively, and thus populates 
0 

only the middle triplet energy level of P. 

EPR signals due to the above triplet species (known as 

the PR state) can be observed using a light modulation technique. 

1ne instrumental configuration for this experiment is shown 

in fig. 4-l. Light from either a tungsten lamp or a Spectra 

Physics argon-ion pumped dye laser lS modulated with a 33.5 Hz 

chopper. The resultant EPR signal is compared with a reference 
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signal (i.e. phase-sensitive detection is employed); thus, 

only the light-induced component of the signal is measured. 

Observation of the triplet signal with this technique 

ls straightforward and can provide information about the D 

and E values and intersystem crossing rates of the bacteria-

chlorophyll special pair, However, we are also interested ln 

obtaining geometrical information about the primary donor. 

As outlined in Chapter 1, the triplet state EPR spectrum is 

sensitive to the orientation of the applied field H with 
~o 

respect to the PMAS of the triplet, The generation of a 

partially ordered ensemble of triplets therefore results in 

an altered light-induced signal; use of the theory of 

Chapter 3 then allows us to obtain geometrical parameters 

from a lineshape analysis. 

Two types of experiments were performed. The first, 

on Bps. viridis and Rps. palustris., involves aligning whole 

cells of these bacte a in a 21 kg magnetic field. These 

experiments were conceived of and carried out by Dr. Harry 

Frank, and it is safe to say that both this and the preceding 

chapters would never have been w tten without his original 

insights and careful experimental work. The second, 

magnetophotoselection, uses polarized light to gen~rate a 

partially ordered population of triplet molecules. These 

experiments were done with Rps. spheroides reaction centers 

by Harry Frank and John Bolt. 



4.2 Randomly Ordered Triplet Spectra~Extraction 

of D, E, k /k , and k /k Values 
X Z y Z 

A. Derivation of Steady-State Population Levels 

as a Function of Orientation 
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The light-induced triplet signals from randomly ordered 

ensembles of Rps. viridis, Rps. paZustris, and Rps. spheroides, 

are shown in fig. 4-3. A comparison with the standard random 

triplet spectrum (fig, 1-l) reveals significant lineshape 

differences. These are due to the spin polarization of the 

state, a consequence of the unequal populating rates of 

the three triplet sublevels by the radical pair mechanism. 

\Ale employ a simple model which assumes light-induced popula-

tion of only the TS level (see eq. 1-41); this is consistent 

with the qualitative features of the signal polarization (1), 

The observed amplitude of the signal at a particular 

orientation (8,¢) depends upon the steady-state population 

fferences of the triplet sublevels. Following the 

approach of Levanon and Vega (2) and Winscom (3) we construct 

a set of differential equations for the populations 

and n ; 
y 

dn 

dt 
A 

-k·n + A 

n ' a 

( 4-1) 

where n = [na n 6 ny] describes the populations of the Ta, 

Ta, and T levels (see sec. 1-4), A represents the light-
~ y -

duced populating rates, and :k incorporates the effects of 

spin lattice relaxation and intersystem crossing on the 

population levels. 
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A 

The k matrix is given by 

k +W +W WaS w 
a aS ay ay 

A 

k ;;: 
WSa kS+WSy+WSa WSy (4-2) 

w WyB W +W +k ya . ya yB y 

where k , k 0 , and k are the intersystem crossing rates for 
a iJ Y 

the Ta' T8 , and Ty levels to the ground singlet, and the 

W .. are spin-lattice relaxation rates between the triplet 
l] 

sublevels. 

Because our experiments are performed at very low 

temperatures (11. 0°K), we expect spin~lattice relaxation to 

be very slow. This hypothesis is confirmed by two experimental 

observations; 

(1) A variation of the temperature in the range 10°-20° K 

produces no measurable effect on the signal amplitudes. 

(2) Substantial spin polarization (i.e. non-Boltzmann 

distribution of the ensemble) is observed; rapid, 

efficient spin-lattice relaxation would tend to 

eliminate polarization of the ensemble. 

We therefore set the W .. in eq. (4-2) equal to zero for all 
l] 

l,J. Furthermo't'e, our assumption concerning the populating 

rates requires that 

( 4-3) 

where w is the chopper frequency. 
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We therefore obtain a set of simplified differential 

equations which are separable; 

dn 
Ct :::: k n (a) 

dt Ct Ct 

dns 
:::: - ksns+ A sinwt (b) (4-4) dt- 0 

dn 
~ :::: k n (c) 
dt y y 

These are easily solved to g1ve steady-state solutions 

n = n = 0 a y 
(a) 

(b) 

where 
-1 cp =tan Cw/k

6
). The population differences are 

then 

A sin(wt+cp) 
= n - n = ~0~~~~~ 

6 y (w2+k~)l/2 
~n = n - n = ~n + 6 a -

( 4-6) 

Further analysis of this equation requires examination 

of the rate k
6

. The intersystem crossing rate for the TB 

level can be found from the rate constants k , k , and k 
X :{ Z 

for the zero-field levels and the coefficients c~ in the 

expanslon of the T B wavefunction (eq. 1-41). Felix and Weissman 

( 4) showed that the phase relations between 

coefficients are incoherent so that 

( 4-7) 
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A more detailed discussion of the intersystem crossing 

rates in photosynthetic bacteria will follow our analysis of 

the triplet lineshape. At this point, we establish only that 

the value of any level crossing rate for all three organisms 

is greater than 1000 sec-1 ; this follows from the monomer 

bacteriochlorophyll rates (the dimer rate can never be less 

than the slowest monomer rate) which exceed 1000 sec~l in all 

cases (5). -1 Then, kS > 1000 sec ~ w (33.5 Hz). We can 

therefore neglect win the denominator of eq. (4-6); we 

can also set 

then, we obtain 

A sinwt 
0 

(4-8) 

(4-9) 

The EPR intensity due to the ensemble members at (8,¢) 

is given by the average of ~n+ and ~n over the phase­

sensitive detection cycle, i.e. 

I 
~ 

2TI/w 
J ~n± Ssinwt dt 
0 

(4-10) 

where c is a proportionality constant which is uniform for 

all orientations. Thus, the contribution of each·orientational 

subspectrum is weighted by the inverse of the intersystem 

crossing rate for that orientation. 
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B. Computer Simulations of the Random Spectra 

Our fitting procedure determines four parameters of the 

polarized triplet spectrum; D, E, k /k , and k /k . We 
X Z y Z 

fit only the lineshape (i.e. the relative peak amplitudes) 

and scale the theoretical spectrum to the experimental one. 

The numerical method of generating the spectrum is summarized 

ln the flow chart in fig. 4-2. 

The method of fitting the parameters is as follows; 

+ 
(1) Set D so that the z- peaks lie at the correct field 

positions. 

+ + + 
(2) Set E so that the x-, Yi, andY; peaks lie at the correct 

field posi ons 

( 3) Adjust k /k , k /k so that the ratios Z/X, Z/Y 1 , and 
X Z y Z 

Z!Y 2 are within the error limits of the experimental 

+ + + 
ratios (see fig. 4-3 for labelling of the z-, x-, Yl 

+ 
and Y2 peaks). 

We found that division of the e and ¢ intervals (of 

n/2 each) into 50 points each is sufficient to generate a 

smooth and accurate spectrum. Note that all integrations 

need be performed only in the first quadrant (i.e., 8,</>~Tr/2) 

because the other quadrants contain identical subspectra. 

Table L+·-1 lists the experimental field positions and peak 

amplitude ratios for the triplet signals from 

Rps. viridis, Bps. paZustris, and Rps. spheroides. These 

numbers were obtained by locating the spectral maxima via a 

slow eld sweep and sitting on this field position, allowing 
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TABLE 4-1. EXPERIMENTAL AMPLITUDE RATIOS FOR THE RANDOM SPECTRA 

+ + + + z-, x-, Yi, and Y2 refer to amplitudes (in arbitrary units) 

of the triplet peaks as defined in the text. The errors 

represent a range of possible values for the ratios as 

deduced from the repeatability of amplitude measurements. 

z± ;x± + + z±;y± z-;y-
1 2 

Bps. viridis -L6 ± '1 5. 8 ± 1.0 5' 8 ± 1.0 

Bps. pa Z.us tris -2.1 ± .1 3. 6 ± ' 3 4.2 ± '4 

Rps. spheroides -2.4 ± '3 -LJ.' 0 ± ' 6 6.2 ± 1.5 



Read fixed 
input· data 

Do loops 
over Q 3 ~ 

Calculate 
triplet 
eigenvalues and 
eigenvectors 

Calculate k(8 
from eq. (4-7) 

Add in 
contribution 
or this 
subspectrum 

End do-loops 
over e, <P 

Calculate first 
derivative 
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Flow chart for computer program to.calculate 

raridom triplet EPR spectra, 
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the chart recorder pen to equilibrate. The necessity for 

this procedure is illustrated in fig 4-3(a), which displays 

the entire random spectra for the three organisms. These 

spectra are substantially distorted by sweep artifacts (note 

the large differences in the high- and low-field parts of the 

spectrum, which should be nearly.symmetric). A slow sweep 

of the entire spectrum is impractical as it would risk 

sample deterioration. 

Table 4-2 gives the calculated peak ratios and D, E, 

k lk , and k /k values for the three bacteria. The D and 
X Z y Z 

E values agree well with those determined by other groups. 

The k /k and k /k ratios are more interesting. Absolute 
X Z y Z 

relaxation rates have been measured for R. spheroides reaction 

centers by Clarke et aZ. (6) and Hoff (7). The reported rate 

constants (see table 4-2) differ drastically; this discrepancy 

has been the subject of considerable controversy; As can 

easily be seen by calculating ratios, our data supports Hoff's 

results, lying within the limits of his experimental error. 

Figure 4-3 displays the simulated random spectra for 

the three species. The qualitative features of the experimental 

spectra are reproduced withreasonable accuracy (a direct 

quantitative comparison must be done with peak amplitudes, be-

cause the experimental spectra are distorted). 



1.0 
00 

4-2. ZERO- SPLITTING PARAMETERS AND RELATIVE RATE CONSTANTS FOR INTERSYSTEM CROSSING 

The IDI lEI zero- ld sp tting parameters are given in cm-l s. k , k and k 
X y Z 

refer to rate constants for depopul of the triplet sp sublevels associated th 
+ + 

the x-, and z- let peaks as de ed in the text. The 

errors in the jDI and lEI values are calculated from the repeatability of the signal 

pos on determinations. The errors the rate constants amount to no more .5 

and arise the range acceptable k values which fit the random spectra. for Bps. 

spheroides a comp son present results with pub shed values lS glven. 

IDI lEI k :k :k 
X y z -- --

s . ri s 0.0153 ± 0.0002 0.0037 ± 0.0002 7.5:10.0:1.0 

. paZ us tris 0.0183 ± 0.0002 0.0035 ± 0.0002 9.0:6.0:1.0 

Bps. spheroides 0.0187 ± 0.0002 0.0031 ± 0.0002 8.3:7.1:1.0 

Reference 6 0.0187 ± 0.0002 0.0031 ± 0.0001 1.7:2.0:1,0 

Reference 7 0.01872± 0.0002 0.00312± 0.00002 6.4:5.7:1.0 
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Rps. sphaeroides roadband excitation 

3000 00 0 3300 3400 3500 

Magnetic field strength 
( gauss ) 

XBL 7812-13056 

Figure 4-3. (a) Experimental random triplet spectrum for 

Rps. spheroides determined in the magnetophotoselection 

experiment. 
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Rps. sphaeroides R~· 6 broadband excitation 

3000 3100 
M 

00 3300 3400 
gneti field strength 

( auss) 

Figure 4~3, (b) Simulated spectrum for 4~3(a). 

3500 

XBL 7811-13039 
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Rhodopseudomonos viridis 

a) Random 

Rhodopseudomonos po!ustris 

a) Random • 
z-

3000 3100 3200 3300 3400 

Magnetic field strength 
(gauss) 

89 

3500 

Figure 4-3. (c) Experimental random triplet spectra for 

Rps, vi1•idis and Rps. paZustris. 
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Rhodopseudomon~s viridis 

o) Random 
z-

Rhodopseudomonas pa!ustris 

a) 

3000 
- ' ·-. 

3100 3200 3300 3400 3500 
Magnetic field strength 

(gauss) 

Figure 4-3. (d) Simulated spectra for 4-3(c). 
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4.3 Experiments Using Magnetically Aligned ~~ole Cells of 

Rps. Viridis and Rps. palustris 

A. Introduction 

Suspension of a solution of whole cells of Rps. Viridis 

or Rps. palustris in a strong (21 k~) magnetic field, 

followed by freezing the aligned sample, creates a 

parti~lly ordered ensemble of special pair dimers. One 

can then perform the light modulated EPR experiment described 

above with the Zeeman field parallel to or perpendicular to 

the a gnment field direction; these directions correspond 

to sampling different partially ordered ensembles of polarized 

triplets. The resultant spectra can be simulated using the 

theory of Chapter 3; this procedure allows determination of 

the orientation of the bacteriochlorophyll special pair with 

respect to the membrane normal and the degree of ordering 

of the ensemble. 

The development of the theoretical model proceeds as 

follows; 

(1) Determination of D1 ( e I)' the distribution function for 

the Zeeman ld in the intermediate axis system. A 

parameter, 6, lS defined which gives a measure of the 

disorder of the ensemble. 

(2) Conversion of D'(6') to D(O,¢), the distribution function 

in the principal magnetic axis system of the triplet. 

This introduces the parameters X, Y , and z·, the 
n n n 

projection of the unit membrane normal on the triplet 
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magnetic axes. Note that since X 2 +Y 2 +Z 2 = 1 only two 
n n n ' 

of these parameters (we choose X and Z ) are independent. n n 

(3) Computer simulation of the relative peak amplitudes of 

the paral 1 and perpendicular spectra. The D, E, 

k /k , and k /k values are fixed by the random 
X Z y Z 

simulation; Xn' Zn' and ~ are treated as unknown 

parameters. A region of solution of X , Zn and ~ . n 

values satisfying the experimental results is obtained. 

B. Calculation of D1 ( e I) for the Magnetically Ordered 

Ensemble 

Figures 2-4 and 2-5 display electron micrographs of the 

Rps. Viridis and Rps. paZustris photosynthetic membranes. 

The symmetrical arrangement of these membranes with respect 

to ·the long axis of the cell suggest that an alignment of 

the cells in regular fashion would also align the membranes 

(and their constituent components). The analysis that follows 

is based on an incorporation of these assumptions into a 

mathematical model. 

The Rps. Viridis cell can be represented as a prolate 

ellipsoid. We shall for the moment ignore end effects (they 

are in stinguishable from another sort of imperfection ln 

ordering, as will be explained later), and consider the cell 

to be a perfect cylinder. Inside the cell are membranes 

rolled into concentric cylindrical sheets having ·a common 

axis with the long axis of the cell. Embedded in the mem-

branes are reaction center particles, which contain the 
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paramagnetic species that gives rise to the observed light 

induced triplet signal. We assume that the principal axis 

system of the triplet is fixed with respect to the reaction 

center particle. 

Linear dichroism (8) and photoselection (9) experiments 

suggest that there is a unique axis of the reaction center 

particle which is normal to the membrane surface. Our 

ensemble of intermediate axis systems is then a set of 

reaction center particles, randomly distributed in the 

cylindrical membrane structure, each of which has the 

designated axis normal to the membrane at that point. 

A 21 kg magnetic field orients the Rps. Viridis so 

that the long axis of the cylinder tends to lie in the 

plane normal to the orienting field. One can then freeze 

the sample and perform EPR experiments with the external 

magnetic field either parallel to, or perpendicular to, 

the alignment field H , 
~a 

C. Symmetry Operations in the Rps. Viridis Ensemble 

We choose the z' intermediate axis to be the unique 

axls of the reaction center particle. This choice fits 

the guideline of sec. II, because we assume that an un-

restricted rotation of the particle around this axis is 

possible. This operation is then our rst rotation, and we 

designate the angular variable as A. 
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Two further symmetry operations are possible in the 

laboratory frame; rotation of the cylindrical cell about its 

long axis, and its rotation around the direction of the 

alignment field. We arrange the laboratory coordinate 

system so that the z axis coincides with the alignment 

eld axis. Then the rotation about H corresponds to a 
-a 

rotation about the laboratory z axis; the magnitude of this 

rotation is specified by the angle, x, that the long axis of 

the cell makes with the laboratory y axis. Rotation about 

the cylinder axis is given by an angle, u, that a designated 

normal to the cylinder surface makes with H (see fig. 4-4). -a 

It remains only to take into account imperfections ln 

ordering. The major source of this is deviation of the cell 

surface from a perfect cylinder (resulting in curvature of 

the membranes). The effect of this curvature is to produce 

a non~-zero angle between the membrane normal and a normal to 

the long axis of the cell constructed in a plane defined by 

the membrane normal and the long axis [see fig. 4-4(b)], 

We designate this angle to be the wobble angle, w. 

We further assume that deviations of w from 0° are 

random fluctuations, and thus set the probability distri-

bution in w to be 

(4-ll) 



z 

HJ. 

X 

XBL 7811-4398 

Figure 4-4. (a) Axis system and symmetry opel'ation definitions. 

x, y and z define the laboratory axis system; x 1 , y' and z' 

the intermediate axis system; x", y" and z" the principal 

magnetic axis system. L is the long axis direction of the 

cell. x, v and A are rotations about the indicated axes. 

HA is the alignment field direction, and HU and H1 show the 

static EPR field dire~tion1 used in the present expedrr.ellts. 
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N 
I 

gure 4-4. (b) A section of the cylindrical membrane 

surface, The wobble angle, w, is defined as the .. angle between 

the membrane normal, z', and the perfect cylinder normal, N, 

(i.e. N l L). 
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where t. is the "disorder parameter" giving the standard 

deviation of w, and cosw is the proper angular volume element, 

corresponding to the arc length swept out by a vector in-

clined at angle w when the cell is rotated around its long 

axis. 

We introduce the "wobble" into the density of states 

calculation as a rotation around the axis perpendicular to 

the long axis of the cell. A careful choice of the order 

of operations then allows us to represent every symmetry 

operation as one rotation in the laboratory coordinate system 

(~about the z axis, w about the x axis, ~ about they axis, 

and x about the z axls. The final result for the external 

magnetic field in the intermediate axis system, H', is given 

by 

(4-12) 

D. H Parallel to H 
-o -a 

We setH = (0,0,1), i.e, along the alignment eld 
-0 

direction. Then, the rotation R(x) is unnecessary, since 

the projection of (0,0,1) on the)(', 9', and 2' axis is 

unaffected by a final rot on around the z axis, Following 

Chapter 3, we obtain 

al = A. + -<PI + f 3 <v1 ,e') 

a2 = w + vl (4-13) 

a3 ~ + £2(vl,8') 



From (4-12) without R(x), 

or 

r = cos e' = z cosv cosv
1 

cosv = cos8'/cosv
1 
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Evaluation of Clf /8v and substitution into equation (3-31) z 

results in 

D'(G')­
II 

cosv
1
=cose' 

f 
cosv

1
=l 

(1 - _c_o_s-=----8_1 
) 1/2 

cos v 1 

Substitut g for v
1

, we transform the above integral (see 

Appendix B) to 

Tr 

(4-15) 

D' < e' ) II = 
sine' 
-~ 

J hCv
1

)du 
0 

(4-16) 

where -1 l 2 . 2 1/2 
=COS [--(1 +COS 8 1 + COSU Sln 8 1 )] , 

2 

This integral has no singularities, and can be easily 

evaluated numerically. Figure 4-5 plots D
1
jC8') vs. 8' for 

several values of the disorder paramete~, 6. 

E. H Pe 
-0 

ndicular to H 
-a 

We now set H = (0,1,0) [a choice of (1,0,0) would be 
-0 

eq valent)]. Proceeding as before, we obtain 

0 
1 
0 

(4-17) 



This y lds 

or 

al ;: >.. -+ ~<PI + t
3

Cv
1

,v
2 
,e') · 

a2 ::: w -+ vl 

a3 ::: X + v2 

()1,4 ::: )l + f
2

Cv
1

,v
2

,e') 

From equation ( 39) 

F = cos8' = cos)lcoswcosx + sinwsinx z 
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(4-19) 

Evaluation of 3F /8)1, substitution into equation (3-31) and 
z 

evaluation of the v 2 integral yields (see Appendix C for 

details) 

D' ( 8 1 ) 
l 

= sine' 
N' ( 4-2 0) 

where 

(4-21) 

Figure 4-6 plots D1(8') vs. 8' for several values of~. 

F. Conversion to the Principal Magnetic Axis System 

·The computer calculations are performed by generating 

all possible subspectra, multiplying each one by the 

appropriate weighting factor, and adding the results. It 

is convenient to carry out the orientational averaging in the 

PMAS so as to facilitate calculation of subspectra. The 
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Figure 4-5. (a) Distribution function '(6')) for H 
-0 

parallel to H ; plot of (6') for several values of the 
-a 

disorder parameter 6 in radians. 

/. 
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4-5. (b) Distribution function ( 6')] for 

parallel to ; plot of v
1
; (6' )/sine' versus 6' for several 

values of the disorder parameter 6 in radians. Note that 

V
1
1 (6 1 )/sine must approach a constant as A approaches "' 

(~ = ~ corresponds t~ a' random sample), 1-' 
0 
1-' 
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4-6. (a) Distribution function [ v! ( e I )] for H 
~o 

perpendicular to ~a.; plot of V1 (6') versus e for several 

values of the disorder parameter~ in radians. 
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Figure 4-6. (b) Distribution function [V
1 

(6')] for ~0 
perpendicular to ~a; plot of vl (6')/sine versus e for 

several values of the disorder parameter ~ in radians. 

Note that V1 (6')/sin6 1 must approach a constant as~ 

'approaches®(~=~ corresponds to a random sample). 

1-' 
0 
tN 
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problem is then to determine the weight of a particular 

subspectrum which is generated when H has orientation ( e, cp) 
-o 

in the PMAS. 

This can be accomplished by locating the membrane 

normal (z' intermediate axis) in the PMAS. The angle 8 1 

(the distribution function has axial symmetry in the 

intermediate ax1s system) is simply the angle between H 
-0 

and n; -i.e. 

where n•H = X ·H + Y ·H + z •H . This equation displays 
~ -o n x n y n z 

the explicit dependence of the oriented spectra on the location 

of the membrane normal in the PMAS. 

As has already been mentioned, one quadrant contains 

1 of the triplet subspectra. However, the integration has 

to be carried out over all quadrants, because the H associated 
~o 

with a particular subspectrum will make different angles with 

n depending upon which quadrant it is in. The optimal 

solution to this problem (to save computer time) is to 

define D(8,¢) as a sum over 4 possible quadrants (the other 

4 are degenerate), i.e. 

D(8,¢) 
1 4 

= 4 2: 
i=l 

where 

H(l) = (I H I JH I l H I ) 
0 X y z 

H ( 2) = < -IHxl IH I I H I) 
0 y z 

H(3) = (I H) ~IH I I H I ) 
0 y z 

H(4) ·- (I H I IH I ~JH j) 
0 X y z 
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H, H, and H run from 0 to IH I· This technique allows the x y z -o 

e and¢ integrations to be restricted to 0 to n/2, and D'(8') 

need be calculated only for 8 1 ranging from 0 to n/2, 

Because D'(8') can always be written as sine' x f'(8'), 

we can rewrite eq. (4-23) as 

D(8,¢) 
l 4 l (') 

::: -4 L: f' [ I cos- ( n • H l ) I ] X sin e 
. l - -0 l= 

(4-24) 

It is the f' ( 6') which are used in the actual computer 

simulations. 

G. Computer Simulation of Parallel and Perpendicular 

Spectra 

Figure 4-7 is a flow chart for the computer routine 

used to simulate the parallel and perpendicular peak ratios. 

First, f
1
1 ( e') and fj_ ( e 1 ) were calculated in a separate 

program ln intervals of n/100 for values of~ beiween 0.1 

and 1.6 ln steps of 0.1. These values were read into the 

maln program, and ratios were calculated for all values of 

~. X and Z were varied between 0 and l; Z in steps of 0.05, n n n 

and 10 equally spaced values of X for each Z . 
n n 

H. Results 

For each set of parameters X , Z and ~' six ratios were 
n n 

calculated; Z/X, Z/Y 1 , ZIY 2 for both H II H and H 1 H . 
~o -a -o -a 

These ratios were compared with the experimental ones; an 

acceptable solution is one for which all six theoretical 

ratios lie within the limits of experimental error. Table 
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4-3 gives the experimental ratios with error limits for the 

Rps. viridis and Rps palustris signals. Experimental peak 

ratios were obtained by the same procedures used for the 

~noriented samples (see sec. 4.2). 

For both organisms, only one region of solution exists. 

This region can be approximately described by a rectangular 

parallelpiped in (X ,Z ,~) space. 
n n 

The limits so obtained for 

X ,Z and~ are listed in table 4-5, Plots of 6 curves, n n 

RT- RE, for solution and non-solution regions, are shown in 

fig. LJ-~8. 

The best fit to the experimental ratios is obtained with 

the values listed table 44 . Figure 4-9 portrays schematic 

representations of the orientation of the normal to the mem-

brane in the PMAS of the special pair dimer. 

Figure 4-10 compares the full theoretical and experimental 

spectra for random, parallel, and perpendicular orientations 

of s. Viridis and Rps. palustris. Despite 

the distorting sweep artifacts, it is obvious 

that the qualitative features of the experimental spectra 

are reproduced; the conjunction of this fact with the 

quantitative fit of the peak ratios provides an adequate 

fitting crite on for the solutions. 

I. Discussion 

The solutions obtained for X , Z and ~ for both Rps. n n 

vi dis and Rps. palustris fall within a reasonably narrow 

range of values. The region of solution was sharper for 



TABLE 4-3 EXPERIMENTAL AMPLITUDE RATIOS OF MAGNETICALLY 

ALIGNED BACTERIA 

Z±, X±, Yf andY~ refer to the amplitudes (in arbitrary 

units) of the triplet peaks as defined in section 4~2. 
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The errors represent the range of possible values for the 

ratios as deduced from the repeatability of the amplitude 

measurements, 

Rp_s. viri dis 

Parallel -1.2 ± .1 

Perpendicular -1.7 ± .1 

Rp s . pal us t ri s 

Parallel -1. 8 ± • 2 

Perpendicular -2.2 ± .1 

+ ± z-

-4.1 ± .7 

~9.6 ± 1.7 

~2.5 ± .2 

-4.7 ± .5 

2.5 ± .3 

9.6 ± 1.7 

2. 5 ± • 2 

6 .1 ± • 8 



TABLE 4~4 ORIENTATION PARAMETERS FOR THE PRIMARY DONORS 

IN PHOTOSYNTHETIC BACTERIA 
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X , Y and Z are the calculated projections of the x", y" 
n n n 

and z" principal magnetic axes onto the normal to the membrane. 

l. 7!::. is the distribution width (in radians) of the "wobble" 

angle, w. The values in parentheses are the angles between 

the normal to the membrane and the principal magnetic axes. 

-1 
They are related to the projections by eX = cos ·xn, etc. 

The values were determined by the best fit of the theoretical 

spectra to the experimental ratios given in Table 4~ 3. 

Rps. viridis 

Rps. pat us tris 

X 
n 

0.67(48°) 

0.69(46°) 

y 
n 

z 
n 

0.10(84°) 

0.25(76°) 

0 • lj. 0 

0.60 
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TABLE 4-5 BOUNDARY CONDITIONS FOR THE REGIONS OF SOLUTION 

The regions of solution are g1ven by a rectangular parallepiped, 

the dimensions of which are determined by X and Z which are 
n n 

the projections of the x" and z" magnetic axes onto the normal 

to the membrane, and~ which is the disorder parameter as 

defined in the text. No solution outside these regions fell 

within experimental error. 

Rps. vi ri dis 

Rps. paZustris 

0.65<X <0.75 
n 

0.5 <X <0.7 n 

O.O<Zn<O.l5 

o.o<z <o.3 
n 

0.3<~<0.5 

0.4<~<0.8 



Begin e,t/> ~---~--+----~ 
do loops 
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( f>) 

Generate weights for 
combinations of 
Z 2 A 

n 1: 

Calculate 
A. (X , Z , A , Hi) 
~ ")1 n 

for each peak 
position 

Add result into 

Ai (~» zn, t:.., Hi) 

End e , f do loop 

Calculate :ratios 
Ri(xn~zn, A) = 

A. (X ,z j 
~ n n Hi) 

A1(X ,z , 6 , n n H1) 

"V" 

I END 
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gure l!·-7. Flmv chart for the computer program to calculate 

the :r>atio of ak amplitudes for the EPR spectra from the 

magneti ly aligned whole cells of Rps. Viridis qnd Rps. 

pal us tris, 
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·· Rps. vi rid is 

b.= 
n = 0.1 

1.0 
w 

0:: 
! 0 J. ..... 

0::: J. 

.0 II 

II 

-2.0 

0.2 0.4 0.6 0.8 1.0 

XBL 7811-4376 

Figure 4~8. (a) Rhodopseudomonas Viridis plots of theoretical 

amplitude ratio minus experimental amplitude ratio, RT - RE' 

.. ', versus the projection, Xn, of the x" principal magnetic 

axes onto the normal to the membrane for Z = 0.10 and 
n 

A = 0.40, 



-2.0 ~ 

5 

Rps. palustris 

II 

II 

=0.6 
25 

112 

1.0 

XBL7811-4377 

gure 4-8. (b) Rhodopseudomonas paZustris plots of 

theoretical ratio minus experimental amplitude ratio, 

RT - RE, versus the projection, Xn, of the x". principal 

magnetic axes onto the normal to the membrane for Zn = 

0.25 and~= 0.60. 



-3.0 

.o 

ps. viridis 

D.:: 0.1 
n = 0.35 

II 
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XBL7811-4378 

Figure 4~8 (c). Rhodopseudomonas viridis plots of theoretical 

minus experimental amplitude ratios versus the projection, 

, of the x 11 principal magnetic axes onto the normal to the 

membrane for a typical non~solution region (i.e. one lying 

outside the experimental error). 
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.5 

Rps. palustris 
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.l 

.l 

II 
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114 

: XBL 7811-4379 

Fig~re 4-8 (d). Rhodopseudomonas palustris plots of theoretical 

minus experimental amplitude ratios versus the projection, Xn' 

the x 11 prin cip magnetic axes onto the normal to the 

membrane for• a typical non-solution region (i.e. one lying 

outsi the experimental error). 



yll xu 

Figure 4-9. Orientation of the triplet magnetic axes of the 

primary donors in Rhodopseudomonae viridis and Rhodopseudomonas 

paZustris sith respect to the cylindrical membrane surface. L 4 4 

, 6y, and 6 are given Table 4-5. 
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Rhodopseudomonas viridis 

b) Porollel b) Parol lei 

Perpendicular cl Perpei'ldiculor 

~----.~~~~~--~ 
3100 3200 3300 3400 3500 

Magnetic field strength 
3000 3100 3200 3300 3400 3500 

Magnetic field strength 
{gauss) (gauss) 

4~10, (a) Experimental (left) and theoretical (right) 

EPR spectra of the triplet from Rps, viridis for H parallel 
"'0 

and perpendicular to the alignment field H , 
. "'a 



b) Porol!el 

Perpendicular 

:3000 3100 3200 3300 3400 3500 

Magnetic field strength 
(gauss) 
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bl Porollel 

cl Perpend iculor 

3000 3100 3200 3300 3400 3500 
Magnetic field strength 

(gauss) 

Figure 4-10. (b) Same as 4-10 (a) for Rps. paZustris. 
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Viridis reflecting the higher degree of orientation (i.e. 

smaller ~) for this organism. We expect that as ~ becomes 

larger the uncertainty in the geometrical parameters would 

become greater, in the limit as ~ ~ oo, no geometrical 

information would be present at all. 

The above' results demonstrate the utility of the 

theory of orientational averaging developed in Chapter 3. 

Without this theory, the averaging would have been extremely 

difficult and time consuming, and might well have entailed 

approximations which would have made the final results more 

questionable. The success of the theory in this application 

suggests others of a similar nature, for example, orienting 

benzpyrene intercalated into DNA. 

4.4 Magnetophotoselection Studies on Bps. spheroides 

Reaction Centers 

A. Introduction 

The magnetophotoselection technique (MPS) has a purpose 

si lar to that of the magnetic field alignment of whole cells; 

creation of a partially ordered ensemble of special pair 

plet states. Here the ordering is accomplished by the use 

plane-polarized, monochromatic light; the ordering is with 

respect to the optical transition excited by the wavelength 

light used in the experiment. It is thus possible to lo­

cate this optical transition in the PMAS of the special pair 

bacteriochlorophyll dimer. 
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Previous workers have used MPS to obtain qualitative 

information from photosynthetic systems; these experiments were 

performed on chromatophores of R. rubrum (10). We employ a 

modification of the approach of sec. 4.3 to quantitatively 

determine the orientation of transition moments in the PMAS. 

Two transitions of Rps. spheroides are investigated; the 

special pair transition at 870 nm, and a bacteriopheophytin 

transition at 546 nm. Our results yield an approximate 

value for the angle between these transitions which is in 

agreement with the experiments of Vermeglio et aZ. using 

optical photoselection techniques (11). 

Triplet EPR signals were measured, using the light 

modulation technique described in sec. 4.1, with the Zeeman 

field parallel and perpendicular to the direction of polari~ 

zation of the light source. A broadband source was used to 

obtain a random spectrum (the plane polarization of such a 

source is irrelevant because of extensive energy transfer 

in the photosynthetic reaction center). Polarized, mono~ 

chromatic light was obtained by the use of interference 

filters and polarizers [see reference (12) for experimental 

details]. 

We proceed in a manner analogous to sec. 4.3, i.e. 

( l) Calculation of the distribution functions Dll ( 8, cp) 

and D1 (8,¢) for the MPS experiment. 

(2) Computer simulation of the relative peak heights (using 

the D, E, k /k , and k /k obtained in sec. 4.2) to 
X Z y Z 

determine P , P and Pz' the projections of the 
X y 

optical t.ransi tion moments onto the principal magnetic 

axes of the triplet. 
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B. Calculation of the Distribution Function 

The intermediate axis system z' axis can be taken to 

be the direction of the optical transition ~' the laboratory 

z axis is the direction of the electric field polarization, 

E. 

TI1e probability A that a molecule will be excited by 

polarized light is given by 

2 A = cos 8' 

re e' is the angle between ~ and E. For H parallel to 
-0 

E, the angle between H and~ (and thus z') is also 8 1 , we 
-0 -

refore obtain the axially symmetric distribution function 

(4-26) 

where sin8 1 is the appropriate angular volume element. 

The perpendicular distribution function is easily worked out 

to be 

We now need to convert to the PMAS of the triplet. This is 

done exact as 1n sec. 4-3, substituting 0 for n CO lS a 

unit vector the direction of ~) 

(4-28) 

= cos- 1 1P H + PH + PH I 
X X y y Z Z 

where P . P and P are the proJ'ections of 0 on the PMAS. 
X' y Z 
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As in 4.3, we need to average over all quadrants; the net 

result is 

cos 2 { 
4 

cos -ll Ul· H ( i)] I } n
11

<e,¢> ::: l: X sine (4-29) .. 
i=l -0 

. 2 { 
4 

cos -l, [ p. H ( i ) ] I } n
1 

c a, <P) ::: Sln E X sine (4-30) 
i=l -o 

where the H(i) are 
-o 

as ln eqs. (4-23). 

C. Results 

The computer simulation procedure is identical to that 

used in sec. 4-3, except that n
11 

(8,¢) and D
1 

(8,¢) are given 

by eqs. (4-29) and (4-30) respectively. A~so, no disorder 

parameter exists; the photoselection rule (A ~ cos 2
e) is 

taken to completely describe the ordering. We thus obtain 

values of P , P , and P (two of which are independent) for 
X y Z 

the 870 nm and 546 nm transition. 

The results are summarized in Tables 4-6 to 4-8. Table 

4-6 gives the experimental peak amplitude ratios for 

broadband and parallel and perpendicular spectra for the 

870 nm and 546 nm transitions. Table 4-7 lists the best 

solutions, while Table 4-8 gives the acceptable range of 

solutions [described by a rectangle in (P ,P ) space], 
X y 

Figure 4-ll displays the experimental and simulated 

parallel and perp~ndicular spectra for the two transitions. 

Figure 4-12 is a model of the orientations of the transition 

moments in the PMAS, calculated from the results in Table 4-2, 



4-6 EXPERI AL TRIPLET STATE SIGNAL Al'1PLITUDE RD:,TIOS 

s wer•e measured at the key ld posit cated fi 

4-lL The p rs of measured 
+ - . 

tensities (e.g. X and X ) were found to be equal 

e tal error. The tudes are therefore designated by a supers ± 

(e.g. ) • Numbers parentheses indicate the range of acceptable s calculated 

a xed for the uncertainty the expe ampl ude dete ation. 

Z± IX± + z±; ,.,_ 
LJ 

2 

882 nm 

l) parallel -0.28(-.35,-.22) 3.7(13.0,1.8) 2.2(4.3,1.3) 

2) di -6.0 (-8.2,-4.0) -3.6(-4.3,-3.1) 9.0(14.0,6.5) 

550 nm 

1) parallel -2.8(-3.6,-2.2) -8.8(-23.5 ,-5.1) 
~'I: 

2) -1.6(-2.4,-1.1 -3.2(-7.3,-1.8) 1.6(2.4,1.1) 

amplitude was approximate zero. ..... 
N 
N 
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TABLE 4-7 PROJECTION OF THE OPTICAL TRANSITION MOMENTS ONTO 

THE PRINCIPAL MAGNETIC AXES OF THE TRIPLET STATE 

The best fit of the calculated spectra to the experimental 

results are given by the projections P , P , and P . 
X y Z 

870 nm 

546 nm 

p 
X 

.99 

.405 

p 
_][ 

.014 

.405 

p 
z 

.14 

.82 
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TABLE 4~8 BOUNDARY CONDITIONS FOR THE RECTANGULAR REGION 

OF SOLUTION 

The reglons of solution are given by rectangles, the 

dimensions of which are determined by P and P which are 
X Z 

the projections of the transition moments onto the x and 

z principal magnetic axes, respectively . 

870 nm 

546 nm 

.98 < p < 1.00 
X 

. 33 < p < .63 
X 

. 10 < p < .16 z 

• 7 3 < p < • 85 
z 



. '' 

Rps. sphaeroides R-26 882nm excitation 

o) 

b) E.tH 

3000 3100 3200 3300 3400 

Magnetic field strength 
(gauss) 

3500 

XBL 7811 ·13057 

Figure 4-11. (a) Experimental triplet state spectra of 

Rhodopseudomonas sphael'oides R-26 generated by 882 nm 

polarized light, taken with E II H and E J. H. The light-

induced free radical signal at g " 2.0 has been omitted.· . 
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b) 

3000 

Rps. sphoeroides R-26 

E II H 

X 

ElH 

3100 3200 
Magnetic field strength 

(gauss) 

3500 

XBL7811-13041 

Figure 4-11 o (b) Computer simulated 882 nm excited triplet 

state spectra of Rhodopscudomonas sphael'oides R-26 o The 

spectra were calculated assuming a) ~ II ~, and b) E l Ho 

The parameters used to calculate these spectra are given 

i.n Table 4-2 and 4-70 All computer simulations are 

normalized to the 
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Rps. sphoeroides R-26 550nm excitation 

a) 

[ 

b) 

3000 

nH -

E.1H 

3100 3200 3300 3400 3500 

Magnetic field strength 
(gauss ) 

Figure 4-lL (c) E~~~rime~~~~-;riplet stateX:Lp
7

:~
2

~~:
8 

of l 
Rhodopseudomonas sphaeroides R-26 generated by 550 nm polarized 

light. Spectra taken with ~ II ~ {top) and E 1 H (bottom). 

The light induced free radical signal at g = 2.0 has been 

omitted. 

127 



0) E 11 H -

b) 

x- x+ 
__ _:j ___ - __ _j____________ __ --~-

3000 3100 3200 3300 3400 3500 
Magnetic field strength 

(gauss) 
XBUSII-13040 

Figure 4-llo (d) Computer simulated 550 nm excited triplet 

state spectra of Rhodopseudomonas sphaoroides. The spectra 

were calculated assuming a) f II H and b) E 1 H. The parameters 

used to calculate these spectra are given in Table 4-2 and 4-7. 
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6nm ( BPheo} 

870nm ( BChl )2 
-~""-----~ X 

gure 4-12. The orientation of the transition moments at 

446 nm and 870 nm with respect to the principal magnetic 

axis system (x,y,z) of the triplet state, The angles were 

calculated from the projections given in Table 4-7 us g 

the relations e = arccos P , etc. 
X X 
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D. Discussion 

1. 870 nm transition 

This transition believed to be a pure bacteriochlorophyll 

special pair Q transition (11). Our results indicate that it y 

1 s directly along the x magnetic axis of the triplet. Thus) 

any model constructed for the special pair dimer should have 

one of the exciton components of the Q transi on along the 
y 

X principal magnetic axls. 

The projections for this simulation appear to have a 

very high degree of precision; this is due to the peculiar 

+ 
shape of the signal, in which the X~ peaks are positive. Only 

a very large P value (P > .98) is able to generate such a 
X X 

spectrum. 

2. 546 nm transition 

At low temperatures the two bacteriopheophytin transi~ 

s (associated with two different molecules) are resolved 

at 530 nm and 546 nm (11 ). The exciting light is centered 

at 550 nm and so excites primarily the latter. The energy 

is then transferred to the spe al palr dimer where it pro-

duces the t plet PR state in the usual manner. In the 

calculat , we assume that the geometry of the bacteriopheo~ 

phytin is rigidly fixed with respect to the dimer. 

The projections for this transition show a much wider 

r•ange of solution, this is due to the poor signal~to~noise 

r•atio achieved in the experiment. One might do better by 

uslng a laser excitation source. 
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The calculation of the angle between the two transitions 

is straightforward and agrees well with the value of 

Vermeglio et aZ. (59° vs. 60°). However, the uncertainty in 

the P value for the 546 nm transition makes this calculation 
X 

of dubious value. 

4.5 Conclusion 

The studies this Chapter have yielded a wealth of 

magnetic and geometrical information concerning the primary 

donor in bacterial photosynthesis. However, the geometrical 

information is fragmented; we cannot, from these results 

alone, locate the two bacteriochlorophyll molecules in the 

membrane, or determine their orientations with respect to 

other species. 

The key to a unified picture of the reaction center will 

be the combining of various spectroscopic techniques. The 

present work thus needs to be supplemented by linear dichroism, 

absorption, circular dichroism and ODMR studies; the data from 

such studies needs to be analyzed carefully and quantitatively, 

as is done in this Chapter. Work in this direction is 

currently in progress, and I do not believe that it is too 

optimistic to expect to have a picture of this sort in a 

few years. 
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CHAPTER 5 

DEVELOPMENT OF ELECTRON SPIN POLARIZATION 

IN PHOTOSYNTHETIC ELECTRON TRANSFER 

BY THE RADICAL PAIR MECHANISM 

5.1 Introduction 
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For a number of years, P430 was thought to be the 

primary acceptor in PSI (1). The first evidence that an 

earlier acceptor might exist was obtained by Macintosh 

and Bolton (2), who observed a reversible light-induced EPR 

signal at low temperature when centers A and B were 

chemically reduced. This signal has g values of 2.08, 1.92, 

and 1. 76; the species giving rise to it has been labelled "X". 

Redox ti trations indicate that the midpoint potential of X is 

more negative than that of P430, as would be expected if 

its place in the electron transport chain is intermediate 

between P430 and P700. 

Somewhat later, spin polarization was first detected in 

signals from broken spinach chloroplasts by ~lankenship et aZ. 

(4). The polarized signal appears as a fast kinetic component 

in measurements of the time dependence of EPR Signal I using a 

1 mHz phase sensitive detec on system. Typical kinetic 

traces of the EPR intensity versus time are shown in fig. 5-l. 

Additional information was obtained by the discovery 

of a "flow effect". In the original experiments, a suspension 

of chloroplasts was circulated through the EPR cell by a pump 

to avoid decomposing the samples. It was observed that the 
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kine c traces at certain field positions altered dramatically 

when flow was stopped (5)~ a typical pair of flow and no~ 

flow traces is shown in fig. 5-l. Profiles of the flow and 

no-flow spectra as a function of field position are shown 

in fig. 5-2. 

The flow effect can be accounted for by the orientation of 

the disk-shaped chloroplasts in a velocity gradient. PSI 

particles or ChloreZZa pyrenoidosa, which do not orient in 

the ow gradient (their morphology is roughly isotropic), 

yield polarized spectra similar to fig. 5-2NF (i.e., no-

flmv) under both flow and no-flow conditions. This result 

suggests that the altered lineshape is due to some anisotropic 

paramagne c species which is rigidly bound in the thylakoid 

membrane and which influences the spin polarization. 

A series of experiments were done (5) from which it was 

inferred that the polarized signal arises from a 

. + . + 
non~Boltzmann populatlon of P700 radlcals. However, P700 

is isotropic. It was therefore hypothesized that the flow 

effect is a consequence of magnetic interaction of P700+ 

with an anisotropic acceptor species. The radical palr 

mechanism provides a theoretical model in which such an 

interaction could occur. 

It is e purpose of this Chapter to develop a 

quantitative model for the generation of the spin polarized 

signal due to PSI which reproduces the flow and no-flow 

results described above. We proceed in the following 



----· 0 

--- -----·---

200 

No 
flow 

Flow 

400 
Time, JLsec 

XB L 769-9594 
Figure 5-lo Kinetic traces of the EPR signal from spinach 

chloroplastso The signal under flowing (bottom) and non­

flowing (top) conditions for a single field position are 

contrasted (from reference SL 
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3380 

auss 
3388 

Figure 5~2. EPR spectra of the emission signal and signal I 

in spinach c;hloroplasts under' flow and no flow conditions. 

Signal I: c., flot-Jing sample and o, non-flowing samplEL 

Polarized signal: "", flowing sample and"', non-flowing sample. 

Flow rate, 0.6 ml/min; microwave power, 25 mW; 4G modulation 

amplitude; chlorophyll content, 2.5 mg/ml. Each point in 

. the emission signal spectrum is the average of 200 events 

obtained with a 10 lJSec time constant. The amplitude of 

Signal I is multiplied by 5 for the purpose of display (from 

re fe renee 5). 
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stepwise fashion: 

(1) Formulation of a theoretical model for the evaluation of 

spin polarization in membrane~bound radicals, including 

the effects of g tensor anisotropy. 

(2) Construction of the possible sequences of electron 

transfer events in PSI. 

(3) Calculation of the predicted spin polarized signals 

from the hypotheses listed in (2) using the theory 

developed in (1). 

(4) Comparison of the predictions of (3) with the 

experimental results. This results in the confirmation 

of a particular hypothesis, i.e. that the sequence of 

acceptors is 

where A2 ls X, and A~ is an isotropic molecular spec1es 

. + . 
w1th a g value close to that of P700 , poss1bly a 

Chl an1.on. 

The existence of A
1 

was suggested by the optical ex~ 

periments of Sauer et al. (6) These authors monitored the 

kinetics of reduction of P700+ following flash excitation 

in reduced PSI membrane fragments, and found evidence for the 

existence of two acceptors preceding ferredoxins A and B. 

Further con rmation of this work has been obtained by Ke 

and Shuvalov (7), who measured a light~induced difference 

spectrum attributable to A
1

. The resultant spectrum is 

consistent with the hypothesis that A1 is a chlorophyll species. 
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5.2 The Radical Pair Mechanism 

A. Introduction to Spin Polarization 

1 Consider an ensemble E of identical spin 2 systems in 

a high magnetic field H . The members of E are aligned 
-0 

either parallel or antiparallel to H , i.e. the spin 
-0 

wavefunction is either Ia> or IS>. 
If the spin system is at thermodynamic equilibrium, 

the fraction of ensemble members in the a state as compared 

to the S state is given by the Boltzmann factor 

where Ea and E
8 

are the energies of the a and S states, 

respectively. The EPR intensity is proportional to the 

population difference, na- ns. 

However, if it is possible (e.g. in fast kinetic 

(5-1) 

e riments) to observe the ensemble prior to the establishment 

of eq librium, one may detect a non-Boltzmann population of 

spin states. Such an ensemble is s d to be spin polarized; 

the polarization, p, is proportional to the value 

n 
Ct 

p is defined to be +1 

when all spins are in the a state, and -1 when all spins 

are in the S state. 

The above defini on applies strictly only to non-

teracting ensembles of spin } particles. It is possible 

to extend the definition to mor'e complex systems. In the 
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general case, one needs to look at the equilibrium populations 

of the set of spin sublevels, and de a polarized en~ 

semble in terms of deviations from these equilibrium populations. 

We now consider a specialized example; an interacting two-

spin system which at some future time will undergo a non­

adiabatic separation to two separate spin~ systems. 

Let the wavefunction of the coupled system be ~; this 

will be a linear combination of the direct product states, 

a ( 1 ) S ( 1) , a ( 1 ) S ( 2 ) , a ( 2 ) S ( 1 ) , an d. a ( 2 ) 13 ( 2 ) , The non- a di ab at i c 

decoupling will separate ~ into two non-correlated states 

~land ~ 2 , where ~l = a(l) or S(l), and ~ 2 = a(2) or 6(2). 

The net result is two non~interacting ensembles E
1 

and E
2

, 

with populations nla' n
16

, n 2 a' and n 26 . 

We can then calculate the polarizations p 1 and p 2 of 

E1 and E2 from the above formula, e.g. p1 = n 1a ~ n 2a. The 

probability of producing an a(l) or S(l) state from the 

coupled system is proportional to the expectation value of the 

z component of spin of electron l, Slz' on ~; we can thus 

write (assuming that p1 + p 2 = 0) 

Pl = 2 <~l 8 1zl~> = <~l 8 1z~s2zl~> 

P2 = 2<~1s2zl~> = -pl 

where p 1 and p2 have been normalized so as to fall between 

+l and -1. 

The time dependence of p is found by solving the time 

dependent Schroedinger equation for ~(t) and substituting 

into eq. (5-2). The experimental value of the polarization 
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is determined by integrating over time in accordance with 

the experimental conditions. 

B. The Genesis of Radical Pair Theory 

The radical pair mechanism was originally proposed to 

explain the anamolous spin polarization that develops in 

radicals observed in solution after creation of a radical 

p r or after a spin selective reaction. Eventually the 

radical p r constituents diffuse av-Jay from one another to 

1 ce e two non interacting spin 2 ensembles described 

ln A; these ensembles were sometimes found to be spin polarized, 

with the polarization dependent upon the hyperfine interac-

tions and g values of the two radical species. 

The r•st adequate quantitative explanation of this 

phenomenon was given by Adrian (8), who calculated ~(t) for 

the radical pair by including the effects of radical-radical 

diffusion on the magnetic interactions in a simple manner 

(the e ange interac on was taken to be a step function). 

He concluded that it the difference in magnetic en-

vironments (e.g. g tensor and hyperfine values), which leads 

to spin pola zation, and that it is necessary for the 

cals to diffuse apart and then return for substantial 

polarization (rel ve to the equilibrium population 

fference) to develop. 
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The above problem is difficult because three~dimensional 

diffusive motion is quite complex. More sophisticated models 

were therefore developed by Freed (stochastic-Liouville 

approach) (9} and Adrian (vector model) (10) which are 

qualitatively simi to Adrian's original formulation both 

conceptually and in predicted results, but treat the 

diffusive motion more rigorously. 

We shall be concerned with a simpler problem than the 

one posed above; a system of membrane-bound radicals where the 

non-adiabatic separation occurs via electron transfer. For 

this case, Adrian's original theory is an accurate represen-

tation, and it remains only to incorporate physical charac-

teristics relevant to the membrane bound systems (e.g. 

anisotropy, radical lifetimes). In the sections that 

follow we review Adrian's theory from the context of the 

above physical system, and develop a set of appropriate 

spin polarization equations. 

C. Development of the Spin Polarization Equations 

As a paradigmatic example we treat in detail a simpli ed 

two spin system. The system contains two molecules, a donor 

(D) and an acceptor (A), initially in their ground states, 

and rigidly fixed with respect to one another. As a first 

step Dis excited to its first excited state, D*, by absorp-

. tion of a photon. . + -The electron transfer reaction .D~:A -+ D A 

then occurs; this produces a radical pair state. At some 
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time T the electron leaves A- for a further acceptor; the 

final result is an ensemble of D+ molecules in either an a or 

6 state, We proceed to calculate the time-dependent polari-

zation for this enseroole by determining the time-dependent 

coupled spin wave function ~(t) and substituting into eq. 5-2 

The spin Hamiltonian for D* is given by 

XD~ = gDSH
0

Sz + J S S + LA~D)M~D)S 
"" D lz 2z 1 lZ z 

(5-3) 

where we have neglected the dipolar interaction and assumed 

A (D) 
that gD' JD' and are isotropic. The pure singlet 

1 
IS> := -~ [a(l)8(2) - a(2)S(l)] 

12 

1s an eigenstate of this Hamiltonian; because of the selection 

rule /J.S = 0 for an electronic transition, the excitation 

of D to D* prepares the system in a singlet state. 

After electron transfer we have a new magnetic 

Hamiltonian, the radical pair Hamil toni an; 

= gDSH S
1 

+ gASH s2 + [LA~D)M~D)]S. 
0 .Z 0 Z l lZ lZ 

(5-4) 

where gA 5 A (A) and J RP are isotropic but may have different 

(D) 
values from gD' ADi , and JD. In particular, the exchange 

interaction will be greatly reduced in the radical pair 

owing to decreased orbital overlap. 
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singlet IS> is not an eigenfunction of 3CRP. The correct 

eigenfunctions can be determined by splitting XRP into two 

parts; 

X (S - s ) 
Dz Az 

(5-5) 

where we have now labelled the spin operators by SDz and SAz 

(corresponding to the electron on D and A, respectively) and 

s ;;;; s + s 
z Dz Az 

XD is diagonal in the basis {S,T
0

,T+1 ,T_ 1 }. x0 D 

generates one off-diagonal matrix element, 

;;;; 
HAD 

The Hamiltonian matrix is thus 

s T T+l T 
-1 0 

s -J HAD 0 0 

T HAD J 0 0 

XRP 
0 ;;;; 

T+l 0 0 J+gSH 0 

T -1 0 0 0 J-gSH 

(5-6) 

(5-7) 
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where g = (gA + gD)/2, and we have omitted the diagonal 

h~perfine energies (these will be added later in accordance 

with sec, 1~3), 

The four eigenstates are obt ned by diagonalizing 

JCRP: 

(5~8) 

[(w+J)/2wJ 112 Js> l/2 
¢+ = + [(w~J)/2w] IT > E+ = w 

0 

¢ = [ ( w- J") I 2 w J 112 I S > - [(J+w)/2w]l/21To> E =-w 

where w = 1 H2 + J.2 )1/2 
' AD RP ' 

Calculation of ~(t) is now straightforward, We first 

determine ~(0); 

~(0) = IS>= <¢+JS>J¢+> + <¢_JS>I¢_> 

because <¢
1

\S> = <¢
2 

JS> = 0, We can write 

(5-9) 

~(t) =I c.(t)¢. (5-10) 
0 l l 

l 

Now, J~p is not expli tly time dependent; the wave­

function evolves with time because it was prepared in a 

non-stationary state in the radical pair basis, For such a 
i 

system the solution of the time dependent Schroedinger 

equation for the coefficients c. (t) is trivial; 
l 

JC~ (5-ll) 



lJ;.c.(t) 
l. l. 

Multiplying by lJ;. and integrating; 
J 

ac. 
ih.--2 = E. at J 

c.(t) t 

in c. ( 0) = f 
J 0 

E. 
It dt 

-iE. t/11 
c.(t) = c.(O)e J 

J J 

Subs t i t uti n g into e q . ( 5 -1 0 ) , and us in g e q . ( 5 - 9 ) to 

determine the c.(O), 
J 

lj!(t) = c+(O)e 
E+t/h -iE t/h 

I<P+> +c_(O)e - I<P_> 
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(5-12) 

(5-13) 

where E+ = w, E = -w, c+(O) = <¢+IS>, and c_(O) = <<P_IS>. 

The spin polarization, p(t), can now be found by 

substituting eq. (5-13) into eq. (5-2 ) and evaluating this. 

The resultant expression lS 

p(t) = 
2HAD•J . 2 

2 
Sl.n Wt ( 5-14) 

w 

We will wish to consider a more general case in which 

lj!(O) is given, not by IS>, but by some linear combination 

cs(O)IS> + cT(O)IT
0

>. The development proceeds as above 

except that c+(O) and c (0) are now given by 
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(5-15) 

The spin polarization is then 

D. Modi on of the Radical P r Mechanism to Include 

Tensor Anisotropy 

Inclusion of g tensor anisotropy in eq, ( 5- 4) is 

straightforward, we rewrite the radical pair Hamiltonian as 

(5-17) 

where all the terms retain identical meanings as ln 

eq. (5-4), but ~A and ~Dare now tensor quantities. 

Solut s to this Hamiltonian are obtained by diagonalizing 

the~ JfRP matrix in the basis set {S,T
0

,T+
1

,T_
1

}. In Appendix 

D, we evaluate the matrix elements of JfRP and show that 

(1) The f:3pins are quantized in the direction of the effective 

eld, h' = H ·(~ + ~ ) 
~o A D 

(2) For small values of g anisotropy [i.e. max (I g .. - gl) 
ll 

< g] the <SIX IT > matrix elements are negligible. RP ± 
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(3) HAD= <SjXRPITo> = ~ S~oe(~A- ~D)$2-

+ ±_-1: [A~D)M~D)] 
2 . ~ ~z 

~ 

where z is a unit vector in the direction of h', and m~A) ~s 
l.Z 

the z component of the nuclear spin of the ith nucleus on 

molecule D. Note that the off-diagonal matrix element is 

now orientation dependent. 

From points (1) and (2) we can adopt an S-T basis set, 
0 

with the a and 8 spin functions quantized 1.n the direction 

of z. 
The Hamiltonian matrix is then 

This is identical to the matrix obtained from eq. (5-4), 

except that HAD is given by eq. (5-18). The expressions 

derived previously for the eigenvectors (eq. 5-8), eigenvalues 

(5-8), and spin polarization (eq. 5-16) can therefore be 

utilized as they are. In the following section we apply 

these results to calculate the spin polarization for membrane-

bound radicals. 
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5. 3 CIDEP of Membrane-Bound Radicals 

A. General Theory 

The radical p r mechanism described in Chapter 1 has 

been applied primarily to diffusive systems. In these 

systems, it is necessary for the two radicals to diffuse 

apart and then re-encounter one another in order for 

appreciable polarization to develop. 

2 To simplify the ensuing calculations, we set ics(O)I = l, 
2 

icT(O)! = 0, corresponding to the assumption of creation of 

the radical p r from an initial singlet state (see the 

Discussion for the justification of this assumption ln 

Photosystem I). The results which follow could easily be 

generalized by retaining the terms dependent upon c
5

CO) 

and cT(O). 

The simplified expression for the polarization during 

a time interval t of constant J is, from eq. (5-14) 

(5-20) 

This expression will be larger than the thermal 

j)Qpulation difference (- 10.:. 3 at room temperature) only if 

HAD and J are of comparable magnitude for a time interval 

~ w- 1 Because w- 1 is typically of the order of 10- 9 sec, 

and the diffusion correlation time is sec, this 

condition is ordinarily not satisfied for freely diffusing 

radicals in solution, and the net polarization upon initial 

separation of the radicals is negli~ible. After a re-encounter, 
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other terms in eq, (5~16) become significant, and the 

polarization develops as described by Adrian's model. 

We consider here a system in which the radical species 

are bound to a membrane at fixed sites. A radical pair is 

produced by transfer of an electron from a donor molecule 

(D) to an initial acceptor CA
1

). The electron is then 

transferred to successive acceptors in a fixed sequence. 

We shall assume that all of the electron transfers are 

irreversible. This assumption is not necessary, but it 

simplifies the calculations considerably. (It is a good 

assumption in Photosystem I, since the electron transfer 

has a quantum efficiency greater than 90%) (17). Then, 

transfer away of an electron is analogous to diffusion. 

However, there can be no "return 11 of the radical p r, and the 

development of polarization has an origin distinct from that 

of diffusive systems. 

The development of spin polarization on D+ is a 

consequence of the time evolution of the coupled spin 

wavefunctions of the unp + -red electrons on D and A , 
n 

This process will change the polarization with time as 

long as there is a large enough exchange coupling, J , 
n 

+ between D and A-. 
n 

We therefore must consider the inter-

action of all radical pairs formed by successive electron 

transfer in which J is appreciable. 
n 

We will assume that J is zero for n > 3, because 
n 

+ 
A

3 
., , An are presumably too distant from D to have a 



significant exchange coupling. Then, there are two 

reasonable models for the development of polarization, 

The one-site model assumes that J
2 

is also negligible, 

and that only the interaction D+ - A- need be considered, 
l 

The two-site model assumes that both J 1 and J 2 are signi-

ficant, and that the interaction D+ - A; must be included 

in a calculation of the spin polarization. 

B, One Site Model 
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An acceptor radical A- lS characterized by a lifetime, 
n 

T which determines the duration of the existence of the n' 

radical pair D+ - A-, (This is in fact the case in Photo­
n 

+ system I, where P700 has a lifetime of 30 msec which is 

much longer than the lifetimes of either A~ or A;). The 

prabability that the radical pair will exist for time t 

is given by e-t/Tn, The time-averaged polarization for 

the one site model is then 

where H
1 

lS the off-diagonal matrix element HAD for the 

+ Ji)l/2, 
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Equation (5-21) predicts a large value for p for suitable 

values of J 1 and T1 . This is possible because, in contrast 

to the diffusive system, Tl may well be of the order of 

-1 w Thus, if J 1 is of the order of H1 , eq. (5-21) may 

attain values greatly in excess of the thermal population 

difference. 

C. Two Site Model 

For this model we need to calculate the net polarization 

on D+ after the electron leaves A
2

. The spin wave function 

at the time of transfer to A
2 

(i.e. immediately after the 

electron has left A
1

) is given by 

(5-22) 

where t 1 is the duration of existence of D+ - Ai· 
The polarization after the radical pair D+ - A; has 

existed for time t 2 can be found by obtaining the coefficients 

c
5

<t
1
), cT(t

1
) from eq. (5-22) and substituting into eq. (5-16). 
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Time averaging over t
1 

and t 2 , we obtain 

+ (5-24) 

5.4 Orientation Effects 

We now investigate the effect of g tensor anisotropy 

on the expressions for the polarization derived in the 

previous section. The effect arises from the dependence of 

the matrix elements H on the orientation of the radicals 
n 

1n the applied magnetic field H . We shall restrict our interest 
-o 

to a situation where only one radical involved in the 

development of spin polarization on D+ is anisotropic; the 

coordinate system defining the orientation is then chosen 

to be the principal axis system of the anisotropic spec1es. 

The location of H is specified by a magnitude, !HI, and 
-0 

the spherical polar angles e and ¢. 

2 
1r/2 n/2 

p. = f f p.(8,cp)P(8,¢) d8d¢ 
l. 1T 0 0 l 

(5-25) 

where P(O,¢) is the probability that the radicals·possess 

orientation (8,¢) relative to H, and p.(S,¢) is the spin 
-o 1 
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density developed on D+ in hyperfine state i from either 

eq. (5-21) or eq, (5-24), with H (8,¢) given by eq. (D-10) 
n 

of Appendix D. 

We anticipate the next section and assume that the g 

tensor of D+ is predominantly isotropic. For the one site 

model, we assume that A1 is anisotropic; then, substitution 

of eqs. (5-21) and (5-18) into (5-25) yields, with suitable 

rearrangement, 

where 

p. (one site) 
l 

g~, g~, and g~ are the principal g tensor components of 

A-, gD ls the isotropic g value of D+, a. is the total 
. n l 

(~-26) 

(5-27) 

. (D) (D) + 
hyperfine fleld, ~ A. M .. , of D in hyperfine state i, 

. J Jl 
J 2 2 

and I (8,¢) = 1 + 4w·(e,¢)T 
n n n 

Defining 

2 rr/2 rr/2 !::,g (8,¢)P(8,¢) d8d¢ 
u 1 1 n = I (8,¢) n 'IT 

0 0 n 
(5-28) 

2 rr/2 rr/2 
d8d¢ P(8,¢) v ::: 1 1 I (8,¢) n 'IT 

0 0 n 
(5-29) 

we have 

2 a. 
p. (one site) ::: 4TlJl(Ul + l 

Vl) l 2 
(5-30) 
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For the two site model, we again anticipate the next 

section and assume that the g tensor of only A; is aniso~ 

tropic, and that g
1 

= gD are both scalars. Then, noting 

that H1 = ai/2 (since ~g1 = 0) and that both H1 and ware 

orientation~independent, we obtain 

p. (two site) = 
l 

4J 
+ 

1 + 

2 
+4UTJ •(1~ 

2 2 2 
( 5-31) 

The experimental EPR intensity ID of D+ as a function 

of field position H is given by 

r 
all hyperfine 

configurations 
of D+ 

(5-32) 

where H<? is the center of hyperfine line i, and 6 is the 
l 

half-width of the individual hyperfine lines. Note that a 

positive value of p. results in a negative EPR intensity, 
l 

i.e. p. > 0 meru1S that hyperfine line i will be found in 
l 

emJ..sslon. This is the case because p is defined as Na- N
8

, 

and an excess population of the state higher in energy (a) 

leads to a net emission of radiation. 
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In the next section, we examine the ability of eqs. 

(5~30) and (5~31) to predict the intensity patterns of the 

signals observed in Photosystem I, and thereby deduce a 

mechanism for the development of this polarization. 

5.5 CIDEP in Photosystem I 

A. General Discussion 

Figure 5~2 displays the CIDEP signals from flow oriented 

and from randomly oriented broken spinach chloroplasts. The 

effect of the velocity gradient in the configuration of the 

EPR spectrometer is to orient the short axis of the thylakoid 

membranes in the chloroplasts normal to the applied magnetic 

field (5,11). 

Reference (5) presents arguments to support the view that 

the CIDEP signals from both the oriented and the unoriented 

+ . . 
systems are due to the P700 catlon radlcal. We shall adopt 

this as a working hypothesis which is supported by the 

calculations which follow. 

The possible assignments of electron acceptors in 

photosystem I and the results of the previous section 

suggest two alternate schemes for the development of 

spin polarization: (l) acceptor A1 is the species X, 

polarization develops as in the one-site model; (2) 

acceptor A1 is a small organic molecule, possibly Chl, 

and A
2 

is X, polarization develops as in the two-site 

model. 



156 

We have rejected two other conceivable schemes. A 

one~site model with Chl as A
1 

would be inappropriate because 

it would not account for the orientation dependence of the 

polarized signal. A two-site model with X as A1 , bound Fd 

(center A or B) as A
2

, would fail to correctly predict the 

mixed-emissive-enhanced absorptive pattern of the oriented 

signal for much the same reason as the one-site model (see 

the analysis of the one-site model for details), i.e. the 

term proportional to the hyperfine field of P700+ would be 

too small. 

It has been shown (11) that the x component of the g ten­

sor of X- (1.78) is oriented parallel to the short axis of 

the thylakoid membranes. Thus, the result of flow orientation 

lS to align the gx component normal to H . 
-0 

The effect of orientation upon the development of 

polarization can now be determined for both the one and 

two-site models. The only orientation-dependent terms in 

eqs. (5-30) and (5-31) are the integrals u. and V .. 
l l 

We 

first note that u
1

Cone site) = u
2

Ctwo site), and v
1

Cone 

site) = v
2

Ctwo site), since all of these integrals involve the 

g tensor components, lifetime, and J value of the same aniso-

tropic radical, X-. We therefore drop the subscripts, and 

refer to these integrals as U and V, respectively. 

For a random orientation (no flow), P(8,~) =sinS 

for all 8, ~' and 

2 
n/2 n/2 

UNF = f f 
'IT 0 0 

NF 
6g sine d8d~ 

X (5-33) 
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where Tx is the lifetime of x-, Jx lS the exchange interaction 
- . + 

between P700 and X-, H 
X 

= (a./2) + 
l 

~gNF, and ~gNF( 8 ,¢) = 
X X 

~(1.78 sin2 ecos 2 ¢ + 1.90 . 2 8 . 2 ,/, s1.n s1.n '~" + 2 • o 9 cos 2 8) + 2 • o o 2 s • 

2 Tr/2 Tr/2 
VNF = ! f 

1f 0 0 1 + 
(5-34) 

For the oriented system, we set ¢ = Tr/2 [i.e. P(8,¢) 

= o(¢ ~ I)]. Then, u and v are given by 

uf 2 rr/2 
= J 

1f 0 <e) J 

VF 2 rr/2 de 
= J 

1f 0 1 + 

where ~g (8) = 1.90 sin 2e + 2.09 cos 2e- 2.0026, and 
X 

H (8) = ~g (8) + a./2. 
X X l 

We have set gD (the isotropic g value of the donor 

(5-35) 

+ 
. radical) equal to 2.0026, the experimental value for P700 . 

We can now evaluate the predictions for the polarized 

P700+ lineshape in the context of the two models described 

above. There are three important experimental observations 

which a successful model must explain: 

(1) The EPR spectrum from the unoriented sample is in 

total emission, i.e. the polarization is positive 

across ·the entire hyperfine field of P700 +, · The signal 
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from the oriented system displays a mixed emissive-

enhanced absorptive pattern; the polarization changes 

sign near a. = 0. 
l 

(2) The integrated area ratio for either polarized signal 

to the relaxed P700+ signal lS approximately 13:1 (i.e., 

the pop on difference, INa- N
8

1, is more than 10 

times the thermal value at 300°K, l0- 3 ). Because re-

laxation has already begun when the EPR measurements 

are made, the calculated area ratios should be in 

excess of 13:1. 

(3) The area ratio of the unoriented signal to the oriented 

signal is betv-Jeen 1:1 and 2:1 (this number is at present 

experimentally uncertain). 

B. One Site Model 

We make the simplifying approximation that 

a. for P700+ is typically a 
l 

feH gauss (the peak to peak linewidth of the steady-state 

P700+ signal i.s 7.5 G). 2 ( ) 2 + J
2 and we Then, w1 ~g1 1 , 

can write eq. ( 5-30) as 

-p. (one site) = k [a. + ~g ] 
l l l Ql (5-37) 

where k 1 = 2VT~J 1 , and ~g1 = 2U/V. 

The ~g1 term is mathematically isomorphic to the ~g1 
value difference term in Adrian's original formul~tion. 

Both k
1 

and ~g1 are independent of ai. 
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The orientation dependence of eq. (5~37) is easily 

described. The integral U decreases by a factor of 10 to 

100 upon orientation, i.e. 10 < UNF/UF < 100. The integral 

v is relatively insensitive to orientation, VNF /VF - 1 for 

a wide range of 1landJl. Thus, kNF/kF - 1 
1 1 ' and 

10 NF F 
amplitudes of !':. NF < t:.gl /!:.gl < 100. The absolute £1 and k 1 

are dependent upon the spe fie values of 1
1 

and J 1 . 

The one~si te model correctly predicts the unoriented 

signal to be in total emission, t:.g~F is large and 

positive, the net polarization of the signal is sufficiently 

greater than the thermal population difference to account 

for the 13:1 area ratio of the polarized to unpolarized 

signal. 

However, the one-site model fails completely for the 

oriented signal. The integral V is always small; therefore, 

k
1 

is always small, less than .0025. Since t:.g
1 

is inversely 

proportional to k 1 , the hyperfine term ai is dominated by 

·t:.g_
1 

even for the oriented system. Furthermore, the total 

polarization for the oriented system is insufficient to 

account for the observed area ratios. Even for the most 

favorable values of 1
1 

and J 1 , the one-site model predicts 

that the oriented signal be much smaller than the unoriented 

signal (a factor of 10 or more) and in total emission. We 

therefore conclude that the one-site model is incapable of 

explaining our results. 
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C. Two Site Model 

The polarization equation for the two~site model can 

be writ ten as 

(5~38) 

where 
2J 

so that wl, w2 are independent of ai' and the term 

[4HiTi/(l + 
2 2 

~ l (5-31)' and thus has been 4w
1 

T
1

)] 1.n eq. 

neglected. Both k 2 and 6g_2 are then independent of a., 
1. 

The major difference between the one and two site 

models is the amplitude of k. k 1 is directly proportional 

to the integral V, which is small for all values of 1 and J . 
X X 

k
2 

lS a sum of two terms, one proportional to V and one 

independent of V. It 
0 Jh' d .L 2J 2 /(1 + 4 2 2 ) lS c lS secon cerm, 

1
1

1 
w

1
1

1 
, 

vihi ch can have a relatively large amplitude for appropriate 

values of 1
1 

and J 1 . This term arises from the interaction 

+ between P700 and A~, and is large because 6g1 is zero, 

so that H
1 

< J 1 . Effectively, the interaction of P700+ 

with produces a substantial polarization term proportional 
l 

to the hyperfine field of P700+. The corresponding term 

in the one site model is small because the only radical pair 
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+ interaction available here is P700 - X- For this radical 

pair, the g value difference is quite large relative to 

a. for almost all orientations of x-. 
1. 

The e~perimental signals can be generated from eq. (5-38) 

when k
2 

is sufficiently large (so that the polarized signals 

have enough amplitude relative to the relaxed signal) and 

F 
when the average value of ai (2-3 gauss) falls between ~2 
and Then, for the oriented system the term linear in 

a. dominates, the sign of p. is governed by the sign of a., 
l l l 

and a mixed emissive-enhanced absorptive signal results. 

For the unoriented system, the sum Ca
1 

+ ~g2 ) is positive 

for all values of a. , and the polarized signal is seen in 
l 

total emission. 

In the next section, we simulate the polarized signals 

quantitatively by substituting eq. (5-38) into eq, (5-32) and 

+ summing over all configurations of the P700 hyperfine system. 

5.6 Results of Calculations with the Two-Site Model 

We first calculated an EPR spectrum for an isolated, 

relaxed P700+ radical, assuming that it is an oxidized 

chlorophyll dimer (12). The relative amplitudes of the hyper-

fine coupling constants were obtained from NMR studies, (13) 

the magnitudes were scaled to the ENDOR result for the largest 

coupling constant (14). 

The narrowing of the polarized signal (see Discussion) 

was introduced phenomenologically by decreasing the hyperfine 
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coupling constants. An identical adjustment was used to 

simulate the signals for both the oriented and unoriented 

systems. 

Figure 5~3 displays the dependence of the EPR lineshape 

on the value of ~~2 in eq. (5~38), For ~£2 < 0.7 G, a 

nearly symmetrical mixed emissive~enhanced absorptive pattern 

results. For ~£2 > 4 G, the signal is essentially in total 

emission. For 0.7 G < ~~2 < 4 G, a lineshape intermediate 

between the two previous cases is found. 

The integrated area of a polarized signal depends 

linearly on k 2 , and ln a complicated fashion upon ~~2 . 

Table 5-l lists the integrated area of !di/dHI as a 

function of ~g2 ; the area of the unpolarized signal lS set 

equal to 1.0, and the polarized signals normalized to this. 

The net integral area relative to the thermal equilibrium 

value for signal I at 300°K is found by multiplying the 

value in table 5-l by k
2

/.001 (.001 is the thermal population 

difference at 300°K), 

From these results we can set limits on k 2 and ~g2 
such that the three tting criteria for the experimental 

signals described above are satisfied. The general lineshape 

1 . . h F 7 . NF 4 G ana. ysls requ1res t at 0 < ~g2 < 0. G, whlle ~g2 > • 

Since the polarized signals have an area 3.5 - 6 times greater 

than that of the unpolarized signal when k
2 

is set equal to 

.001, we require that k 2 /.001 > 3.7, so that the net area 
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TABLE 5-l RELATIVE AREA OF THE POLARIZED SIGNAL AS A FUNCTION 

(Signal I = 1.0) 

/':, 'i£2 Area 

0. 0 3.6 

0.1 3. 6 

0' 2 3. 6 

0 '5 3' 6 

1.0 3. 7 

2. 0 4.0 

5. 0 6. 0 

10.0 10.5 
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I.OG 

MAGNETIC FIELD STRENGTH 
. XBL781-3755 

Figure 5-3. Simulated EPR spectra for the polarized signal 

for ~~2 = 0.1 G, 0.5 G, 1.0 G and 5.0 G. 
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ratio is greater than 13:1. An upper limit of 2:1 on the 
r· 

} / 

area ratio of the oriented and unoriented signals can be 

. NF· 
~nsured by setting the limit ~£2 < 6.5 G. 

The values of k 2 , ~£;, and ~£~Fare determined by the 

parameters T1 , T2 , J
1 

and J 2 . Table 5-2 presents several 

setE? of parameters for which k 2 , ~£;, and L'I£~F fall within 

the limits prescribed above, The exact values of the 

individual exchange energies or lifetimes are not critical; 

in T or J will produce a correspondingly 
n n 

a small chan 

small change in the simulated EPR spectrum. 

It is clearly not possible to deduce the absolute 

magnitudes of any of the parameters from the data available 

at present. We can, however, set some limits on Tl and J 1 . 

It is necessary that Tl ~ 250 psec, and J 1 < 200 G, in 

order for k 2 to be greater than .0037. Once Tl and J 1 are 

fixed, a limited set of pairs ( T 
2 

, J 
2 

) will generate 

acceptable values of F NF 
1'1£2 and 6g2 , 

For a comparison of theory and experiment, we chose a 

value of Tl which is comparable to the lifetime of I 

observed 1n photosynthetic bacteria. We also chose 

J
1 

> J
2

, because A
1 

is presumably in closer proximity to 

P700+. The resulting values of J
1 

and J
2 

are reasonable 

ones for exchange interactions between organic molecules 

separated by 5- 25 A (15). They are also within the 

neighborhood of exchange interactions observed between 

electron acceptors in photosynthetic bacteria (16). 



LE 5-2 
]:' ]:' 

c e d s of k 2 , ll ~2 . and ll 
4 for s e J. e c ted of 1: 1 , 1: 2 , J... and 

Area ratios are also calculated using Table 5-1. 

J1(G) J" ( GJ 'T, (nsec) 1:2 sec) ' k2 I 

L l. l 

10 75 1.0 2.1 .029 . 45 I 5. 7 lOS l. 84 

\ 50 10 0. 35 0' 35 .0046 ·• 2 9 5. 3 16.6 l. 74 
I 

50 20 1.0 1.0 .0111 . 17 5.1 40.0 I 1.69 

100 10 0. 35 0. 35 .0045 • 2 8 5.0 16.6 I 1.67 

100 
I 

10 1.0 2.1 • 06 7 • 0 7 I 4.5 241 1.58 

150 10 0. 35 0. 35 • 0 0 39 . 3 3 6.0 13.1 l. 92 

150 20 l.O 0. 35 .0047 .27 4.9 16.6 1.65 
! 

150 10 3.5 35 .0047 • 0 76 6.4 16.9 2.02 

100 150 I 0. 35 0. 0 35 .oos1 I . 5 l.j. I 5.4 18.4 L 76 

50 50 I 3.5 I 35 .0128 I . 0 8 I 4.5 I 46.1 1.58 

75 I 3. 5 I 0. 35 ! 35 i .0047 .13 5.0 15. 7 l. 67 
1-' 
m 
m 
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Figure (5-4) displays the theoretical and experimental 

EPR signals for the oriented and unoriented samples. The 

amplitudes of the theoretical signals, which are larger than 

the experimental signals, are reduced to account for the 

effects of relaxation. It is seen that excellent agreement 

is obtained within the limits of experimental error. 

5.7 Discussion 

The two~site model successfully predicts most of the 

important features of the polarized signals arising from 

oriented and lmoriented chloroplasts. Many of the values 

of 1
1

, T
2

, J 1 and J
2 

which generate the correct lineshapes 

are consistent with what is known about early photosynthetic 

events. The model is relatively insensitive to the details 

of the calculations, i.e. small errors 1n the polarization 

function (as are introduced by neglect of S-T±l mixing) 

would have a minimal effect on the predicted lineshapes 

and area ratios. 

We believe that our results provide compelling 

(altlwugh indirect) evidence for the existence of an 

acceptor in Photosystem I preceding X. A radical pair 

mechanism with X as the initial acceptor is inconsistent 

with the mixed emissive-absorptive lineshape and relative 

area of the oriented signal. The presence of an earlier 

. . . + 
acceptor Wlth an 1sotrop1c g value close to that of P700 

provides a simple and satisfying explanation for these 



t d 
ii 

I dH 

0 

33 
H, GAU 

Figure 5-4. Calculated Bnd experimental EPR spectra for the oriented 
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and unoriented polarized si~1al from spinach chloroplasts. Values of the 

parameters used in the simulation are 'Y 1 = 0. 35ns. ·f" 2 = 35ns, J 
1 

= 75G 

and J2 = 3.5G. Solid triangles are experimental intensities for flow 

oriented chloroplasts. Open circles are experimental intensities for 

unoriented chloroplasts. Solid lines are theoretical curves. 
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atures. The most likely candidate for A1 at present is 

chlorophyll, because it is known to be present in sufficient 

quantity in reaction center preparations, and Chl has 

the requisite g tensor properties. Also, the midpoint 

reduction potential of chlorophyll a is 0.78 V (vs. NHE, 

in dimethylsulfoxide), (17) which is consistent with its 

role as an earlier acceptor than X. In analogy with photo~ 

synthetic bacteria, pheophytin might so be considered as a 

suitable candidate for A1 . However, Thornber et aZ. have 

found no pheophytin in en ched Photosystem I preparations (18). 

However, we have no direct information concerning the chemical 

i.denti ty of A1 . 

The assignment of X as A2 is also supported by our 

results. The alignment of the high field component of the 

g tensor of A
2 

normal to the plane of the thylakoid membrane 

is required to produce the transformation from a totally 

emissive spectrum to a mixed emissive-enhanced absorptive 

spectrum upon orientation. Neither ferredoxin signal 

(centers A or B) displays the proper orientation in the 

membrane to generate the observed line shape changes ( 11). 

The observation that the simulation of the oriented and 

unoriented signals, assuming that A
2 

is X, gives excellent 

quantitative agreement is convincing evidence that this 

interpretation is valid. 

Reference ( 4) proposed a triplet mechanism for the 

development of spin polarization. This can now be eliminated, 

because it never predicts a mixed emissive-enhanced absorptive 

lineshape. The triplet and radical pair mechanisms are 
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the only theories proposed to date to explain chemically 

induced spin polarization. The model presented here thus 

appears to be t'11e .... nly reasonable explanation which fits 

the experimental results. 

The radical pair theory as developed by Adrian appears 

to be applicable to membrane~bound systems of radicals; the 

fundamental driving mechanism of spin polarization is, as 

in diffusive systems, S-T mixing. 
0 

The simple approach 

taken here provides an adequate explanation for 

·the experimental results to date; however, more sophisticated 

tr'eatments are possible and may be needed in the future. 

One could, for example, allow back transfer of an electron, 

or postulate more than one site for the electron in X, or 

investigate the possibility that at room temperature reduced 

or unreduced X may have appreciable unpaired spin density 

due to mixing in of low lying excited spin states. 

Development along these lines may become profitable when 

more data are available. 

We have assumed throughout our calculations that the 

initial radical p r state is a singlet. This can be 

justi eel qualitatively without invoking any EPR results. 

The initial state of P700 is surely a singlet. If the 

rate of electron transfer from P700 to A1 is comparable to 

that observed in bacterial systems (< 20 psec), (19,20) 

there would be insufficient time for intersystem crossing 
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to a triplet state to occur. Also, the unusual spin 

polarization of the reaction center triplet state in bacteria 

can be explained if electron transfer occurs from the excited 

singlet state (21). A spin flip as a consequence of electron 

transfer is quantum mechanically forbidden. We thus 

expect the radical pair to initially have the same singlet 
~~ 

character as P700 . 

The narr•owing of the polarized signal relative to the 

relaxed P700+ signal is an interesting phenomenon for which 

we currently do not have a completley satisfying explanation. 

The polarized signal from the unoriented sample has a 

peak~to-peak linewidth of 5.6 G, as compared to the value of 

7 f + . l .5 G measured or the relaxed P700 s1gna . The 

polarized signal from the oriented sample is the derivative 

of a mixed emissive-enhanced absorptive lineshape, and 

therefore its linewidth cannot be compared directly with 

those of the other signals. However, good simulation of 

the oriented signal requires that the starting linewidth 

be narrowed to the value of 5.6 G found for the unoriented 

signal. 

The above observations are not predicted by the radical 

pair mechanism. The polarization is either a constant 

across the hyperfine field (~~2 large) or linear in ai(~~2 
small). Neither of these polarization functions leads to a 
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symmetrical narrowing of the hyperfine envelope of the P700 + 

signal. Furthermore, one would not expect the effect to 

be identical for the oriented and unoriented systems. 

One explanation of the narrowing is that, immediately 

following photo-oxidation, the unpaired electron on P700+ 

is delocalized over 3 or 4 chlorophyll molecules. The 

+ steady-state P700 complex is believed to be a strongly 

coupled chlorophyll dimer; (16) delocalization of the unpaired 

electron over two molecules leads to a narrowing of 12 

d 
+ . 

compare to the Chl monomer EPR slgnal. Full delocalization 

over 3 or 4 molecules would result in a further narrowlng 

of /"372 or 1472, respectively; the experimental narrowlng 

is between these two values. Following electron transfer, 

the oxidized reaction center complex reaches a new 

equilibrium structure which favors delocalization over 

only two chlorophylls. 

Reference (5) discusses other hypotheses concerning the 

narrowing phenomenon. Verification of these proposals will 

require further theoretical and experimental work, 

There are many interesting areas of future research 

which are suggested by this Chapter. Further EPR and optical 

experiments on photosystem I are needed to evaluate details 

of the two~site model, determine values for lifetimes and 

exchange interactions, and determine the identity of A1 . 

An approach similar to the one described here can also be 

applied to the CIDEP signals reported from photosynthetic 

bacteria (22). 
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CONCLUSION 

The results presented in Chapters 3, 4, and 5 suggest 

further experimental and theoretical projects. Some of these 

are currently in progress, while others are at present 

tentative speculations. Below is summarized a program for 

logical continuations and new directions. 

A. Theory of Orientation Averaging 

We are extending the density of states approach developed 

in Chapter 3 to other types of spectroscopic experiments. A 

detailed paper on linear dichroism and a more general one 

outlining a linear response theory of partially ordered 

e.nsembles are in preparation. A calculation of time-dependent 

fluorescence depolarization due to rotational diffusion of 

an anisotropic protein molecule is also in progress. 

B. Orientation of Electron Transport Cofactors in 

Photosynthetic Systems 

We are investigating the orientation of the I and X 

(QFe) acceptor in Rps. Viridis by EPR 

spectroscopy of magnetically aligned intact bacteria. We 

include in our calculations the Q--Fe magnetic interactions 

and the I--(X-) interactions. Computer simulations of the 

random and oriented signals from Q-Fe-, Q- FeQ-, and 

I Q FeQ 
:;:; 

are planned. 

We are also using absorption circular dichroism and 

linear dichroism measurements to determine the relative 

mutual orientations of Chl molecules in Chl proteins and 
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reaction centers. The initial calculations are being carried 

out on antenna BChl protein of the R~26 mutant of Bps. 

spheroides, which has only two Chl molecules per protein. We 

hope to extend our methods to the Bps. viridis reaction center, 

which has already been studied via EPR (Chapter 4), 

C. Spin Polarization in Photosystem I 

During the past year several new results have been 

ob ned. Warden has observed the CIDEP signal by direct 

detection and claims that the flow effect disappears; he 

has reproduced our results when detection is carried out 

by 100kHz field modulation. This report is very puzzling 

and may require a reformulation of the theory of Chapter 5. 

Thurnauer and Norris have used the spin echo method to 

monitor the polarized signal; their results, although at 

present only tentative, are also peculiar. A polarized 

s al has also been observed by Macintosh and Bolton and by 

our laboratory at low temperatures; interpretation of this 

signal in a sensible manner has yet to be accomplished. 

My objective at this point is construction of a coherent 

theory which satisfactorily explains all of the above results. 

At present I am inclined to believe that the core of the 

theory in Chapter 5 will be retained and that clarification 

will come when an accurate representation of what it is that 

each expe ment is measuring can be made. The theory will then 

have to be extended to incorporate experimental effects which 

have up to now been ignored. 
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D. Final Remarks 

The emphasis in this thesis has been an application 

of theory to photosynthesis. However, I believe that the 

approach taken here can be profitably applied to other 

biological systems. Speculations in this regard would be 

too vague to be worthwhile, and I shall not be more specific 

at this point. It is my hope that physical chemists in­

vestigating any biological system have found the ideas in 

the preceding pages, both general and particular, to have 

been stimulating, suggestive, or perhaps even concretely 

useful. 
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APPENDIX A 

The matrices that describe the rotatio~ are defined as 

llows. RA(~) is the rotation matrix for rotation com&ter­
u 

clockwise through an angle ~ about em axis in the 0. direction. 

The matrix elements of R .... (¢) are given by u 

( R(\ ( ~) ] . . :::: cos (LX. X! ) 
u lJ l J 

v.'here (L x. x~) is the angle beh:een the i th axis of the original 
J._ J 

coordinate system and the jth axls of the coordinate system 

obtained after the rotation. 
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APPENDIX B 

Equation (38) is obtained from equaticn (32) by the 

following substitution: 

cosu :: -1 
( B-1) 

sin 0 1 

The upper limit at cosv1 = cosO' is transformed to cosu = -1, 

or u = n. The lower limit at cos v1 = 1 is transformed to 

cosu = +1 or u = 0. From equcttion (B -1), one can readily 

obtain 

sinu sin2 e1 du 
4sinv1 cosv1 

Substitution into equation (37) yields 

which simplifies to 

sinO' 11 
V

11 
( 0) ::: 

~wr J h ( v
1

) du 
0 

lt!he re 

-1 1 2 2 1/2 v 1 = cos {[~(l+cos O'+cosu sin 0 1
)] }. 

( B-2) 

( B- 3) 

( B -4) 

cs -s) 

(B -6) 
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APPENDIX C 

Using equations (31) rutd (408), the perpendicular density 

states can be written dm·m 

V'(O') 
1 

sine' 
=~~- ( c -1) 

Solving equation (40e) for sinw and substituting into equation 

( C ~1) yields 

v; c e') sinO' J 
h (v

1
) 

dv J 
dv

2 :: ·-N, ---·-··---··· ---cosv
1 

l cosv
2 1 v v2 1 

( c -2) 

The denominator of the v2 integral is quadratic in sinv
2

. 

When expandr,: :I and factored, V' ( 0 1 
) simplifies to 

v' c e' ) 
l 

( c -3) 

e v
2 

integration is performed over the reg2on where the 

in ter,r•and is n;a1; L e. the sinv1 quadra:tic is greater than 

z2 ro. This req ui rerr:ent mean~; thr,~ v 
2 

intcgrat ion is from 

--(O'+v
1

) to (0'-v
1

), Nc,,, make the substitution x = sinv
2 

and 

equation ( C ~3) becomes 

r' < o' ) 'l 

t-; in ( 0 1 
•• v

1 
) 

J . 
·-sin(0 1 +v

1
) 

cbd ( x·-1 )( x+ 1) 

( c -4) 
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The x integral is ar1 elliptic integral of the first kind 

where the limits of integration are two roots of the 

quar'tic in x. . 1 
Using equation 254.00 in Byrd & Freidman ~ the 

X integration can be performed. The end result for VJ.. ( 0 t) is 

V'(6') 
! 

rr /2 
J 
0 

where G(8' ,v
1

) is given by equatioJ:. (1+2) 

( c -5) 

and the 

limits the v
2 

integration are by inspection 0 and rr/2. 

1
P.F. Byrd and M.M. Friedman. Elliptic Integrals for Scientists 

and En eers. (Springer-Verlag, Berlin, 1971). 
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APPENDIX D 

· The radical palr Hamiltonian given in eq. (1) can be 

split into two parts 

·. JCRP = X + J( D OD 
(D-l) 

where 

X 
OD 

+ l2[L: A. (D)I. (D) 
. -} l 
l 

+ }~ A. (A) I . (A) J • (SA + SD) 
-J J j 

- 1 ..... (A 
26Ho· gD gA)·(SD SA) 

+ l 0:: A. (D)+ (D) 
1.: A. (A)I. (A))· (S ..... 

J..· - SA) 2 i 
-} l --J J D 

J 

JCD is diagonal in the basis {IS> , I T
0

>, !T+ 1>, lT~l>}, 

provided that the spin functions I a.> and IS> are quantized 

in the dir2ction of the effective field 

( D-2) 

The radical pa1r eigenfunctions and energ1es depend upon 

the off~diagonal elements of the above basis set of the 

·.:orc:n:oY' JfOD' We nm·J sho.-J tba.t, for small g tensor 

an.2.s o , the r.ti ::<in g c f I S > Hith IT l) + and I T_f is of 

negli ble 1. o rt an ce , and an I S > -IT> basis set is 
0 

sufficient for calculation of the polarization. We also 

derive an appro:·cir:ta"te expr·c:::;sion for the rnatrix element 

<SIH 0DIT
0

> 2 HAD as a function of orientation of radicals 

+ A~ and D . 
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We shall assume that the donor radical is isotropic, 

with scalar g value g0 . We choose as a coordinate system 

the p ncipal axis system of the acceptor radical. Then 

-+ ~\. 

H
0

::: IHI (sinecos¢ , sinesin¢ , cose) (D-3) 

gA 

vie 

-
gA 

t..x 

t..y 

t..z 

0 

""+ 

::: 

X 
gA 

0 

0 

g 
D 

0 

0 

define 

1 ( X ::: + 
3 gA 

- X ::: gA - gA 

- y 
:::: g}\ - gA 

z 
:::: gA ·g 

A 

-:::: g + gD A 

0 0 

gY 
A 

0 

0 z 
gA 

0 0 

0 

g~ + g~) (D-4) 

We wish to calculate the matrix elements <SIH
00

1TJ 

( Sl H001 T+l} , and < Sl H001 T_ 1> • vl~:. first define 



i' • 

( 

c 
I 

1 

c 

r 

.l 

J. 
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HOD :;;; HHF + H~g (D-5) 

where 

HHF = lo: A. (D)I. (D) - E A. (A)I. (A))•(SD-SA) 
2 0 -l. l. -J J 

l. J 

H~g 
l + 

gA). CSD SA) = 28Ho·(gD- -

Because we are interested in the spin polarization of the 

donor radical, we set the sum over the acceptor hyperfine 

field equal to its en~emble average, i.e. 

l: A. (A)m. (A) + <L.A. (A )m. (A)> = 0 
-J J -J J j 

Th 1 . I (D) . d e nuc ear sp1.n operators . are quant1.ze l.n 
l. 

direction of the effective field, z. Then 

._ (D) . , . . f" (D) t::: W11ere m. l.S tne prOJCCtl.On 0 J. on~. 
J J . 

The matrix elements of Hl.'i must now be evaluated. 
g 

Substitution of (3A) and (4A) into (5A) yields 

2 2 -1/2 
+ cos 8(g+-l.lz) } 

( D-6) 

the 

( D~ 7) 

( D- 8) 

In general, the matrix eler:;ents <Slffl.lgiT±l> will be complex. 

Since we intend to show only that these matrix elements are a 

small perturbation, we compute the absolute magnitudes. 
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!:Je now make the approximation 

Then, algebraic manipulation of (8A) leads to 

+ cos 2 BL-.z)] ( D-9) 

<SIHllgiT±l>! ~ [( ) 2 2 . 2 0 < A )2 . 2 8 . 2 g_-llx cos ¢s1n + g_-uy s1n Sln-¢ 

+ (g_-llz)cos 2e- C< SIHL\gl TJ )~] 1 1 2 

TI1is gives as a final expression for <SIH0 DfTJ 

<SIHOJITO> E HAD:;:~ T, .6j(D)Mj(D) + ~BIHI [gD ~ 

( X 2 . 2 y . 2 . 2 8 Z 2B)] gAcos ¢s1n B + gAs1n ¢s1n + gAcos (D-10) 

We estimate the effects of T±l mixing by calculating 

the ensemble average value 

<< S! H I T 1> > llg ± 

n/2 
= 2 J 

1T 0 

TI/2 
~ < S I H ll g I '.i.' ± 1> sin 0 d El d 'P 

+ llz 2 )J 112 ·lslill 
2 

Substitution of values of llx, lly, and L\z for the species 

X yields 

81 fii . ( 0 • 13) ( D--12) 
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The mixing coef cients, CST , are g1ven to first 
±1 

-order by 

( D-13) 

~ + 

SIHICO. 13)/gS/HI"'=' (.0325). 

This 3. 2 5 9.s mixing in of the T±l states leads to an 

error of less than 3% in the calculated polarization. 






