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ABSTRACT 

Transient two-phase flow in a geothermal well has been modelled with a 

finite-difference approximation. One-dimensional flow is assumed. The 

equations of mass. momentum, and energy are solved using a partially implicit 

method. Terms that would place a severe time restriction on the calculation 

are solved impl • while other terms are solved explicitly for computational 

ease and efficiency. Homogenous flow of one component at thermodynamic equi

librium is assumed initially, but the extension of the model to include slip 

and a finite rate of condensation or evaporation or a noncondensible gas is 

given. The wellbore model includes heat and mass transfer and is coupled to a 

simple reservoir model. Using the model, the transient behavior of a single

or two-phase well during a well test was investigated. Results show that when 

the reservoir has a relatively large value of kh, as exists in a geothermal 

field, the slope of the log (pressure) vs. log (time) curve is not necessarily 

a unit slope when testing a homogenous reservoir. The early-time behavior of 

this curve is controlled by the interaction of the flow in the reservoir and 

that in the well, and can be used to determine near bore values of kh. Heat 

loss in the wellbore is shown to also affect the pressure vs. time plot in a 

well test. The time to reach the pseudo steady region increases when heat 

transfer is important • even in a relatively "warm11 well, and the slope of the 

P vs. log t curve is no longer qll/4Trkh as derived in the petroleum liter-

ature. 
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INTRODUCTION 

For a complete analysis of a geothermal system, a model of the flow in 

the wellbore and in the reservoir is necessary. The equations governing the 

flow in these two cases are different, so reservoir models based on Darcy-type 

flow cannot be extended to predict the wellbore flow. Several numerical codes 

have been written to simulate the two phase flow of steam and water in a geo

thermal well (Sugiura and Faronq, 1979; Gould, 1974; Juprasert and Sanyal, 

1977; Ryley, 1964; Elliot, 1975). Most of these models include the slip 

between the phases, using experimentally determined values of holdup and 

friction factors for each particular flow regime (such as annular or slug). 

However, the models reported in the geothermal cases all assume steady state 

flow. (There are several transient two phase codes, which will be considered 

below, that were developed for the nuclear energy industry.) The steady state 

models can be used to approximate downhole conditions from wellhead measure

ments given an equation of state that includes the effect of the non-dissolved 

gas and solids. 

However, during well testing the steady-state models are not useful 

because transient changes in the well itself are important. At early times 

after a flow-rate change has been made in the well, the mass flow rate into 

the well does not equal the mass flow rate out because of wellbore storage. 

Under these circumstances, a steady-state model, which naturally assumes 

min = IDout' is not appropriate. Nevertheless, one might think that once well

bore storage is over, the steady state flow model could be used to determine 

downhole pressure changes, given the wellhead pressure measurements. At this 

point, the changes in pressure with time are usually small, so slight errors 
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in friction factor, slip, or heat transfer can produce relatively large errors 

in dP/dt. Also, many of the slip correlations used are based on water/air or 

oil/gas flow, whereas the flow of steam/water has interacting phases that 

should result in different effective values of holdup. Because of the unknown 

in these values, a two-phase flow model that includes transient effects is 

necessary for well-test analysis. Because the flow between the reservoir and 

the well is a function of the reservoir properties, a transient two-phase code 

could be used to determine near-bore values of kh/~. even when wellbore stor

age is important. During this early time, the error in the experimentally 

determined values of slip, friction factor, and heat-transfer coefficient are 

less important than at other times because dP/dt is large. 

I have developed a transient two-phase numerical code for one-dimensional 

flow in the wellbore. The code has been coupled with a reservoir model of 

simple, one-phase, radial flow in a porous media. (Only flashing in the well

bore is being considered initially.) At early times, the flow in the reser

voir is close to radial, so such a code could be used to predict the drawdown 

pressure curve for single-phase flow and for fluid that is flashing in the 

wellbore. I have obtained very interesting results with the model, which 

will be illustrated below. (Additional details are given in Miller, 1979.) 

The model developed includes heat and mass transfer and has been written 

in a way so that very few, if any, iterations are needed at each time step. 

The effect of noncondensible gas can be included easily at a later stage by 

introducing a second continuity equation. 

As mentioned above, transient multiphase codes have been developed for 

the nuclear energy industry (Liles and Reed, 1978: Harlow and Amsden, 
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1975; and Hirt and Romero, 1975). However, these codes usually require several 

iterations or the inversion of a nonsimple matrix, making them difficult to 

use efficiently. Some of the models are not designed to include the effect 

of more than one component. The model developed here solves transient homo

geneous equilibrium flow. However, the basic solution procedure can be 

extended to include slip as well as nonequilbrium effects with few changes. 

A description of the method is given below along with example calcula

tions. This report is divided into three sections. The first section is a 

description of the working model, the second section describes how the model 

could be extended to include slip and nonequilibrium or a noncondensible gas, 

and the last section reports calculations of the flow in the wellbore. 

NUMERICAL MODEL 

The problem is to solve the equations of mass, momentum, and energy for 

one-dimensional flow. The basic difference between the equations that model 

the wellbore and those that model the reservoir is that the Navior Stokes 

equation of momentum is used for the wellbore case instead of assuming Darcy

type f]ow. The nature of the flow changes when transients are important. For 

the fluid in the wellbore, the flow can be shown to be governed by a wave 

equation; in the reservoir, it is governed by a diffusion-like equation. In 

models developed for flow in porous media for a two-phase system, relative 

permeability curves are used to describe the flow of the gas and the liquid 

phases. The relative permeability curves take into account the interaction 

of the fluid with the rock and the interference of the phases with one 

another. However, for flow in a tube, the drag of one phase on the other is 

an important contribution to the flow, that is, the liquid phase can be 
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carried along by the gas. Only a negative relative permeability could account 

for this situation. In summary, using a porous media model to describe flow 

in a wellbore ignores the physics of fluid flow. 

For a detailed theoretical description of the two-phase separated flow, 

six equations are necessary: two for mass, two for momentum, and two for 

energy. Additional relationships among the thermodynamic variables complete 

the set of equations. However, to solve this set of equations, interface 

interaction terms must be included, which are not well known. It is possible 

to approximate the fluid flow with fewer equations, while retaining the impor-

tant characteristics of the flow. I have used empirical correlations to 

replace some of the equations. For the initial development of the model, I 

further reduced the equations to solve two phase homegeneous equilibrium 

flow. 

The equations solved are: 

a 
(~) 

a 
(!JV) continuity, dt +ax "" 0 (1) 

i:) a 
(Pv2) 

(:lp f~Jv2 
momentum, "Jt(!Jv) + <lx + <lx + Pg +-- .. 0 

2D 
(2) 

i:) a dv T - T 
2H r w 

and energy, 3t(~e) + ax (Pve) + ~+ "" 0 dx rw 
(3) 

where P and e are the mass-averaged values of density and energy, respectively, 

in the two-phase fluid. Only three equations are solved here instead of the 

original six. One momentum equation has been replaced with an experimentally 

determined correlation of the relative velocity, vr, in terms of the other 

parameters in the flow. The correlation used above was Vr = 0, or that there 

is no slip. One continuity equation was eliminated by assuming the average 

density in the fluid can be expressed as a function of the average energy 
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and pressure or p = fn(e,P). (An extension to nonequilibrium flow or to 

include a noncondensible gas will require a second continuity equation.) The 

assumption of thermodynamic equilibrium also implies that the temperature in 

the liquid and vapor are equal, thus eliminating one energy equation. The 

unknowns are p, e, P, and v; the four equations are mass, momentum, energy, 

and the equation of state. 

The viscous term has been written as a friction factor times ~pv2/n. 

Such a term accounts for the frictional losses with the wall of the wellbore. 

When slip is taken into account, it also includes the frictional losses between 

the two phases. 

My approach is to solve the equations using a finite-difference approxi-

mation with a partially implicit method. Terms that would impose very restric-

tive time steps, such as At < Ax/a, where a is the sound speed. are evaluated 

implicitly while the other terms are evaluated explicitly for ease and com-

putational efficiency. The finite-differenced equations are: 

~+1 ~ Hl ~+1 

continuity, 
pi - pi 

+ 
(pv) 1+~ (pv)i-~ 

... 0 
At Ax 

(4) 

Jt+l t 
[<pv2) i+~ 2 y 

momentum, 
(pv) 1+~ - (pv)i+~ 

+ 
- ( pv ) i- ~-

+ 
At AX 

p~+l - PR.+l 
R, [ f( pv) 2 H>J : i+l i + + 

Ax pi+ g 
~ 

2D O (5) 

and energy, 

( R.+l R.+l) ( ~ R, ) (vi+~- vi_l;zy e - ei e - e 
1 i i-1 ~+1 

pi At 
+ pv Ax +pi Ax 

(6) 
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The energy equation has been 'vritten in a nonconserving form. The reason for 

this will be apparent in the solution procedure. The thermodynamic variables 

are computed at the nodal points (i, i+1, etc.), and the velocity is computed 

at the half~nodal points (i+~, etc.). 

The solution procedure is to combine the four equations to give one 

expression for the new pressure. To use this method, the equation of state is 

used in the form of: 

op ap 
diJ "' (~) dP + (~) de 

up e ue'p 

instead of P fn(P,e). The density change in time is written as: 

£ 
~ P. 

1. (
op)Ji, Ji,+1 Ji, (oiJ)Ji, ~1 
·~p (P. ~ P.) + ';j" (e. 
u i 1. 1. ue i 1. 

>!, 
- e.) 

1. 
(7) 

the partial derivatives being evaluated at the old time levels. However, to 

eliminate large changes in the derivates, equation 7 is re\vritten as: 

£+1 £ 'dp )£ ( £+1 - p~) + (_! ~p)J/, Ji, 
( e~+l - e~) p. - P. "'(~ P. (p) 

1. 1. 1. p oe . 
1. 1. 1. 

The expression (1/P)(opfoe) varies approximately linearly while (opjoe) 

5I, 
changes value abruptly. 

Ji, £ 1 
In addition, fJ. (e.+ -

1. 1. 
e.) is solved for directly 

1 

(8) 

with the energy equation. Also at each calculation, the new value of ~~1 is 
1. 

£ 1 
compared with the value of P + , calculated from fJ 

difference is more than some specified percent, an iteration is necessary. 

The new pressure profile is recalculated with the partial derivatives in equa-

tion 7 as an average of the old and new values. The best average is to 

emphasize the value of opfop at level £+1 because the system can self-correct 

any errors created when crossing the saturation line. When the fluid flashes, 

the derivative opjop increases abruptly and then decreases slowly. If the 
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calculation provides an overexpansion of the fluid parcel when crossing the 

saturation line~ then an average of the old and new derivatives at the next 

calculation can compensate for the overexpansion because of the decreasing 

value of ap/aP. If the fluid parcel underexpands when crossing the saturation 

line, no amount of averaging of the new and old derivatives can compensate. 

When condensing across the saturation line it is important not to over-

condense, because the derivative 3p/3P is approximately constant. However, a 

slight error when crossing a saturation line for one particular fluid parcel 

produces little error in the net flow. 

The four equations (4, 5, 6, 8) are combined in the following manner. 

The continuity equation is solved~ using the expression for the new value of 

Hl (pv) , which is given by the momentum equation. Equation 4 can be written 

in finite difference form: 

Hl 2, L:lt [ .Q.+l HlJ pi = pi ""- (pv)i+~ = (pv)i-:k L:lx 

Then equation 5 is used to express ( pv) Hl in terms of P: 

Hl f/, L:lt /[ t At 2 2 R, 
pi - pi ""- ( pv ) i+~ - L:lx ( pv i+~ - pvi-lz) L:lx 

(9) 

Equation 8 is used to write pi+l in terms of Pi+l and the above equation is 

regrouped to give 
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X, 
P. 

l. 

X, 

(~v)~-~J + ~ G~)x, fJ(e~+l -e~) (~~)
2 

2 2 2 X, 
- ( ~v .+1 - 2~v. 1 + ~v. 31 ) • 

l. "2 l.-"'2 l.-72 

(10) 

. £+1 The d1.fference P(e. 
l. 

t 
e.) is given by equation 6. Equation 10 can be written 

l. 

as AP = x, where A is a tridiagional matrix. The solution is straight-forward 

if the boundary conditions are specified. 

The boundary conditions considered were: (1) specification of pressure 

and mass flow rate or velocity at either the wellhead or downhole; or (2) 

specification of pressure at both wellhead and downhole. The pressure must be 

specified at one of the boundaries. If the flow rate is measured~ then 

3(pv)/dt is known, and the pressure can be determined from the momentum 

equation: 

cpr ( Jl,+l !1, 2 
k, 

2 
iN - ~v ) (Pvb fJVb-1) 

"" -dx b Lit Llx 

(f~v2)b 
- fJ g -b-1 2D 

where b stands for the boundary. 

Equation 10 is used to determine the new pressure profile. Once pk,+1 and 

e~1 are known, the density is calculated using equation 7, because this was 

the equation used to express P in terms of P and e when the four equations 
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were combined. If one calculated the density at the new time level with 

~ = fn(P,e) instead of dp = fn(dP, de), then two different expressions would 

be used and mass would not be conserved identically. However, as mentioned 

above, the two p's are compared and an iteration is done if they are signifi-

cantly different. This situation occurs when crossing the saturation line. 

Once the new value of p is known, the velocity is determined from either 

the continuity or the momentum equation. If the mass flow rate is being 

specified as a function of time, the velocity is best calculated by the 

continuity equation. Given ( pv) 2+1, the velocity at position 11, is 

2+ 1 f.( ) Ji,+l + l:!.x 
vi "' l pv i+ 1 l:!.t 

because pv is known at the wellhead, the velocity can be calculated succes~ 

sively down the wellbore. If the pressure is given as a function of time at 

the top, it is easier to calculate the new velocity using the momentum 

equation, at least at the first node. 

The wellbore model was connected to a reservoir model so that the draw~ 

down pressure was consistent with the variable flow velocity into the well. 

The reservoir flow was assumed to be radial, homogeneous, and single phase. 

The fluid was allowed to flow into the wellbore over a finite length, h. 

(The effect of flashing in the well only was investigated initially. The 

intent was not to spend a great deal of effort on the reservoir itself but to 

at least use a model that would give a drawdown pressure consistent with the 

flow into the well.) When the initial transient changes take place in the 

well, the flow around the wellbore is almost radial. At a later stage, the 

simple reservoir model will be expanded to include flashing in the reservoir. 
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The equation solved in the reservoir was 

3P k 
at "" 11 c~ (1. L aP 

rarrdr) (11) 

Equation 11 was solved at several different heights in the reservoir to allow 

flow into the wellbore over a finite height, making it possible to consider a 

layered reservoir system interacting with the well. Far from the wellbore, a 

constant pressure was assumed. At the well/formation boundary, mass had to be 

conserved. 

The mass flow rate out of the reservoir and into the well must be equal. 

If the reservoir and the wellbore equations are combined, the matrix multiply-

ing the pressure vector will no longer be tridiagonal, increasing the calcu-

lation time for each step. Instead, each set of equations was solved separ-

ately. The boundary condition at the reservoir/well interface was 

kh 
ll 

2 
fJ r 

w 

The new pressure in the wellbore is solved first using the old value of the 

reservoir pressure. Then the new pressure in the reservoir is calculated by 

determining the fluid that flowed from the reservoir into the well over that 

time that is, the same derivative of (3P/dr) was used in both calculations. 

Because this boundary condition for the reservoir flow is solved explicitly, 

there is a stability limit. The stability limit in terms of the radial spacing 

is (Zerzan, 1979, private communication.): 

+ 2aLlt 

> 1 

(r0 + q)/2 
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To account for the initial large changes near the bore, and the changes 

far away at later times, a variable radial grid was used. The finite dif~ 

ferenced equation solved was: 

The variable grid was calculated by using a logarithmic transformation 

r ( i) B+r(l). 

The quantity Ni is just i(6N), and B, A, and ~N0 are adjustable constants. 

Once the new pressure is determined in the well, the change in the reser~ 

voir pressure is calculated as a function of r and at several different 

heights. The temperature of the fluid in the producing zone is assumed to be 

specified. However, the energy loss of the fluid in the wellbore itself must 

also be included. 

One important difference between the well testing in a geothermal well 

and that done by the petroleum industry is the high temperature found in the 

geothermal reservoir. Because of this, it is important to include the heat 

transfer out of (or into) the wellbore from the surrounding rock in numerical 

models. Ramey (1962) estimated the heat loss from the wellbore as a function 

of time. This method is less valid when the flow rate is continually changing. 

To account for the heat transfer, I solved the conduction equation for the 

temperature in the rock. Again, I used a variable grid to allow for large 

changes near the wellbore and smaller changes further away. However, the grid 

variation is closer to the wellbore in this case, because the temperature 
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changes will be over a smaller spatial region than the pressure changes. The 

conduction equation solved for the temperature changes is similar to that of 

the pressure in the reservoir. However, the new temperature is solved for 

implicitly to avoid time step limitations imposed by the small grid spacing 

near the wellbore. The temperature far from the well was assumed to be the 

initial geothermal gradient. At the rock/wellbore boundary, the heat transfer 

was matched. When the energy equation in the fluid is solved, the heat trans~ 

fer at the wall is 

q a 2nr bx H (T~ - T~) 
w r w 

When the temperature in the reservoir is calculated, the boundary condition at 

the rock/well interface is: 

3T 
r 

dr 
= H (T ~+1 - T~+1 ) 

r w 

The heat transfer is matched throughout the calculation except for the first 

time step for the energy in the fluid that is, the heat transfer into the 

reservoir for the calculation of the reservoir temperature at time ~+1 is just 

the heat that will leave the fluid during the calculation for time ~+2. The 

only heat transfer not matched is for the first calculation of the fluid 

energy, but usually Tr a Tw for this case, so q will be zero. No stability 

problems were encountered because the temperature in the reservoir is solved 

implicitly, even at the boundary. 

The model then solves for the transient flow in the wellbore, including 

heat loss to the surrounding rock. The simple reservoir model provides that 

the fluid flow into the well is consistent with the drawdown pressure. The 

assumption of no slip and thermodynamic equlibrium was made. However, the 
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extension of the model to nonslip and nonequlibrium flow, or to include non-

condensible gases can be made. 

EXTENSION OF NUMERICAL METHOD 

To develop the initial numerical method, two-phase homogenous equlibrium 

flow was assumed. However, the method can be extended. First, to include 

slip in the flow, additional terms must be added to both the momentum and the 

energy equations. These terms account for the fluid accelerating or decelera-

ting because of evaporation or condensation. For the momentum equation, the 

term that must be added is 

where a is the volumetric quality and pm = (1-a)p~ + apg. The average 

velocity is defined as 

v m 

(1-a)p~ v~ + (a) pgvg 

Pm 

The convection terms were evaluated explicitly in the basic model, so the add-

ition of this term will not involve any modification of the method itself. 

The relative velocity is given usually by experimental measurements at present. 

It is specified as a function of void fraction and total flow rate. The main 

problem in adding the term is in choosing which correlations to use, since the 

scatter in different correlations can be large. 

For the energy equation, the terms that must be included are: 

a 
ax 

(1-a) Pnap v (e - eo) 
N g r g N 
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because of the fluid changing velocity and 

a(l-a) vr(p~ - pg) 

~m 

because of the volumetric expansion work when the fluid changes phase. Again 

the convection terms are evaluated explicity so they can be added very easily. 

The more difficult problem is the extension of the method to allow for 

nonequilibrium flow or to include a noncondensible gas. The method in either 

case is similar so only the former case will be considered in detail. Conden-

sation and evaporation do not take place instantaneously, but require a finite 

time. If this time is as long or longer than the pressure transients in the 

flow, nonequilibriumcan be very important. Many well tests with flashing in 

the bore have pressure responses that seem to indicate a two-layer reservoir. 

These responses may be due to nonequilibrium effects in the wellbore and it is 

important in modelling these cases to understand if nonequilibrium could 

account for these pressure changes. 

To include nonequilibrium, a second continuity equation must be 

used. The evaporation (or condensation) will be given by some rate term. 

However, inclusion of non-equilibrium will require some modification of the 

current method. The continuity equation needed is 

where I is the rate of evaporation or condensation. Now instead of 

Pm = fn(em,P), the expression for the densities will be determined 

separately: 

where e~ and eg are functions of temperature only. It will still be assumed 
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that T~ = Tg• Such an assumption means that a parcel of fluid can either 

condense or flash~ but can not do both at the same time. Since the temper-

ature of the two phases are equal, the mixture as a whole can be either above 

or below the saturation temperature. In a completely nonequilibrium situation, 

the temperature of the phases would differ. Although the approach used here 

assumes Tt = Tg, it does allow for the finite rate of flashing or condensation. 

This model is similar to that suggested by Liles and Reed (1978). 

The individual equations of state can be combined to give 

iJm"' fn(T,P,o.). 

Again the differential form of the equation of state will be used: 

d I IJm 

dT + oP 
T,o. 

Oj.J I dP +dam 

T,P 

The detail of writing o~Jm/ot in terms of oP/ot is given in Appendix A. How-

ever, the general method is: (1) write d~J~ and dtJg in terms of (dT, dP); (2) 

use the equation of energy to determine oT/ot in terms of dP/ot and du/dt; 

and (3) use the continuity equation to write oo./ot in terms of oP/ot. Using 

the equations for oP/ot, we can invert the tridiagonal matrix to solve for the 

new pressure. 

Once the new pressure is known, the new void fraction, temperature, 

density, and average energy can be calculated from the expressions used to 

develop the equation 

A P "' B 

To consider the effect of noncondensible gases instead of nonequilibrium 

effects, the density is written as a function of P, T, S, "tJhere S is the 

saturation of the gas phase (noncondensible gas and steam). The average 
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density is 

Sp + (1 - S) p 
g )(, 

where Pg, P£ are the densities of the gas and liquid phases respectively. To 

determine S, a continuity equation conserving the noncondensible gas can be 

used. Then 

L Sx p 
at g g 

_ _£_ 
Sx " v ax g"'g g 

where Xg is the mass fraction of say COz in the gas phase. The steam is assumed 

to be at the saturation density corresponding to the temperature of the phase. 

Then Pg = P1g/(1-xg) where P1g is the density of the steam and is specified 

as a function of temperature only. 

To solve the set of equations, it is necessary to specify an equation of 

state for the mixture. One set that is suggested by Iglesias (1979) is that 

X 
g 

and that x£ can be determined by specifying the boiling curves of an HzO - COz 

mixture. By specifying the equation of state, a complete set of equations 

will again exist, and the solution procedure is as specified above. The 

model is presently being updated to include these details. 

EXAMPLE CALCULATIONS 

The numerical model has been used here to determine the early-time 

behavior of the wellbore flow for both single-phase and two-phase flow. 

Examples of the calculations are given below. Figure 1 is a plot of the pres-

sure changes that propagate down the wellbore after a stepwise change in flow 

rate at the wellhead. In this figure, the calculations were done for a liquid-
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filled well flowing under a positive head. The well is flowing steadily at 

one rate and then the rate is increased. At early times after the change, 

the increase in produced fluid is obtained from the well instead of from the 

reservoir. A pressure drop propagates down the well. After a certain amount 

of time, depending on the compressiblility of the fluid, the pressure pulse 

interacts with the formation/well boundary. In the particular case plotted, 

the reservoir has a large value of kh/~. and it is capable of supplying more 

fluid for this pressure drop than the well could. This case results in a 

reverse pressure pulse, which propagates back up the well, cancelling part of 

the initial pressure drop. The pressure pulse oscillates until it is finally 

damped out by the interaction with the boundaries. 

Figure 2 shows the same calculations for a flashed system. Again, the 

fluid is flowing slowly and then the flow rate was suddenly increased. The 

pressure pulse propagates down the well. However in this case, there is a 

brine/two-phase boundary. The dashed line in Figure 2 shows the approximate 

location of the flash point. (Obviously, as the flow rate is increased, the 

flash level drops.) When the pressure pulse reaches this boundary, the pulse 

is partly reflected and partly transmitted. The reflected pulse propagates 

back toward the surface. In the single-phase region, the propagation of the 

signal is much faster; oscillations are mainly in the two-phase region. 

One can use the program to determine the pressure drawdown during the 

early time of a well test. It has been shown (Miller, 1979) that the initial 

slope of a log-log plot of pressure vs. time in well testing is not necessarily 

unity, as derived in the petroleum literature. As seen in the figures above 

there is a time delay until the downhole pressure registers the change made 

at the wellhead. Wellbore storage curves are derived assuming the fluid in 
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the well responds as a well-mixed fluid. By being able to model the transient 

flow in the wellbore, it has been possible to calculate the expected drawdown 

in the well, taking into account the nonuniformities in the well. The results 

show that another nondimensional time tRw must also be determined in addition 

to the average wellbore storage coefficient CD (see Fig. 3). The plot shows 

calculations for flashed and unflashed wells. The parameter tRw is defined as 

As kh/~ decreases, tRw increases, and the early-time behavior of the log P vs. 

log t approaches a one-to-one plot. As kh/~ increases, tRw decreases, and 

the slope of the log P vs. log t curve is steeper than unity. 

The numerical model can also be used to determine the effect of heat loss 

to the rock surrounding the wellbore during a well test. The calculations 

shown are done for a well that has been flowing and is reasonably "warm". The 

assumed temperature profile is shown by the inset in Figure 4. The well has 

been flowing steadily, then the flow rate is decreased. Figure 4 compares the 

buildup curve and subsequent drawdown curve with and without heat transfer. 

The calculations show that even when the well has been flowing for several 

hours and the rock around the bore has been heated, heat transfer during a 

well test is still important and must be considered. When the well test data 

are plotted, the slope of the P vs. log t curve in the pseudo-steady region 

is significantly affected by the heat transfer. Also the time to reach the 

pseudo-steady region is longer when heat transfer is important. 
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NOMENCLATURE 

a 

c 

e 

f 

g 

h 

H 

I 

k 

kr . 
m 

p 

q 

s 

v 

v 
r 

Speed of sound 

Reservoir compressibility 
Wellbore storage coefficient 
Diameter of well 

Specific energy 
Friction factor 

Gravity 

Thickness of reservoir 

Heat transfer coefficient 

Rate of evaporation or condensation 

Permeability 
Conductivity of rock 

Mass flow rate 
Pressure 

Volume flow rate 

Radial direction 

Radius of well 
Saturation 
Specific entropy 

Time 
Temperature of rock surrounding well 

Temperature of fluid in well 

Axial direction 

Velocity 

Relative velocity (vg-v~) 

volumetric quality (holdup) 

density 
Absolute viscosity 

Porosity 

Subscripts 

r Reservoir 

w Well 
~ Liquid 
m Mixture 
g Gas 

D Non-dimensional parameter 
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APPENDIX A 

To use the same numerical method that was developed for modelling the equi~ 

librium flow, oPmlot must be written in terms of 3P/ot only. In the non~ 

equilibrium case, the number of independent variables has increased by one, 

and the average energy is no longer convenient to use as one of the indepen~ 

dent variables. Now, temperature, pressure, and void fraction will be the 

independent variables. To be able to write the density change in time as a 

function of the pressure change only, the vapor continuity and the energy equa-

tions must be used to express 3a/3t and 3T/3t in terms of oP/ot respectively. 

After the new pressure is evaluated along the wellbore, the other independent 

and dependent variables can be calculated. 

In the overall continuity equation (1), the convective term, o(pmvm)/2x, is 

evaluated by using the momentum equation as developed in the first section of 

this paper. The difficult part is expressing opm/at in terms of the three 

independent variables. The average density is (1-a)p~ + aPg• The derivatives 

of Pm with respect to T, P, and a are: 

Then 

ap 
m 

at 

op 
m 

aT 

dp 
m 

()p 

dp 
m 

a a 

P,a 

I T,a 

I 
T,P 

op~ op 
~ (1-a)- + a 3T aT 

P,a 

dp~ op 
(1-a)~ + a ~ aP 

T,a 

Pg ~ p~ 

ap J 
+a af 

P,a 

, and 

T,a 
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The continuity equation for the vapor component is rewritten to give d~/ot: 

(Al) 

where the term in the first parenthesis is just o~g/dt. 

The energy equation can be used to relate dT/dt in terms of oP/dt. The 

average energy, em is 

1 

and the derivative of <~mem) in terms of oT/ot, oP/dt, and d~/dt is 

(A2) 

However, the energy equation gives J(~mem)/ot, which is: 

() d I (1-u)IJ!i,U.~ v (e 
- e,~)J- dv 

(IJ e v ) 
g r g m - ph ox m m m dx tJ m 

(A3) 

All these terms are evaluated explicitly so they can be calculated directly. 

Then equation A2 can be solved for dT/dt by using equation Al to express d~/dt 

in terns of dP/dt and JT/dt, and equation A3 is used to determine J(~mem)/dt 

in terms of known values. The resultant form is 

where 



B = 1, 

c 

and 
0 
dx 
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(a~ v ) + I] 
g g 

Since o~m/ot has been written in terms of oP/ot, one can evaluate the overall 

continuity equation for the new pressure. Once the new pressure is determined, 

the method is similar to that derived in the first section of the report. 
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