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ABSTRACT 

Despite the engineering importance of martensitic transformations 

in solids, particularly steel. there exists very little theoretical work 

on the development of the martensitic transformation and the character~ 

istics of the resulting microstructure. It is the purpose of the pre~ 

sent thesis to advance the theory of the martensite transfonnation by 

constructing a computer model of a martensitic transformation in an 

idealized system. The model has its source in the general observation 

that the characteristics of martensitic transformations in solids are 

largely determined by the problem of accomodating the strain associated 

with the martensitic distortion of the crystal lattice. A review and 

adaptation of prior theoretical work leads to the development of a 

which allows the straightforward computation of the elastic energy 

associated with an arbitrary distribution of defects in an elastically 

anisotropic body under the assumption that the body has uniform elastic 

constants and that anharmonic effects may be neglected. These equations 

are cast into a form in which the energy is written as a simple sum of 

binary interactions in which the defects influence one another according 

to an elastic potential whose form can be readily calculated, At the 

same time that the energetic equations take a simple form the kinematics 

of the process involving the appearance of elastic inclusions are also 



known to be simple since in a harmonic model an inclusion may be regard~ 

ed as a simple sum of elementary inclusions which make it up. Given this 

theoretical foundation the martiensitic transformation is modeled as a 

transformation which occurs through the sequential formation of indivi~ 

dual martensitic elements. each of which carries the elementary trans~ 

formation strain, Statistical equations are developed which govern the 

selection of the transformation path. or specific sequence in which ele~ 

mentary martensite particles appear in the model. and which specify the 

kinetics of transformation along any known path. A useful representa~ 

tive path is defined. the "minimum energy" path. The resulting model 

is then used for the detailed simulation of a martensitic transformation 

in a pseudo two~dimensional system. Despite the simplicity of the model 

virtually all interesting qualitative aspects of the developing marten~ 

sitic transformation are shown to be inherently present within it, 
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I, INTRODUCTION 

The Chinese have an adage liThe shortest step may be the beginning 

of the longest journey", As long ago as 4.000 B,C., primitive men 

I 

were using meteoric iron as a rare and valuable material, This 'heaven~ 

sent iron' could be hammered and worked like native gold and copper but 

became harder than either of them and hence very useful for the manufac­

ture of implements, This marked the initial use of "heaven~sentl! mar­

tensitic iron, 

Over the next four millenia men learned to win iron from its ores, 

to purify it and to join it into useful implements, However, these 

implements were for the most part soft and easily bent, the 

hardness we associate with modern, industrial steel tools, The deve­

lopment of steel in the modern sense occurred at about the time of 

Christ. Many of its first and most important uses were military, We 

know that in the battle of Insubres (220 B,C,) the Romans, using weapons 

made of quenched carbon-containing iron, easily defeated Gallic forces 

armed with traditional wrought iron weapons, This and subsequent Roman 

successes, which were due in no small part to their metallurgi-

cal • amply demonstrated the advantages of quenched carbon­

irons for the manufacture of useful implements, Though the 

Romans were not aware of the fact they were using some of the first man-

made martensitic steels, 

The term "martensite" is adapted from the name of the 19th century 

metallographer, A. Martens, who was among the first to study the corre~ 

lation between the microstructure and properties of quenched carborized 

iron, He and other 19th metallographers observed that when iron 

carbon is cooled rapidly from a temperature at which the high 



temperature austenitic phase is stable, the usual nucleation and growth 

transformation to the soft "pearlitic" phase is avoided, and the body 

instead undergoes a very rapid transformation at low temperature to an 

extremely hard product phase. 

In our more modern understanding martensite is not strictly a dif~ 

ferent phase of steel, but rather a unique microstructure which results 

from the special characteristics of the martensite transformation which 

gives it birth. The decomposition of the high temperature FCC austeni­

tic phase on slow cooling involves a separation into two phases of dif­

ferent carbon content. The process hence requires diffusion. If the 

steel is cooled so rapidly that these diffusional processes cannot 

occur, however, the driving force for transformation from the high tem-

perature Fce phase to the low Bee phase becomes so great that the steel 

eventually undergoes a very rapid diffusionless shear transformation to 
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a nearly Bee structure with no change in composition. The mechanical 

character of the transformation introduces elastic strains and often high 

densities of dislocations, twins, or other defects into the lattice. 

These, combined with the distortions caused by the presence of the super­

saturation of carbon, induce the high structural strength that engineers 

have found so useful since the time of the Romans. 

We now know that the martensitic transformation in steel is only 

one example of a class of similar transformations that are found in a 

number of physical systems (Table I.). (1) Materials known to exhibit 

martensitic transformations include a variety of metal alloy systems, 

ferro~electric materials such as beryllium titanate, ceramic materials 

such as zirconium oxide, superconducting phases, and many others. The 

characteristics of the martensite product differ from system to system, 



3 

and are particularly sensitive to the crystallography of the initial and 

product phases, As a consequence of extensive experimental study over 

many years, it is known that a number of morphological, kinetic and 

crystallographic features are, however, common to a wide variety of mar-

tensitic transformations and their product phases. These can be summa~ 

rized as follows: 

~ Morphologically, the martensitic phase usually forms as a thin 

• needle, or lath lying along a reasonably well defined habit plane 

of the parent crystal. The crystallographic axes of the martensitic 

show reproducible orientation relationships to those of the parent 

phase. The interior of the martensite platelet is dense with crystal 

defects, which may be either crystallographic twins or dislocations. 

If the martensite platelet impinges on a free surface, the latter will 

be deformed to exhibit a characteristic surface relief. 

~ Kinetically. the martensitic transformation is extremely rapid, 

with each platelet growing at speeds which approach the speed of sound. 

In general. the transformation begins with the rapid growth of a single 

which then triggers the growth of further platelets by an auto-

ic process. The result is a "burst" of martensitic transforma-

tion which often produces a "click" audible in experiment. 

~ However, the martensitic transformation will usually not go to 

ion at its initiation temperature. To maintain the transforma-

tion and bring it essentially to completion. it is necessary that the 

be decreased continuously. The temperature at which a mar-

tensitic transformation first begins is denoted the martensite start 

• M • and that at which it essentially reaches completion is 
s 

called the martensite finish temperature. Me It is, however, commonly 
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found that the last bit of high temperature phase is extremely difficult 

to remove through a martensitic transformation, Even after the trans-

formation is sensibly complete, retained temperature phase may 

still be found along the periphery of the martensite platelets, 

III The martensitic transformation may be reversed by heating, but 

transformation hysteresis effects are usually observed, The reverse 

martensite transformation is initiated at a temperature ,and is com~ 

pleted at a higher temperature A
f

, which may lie several hundreds of 

degrees above the M temperature at which the martensite transformation 
s 

begins on cooling, 

• In keeping with the mechanical character of the transfor1llation, 

both the temperature at which the martensite formation occurs and 

the type and morphology of the martensite platelets ,\,;rhich are formed 

are strongly influenced by the presence of applied stress, In iron, 

where the martensitic phase is ferromagnetic, these features are also 

influenced by the presence of magnetic fields, 

While the martensitic transformation has been studied extensively 

experimentally and is reasonably well understood phenomenologically, its 

theoretical interpretation remains at a rather primitive analytical 

level, Significant progress has been made in understanding and inter-

preting the morphology and crystallographic orientation of isolated mar-

tensite particles, However the nucleation and growth characteristics, 

autocatalytic phenomena and resultant martensite microstructure remain 

poorly understood. The resolution of these questions is of major 

engineering, as well as scientific, importance. 
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Studies on the crystallography of the isolated martensite platelets 

began with the work of Bain in 1924(2) and were developed by Kurdjumov 

and Sachs(3) and by Nishiyama(4) in the 1930's. The crystallographic 

relations found by these researchers successfully predicted the lattice 

correspondence between the martensite particle and the parent phase. 

The crystallographic relations do not, however, uniquely fix the details 

of the atomic displacements which occur, a subject which is still the 

topic of much discussion(5,6,7,8). The habit plane of an isolated mar-

tensite particle can be obtained from its orientation following crystal­

lographic models developed by Greninger and Troiano(9), Liebreman, 

(10) . (11) (12). Wechsler and Read • Bowles and Mackenzle • and later Wayman 

These models essentially begin from the hypothesis that the habit of a 

martensite plate will be a plane of lattice correspondence with the 

parent matrix which gives rise to an invariant plane strain, so as to 

minimize the elastic energy. An equivalent, but more direct approach 

(13 14 15) . was taken by Khachaturyan •• who computed the elastlc energy 

associated with a martensitic inclusion in an anisotropic medium as a 

function of its shape and habit, and derived results for the habit plane 

and structure of martensite crystals essentially identical to those 

obtained from the crystallographic theory. A similar analysis was per­

formed by Shabata and Ono(16) who employed an alternative formulation 

for the elastic energy based on the Eshelby treatment(17,18). As a 

consequence of this work, the shape and orientation of isolated part-

icles may be said to be reasonably well established, and can be based 

alternatively on crystallographic or elastic energy formulations, 

Our understanding of the initiation. growth and development of 

martensite is, however. not nearly so well developed. The nucleation of 



the martensitic transformation in steel has been studied from the point 

of view of classical homogeneous nucleation theory by Kaufman and 

Cohen(19) ~ Read and Breedes(l), ChriStian(20), and Easterling and 
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Tho'l" (21) Th 0 0 d hOI d' o en , ese 1nvest1gators treate t e martens1te nuc eus as a lS~ 

crete homogeneous particle involving an internal elastic distortion and 

a relatively high surface energy, They concluded that the activation 

energy required for homogeneous nucleation of martensite in bulk is far 

too high to be overcome purely by thermal fluctuations. This conc1u~ 

sion is supported by experimental evidence on the martensitic transfor~ 

mation in steel which also appears to shown that the martensitic trans~ 

formation is heterogeneously nucleated, Specific mechanisms for hetero~ 

o (22) (19) 
geneous nucleatlon were proposed by Frank • by Kaufman and Cohen 

who suggested the presence of pre-existing embryos of the martensite 

phase, by Olson and Cohen(23). who proposed a mechanism involving co-

operative faulting from groups of existing dislocations. and others. 

None of these models is widely accepted at the present time. 

An alternative approach. which has been applied with some success 

to nonferrous systems~ treats martensitic transformations which arise 

from "soft mode" mechanisms in which the parent phase becomes unstable 

with respect to infinitesimal distortions. Examples of martensitic 

transformations which appear to be of the soft mode type include trans~ 

formations in AIS compounds. such as Nb
3

Sn and V3Ga. and the well known 

omega transformation in titanium alloys. Soft mode theories for the 

transformation of AlS compounds are particularly well developed. Labbe 

and Friedel(24) and Pytte(2S.26) proposed models based on an instability 

with respect to a Jahn-Teller distortion of the parent phase. 

Gorkov(27-30) suggested a lattice instability due to the Peierls mecha-
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niem of an energy gap opening near the Fermi Surface. Mattheiss(31) 

developed a successful Landau theory based on the Gorkov model. He 

also proposed a microscopic model using a band structure calculated by 

APW techniques which includes both the Jahn~Teller instability and the 

Peierls effect. This model predicts an elastic softening (Cll~C12 ~ 0) 

for the <110> transverse mode as the transition temperature is approached. 

Variations on the Hsoft mode" which involve instabilities with respect 

(32) 
to finite atom displacements have been proposed by Clapp and by 

Suzuki and Wutt 
(33) 

among others, 

While the crystallography, shape, and habit of isolated martensite 

particles may be regarded as well understood theoretically, and the 

problem of the initiation of the martensite transformation has at least 

been widely attacked, there exists virtually no prior theoretical work 

on the development of the martensitic transformation and the character-

istics of the resulting microstructure. The absence of relevant theore-

tical work is perhaps not surprising given the complexity of martensitic 

transformation behavior, but is disconcerting since it is during the 

development of the martensitic transformation that the most interesting 

phenomenological apsects of the transformations appear and it is the 

final microstructure of the martensite phase which most strongly deter-

mines engineering properties. 

It is the purpose of the present thesis to devise a more comprehen-

sive treatment of the martensitic transformation by constructing a com-

puter model of the martensitic transformation in an idealized system. 

The model which will be developed here begins from the general 

observation that the characteristics of the martensite transformation 

are determined by the problem of accomodating the strain as so-
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ciated with the distortion of the crystal lattice, and from the realiza-

(34-38) . tion that, due largely to the work of Khachaturyan we are now ln 

possession of rather elegant theoretical tools which permit the compre-

hensive treatment of elastic distortions in the context of the linear 

elastic model, The model which is constructed and utilized here is set 

up essentially as follows: 

The Khachaturyan formulation of the linear theory of elastic inclu-

sions in anisotropic media permits the straightforward computation of 

the elastic energy associated with an arbitrary distribution of defects 

in an elastically anisotropic body having uniform elastic constants, 

Moreover, if the defects consist of elementary particles of a few dis-

crete types, the equations can be cast into a form in which the energy 

becomes a simple sum of binary interactions in which the defects in-

fluence one another according to an elastic potential whose form can be 

readily calculated, At the same time as the equations take a simple 

form in a linear model, the kinematics of a process involving the appear-

ance of elastic inclusions also become simple since in the linear model 

an inclusion may be regarded as the simple sum of elementary inclusions 

which make it up, 

The martensitic transformation is hence modeled as a transformation 

which occurs through the formation of individual martensitic elements, 

each of which carries the elementary transformation strain, Since the 

energy associated with an arbitrary distribution of such martensitic 

elements can readily be calculated in a form which is particularly well 

adapted for solution in a digital computer, the model martensitic trans-

formation can be allowed to proceed through the successive appearance 

of elementary martensite particles whose type and location is chosen by 
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the computer according to some reasonable energy criterion; for example, 

to provide the maximum rate of energy decrease or to follow the statis~ 

tics of an assumed thermally activated process, The kinematics and 

governing equations of the model are developed in detail in subsequent 

sections, The model is then used for the detailed simulation of a mar~ 

tensitic transformation in a pseudo two-dimensional system. As we shall 

see, despite the simplicity of the model, virtually all interesting 

qualitative aspects of a developing martensitic transformation are in~ 

herently present within it. 

The body of this work is developed in four sections. The first 

section contains a brief review of previous results concerning the 

elastic theory of phase transformations. the formulation of the equations 

giving the energy of a crystal lattice containing a distribution of sub­

stitutional defects from the lattice statics theory, the development 

of the long wavelength approximation to the microscopic elastic theory 

and the derivation of the limit transition to the continuum theory of the 

macroscopic elastic inclusion. In the second section this model is 

specified to the particular case of a martensitic transformation whose 

development is driven by the need to accomodate the elastic strain, In 

the third section the specific procedures for computer simulation of the 

martensitic transformation in a pseudo two-dimensional crystal lattice 

are discussed~ and in the fourth section the results of the simulation 

are presented with particular emphasis on the qualitative reproduction 

of interesting features of martensitic transformations observed in bulk. 
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II, THE ELASTIC ENERGY OF A HETEROGENEOUS CRYSTAL 

The theory of the elastic energy of a crystal containing defects 

has developed along two largely independent lines that lead, respect~ 

ively, to the "macroscopic" elastic theory and to the "microscopic" or 

"lattice statics" theory. The former is most useful in the treatment 

of large inclusions, such as precipitate particles, The latter was 

developed to treat problems such as the elastic relaxation near point 

defects in crystal lattices, 

The model which is constructed and utilized for the study of the 

martensitic transformation in the body of this thesis lies in the 

middle ground between these two formulations, The present section is 

included to lay the theoretical foundations for this model, In subsec­

tion A we review some salient features of the macroscopic elastic theory, 

In subsection B we define the microscopic, or "lattice statics" model, 

and reformulate it for the particular case of an anisotropic elastic 

body which contains an arbitrary distribution of substitutional defects, 

In subsections C and D we establish the correspondence between the 

microscopic and macroscopic approaches in the limit in which the defects 

are aggregated into large inclusions, 

It is worthwhile to mention that the model described in this section 

is not only applicable to the martensitic transformation but also to a 

wide variety of phase transformation in metallurgical systems, such as 

order-disorder reactions, spinodal decomposition, tweed formation and 

precipitation reactions, The exploration of applications to these other 

transformation types is in progress at the present time, 
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A. The Hacroscopic Elastic Theory 
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The first serious attempt to calculate the elastic energy of a co­

herent inclusion was apparently made by Eshelby(17), who considered an 

ellipsoidal inclusion in an isotropic medium. Eshelby obtained a gene-

ral solution for the elastic energy of an ellipsoidal inclusion in a 

matrix of similar elastic constants, and formulated a procedure which 

might be used when the elastic moduli are not the same. His work led 

to a variety of specific results which have subsequently proven to be of 

significant value to the theory of phase transformations. However, his 

real-space formulation of the problem is difficult to extend to cases 

involving non-ellipsoidal geometry, anisotropic elastic constants, or 

distributions of inclusions. These formal limitations are important, 

since many of the problems of greatest interest in the theory of phase 

transformations in solids involve distributions of inclusions whose con-

figuration depends strikingly on the anisotropy of the matrix. 

A general solution for the elastic energy of an arbitrary distribu-

tion of macroscopic elastic inclusions in an anisotropic matrix was ob­

tained by Khachaturyan(14) , who used a Fourier transform technique to 

solve the problem under an assumption of uniform elastic constants. 

The central result of the Khachaturyan treatment is that the elastic 

energy of an inclusion (or distribution of like inclusions) of arbitrary 

shape may be written in the compact form 

= 1 If I B(e) 1~(~)12 d
3
k 

2 _00 ~ (2TI)3 
(II-A-l) 

where e ~ k/lkl is a unit vector, B(e) is a scalar elastic energy func-
~ ~ ~ 

tion which is independent of the shape or distribution of the inclusions 

and 16(k) 12 is an "intensity" factor which is independent of both the 
~ 

nature of the inclusion and the values of the elastic constants, 



12 

Specifically, the elastic energy function is given by 

000 0 
B(e) = A"ko€"€ko-e.a"~'k(e)oknen 

~ 1J k 1J k ~1 1J J ~ k~k 
(II-A-2) 

where i, j, k, t are cartesian indices (which are to be summed if re-

peated), Aijkt are the elastic constants'£~j is the "transformation 

strain". i,e., the strain required to bring the matrix lattice into coin-

o 
cidence with that of the inclusion, 0,. is the "transformation stress", 

1J 

o 
a .. 

1J (II-A-3) 

and ~t~. is a Green's function whose reciprocal is related to the dynami-
1J 

cal matrix in the long wavelength approximation: 

The function B(e) multiplied by the volume is, in fact, equal to the 
~ 

elastic energy of the inclusion when the inclusion is in the form of an 

infinite plate which is oriented so that its normal vector n is parallel 
~ 

to ~ and which is strained so as to provide an exact lattice correspon-

dence with the matrix in the plane of the plate, 

The "intensity" factor I~(k) 12 coincides with the Laue interference 
~ 

function which describes the intensity distribution in reciprocal space 

caused by scattering from the inclusion. 

transform of the shape function 

1

1 for ~ inside an inclusion 
8 (r) "" 

~ 0 otherwise 

~ 

The 8 (k) is the Fourier 
~ 

(II-A-S) 

The intensity factor satisfies the identity 

v 

where V is the volume of the inclusion. 



As shown by Khatchaturyan and Shatalov(15) , equations (II~A~l) may 

be generalized to the case of simultaneous distributions of inclusions 

of distinct types. The result is 

where p and q label the different inclusion types, 

and 

B (e) pq '\; 

o 0 
~ e. () .. (p) rI. 0 ( e) (}"1 (q) e

k
• 

1 1J J 1v '\; 1v:<.. 

'\; '\;* 
8 (k) = 8 (k) 8 (k) pq '\; p ~ q '\; 

Many of the most important results of the macroscopic elastic 

theory follow directly from eq, II~A-l or II-A-7. Examples include 

the following: 

(1) The elastic energy is positive semi-definite (i.e. Eel ~ 0), 

It may easily be shown that 

The vanishing of B(e) occurs only in the special case. discussed below, 
'\; 

in which the transformation strain has an invariant plane perpendicular 

to ~, 
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(2) The preferred shape of an inclusion is an infinitely thin plate 

with a habit plane specified by the normal vector, n • 
'\;0 

Let 1\;0 be the direction for which B(~) takes on its minimum value 

B(~) ?: B(n ) 
·V '\;0 

(II-A-ll) 

The 1\;0 will be unique except for the degeneracy imposed by symmetry 
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considerations, From equation II-A-l 

00 

I~ (~)12 d\ 
Eel 1/2 ~~f B(~) 

(2n) 3 

00 

I~ (k)1
2 d3k 

.<: 1/2 B(n ) fff := 1/2 B(~o) V 'Vo -00 'V 
(2n) 

Hence Eel takes its minimum value 

E. = 1/2 B(n ) V mln 'Vo (II-A-13) 

when the intensity factor I~ (~)12 is non-zero only within an arbitrary 

thin rod of direction n, and hence when the shape factor. e (r). is 'Vo 'V 

non-zero only within an infinitely thin plate normal to n , 'Vo 

The coherent inclusions produced by phase transformations in solids 

are usually found to have the predicted thin-plate morphology. Excep-

tions occur when the lattice mismatch between the inclusion and the mat-

rix (and hence the elastic energy) is small, or when the particle is so 

small that surface energy effects predominate. 

(3) When the inclusion is plate-like but finite. its energy may be 

written as the sum of a volume term and a peripheral energy in which the 

peripheral energy is formally equivalent to the energy of a dislocation 

loop with an appropriate Burger's vector. 

Let the precipitate be a thin plate with normal n . 'Va 

00 

I~ (~)12 d3k 
1/2 fff B(e) 

-00 'V 
(2n) 

00 

I~ (~) 12 
d\ 

1/2 B(n ) V + 1/2 fff L\B(e) 'Vo -00 'V (2n) 
(II-A-14) 

We now expand B(e) about n . 'V 'Vo Since B(n) is a minimum. the first term 'Vo 

in the expansion vanishes, To second order. 



L1B(e) "" B(e) - B(n ) 'V 'Vo 

1/2 2 
~ (a B(e)/ae.ae.) L1e. /1e. 

1 J ~=r;,o :1 J 

"" 1/2 S .. (n ) !J.e. /1e. 
1J 'Vo 1 J 

where 

2 S .. (n ) ~ (d B(e)/ae.ae.) 
1J 'Vo :1 J ~~r;,o 

For a thin plate I~(~) 12 is small for angles larger than 

2rr/2R 
I;; 'V 2rr/d 

d 1 'V - ~-

2R A 

where I;; is the angle between e and n , d and R are the thickness and 'V 'Vo 

radius of the inclusion respectively, and A is the aspect ratio. 2R/d. 

By using (II-A-15) in (II-A-14) and confining the integration to small 

angles. it may be shown that 

E = 1/2 B(n ) V + ¢r(m) dl(m) e 'Vo 'V 'V 

where ~ is a unit vector perpendicular to the element, dl(~), of the 

plate periphery and lying in the plane of the plate, and 

d
2 

r(m) "" -4- In (2R/d) S .. (n ) m.m. 
T[ 1J 'VO :1 J 

The function rem) formally resembles the line tension of a dislocation 'V 
o line element of Burger's vector of the order £ d. 

When the function r(m) is a constant, r, as it is, for example, in 'V 

the case of a tetragonal inclusion in a cubic matrix, then the elastic 

energy can be written 

E "" V j 1/2 B (n ) + [-AI Q,n A] } e 1 'VO 

15 
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Where S := 6 .. (n ) m.m. := constant. This relation allows the energy per 
1.J 0 1. J 

unit volume to be phrased as a simple function of the aspect ratio, 

(4) When the transformation strain has an invariant plane, 

the bulk elastic energy of a properly oriented plate is zero, 

Let the transformation strain have the diadic. form 

a a 0 
E .. = (£.n. + n.£.) 

1J 1 J 1. J 

where £ and n 
'\,0 

are unit vectors, 

If we substitute (II-A-2l) into (II-A-2) 

B(n ) 
'\,0 

o a 0 0 
- n. (A"kn£knn) rl. (n) (A Q, n ) n 

1. 1.J N N JS '\,0 spqr q r p 

According to the definition of the tensor rl 

o 0 -1 (n ) Aijk£nin£ := 
rljk '\,0 

A o 0 -1 
(Ito) n n '" rl spqr r p sq 

(II-A-21) 

(II-A-22) 

(II-A-23) 

(II-A-24) 

substitution of (II-A-23) and (II-A-24) into (II-A-22). using the 

relation 

results in the equation, 

B(n ) 
'\,0 

- £k (rlk-~ (n ) O. (no» 0-1(n ) Q, ] 
J '\,0 J S '\, s q '\,0 q 

:= 0 (II-A-26) 



Since B(~) ~ 0, the value B(n ) 
·V 'Va 

Bee) and therefore 
'V 

BCn ) = min B(e) = 0 and 
'Va 'V 

o provides the absolute minimum of 

Hence an infinite thin plate lying in a plane of invariant strain has 

zero elastic energy. 

The result (II-A-28) provides the connection between the elastic 

17 

and crystallographic theories of the habit plane of martensite plates(15). 

Th 11 h ' h ,(10,11,12) b d h 'h e crysta ograp lC t eorles . are ase on t e assumptlon t at 

the habit of martensite will be an invariant plane of the transformation. 

The elastic theory confirms the assumption that the invariant plane 

provides a minimum of the elastic energy. 

It will also be noted from equation (II-A-18) or (II-A-20) that 

where an inclusion has a plate morphology with an invariant habit plane, 

the bulk elastic energy is equal to zero and the total energy is equal 

to the peripheral energy of the plate, which may be represented as the 

linear tension of a pseudo dislocation loop encircling it. 

(5) When the matrix is cubic and contains a distribution of tetra-

gonal inclusions, the elastic energy is minimized when the inclusions 

aggregate to form martensite-like crystals whose habits are invariant 

planes, 

(15) This result, established by Khachaturyan and Shatalov from 

equation (II-A-7), completes the contact between the elastic and crys~ 

tallographic theories of the martensite habits and may also explain the 

"tvleed" microstructures observed in the early stages of the phase de-

'" 1 (39) compos1t1on 1n severa systems . 

The Khachaturyan development of the macroscopic elastic theory 
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used above involves the solution of the elastic equilibrium equations 

in reciprocal space. The same results are~ of course, determinable 

from real space formulations of the problem along the lines proposed by 

Eshelby (17). ~Vhile the mathematics are more formidable in the real 

space formulation and the physical content of the equations is less 

transparent, significant recent results have been obtained. Shibata and 

Ono(16) used the Eshelby formulation to compute the preferred habit plane 

of martensitic inclusions by varying the shape and orientation of ellip~ 

soidal inclusions to identify minimum energy configurations. Lee, 

Aaronson, and Barnett(40) generalized the Eshelby analysis to treat 

L 
(41) 

ellipsoidal inclusion in anisotropic media. ee has recently shown 

how differences between the elastic constants of the matrix and the 

inclusion may be incorporated into the treatment of ellipsoidal inclu~ 

sions. 
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B. The Microscopic Elastic Theory 

The macroscopic elastic theories described in the previous section 

have the common assumption that the coherent inclusions are large com~' 

pared to the lattice parameter. If the particle size is more nearly 

equal to the lattice parameter an alternate microscopic formulation 

may be used. 

The microscopic or "crystal lattice statics" model is also well 

developed. Its history apparently begins with the work of Matsubara(42) 

who modified the lattice dynamics of Born and Huang(43) to describe 

the static equilibrium displacements around a point defect (hence the 

term "lattice statics"). Matsubara I s work initiated a series of thea·", 

retica1 investigations into strains associated with isolated point 

defects. The theory was developed (in several cases independently) and 

.(44) (45 46) (47) (34-38) extended by Kanzakl ~ Hardy , ,Tewordt • Khachaturyan , 

(48 49) . (50) Ho and Benedek • ,Slems • and others. 

A second class of problems for which the lattice statics model has 

often been used concerns the equilibrium lattice distortion caused by 

crystal dislocations. Relevant work includes that of Maradudin(51), 

Celli(52). Gallotto and Omini(53) , Brailsford(54,55) , Boyer and Hardy(56) 

and Easterling(57). Hsei and Thomson(58) have used similar models in 

the analysis of creep and crack growth problems. 

The extension of point defect theories to treat crystals contain-

ing distributions of defects, for example, metallic solid solutions, is 

an obvious direction for theoretical research. The associated elastic 

problem is, however, difficult. Initial progress was made by Friedel (59) 

and by Eshelby(60) who used a semi-continuum treatment to compute the 



20 

elastic energy of an isotropic solid solution in which the solute atoms 

are modeled as misfitting spheres (center of dilatation) with a random 

distribution. A similar model was later used by Cahn(6l) to assess the 

influence of the elastic interaction on spinodal decomposition in metals. 

The assumption of quasi~continuum particles in an isotropic medium 

greatly simplifies the mathematical complexity of the solid solution 

model, but at some cost to the physics. The principal physical short~ 

comings are two. First, the elastic interaction between centers of dila~ 

tation in an infinite, isotropic medium is identically zero. In the 

Friedel-Eshelby model. solute atoms interact only through an image-force 

effect due to the finite dimensions of the crystal. Even when the solute 

atoms are allowed to have elastic moduli different from those of the 

matrix, the direct interaction is weak (of order r-6). It is known, 

however, that elastic anisotropy. as found in all real metals, will lead 

-3 to a direct interaction between particles of order r which is. more-

over, strongly direction-dependent. Second, the derivation of the Frie-

del-Eshelby model, which proceeds directly from the macroscopic limit, 

leaves the correspondence between the model and the microscopic physics 

of the crystal lattice somewhat unclear. 

Apprarently the first truly microscopic elastic treatment of a 

solid solution was constructed by Khachaturyan(34) who formulated a 

model for the energy of an interstitial solid solution. The result 

was used by Khachaturyan and Shatalov(35) to predict the crystal struc-

ture of ordered interstitial superlattices in tantalum. and has since 

been widely applied in the theoretical analysis of ordering in solid 

solutions(38). These derivations were subsequently repeated by Cook 
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d F 
. (62) 

an onta1ne • 

In the present work we shall employ a model of the martensite 

transformation which is essentially a quasi-continuum model in the 

tradition of Friedel and Eshelby (but without the strong ions 

of elastic isotropy). It is. however. possible to obtain this model 

from a fundamental starting point in the lattice statics modeL The 

formulation and derivation of the model is presented in the balance of 

this section. The derivation is given in some detail for three reasons: 

to demonstrate the contact between the lattice static and quasi~continu~ 

um treatments. to clarify the nature of the assumptions involved, and 

to provide a self~contained derivation which is free of the (sometimes 

real, sometimes apparent) inconsistencies between the earlier treatments, 

The formulation used here is based on the Khachaturyan model of the 

. t" II' d I . (34 ) 1nters 1t1a so 1 so ut10n • 

(1) Model of a Multi-component Substitutional SaUd Solution. 

Let a multi~component solution be created by introducing elastic 

defects, which may be either solute atoms or inclusions of a more gene-

ral type, onto the sites of a solvent host lattice. We shall make three 

assumptions: 

(a) An elastic defect of type p may be characterized by the linear 

elastic strain E~j(p). whose negative is the strain required to deform 

it from a fully relaxed state until it fits precisely into the host 

lattice. The strain E~.(p) is a measure of the "lattice mismatch Vl 

1J 

between the solute and solvent species, 

o The definition of E, ,(p) of course requires a clear specification 
1J 

of the structure of the relaxed reference state to which the solute is 
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referred. When the solute preferentially forms a having the 

same crystal structure as the solvent. or when the solute is an element 

of new phase whose structure is specified. then the 

reference structure is clear, On the other hand. when the solute pre~ 

ferentially forms a crystal having an equilibrium structure different 

from that of the solvent the appropriate reference structure is not 

obvious and should be chosen so as to minimize the free energy of solu~' 

tion, Since the elastic energy associated with deformation is large and 

increases monotonically with the magnitude of the deformation. the free 

energy of solution will usually be minimized if the reference structure 

used in the definition of £~.(p) is that stable or metastable structure 
1J 

th 
of the p solute which is geometrically closest to the structure of 

the solvent, The solution may then be made through a quasi~chemical 

cycle involving a structural transformation (if which brings 

the solute from the equilibrium state to its metastable structure 

closest to that of the solvent followed by a small elastic distortion 

to establish a coincident lattice, The second defines the elastic 

o 
strain £ .. (p). 

J-J 

T f ' f f h th 1 . d f .. d . 1 __ the re_erence structure _or t e p e ast1c e ect 1S 1.ent1ca 

to that of the host crystal. then the reference strain £~. (p) is a 
1J 

simple dilatation (homogeneous expansion or contraction). In this case 

each solute is represented by only one elastic defect. However, 

if the reference structure of the defect differs from that of the host 

lattice, then the reference strain contains shear as well as dilatation-

al and a s solute may rise to several dis-

tinct elastic defects, which differ in the orientation of the principal 

axes of the reference strain with to the axes of the host 



crystal. For example, the simplest tetragonal defect in a cubic 

crystal may be present in any of three distinct variants. which differ 

in the orientation of the tetragonal axis. 
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(b) We shall assume that the difference in the Born~von Karman con'~' 

stants. and hence the elastic constants. between the solute and the sol .. 

vent is sufficiently small that it may be ignored. 

The assumption of equal elastic constants is a strong one. but pro~ 

vides a major formal simplification of the model and insures its mathe~ 

matical tractability. The study of the consequences of differences in 

the elastic constants has not progressed to the point where the reason~ 

ableness of this assumption can be quantitatively assessed, but avail~ 

able prior work(16.17) based on continuum calculations does suggest 

that the "modulus defect" may often be safely ignored. 

(c) We shall assume that the free energy of the solution is well 

represented by an expansion to terms in the second order in the compo~ 

sition. elastic displacement. and their cross products (the harmonic 

approximation). Higher order terms will be neglected. 

The harmonic approximation not only simplifies the computation but 

also has the advantage of preserving a simple superposition principle 

within the model in which. for example. the elastic strain at a point in 

the solution may be written as a simple sum of strains associated with 

each of the elementary defects. It is this superposition which permits 

us to extract a treatment of elastic inclusions of finite size by simply 

modeling these as agglomerations of elementary defects. 

The distribution of defects of type p over the lattice may be des­

cribed by the function 



C (r) 
p 'V 

1 for atom of type p at r 
'V 

a otherwise 

The atomic fraction of p is 

C "" p 
1 
-NL C (r) "" p 'V 

~ 

N 
-E. 
N 

(II-B-l) 

(II-B-2) 

where N is the number of atoms of type p, N is the total number of 
p 

lattice sites, and the summation is over the lattice. If more than 

one type of solute is present then clearly 

C (r) C (r) "" 6 C (r) 
p 'V q 'V pq P 'V 

where 6 is the Kronecker symbol. 
pq 

The introduction of solute atoms into the host matrix will cause 

o some distortion of the matrix if any of the E .. (p) are non-zero. 
1J 

Distrotions of the lattice, due either to solute atoms or to external 

loading, will be described by the vector displacement function 

u(r) 
'V 'V 

r' - r 
'V 'V 

where~' is the position of the lattice point in the distorted state 

and r is its poition in the pure, stress-free solvent matrix. 
'V 

(2) The Elastic Hamiltonian 

Let a distribution C (r) of defects of type p (p "" 1, .... v) be 
p 'V 

introduced into the host lattice. Let the lattice be spatially homo-

24a 
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geneous and elastic and let its states of strain be described by the 

displacement field ui~) defined in eq, II-B-4, Treating the energy, E, 

as a continuous functional of the displacement field, ui(~) and of the 

concentration fields, C (r). then the energy is, to second order. p rv 

+ 1 I I EPq(r - r') C (r) C (r') 
2 p rr' cc rv rv p rv q rv rvrv 

+ -21 I I , f~(r - r') C (r) u,(r') 
p ~ 1 rv rv p rv 1 rv 

+ 1. I A -IJ' (r - r') u, (r) u, (r I ) 2 rr' b rv rv 1 rv J rv rvrv 

the symbol 

and 

where the variational derivatives are taken in the reference state 

C (r) ~ ° (p = 1, ",v) and u,(r) = 0, prv 1rv 

Mechanical equilibrium in the reference state requires that the 

vector 

since u may have either sign, The remaining coefficients may be 
rv 

evaluated by using an equivalent cycle to create the final state. roughly 
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along the lines suggested by Eshelby(18) . 

Let the solid solution be created from the pure one-component 

solvent in a cycle of six operations, as diagrammed in Figure 1: 

SteE (1): Taking the pure solvent crystal, isolate clusters of which 

h th 'N I d h 1 t e p contalns so vent atoms, an cut eac custer out of the sol~ p 

vent lattice, If the solvent and each of the clusters is enough 

for surface effects to be ignored, the energy of the assembly is not 

changed in the process, 

SteE (2}: 
th For each atom of the p cluster substitute an atom of the 

th 
P solute, and let the transformed lattice relax to its stress-free 

shape, This transmutation will involve the energy change 

\! 11 -
~¢2 = LlF h(P) = N LIC p= c p= p 

~ b 
IIp 

where ~Jl~ is the chemical energy difference per atom between the solvent 

d h th 1 ., f 1 Th' d an t e p so ute 1n lts re erence crysta structure, e assoclate 

th free expansion of the p cluster involves no energy change since the 

cluster is stress-free, 
a 

It is described by the strain tensor E (p), 

whose definition is discussed in the previous subsection, 

Let surface tractions be applied to each cluster to restore 

it to the shape it had before the transmutation occurred, The restora-

o tion of shape requires the strain 8" = -E, .(p), Since each cluster is 
1J 1J 

macroscopic, the deformation may be described by continuum elasticity. 

The internal stress induced by the surface traction is 

th 
Sincr} the final homogeneous strain within the p particle is 

( 
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the change in mechanical energy is 

(II-B-12) 

where v is the atomic volume. The total energy change for the assembly 

is 

~~3 ~ ~ ~self = ~ ~ vC Al']'knsol']'(P)£kon(P) p el 2 p=l p N N 

Step (4): Let the clusters (p=l, .... v) be reintroduced into the sol~ 

vent crystal. Since each cluster just fits into the space from which it 

was removed, there is no free energy change in this process. 

Step (5): Now, let the solute be dispersed through the host lattice at 

constant shape to create the solute distribution appropriate to the 

solid solution. Since each atomic defect is undistorted u(r) remains 
'V 'V 

equal to zero during this step and no strain energy is developed. The 

energy change is chemical, and is the chemical free energy of mixing. 

s (1) a free energy change (~~ ) per atomic 
p 

It has two contributions: 

defect on dissolution, which is associated with the replacement of the 

homogeneous environment of the defect by an environment of host atoms 

(if the defect were an element of new phase with bulk properties this 

free energy would be simply the chemical contribution to the surface 

free energy of the defect particle, a point of view we shall return to 

in the next section); (2) a configurational free energy change due to the 

mutual chemical interaction of solute defects. To second order in the 

solute interaction the reSUlting free energy change is 

Since the final state is taken to be a specific distribution of defects 
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there is no change in the configurational entropy; both the initial and 

final configurations are fixed to within an interchange of like part-

icles. 

Step (6): Finally, let the distributed atoms relax, introducing an 

equilibrium elastic strain into the lattice, In this relaxation, each 

solute atom will function as a center of force which acts to displace 

the lattice about it. The lattice displacement is opposed by the elas~' 

tic resistance of the lattice. The associated energy may therefore be 

written 

4>relax 

+ 1/2 rL.r' A .. (r - r') u.(r') u.(r) 1J 'V 'V 1 'V J v 
(II-B-IS) 

'V'V 

which corresponds in form to the last two terms of eq, II-B-6 if 

A .. (r - r') is the Born-von Karman tensor (dynamical matrix) of the host 
1J 'V 'V 

lattice(43), The fPer - r') are "Kanzaki forces,,(44) which act from a 
'V 'V 'V 

solute atom of type p at location r on an atom at site r', Since the 
'V 'V 

elastic relaxation is spontaneous, it follows that 

(II-B-16 ) 

The physical effect of the elastic relaxation is to remove part of the 

energy of elastic distortion introduced when the solute species were 

deformed to fit properly into the host lattice, 

Summing the free energy contributions 64>1 to 6¢6 gives the total 

energy in an equation formally identical to equation (II-B-S) 



+ 1 L L Vpq(r - r') C (r) C (r') 
2 pq rr' ch ~ ~ P ~ q ~ 

~ 

- ~ ~' ~p(~ - ~I) ~(~') Cp(~) 

1 + -2 L , A .. (r - r') u,(r) u,(r') 
~ 1J ~ ~ 1 ~ J ~ 
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The term linear in C represents the self-energy (chemical plus elastic) 
p 

of the solute atoms, the term quadratic in Cp(~) contains the chemical 

energy of mixing, and the last two terms contain the elastic relaxation 

energy and also govern the response of the solution to elastic displace-

ment due to external fields or to lattice vibration (in the harmonic) 

approximation), In a simpler notation: 

l1E '" ll¢ + ll¢ chem el (II-B-18) 

where 

"'~ - N L C "'~ + 1 L L Vpq(r - rl) Cp(r) Cq(r') chem p p p 2 pq ~~' ch ~ ~ ~ ~ 
(II-B-19) 

is the change of chemical free energy, where l1~ is the sum of !J. b and 
p ~p 

l1 s 
IIp and 

"'~el 
- v 0 0 fP(r - r') u(~) C (r) "" N L C 2A" k£ E: , , (p) E:kip) - ~ hi P P 1J :lJ ~ ~ P ~ 

(II-B-20) 

is the elastic energy change, 

The coefficients appearing in equation II-B-17 are, of course, 
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restricted by the symmetry of the crystal in its solute and deformation-

freestate~ and are further restricted by the requirement that ~ be 

invariant to rigid body displacements. Invariance to a rigid body trans~ 

lation specified by 

where ~ is a constant vector. gives the constraints: 

and 

L: A (V' - r') := 0 ,;t I ij"t 'IJ 

Invariance to a rigid body rotation, specified by the displacement 

'" w •. r. 
1.J J 

where w •. are constants, gives the additional constraints: 
1.J 

L: I r! f
i

4; ~ ,fi) '" 0 
,f J 

and 

L: A .. (c-r ' ) rj/, r' '" 0 rr' 1.J 'V m 
'V'V 

If the host crystal is symmetric to inversion, as it is in virtually all 

cases of current interest to us, then 

and 

A .. (r ~ '1"') "'" A .. (r'- r) 
1.J 'IJ 'IJ 1.J 'V 'V 

In much of the following we shall ignore the chemical contribution 

to the energy and be concerned with the evaluation of the elastic con-

tribution to eq. (II~B-17). which is 
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- 1 0 0 
~ N IC ~2 A··kOE .. (p)EkO(p) p p 1.J)(, 1.J )(, 

(II~'B~29 ) 

+ -2
1 

L IA .. (r - r') u. (r)u. (r') a 1.J 'V 'V 1. 'V J 'V 

(3) The Static Equilibrium Displacement: 

The computation of the equilibrium lattice displacement field within 

the solid solution is not only important in its own right but, as we 

shall see, also permits a substantial simplification of the expression 

for the elastic energy. 

We begin by writing the static displacement field u.(r) as a sum of 
1. 'V 

two terms: 

u.(r):= C.r. +v.(r) 
1. 'V 1.J J 1. 'V 

(II-B~30) 

In this decomposition E .. is a uniform, macroscopic strain that has, in 
1.J 

general, two sources: the net deformation of the crystal due to the 

solute lattice strain and the elastic deformation due to external forces. 

The field v.(r) is the internal displacement, which, if it is to have no 
1. 

macroscopic consequence, must be chosen so that it vanishes over the 

surface of the body. The concentration field may also be decomposed 

into its mean and variation: 

With these definitions, the elastic energy (eq. II-B~29) may be re~ 

written: 

- ~ ~ifi(:t - :tV) vi(:t') 6C p (:t) 

1 
+ 2' ,h,Aij (~ ~ ~') vi (;~)Vj (~') 
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o 
Where ~el is the elastic self energy defined in equation (II~B~13), and 

is independent of the elastic displacement. 

A •• n are 1J",m 

A .. (p) 
1J 

flo. 1.J Q,m 

the summations: 

1/2 L [f~(r) r. + f~(r) r.] 
~ 1 ~ J J ~ 1 

1/4 k [Aij(~) rQ,rm + AQ,m(~) 

+A.n(r) r +A. (r) 
1", ~ m Jm ~ 

(a) The Uniform Relaxation Strain 

r.r. 
1 J 

The tensors A .. (p) and 
1J 

(II-B-33) 

The change in the internal energy due to imposition of an external 

stress is due to those terms in equation (II-B·-32) which depend on the 

homogeneous strain E: •• since the internal displacement 
1J 

(r) vanishes 

on the boundary. By the usual relations of elasticity. the macroscopic 

elastic stress is related to the homogeneous strain by 

0 .. 
1J 

d (M Iv) 
dE:. • el 

J~J 

from which it follows that 

A 
1 

"" ~ 2: C + - fl E: 
P V P v ij kQ, kQ, 

where v is the atomic volume (v/N) , 

relation 

we have 

o 

I; 
p 

(p) C 
P 

with Rook's Law 

(II-B-36 ) 

Defining the tensor E: •• by the 
1J 

(II-B-37) 
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gives the identities 

1 
v 

and 

where is that of the elastic strain due to the im-

stress 0 ij " In the stress-free state 0
ij 

~ 0 and L~~ - 0; hence 

0) 

is the uniform relaxation strain introduced by alloying the crystal. 

The deformation on alloying may be expressed in terms of the 

solute content. Setting ° 
gives 

(p) 

which may be solved for the L 

- 0 and L .. = L., in equation (II-B-36) 
1J 1J 

(II-B-44) 

where S"k o is the elastic compliance tensor, the tensor inverse to 
l.J Iv 

ion (II-B-44) shows that Vegard's Law is obeyed with respect 

to each of the solute , as is epxected since the model is second-

order, The 's Law coefficient may be estimated by making an extra-

and 

ion to the limit 

we 

0 
L 

led 

z 
p 

) 

to the 

) 

= 1. In this case 

'" 1) 

s result 
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The value of A,.(p) which is consistent with equation (II-B-45) is, 
1J 

from equation (II~B-43), 

o The stress 0. ,(p) is a material constant, the "transformation stress" 
J-J 

and is simply the negative of the elastic stress required to reverse the 

strain caused by the replacement of the solvent by the solute species p. 

With the substitution of the uniform relaxation strain, c .. , the 
1J 

elastic energy of the crystal in the absence of external stress may be 

written in the simpler form: 

o Nv 0 0 --M "" <!> ~ ~.. 1: A t: (p) t: (q) C C 
el el 2 pq ijkl ij k£ P q 

+ 1/2 L: , A., (r ~ r') v, (r) v, (r') 
~ 1J '\; '\; 1 '\; JV 

The presence of an external stress, 0,., may be simply accounted for 
1J 

by adding the term 

~Eel ~ V 0., ~c" 
1J 1J 

(II-B-49) 

where 

is the elastic strain measured with respect to the relaxed state, 

(b) The Internal Strain. 

The equilibrium local displacement Held ~(~) is found by requiring 

that the elastic energy (~E 1 in Equation (II-B-58) be stable with res­
e. 

pect to variations of the local displacement: 

(II-B-5l) 
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The necessary condition is 

1., A .. (r - r') v.(r') "" L f~ (r' - r) ~C (r') 
t' 1J 'V 'V J 'V P r' ~ 'V 'V P 'V 

(II-B-52) 
'V 'V A 

Since the local displacement v(r) vanishes on the boundary of the 
'V 'V 

body (by its definition), we may employ cyclic boundary conditions for 

the crystal in its homogeneously strained state. Taking the Fourier 

transform of both sides of equation (II-B-52) then gives 

t . (k) ~. (k) 
1J 'V J 'V 

\l 

L 1 }~ (k) ~C (k) 
p= 1 'V P 'V 

where 

'k .. (k)=LA (r) 
1J 'V ,t; ij 'V 

-ik e 'V 
r 
'V 

is the dynamical matrix, 

~p (k) 
'V 'V 

and 

-ik e 'V 
r 
'V 

-ik ' r e 'V 'V 

The solution of II-B-53 for the Fourier component v.(k) is 
1 'V 

~. (k) "" G .. (k) ~ 1 F~ (k) f,C (k) 
1 'V 1J 'V p= J 'V P 'V 

(II-B-53) 

(II-B-54 ) 

(II-B-55) 

(II-B-57) 

where G .. is the Green's tensor which is the inverse of the dynamical 
1J 

• 'V 
matrlx A: 

The Hermitian tensor G .. (k) can be ivritten in terms of eigentensors, 
1J 

e (k), and eigenvalues, mw 2(k) of the dynamical matrix A .. (k). These 
'Vs 'V s 'V 1J 

are the solutions to the equation 

. 2' 'k .. (k) sJ(k) = row (k) sl(k) (II-B-58) 
1J 'V s 'V S 'V S 'V 

where m is the mass of the host atom, w is the vibration frequency of 
s 



the branch s 9 and ~ is a ,\lave vector. The Green's tensor G,,(k) may 
1.J 

then be written 

G, , (k) 
1.J 'V 

Substituting II~B~59 into (II~B-57) then gives 

£ (k) (~)fP(~» 
~ 2: 3 ~'V:=s~'V~~~~· v_v __ v_~ 
p~l s~l mw2(k) 

s 'V 

'V 
v (k) 
'V 

'V 
lie (k) 

p 'V 

Using the solutions (II-B~54) for the internal displacement field. the 

elastic relaxation energy becomes 

~relax ~ ~ ~ I VA £0 (p) £kOo(q) c C 
el 2 pq ijk£ N P q 

and hence 

1 p q* 'V 'V* 
- ~-- I I (F, (k) G" (k) F, (k» /;,C (k) /;,c (k) 

2N pq R 1. 'V 1J 'V J 'V P 'V P 'V 
'V 

N 0 0 - ~ 
- -2 I VA"kos, ,(p) skn(q) C C 

- pq 1J N 1J N P q 

(~s(~)~p(~» (~s(~)~q(~»* 

mw
2 

(k) s 'V 

N ° 0 - ~2 2: (vA. 'k os , ,(p) Sko(q» C C pq 1.J N 1J _N P q 

'V 'V* 
f:..C (k) /;,C (k) 

pI\; p 'V 

1 . 'V . 'Vq*( 'V 'V* 
~ 2N I +; (F , (k) G. ,(k) F, ,k) /;,c (k) f:..C (k) 

pq ~ 1 'V 1J 'V J ~ P 'V q 'V 
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, (II-B-62) is the total elastic energy due to alloying an unconstrain-

ed crystal; the relaxation of the elastic energy due to the total volume 

during the transformation process is taken into account, 



(4) Separation of Physically Distinct Contributions to the Elastic 

Energy, 
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Physically, the elastic contribution to the free energy of the 

crystal can be divided into three parts: (a) the elastic self energy, 

which is a simple sum of one-particle elastic energies and is equal to 

the energy which would be observed if the particles did not interact, for 

example, if they were present in infinite dilution; (b) a configuration 

- independent pairwise interaction energy whose magnitude depends only 

on the type and the total concentration of the solute atoms present; 

this interaction is indirect and has its source in the elastic image 

forces which arise from relaxation of the unconstrained crystal boundary; 

(c) a configuration - dependent pairwise interaction energy which results 

from the direct elastic interaction of the defects, The correct separa­

tion of these physically different contributions to the elastic energy 

can be important, For example, in treating the effect of elastic energy 

on the decomposition of a binary alloy, one needs to consider only the 

direct pairwise interaction since the self energy and image force con­

tributions are unchanged by the reconfiguration of a fixed number of 

solute atoms, In treating the elastic energy contribution to the free 

energy of an elastically isotropic binary solution, it may be easily 

sho\vu that the direct pairwise interaction vanishes, so that only the 

self-energy and image~force contributions need to be taken into account. 

Equation II-B-62 does not, in fact separate the elastic energy into 

physically distinct terms; parts of both the self energy and the "image 

force" contributions are buried in the third term on the right hand side, 

To complete the separation we rewrite this term in the form: 
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'V 'V 
Q ) ~c (~) ~Cq(k) pq P f\; 

+ 1 E Q ~ ~~ (k) ~~*(k) 
2 pq pq ~ P 'V q 'V 

where 

is an average over th first Brillouin zone, Using the identities 

N
l ~ ~~ (k) ~~ (k) ~ No C ~ N C C (II-B~65) 
~ P 'V q 'V pq P P q 

and using (II~B- we have 

+ ~ EQ C - ~ L: Q C C 
2 p pp p 2 pq pq p q 

Substituting equation II-B-66 into II-B~62 and gathering like terms 

'VD 'Vq* 'V 'V* 
+ 2N E ~(-F~(k) G .. (~) F. (k) + Q ) ~C (k) 6C (k) pq ~ 1 'V lJv J f\; pq P 'V q 'V 

The contributions to eq. II-B-67 are separated into three terms, 



The first one is a self energy. which is linear in the C • the second 
p 
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is an indirect binary interaction. or image force term. which depends on 

the cross~products C C • and the third is a configurationally-dependent 
p q 

pairwise interaction which depends on the products of the Fourier compo~ 

'V '* nents ~C (k) ~C (k). p 'V q 'V 

(5) Real-Space Form of the Elastic Hamiltonian. 

One final modification of the elastic energy expression is useful. 

If the elastic energy expression is back-Fourier transformed to real 

space. it should yield an expression of the form 

L L EO C (r) + -21 
L i L W (r - r') C (~) C (r') 

~ p p P 'V ~ pq pq 'V 'V P q 'V 

where w (r - r') is the two-particle elastic interaction in real space, pq 'V 'V 

To rephrase eq, II-B-67 in a form in which the reverse transformation 

to eq. II-B-68 is obvious. we use the identity 

~ (k) 
-ik . r 

"" L C (r)e 'V 'V 
P 'V r p 'V 'V 

from which it follows that 

rCH k '" 0 
C (k) '" P 

'V 
P 'V o if k f- 0 

'V 

(II-B-70) 

and that 

'V C )e-i~ ~ /:,C (k) "" L (C (;~) P 'V ~ P P 

'V I ~ (k) 

if ~ 0 
lie (k) "" p 'V 

if ~ f- 0 
P 'V 

With these identities we have 

Mel "" N LweI () C +!i L Va C C p self P p 2 pq pq p q 

1 r Vel(k) ~ (k) ~*(k) +w ~q 'V pq 'V p'V q'V 



· . ';1 
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where 

(II-B-73) 

and 

Vel(k) "" 
pq 'V 

'* 'Vp (k) ( ) 'VFq, (k) F, G,. k 
1 'V 1J 'V J 'V + Qpq 

(k) , F<q(k» * 
"V 'V 'V 

+ Q 
pq 

The prime on the summation in the third term on the right hand side of 

II-B-72 indicates that the summation is not to include the term k ~ 0 
'V 

which is a branch point of Vel(k) (eq, II-B-75), If, however, we 
pq 'V 

define the potential 

Vel(k) 
pq 'V 

k "" a 'V 

k f. a 'V 

then, using (II-B-70). 6~el may be written 

N e1 
6~el "" 2 ~ ~se1f(P) cp 

+ __ 1 __ L L. Vel(k) C (k) C (k), 
2N pq ~ pq 'V P 'V q 'V 

(II-B-76) 

The Fourier inverse of eq, (II-B-77) has the form of eq, II-B-68 with 

EO ; N ~el (p) C 
p self p 

and 

The two-particle interaction in real space is hence just the Fourier 

transform of the function Vel(~). which has been so defined that its 
pq 

~ 0 value gives the indirect, or image force interaction between 



species. and its values at k ~ 0 give the direct elastic interaction. 
'\, 

One may easily show that the real space interaction of a particle with 

itself. w (0). vanishes (at least to within terms of order -Nl ) as it pq 

should. 

Equation II-B-77, or its equivalent real-space form, equation 

II-B-68. gives the total elastic energy in the lattice statics model. 
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The equation provides a solvable expression for the elastic energy of an 

arbitrary distribution of substitutional defects of arbitrary types under 

the dual assumptions that non-uniformity in the elastic constants and 

anharmonic effects may be ignored. The equation has an appealing physi-

cal form in the sense that the elastic energy is expressed as a sum of 

an elastic self energy and a two-particle interaction term. The latter 

is. in turn. easily separated into its two physical components: a con-

figurationally-independent "image force" interaction, which is given by 

Ael 
the value of V (k) at k ~ O. and a direct interaction, which is sensi-pq '\, '\, 

tive to the preci.se configuration of defects, and which is responsible 

for the Fourier components of the interaction potential Vel(~) for ~ ~ 0, 
pq 

The lattice statics model is, however, difficult to use in actual 

calculations since the evaluation of the interaction potentials Vel(~) 
pq 

or w (r - r') requires a knowledge of the full phonon spectrum of the pq '\, '\, 

matrix, which is rarely knmm. The evaluation of the interaction terms 

can be greatly simplified through the introduction of a long wavelength 

approximation in the spirit of the Debye model of lattice vibrations. 

(6) The Total Free Energy and the Thermoelastic Potential 

Returning to equation (II-B-18). the total free energy of the crys-

tal containing a distribution of tnteraction defects is 

L1E '" M + M chem el 
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where 

M N L C 1l).J + 1 L ~r' 
vch(r - r') C (~) C (~V) chem p p p 2 pq pq 'V 'V P q 

'V'V 

(II-B-19) 

and 

el + 1 L E ,w (r - r') C (~) C (~') Mel N E ¢ self (p) C 
P P 2 pq ~ pq 'V 'V P q 

where the elastic interaction parameters are evaluated as described above, 

The total energy may also be written as the equivalent lattice sum: 

It is useful to define a "thermoelastic potential", <p (r,jC (r')!), p'Vlq'V f 

which is equal to the free energy change on introducing a defect of 

type p at position ~ in a body containing defects distributed according 

to the distribution functions C (~I) (q '" l" ... v), The introduction of 
q 

the extra defect (p,r) corresponds to the change of the distribution 'V 

functions 

C (r') q 'V +{c(r')+o 0 } 
q 'V qp rr' 

'V'V 

From equation II-B-8 

<Pp(it'{Cq «()} '" llE <{Cq «() + OpqO~,}) - [}E <{Cq «()}) 

<po + <p' (r, {C (r')}) p p 'V q 'V 

where 

(II-B-82) 
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and the "partial thermoelastic potential" 

¢' (r, {(c (r l
)}) "" L, L [vch(r ~ r') + w (r - r')] C (r') 

p 'V q 'V ~ q pq 'V 'V pq 'V 'V q 'V 

~ L L¢ (r - r') C (r') 
~' q pq 'V 'V q 'V 

The thermoelastic potential governs the free energy change during defect 

additions. 

It follows from the preceding paragraphs that the creation of a solu-

tion of defects through the successive addition of elementary defects 

which are selected according to an energy criterion may be treated by 

computing the thermoelastic potentials for all possible events in an 

initial state and updating these by simple addition as individual events 

are selected and allowed to occur. This method of analysis is particu-

larly well suited for use in a digital computer. 

The thermoelastic potential also governs the energy change on redis-

tributing defects within the body. If a defect of type p at r is repo­'Va 

sitioned to ~l' the process may be represented by deleting the defect 

(p'~o) and adding a defect (P'~l)' The associated free energy change is 

a simple difference between partial thermoelastic potentials: 

L1F[(p,r ) -+ (p,r
l
)] "" ¢' (r

l
, {c (r,)t) - ¢' (r j C (r')}) 

'Va 'V p 'V q 'V ( P 'Va \ q 'V 
(II~B-84) 

where the symbol {C
q
«()} has the meaning, as in eq. II~B-83, of the 

distribution of defects less that under consideration. The transition 

(p'~o) ~ (P'~l) change the thermoelastic potentials for other events 

(p',~) by the simple addition: 

',(r, {C (r l
)}) + ¢ , (r ~ r l) 'V q 'V P P 'V 'V 

¢ (r - r ) pip 'V 'Va 



, 4 

where the function ¢ , (~~ ~I) is defined in equation II-B~83. Equa~ 
p p 
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tions II~B~81 to II-B~85 are particularly useful for analysis of diffu-

sional processes in a digital computer. 
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C, The Long-Wavelength Approximation 

The governing equation of the lattice statics model may be consider-

ably simplified by introducing the long-wavelength approximation, which 

essentially involves replacing the dynamical properties of the matrix 

by those of an equivalent elastic continuum, The simplification comes 

principally in the evaluation of the term 

Consider first the force ~~(k), By its definition 
J tV 

In the limit of small k (long wavelength) 
tV 

~~ (k) tV l: f~(r) (1 - ik r + , , , ) 
J tV { J tV tV tV 

:= l: fP(r) - ik l: f~ (r) r9, r j tV 9, r J tV 
tV tV 

(II-C-3) 

where the summation convention is assumed for the subscript t, The 

first term on the right in II-C-3 is automatically zero from the condi-

tion that the energy be invariant to rigid displacements (eq, II-B-22). 

The second may be simplified by adding and subtracting symmetrizing 

terms: 

t f~({) r£ - t t [f~({) r9, + f~({) rjJ 

+ t ~ [f~({) r£ - f~(t) rjJ 
tV 

The second term on the right in (II-C-4) vanishes by the condition that 

the energy is invariant to rigid rotations, The first term was evalua-

ted in eq, (II-B-47) and gives 



45 

a 
where 0j£ (p) is the transformation stress for a particle of type p. It 

follows that in the long-wavelength approximation 

The Green's function, G .. (k) was defined in equation II-B-59 to be 
1.J 

the inverse of the dynamical matrix, A .. (k). The long-wavelength form of 
1J 

the dynamical matrix is well known(13) and is 

where ~ is a unit vector in the direction of ~ and the equation defines 

the inverse matrix Q-l. It follows that the long-wavelength form of the 

Green's function is 

Using equations (II-C-6) and (II-C-8), it then follows that 

for k 'f 0, where 

Qpq = <eiO~j(p) Qj£(e) O~m(q) e > 
m 

(II-C--9) 

v 

The term ~ = 0 is eliminated from the summation, since ~ and hence Q(~) 

are undefined there. 

Equation II-C-9 presents the Fourier component of the two-body elas-
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tic interaction as a product of terms which can be computed from the 

o 
elastic constants, A. '0 , and the transformation strain ( .. (p). Since 

1J ",m 1J 

the image force interaction, Vel(O) depends on the same quantities, the 
pq 

elastic energy of an arbitrary distribution of substitutional species 

can readily be computed in the long-wavelength approximation. 

The long~wavelength approximation is valid when the substitutional 

defects are aggregated into macroscopic inclusions whose dimensions are 

large compared to the lattice spacing. When this condition is not strict-

ly satisfied. as in the model of the martensite transformation presented 

in the following section. the long-wavelength approximation is used in 

the spirit of the Debye model: to allow a simple. tractable analysis of 

a more complex situation. 
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D. Limit Transition to the Continuum Theory of Macroscopic Elastic 

Inclusions. 

The model of the martensite transformation that is developed and 

used in the following section is a semi-continuum model. It will employ 

the real space form of the lattice statics equation for the elastic 

energy as presented in equation II-B-68. but will assume a inter~ 

action, w (r - r'), which is obtained through the long-yJavelength appro~­pq 

ximation. The equations needed for this model were derived in subsec~ 

tions II-B and II-C. For the sake of completeness, however. and to de~ 

monstrate the internal cohesiveness of the theory of elastic defects as 

developed here. we shall conclude this section by deriving the form of 

the elastic Hamiltonian in its full continuum limit. The resulting equa"~ 

tion will be seen to be identical to that derived by Khachaturyan and 

Shatalov(14) (equation II-A-7) from a starting point in continuum elas~ 

ticity. 

The reduction to the case of macroscopic elastic inclusions in the 

continuum limit involves three steps: (1) The inclusions are assumed to 

be large compared to the lattice spacing. (2) The summations appearing 

fn the expression for the elastic energy are replaced by asymptotically 

equivalent integrations. (3) The interaction potentials are evaluated 

in the long-wavelength limit. 

Consider a body which contains a distribution of coherent inclusions 

which are individually large compared to the lattice parameter. To 

maintain contact with the lattice statics model. we may imagine these 

inclusions to be formed by agglomerating individual point defects. For 

simplicity let each inclusion be composed of a single type (p) of defect. 

The distribution of inclusions of type p is described by the 
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function 

for r inside an inclusion of type p 

otherwise 

Then clearly 

The Fourier transform of the distribution function is 

When the inclusions are macroscopic in the sense that their characteris~ 

tic linear dimension, ~, satisfies the constraint a/~ « 1 then the 

summation in equation (II~D-3) may be replaced by the integration 

rv 1 00 3 -il<' r 1 rv 
C (~) % - J d ~ e ~ 'V 6 (r) = - 6 (~). 

P v _co P V P 

where v is the volume of the unit cell. 

To find the elastic energy of the distribution of inclusions in the 

continuum limit, it is simplest to return to equation II-B-62, which 

may be written: 

N 0 0 -
~Eel = 2 ~q VAijk£Eij(P) Ek£(q) (Cpopq - CpCq) 

I rvp ~r (~) rv rv* 
~. ~ l: k F. (~) G .. (~) ~Cp(~) ~Cq(~) 2N pq rv 1 1J 

or 

~Eel 
1 l: v 0 0 

"" - l: VA. 'k£E .. (p) Ek£(q) 2N pq k 1J 1J rv 

rvp rvq* rv rv* 
- F. (~) G .• (~) F. (~) C (~) C (~) 

1. 1J J P P 
(II-D-6) 

where the identities (II-B-64) and (II-B-66) have been used. and the 

prime on the summation over ~ indicates deletion of the ~ = 0 term, 
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Hith the definition 

B (~) pq 

(II-D-7) 

and the use of equation (II-D-4), 

~E ~ ( 2N
1

v ) L I' B (~) ~ (k) ~*(k)o e1 pq ~ pq p ~ q ~ 

The summation on the right hand side of equation II-D-8 is taken 

over the N points of the first unit cell of the crystal (excluding the 

point ~ "" 0). Each of these points occupies avolume in k~space equal 

to (2~)3/ V, where V = Nv is the total volume of the crystal. Taking 

the limit of large crystal size under the condition that the inclusion 

size is small compared to that of the crystal (£/v1/ 3 « 1) the summa-

tion in equation (II-D-8) may be replaced by the integration 

where the integral is taken over the first Brillouin Zone of the crystal 

and where the prime on the integral has the meaning that a volume 

(2~)3/V about k = 0 is to be excluded from the integration. When V is 

large this exclusion defines the "principal value" of the integral. 

Using equation II-D-9 the elastic energy is 

1 d3k ~ ~* 
~Eel = 2 ~q J' (2n)3 Bpq(~) ep(~) 8q(~) (II-D-lO) 

To complete the identification of equation (II-B-lO) with the 

Khachaturyan-Shatalov equation (equation II-A-7) we note that the shape 

~ 
function e (k) of an inclusion of volume V «< V) will have significant p f\; p 



magnitude over a volume of approximately (~k)3 ~ (2n)3/v about ~ = O. 
P 

If V is large ~k is small, and we are usually justified in replacing 
p 

B (~) by its long-wavelength form. Using equations II-D-7. II-C-6, 
pq 

and II-C-8. we have 

B (k) '"' B (e) 
pq 'V pq 'V 

Substitution of the expression for B (~) given in II-D-ll into 
pq 

II-D-lO makes this equation identical with the Khatchaturyan-Shatalov 

solution (eq. II-A-7) for the elastic energy of a distribution of 

coherent inclusions in an elastic continuum. 
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III. THE MARTENSITE TRANSFORMATION. 

As described in the introduction the martensite transformation is a 

diffusionless transformation which accomplishes a change in crystal 

structure. Since, at least in the initial stages of the transformation, 

the particles of the new phase are coherently connected to the 

matrix, the problem of elastic accomodation necessarily plays a major 

role in the thermodynamics of the transformation. 

The need to accomodate elastic distortions significantly influences 

both the nucleation of the martensite phase and the kinetics and morpho­

logy of its subsequent development. In the case of alloy steels (and of 

many of the other systems that are known to undergo martensitic transfor~ 

mations) elastic strain affects nucleation in two rather different ways, 

First. the relevant theoretical studies argue that the strain energy 

associated with a coherent, single variant martensite particle is so 

large that it is not possible for the transformation to nucleate spon­

taneously in a perfect crystal. It is now commonly thought that the 

martensite transformation nucleates heterogeneously and that its initia­

tion is catalyzed by the presence of crystal lattice defects whose own 

strain fields may partly compensate for the strain associated with the 

formation of the martensite particle, Second, the nature of the marten­

site transformation is such that a single nucleation process is general­

ly insufficient to permit the transformation to proceed to completion. 

The repeated nucleation of individual martensite plates is necessary. 

The strain energy associated with the martensite transformation may also 

be important in promoting this secondary nucleation, by catalyzing nu­

cleation in those places and orientations which serve to relieve the 

internal elastic field. 
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The influence of elastic strain on the growth and morphology of mar-

tensite plates is conditioned by the fact that the martensite particle 

may form in anyone of several crystallographic variants, each of which 

exhibits the preferred crystallographic relation with the parent matrix. 

For example, the Fee ~ Bee martensite transformation provides three dis-

tinct crystal lattice rearrangements. These differ in the orientation 

of the tetragonal axis of the Bain distortion, which may lie along any 

one of the three cubic axes of the parent phase, A similar situation 

occurs whenever the transformation is of the crystallographic type cubic 

~ tetragonal (fig, 2), 

The existence of several distinct orientational variants of the pro-

duct phase provides a configurational freedom which may be used to 

reduce the elastic energy, The martensite particle is free to grow as a 

composite particle of two or more variants which are so configured as to 

provide a mutual relaxation of elastic strain, In the case of the FCC ~ 

Bee transformation, the martensite particle tends to grow as a thin 

plate which consists of periodically alternating layers of the tetrago-

nal phase with different directions of the tetragonal axis (Fig, 3), If 

the relative fractions of the two variants within this plate are proper-

ly chosen, and if the plate is given an appropriate habit in the parent 

matrix, then the bulk elastic energy may be made very smalL This 

result is the implicit theoretical basis for the crystallographic theo-

. f h h b' 1 f . . . 1 (10) rles 0 t.e a lt pane 0 martensltlc partlc es , 

Given the prominence of elastic effects in the nucleation, growth, 

and morphology of martensite, it seems reasonable to suppose that many 

of the other interesting and unique features of the martensite transfor-

mation will have their source in the need to accomodate elastic strain 
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as the transformation proceeds, Tractable models of the development of 

the martensite transformation which include the predominant elastic ef~ 

fects should hence prove particularly fruitful in new theoretical in~ 

sight, Such a model can be drawn directly from the elastic theory 

developed in the preceding section, Since this theory permits one to 

calculate the elastic energy of an arbitrary distribution of elastic 

inclusions, it may be used to compute the elastic energy of a progressing 

martensitic transformation in any hypothetical intermediate stage, and 

to identify the incremental transformation steps which are most favor~ 

able with respect to the elastic energy. While such a model is not 

likely to be tractable analytically, the form of the equations is such 

that they can be quite easily phrased for solution in a computer, lead­

ing to a developmental model of the martensitic transformation, 

A simple elastic model of the developing martensite transformation 

is formulated in the balance of this section, It is obtained through a 

straightforward adaptation of the lattice-statics model presented in 

the preceding section, with minor modifications to show how the possi.bly 

finite size of the elementary martensite particles and their surface and 

twi.n-boundary energies may be taken into account, 
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A. The Description of Martensite in Terms of Elementary Particles 

The simulation of the martensite transformation requires the intro~ 

duction of a minimal element of martensite phase, which we shall call 

the elementary martensite particle (EMF). The distribution of marten~ 

site within a crystal will then be represented by a suitable combination 

of E~W. In the linear approximation which we shall use the elastic 

strain within the crystal is simply the sum of the strains associated 

with each of the EMF; the elastic energy is the sum of their self-ener-

gies plus the energy associated with their mutual interaction. 

The smaller the EMF the more accurately an arbitrary distribution of 

the martensite phase can be modeled. However, it should be recognized 

that there is a physical lower boundary on the size of an EMF which can 

be reasonably assumed to exist in isolation. This boundary is set by 

the need for the EMF to have the crystallographic identity of the mar-

tensite phase; if the particle is too small, surface tension will domi-

nate and destroy the internal atomic arrangement. The linear size of 

the particle must at least exceed the correlation length required for a 

coherent transition from the parent lattice to that of the martensite, 

essentially the thickness of the martensite parent-interface. 

A rough estimate of the correlation length (R ) may be found by 
c 

equating the surface energy of a particle of radius R to the heat re­
c 

1 d f 
' ,(1) ease on ormlng It : 

According to the evaluation(1.62)for iron based martensite. the surface 

-5 2 energy is about 1.2 x 10 keal/em and the heat release is about 240 

keal/em3 whieh gives 
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'V 3y/Q 'V 15 A 

This evaluation suggests a minimum icle size of 'V8~27 unit cells of 

the martensite (2 'V 3 crystal lattice 

To describEc~ the martensite distribution in terms of a distribution 

of finite EMF we refer the parent to a tice of cells, 

each of ""hich is of the size of an EMF, If there are v variants of the 

martensite, 'ltle must 8.ssume \) kinds of EMF, Each of these is (Hstin~ 

guished its orientation and a its transformation strain, E .. Cp) 
1.J 

(p '" 1, ",v), where the ij (p) only through a rotation with res-

pect to axes fixed in the The martensite distribution is 

then reproduced by EMF of the correct variant at the appropriate 

sites of the tice, 

The ial distribution of the martensite phase is described mathe-

matically the function 

r,; (R) 
p 'V 

jl for an EMF of type p at ~ 

(o otherwise 

where ~ is a translation vector of the superlattice, This description 

is illustrated in two-dimensions in Fig. 4, in which both the fine grid 

of the parent lattice and the coarse grid of the superlattice 

are disp one martensite icle may occupy a given 

cell of the tice, the ~p(~) satisfies the identity 

I;; (R) 'V {

' for R occupied 
(R) ",.L 'V 
~ 0 otherwise 

martensite 

In order to establish contact between the tice distribution 

functions and the lattice distributions Cp(~)' let X(~) be the set 

of lattice sites wldch fall vlithin the supercell located at~. Then 
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the shape of the supercell at ~ is described by the function 

(III-A-5) 

With this definition, 

C (r) '" L n(r - R) ~p(~)' (III-A-6) p 'V R 'V 'Vv 
'V 

which relates the occupation numbers within the two lattices. Taking 

the Fourier transform of both sides, we have 

~ (k) = L C (r)e-i~ • ;t '" N n(k) ~ (k) 
p'V it p'" 0 I\; pI\; 

where the function n(k) is defined by 'V 

and 

where the R are the lattice points of the superlattice. 'V 

(III-A-7) 

(III-A-9) 

If the total number of cells in the superlattice is M, and if M 
P 

are those occupied by particles of type p, then 

~ "" M 1M "" C (III-A-lO) p p p 

If each supercell contains only one lattice point, then M Nand 

n(k) '" 1 'V (M '" N). 

If M :;. N there are N '" N/M lattice points per supercell and n(k) has 
o 'V 

3 over a volume 'V (2~) IN v of k-space about k '" O. When o 'V 'V non-zero values 

N is large the supercell is macroscopic and the long-wavelength approxi­
a 

mation is valid. 
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B. The Elastic Energy 

The elastic energy of an arbitrary distribution of elementary marten~ 

site particles may be computed by means of the equations developed in 

section II-B. Ideally, we wish to express the equation in a form iden~ 

tical to that in equation II-B-78 (k-space form) or II-B-69 (real space 

form) but with the lattice sums renormalized to sums over the superlat-

tice of EMF, so that the free energy of the distribution of EMF can be 

computed directly, without reference to a microscopic reference lattice. 

To accomplish the renormalization we return to equation II-B-62: 

N" 0 0 ~-

2 ~ (vA. 'knE, ,(P)skn(q») C C pq lJ Yv lJ Yv P q 

(III-B-l) 

Using equations III-A-7 and III-A~lO this equation may be rewritten 

where V = N v is the volume of an EMF, 
o 

To accomplish a renormalization to the superlattice we rewrite the 

wavenumbers, ~, of the elementary lattice as 

where ~o is a reciprocal lattice vector of the superlattice 

k 
'Vo 

(n integer) 



Since the volume of the supercell is N times the volume of the unit 
o 
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cell of the crystal the volume in reciprocal space of the Brillouin zone 

of the superlattice is l/N times that of the Brillouin zone of the crys­
a 

tal. It follows that there are N superlattice reciprocal vectors k 
o ~ 

within the first Brillouin zone of the crystal and N/N = M wave vectors; 
o 

k' associated with each. From the definition, III~B-4; 
'V 

By means of the scalar 

r (k) = N (~~(k)G .. (k)~~*(k)ln(k) 12 
pq 'V 0 1 'V 1J ~ J 'V 'V 

(III-B-5) 

(III-B-6) 

the summation over k on the third term of the right hand side of equa-

tion III-B-2 can be written 

where 

__ I_I: I: ( I (') (' 2M k' k r k + k ) ~~ k ~~ k) 
'V 'Va pq 'Vo 'V P 'V q 'V 

= __ 1 __ I: r (k')~s (k')~~ (k') 
2M k' pq 'V P 'V q 'V ' 

r (k i) 
pq 'V 

'V 

L r (k + k I) . 
k pq 'Vo 'V 
'Vo 

(III-B-7) 

(III-B-8) 

When the EMF is of reasonable size so that the non-negligible values of 

n(k) are well confined to the first Brillouin zone of the superlattice 

then 

r (k I) '" r (k i) • 
pq 'V pq 'V 

(III-B-9) 

and only the first Brillouin zone of the superlattice need be considered 
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in evaluating ~¢el' 

To complete the task of re-casting equation (III-B-2) into compact 

form we need to separate out that part of the sum over reciprocal space 

which is independent of the precise configruation of E}W. Proceeding as 

in the equations following II-B-62 we re-define the scalar Qpq : 

<r (k'» "" 1 ~,r (k') 
pq 'V M if;; pq 'V 

Using the definitions III-B-8 and III-B-lO and the identity 

~~ (k) "" ~ (k) - ~ (k) = 
p 'V P 'V P 'V 

o ~ "" 0 

~ (k) k '" 0 P 'V 'V 

equation III-B-2 may be rewritten 

where 

rel(O) "" 
, pq 

o 0 
- (V A .. n e .. (p)e n (q) - Q ) 

1J~m 1J ~m pq 

fel 
(k '" 0) ~ r (k') - Qpq pq 'V pq I\; 

(III-B-ll) 

(III-B~12) 

(III-B-14) 

and where the summation over k is taken over the first Brillouin zone 

of the superlattice and the prime on the summation indicates that the 

~I = R term is to be excluded. 

Defining the elastic potential 



and using the identity 

we obtain 

1 -
M 1';p 
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~ 0 
(III-B-16) 

(III-B-l7) 

- 21111 L £el(k) 2 (k) 2 (k) (III-B-18) 
• ~ pq ~ p ~ q ~ 

where the prime on the summation has been removed. This compact 

equation is identical in form to the final equation (II-B-78) of the 

lattice statics model, with the difference that the elementary particles 

are EMF rather than atomic defects and the sum is taken over the points 

of the superlattice rather than over those of the fundamental lattice. 

The inverse transformation of equation III-B-18 to its real space 

form yields the final equation 

vlhere 

6' - L L ~¢el ~ (R) 
~el - R P self p ~ 

~ 

gives the real space interaction between EMF. 

(III-B-19) 
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C. The Chemical Energy 

from equation (II-B-l9) the total chemical energy of a crystal con-

taining a distribution of elementary particles of the martensite phase 

is 

Using the definition 

C (r) 
p 'V 

n(r - k\) 1;; (R) 
'Vv p 'V 

this equation may be renormalized into a sum over the points of the 

superlattice. Letting ~ = ~ + ~. 

~¢ch = L E (N ~~) 1;; (R) 
~ pop P 'V 

+ 1 L L Vch(R - R') 1;; (R) 1;; (R') 
2 RR' pq pq 'V ~ P 'V q 'V 

where 

When the elementary martensite particle has finite size~ it is use-

ful to represent the chemical free energy as a conventional sum of bulk 

free energy and surface energy terms. The bulk-free energy term is the 

b same for all martensite variants (~~). If we ignore the temperature 
o 

dependence of the enthalpy (~h ) and entropy (~s ) of the transformation, 
o 0 

which is reasonable at least for T near T • the transformation tempera­
o 

b 
ture, then ~~ may be written in the familiar form 

o 
t.h 

~} "" TO (T - T ) "" ~s (T - T ) ° 000 o 
(III-C-3) 
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where ~h is the transformation enthalpy per atom. 
o 

The representation of the surface energy is more complex. Two dis~ 

tinct surface energies are relevant to the martensite transfon~ation: 

s 
the free energy ~~o of an element of coherent interface with the parent 

phase and the free energy ~~s of an element of interface between mar~ 
pq 

tensite variants of types p and q, Both interfacial free energies will 

generally depend on orientation, The total interfacial energy should 

be computed by integration over the surface of each distinct martensite 

particle. At least in certain cases, however, this integration may be 

replaced by a summation over the EMF, 

Let the surface energy of a martensite particle be strongly orienta~ 

tion-dependent, as will usually be the case, and assume that the shape 

which minimizes the surface energy of an isolated particle gives a fi~ 

gure which may be repeated to fill space, i,e., a figure which corre~ 

sponds to the Wigner-Seitz cell of a periodic lattice, If the EMF is 

taken to have the shape which minimizes surface energy and if the super-

lattice of EMF is taken to be the periodic lattice appropriate to this 

shape, then the surface energy of a martensite particle represented as 

an agglomeration of EMF is well approximated by summing the surface 

energies of the exposed facets of the EMF which lie in its periphery. 

This sum may be evaluated by taking an appropriate sum over all EHP, 

The relevant equations are simplest when the EMF is a cube, though they 

may be formulated for any shape which fills the space on periodic repi-

tition, 

Assume a cubic EMF, and let its facets have the energy ~~s. if in 
o 

contact with the matrix, ~~~ if in contact with an EMF of different 

type, and zero if in contact with an EMF of the same type. Defining 
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o Otherwise 

where R is any lattice vector connecting nearest neighbors. it follows 
o 

that the surface energy may be written 

= L L (Z~~s) , (R) 
~ pop IV 

+ 12 pLq RLR' V
S (~ ~ ~') ~ (R) ~ (R') 

'V'V pq p ~ q IV 

where Z is the number of nearest neighbors of an EMF (Z = 6 for a cube), 

If equation III~C~3 and III-C~6 are substituted into equation 

III-C-l. and if the direct chemical interaction between EMF is neglected 

on the grounds that the E}W are finite, the expression for the total 

chemical energy becomes 

where 

+ 1 L L VS (R _ R') ~ (R) ~ (R') 2 ~~' pq pq IV ~ P IV q ~ 

Zl::, s lJ o 
(III-C-8) 



D, The Total Energy and the Thermoelastic Potential, 

Summing equations (III~B~19) and (III~C~6) gives an expression for 

the total energy of a configuration of elementary martensite particles 

specified by the set of v distribution functions {Sq(~I)}: 

l'lE 's (r)} \ q 'V 

R') + VS 
(R - RI)] s (R) , (R') 

'V pq I\.; I\.; P 'V q 'V 

where we have used the fact that the self energy of all martensite 
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variants is the same, Equation (III-D~l) gives the elastic energy as a 

sum of bulk free energy, surface energy, and elastic energy contributions. 

in keeping with the representation for systems of finite particles. 

A thermoelastic potential may be defined for the EMP using a proce-

dure identical to that employed in section II-B-3, Given the distribu­

tion of EMP specified by the set {Sq(R ' )} we define 

<Pp(~'{'q(~')}) "" [6E{'q(~') + OqpO~,} ] - [t,E {'q(~I)}] 
N t,h 

= ~(6T) + cps + <pel 
1 0 self 

o 

The thermoelastic potential is the free energy change on introduction of 

an EMP of type p at position R in the presence of the distribution 

{'q (~l)} over sites other than~, If the EMF (P.V is present in the 



j 

initial distribution, then the energy change on removing it is just 

IJ.F 

where {~q(~I)} again represents the distribution of EMF over sites 

other than ~. 

For analysis of the martensite transformation, it is useful to 
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write the thermoelastic potential in a compact form. Let the transfor~ 

mation occur in a body which is finite. though it may be arbitrarily 

large. If the body is finite the possible distributions of EMF over its 

lattice sites are denumerable. and may be designated by assigning to each 

a particular value of a single index. say a. The thermoelastic potential 

may then be written 

where the index a assigns specific values to the functions{~~(~I)} 

(q = l .... v) and the index k may be used to designate a lattice site 

(~k) since the lattice sites are denumerable. 
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E. The Path and Kinetics of the Martensite Transformation. 

A phase transformation may be described by specifying its path, or 

the sequence of intermediate microstructures that a body assumes between 

the time the transformation is initiated and the time it is completed. 

In the present case the transformation is a martensitic transition which 

is to be represented by the stepwise addition of elementary martensite 

particles (EMF) to the lattice, The specific path of the transformation 

is specified by giving the sequence of distinguishable configurations 

{s~(~)} which are adopted by the body as the transformation proceeds. 

If the configurations are numbered in the order of their appearance, and 

if the transformation is assumed to occur in unit steps which involve 

the creation or annihilation of single EMF, then each configuration is 

related to its predecessor by the simple addition 

where 

qp 

° O~r oRR' 
'\IV 

qp 
(III-E-2) 

. 
If the sign in equation III-E-l is positive, the transformation step is 

the addition of an EMF of type p at ~' to {s~(R)}; a negative sign has 

the meaning that this EMF is eliminated from {s~(~)} by reverse trans­

formation, 

Given a configuration {s:(~)}, the set of possible events connect­

ing it to the succeeding configuration {s~+l(~)} contains the creation 

of an EMF of type p (=1, ... v) in any lattice cell R, which is free of 
"v 

martensite, and the annihilation of any of the existing EMF. The free 

energy changes associated with each of these events may be simply 



expressed in terms of the appropriate thermoelastic potentials: 

if r,a (R
k

) ~ 1. 
q ~ 

q I, ... . v 

All other ~Gkq correspond to impossible processes and are undefined. 
a 

The thermodynamic stability of the configuration {r,~(~)} is deter~ 

mined by the minimum value of the ~Gkq. Let 
a 

If ~Ga < 0 then there is at least one elementary change of {r,~(~)} 
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which will lead to a decrease in the free energy; hence {r,~(~)} is thermo~ 

dynamically unstable. If t:"G > 0 
a 

leads to an increase in the free 

stable. 

then every elementary change in 

energy, and {r,~(~)} is at least 

{r,~(~)} 
meta~ 

The kinetics of the transformation will be governed, at least in 

part, by the statistics of thermal activation. The formation of an EMF 

through a thermally activated process will generally be opposed by an 

* activation barrier of height t:"g. Making the usual assumption that the 

barrier is maximal at the point of half~completion of the elementary 

event, it follows that the total activation barrier opposing the event 

(k,q) is 

~G*kq 
a 

+ ~g* 

otherwise 

where t:"G*kq is defined only for possible events. Of course. the activa~ 
a 

tion energy. t:"g*, need not be the same for all events; in particular, 

the activation energy for creation of an EMP may differ from that for 
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annihilation, 

The kinetic stability of the configuration {~a(~)} is determined by 
, q 

the minimum of the activation energy ~G*kq. Let 
a 

)~ (~G*kq) ~G min 
a ex 

)~ 

When lig is the same for all events 

* 1 '/< 
!J.G 

2 
(lIG - 2 lIg ) . 

a a 

If !J.G: > 0 then every elementary change in {~:(~)}iS opposed by a finite 

activation barrier and requires a thermal fluctuation in order to happen. 

Such a configuration will be termed kinetically stable in the sense that 

it can be maintained by forbidding positive fluctuations in the energy. 

'/< 
On the other hand, if lie < 0 then there is at least one elementary event 

a 

which represents a thermodynamic instability of {~a(R)} (since ~G < 0 
q 'V a 

'/< 
if ~G is) and which is unopposed by an activation barrier. This event 

a 

will occur spontaneously even in the absence of thermal fluctuation. 

The configuration {~:(~)} is hence kinetically unstable. 

The analysis of the kinetics of transformation through kinetically 

unstable configurations poses problems which are beyond the scope of the 

present investigation and which have their source in the finite speed of 

sound in real crystals. The theory leading to the definition and evalua-

tion of the free energy change liG is based on equations which assume 
a 

static elastic equilibrium. But, if an elementary transformation occurs 

at a point (R) within a crystal, the associated elastic disturbance pro-
'v 

pagates only at the speed of sound (c). It will not be sensed at a point 

R' '1 f' ., lA lli~l 'h d'f'd .. untl a ter a tlme lnterva ut 'V ---- , ana t e mo 1 le statlc equl-
c 

librium state cannot be assumed until several of these time intervals 



69 

have passed. The kinetics of transformations which evolve at speeds 

near that of sound are strictly bound beyond the scope of a static equi~ 

librium model. 

However, an error in the precise kinetics of unstable events is of 

no great concern so long as the sequence of these events is reasonably 

well represented. In the time frame which is usally of interest in the 

kinetics of phase transformations, the distinction between a process 

which happens at sound speed and one which happens instantaneously is 

immaterial. The sensible kinetics .of the phase transformation are con~ 

trolled by those configurations along the transformation path which are 

kinetically stable, and which, consequently. require either finite time 

or additional undercooling before they transform. The nature of the 

kinetically stable configurations which are reached along the transfor~ 

mation path may depend on the sequence in which unstable configurations 

are sampled, but does not depend on the kinetics of their evolution. 

Given this analysiS, we shall represent the martensite transformation 

by model which ignores the finite speed of sound and assumes that elas-

tic equilibrium is instantaneously reestablished after each elementary 

event. The resulting kinetic equations will give a good estimate for 

the transformation rate provided that the model is reasonably successful 

in selecting the intermediate configurations along the transformation 

path. 

(1) Statistics of Thermal Activation 

The kinetics of a martensite transformation which occurs through the 

thermally activated formation or annihilation of elementary martensite 

particles may now be developed. The treatment follows that in reference 

for a formally similar, though physically distinct problem. 



Let the transforming crystal have the configuration {I;;~ (~)} which 

may be changed by adding the EMP (p.~) at any untransformed site ~ or 
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by eliminating any EMP (q,~) which is present in {I;;~~)}, Let the 

attempts at each of these events be uncorrelated and random in time with 

mean frequency v , 
o 

An attempt to achieve event (q, ~k) has two possible outcomes: a 

success, which would require overcoming the activation barrier ~G*kq de~ 
a 

fined in equation (III-E-5) or a failure, for which the activation bar-

rier is zero. If the temperature is T (written in energy units, kT, for 

simplicity) the normalized probability for the event (q,~) in one 

attempt is 

(III-E-8) 

where 

s liT 

The probability [R~q(j)] that (q,~) has not happened after j trials 

is 

(III-E~lO) 

If the activation trials occur randomly in time with expectation 

one per unit of dimensionless time 

'1< 
t v t 

o 
(III-E-ll) 

* '* then the probability of exactly j trials in time t , p(j,t ) is 

~'< 

P(j,t) 

* and the probability that no success has been achieved in time t is 
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Rkq(t*) 
00 

(j !)-l (t,*)j kq)j 
~ '* (1 -"" exp (-t ) a J'"'O Pa 

kq '* 
"" exp (-p t) . a 

The configuration of EMF will be changed if anyone of the possible 

'* elementary events occurs. Hence, the probability Pa(t ) that the con-

figuration {z;;~(~)} is retained for a time greater than t'* is equal to 

'* the probability that no elementary event happens in time t : 

where the product is taken over all possible events and 

the sum of the probabilities of all possible events. It follows that the 

'* '* probability P (t )dt that the configuration transforms in the time inter-
at 

* * '* val (t ,t + dt ) is 

The 

and 

* * P (t )dt 
a 

expected lifetime 

'* 
00 

'* <t > "" J t P (t 
0 a 

"" (P )-1 
a ' 

its variance 

2 '*2 
(J "" <t > 

at at 

* 2 "" <t > 

is 

'* <t 
at 

'* 

(III-E-16) 

of configuration at is hence 

'* ) dt 

(III-E-18) 
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Equations (III-E-l6) and (III-E-17) give the mean and variance of 

the time required for the first elementary transformation to happen from 

the configuration {~:(~)}, irrespective of its identity. The probability 

p(q,k) that the specific event (q'~k) is the first to occur may be 

easily shown to be 

p(q,k) (III-E-l9) 

as would be expected intuitively. 

Equations III-E-l7 to III-E-l9 give the activation time, variance, 

and site for evolution of the configuration, {~:(~~. They are expressed 

kq 
in terms of the set of probabilities Pa ' defined in equation III-E-8, 

which can be computed from a knowledge of the thermoelastic potentials 

and activation energies for each of the possible elementary transitions 

from {~~(~)} via equations III-E-3 and III-E-5, It is important to re­

cognize that under the assumptions we have made, particularly the assump­

tion of instantaneous equilibrium, the probabilities pkq are fixed by 
a 

the current configuration and are not influenced by the prior transforma-

tion path, 

(2) The Statistical Transformation Path and Transformation Time 

The statistics of the martensite transformation are complicated by 

the fact that, except under very restrictive assumptions, the sequence 

of configurations assumed during the transformation (the transformation 

path) is not unique. Given finite temperature and activation energy any 

one of the elementary processes permitted by the instantaneous configura-

tion of the transforming body is possible, The sequence of subsequent 

configurations will generally depend on the specific event which occurs, 

The problem is, however, somewhat simplified by the fact that the 
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configurations assumed during the transformation form an irreducible 

. (64) 
Markov chain. 

The Markovian character of the transformation path follows immedia~ 

tely from the fact~ emphasized at the end of the previous subsection, 

that the probabilities of all possible elementary transformation steps 

are uniquely determined by the current configuration of the EMP, If the 

a
th 

configuration is {~~(~)} then the (a+l)th configuration is determined 

by the particular event (P'~k) which continues the transformation from 

step a. Since the probability that (p '~k) will occur at step a is uni~ 

quely fixed by {I;~ (~)} then the probability that a particular configura­

tion will be the (a+l)th member of the chain is fixed once {~~(~* is 

known, independent of previous events. Hence, the transformation path 

is Markovian, 

The irreducible character of the Markov chain follows so long as the 

transformation can be assumed to go to completion in a number of steps 

which is less than some finite upper bound, where completion is defined 

as the first realization of a configuration having EMP at all lattice 

sites. There are, then, a finite number of possible transformation 

paths, which may be labelled by the index, X, and a finite number of 

distinguishable configurations, which may be labelled by the index, ai, 

The elements of the set of all distinguishable configurations {a l
} form 

an irreducible chain since any given configuration of EMP may be created 

by adding EMP to an empty lattice, and, hence, may lie along the trans~ 

formation path. 

It follows from the property of irreducible Markov chains that the 

probability, ~ , that the transformation takes path X is defined and 
X 

that ~ ~X '" 1 



The probability ~ I that the transformation passes through the a 

particular configuration a l is just the sum of ~X over all paths which 

contain ai, 

and 
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is the expected number of configurations assumed. Both ~al and ~X will, 

of course, be rather complex functions of temperature. 

Let the transformation follow a particular path, X, which has n con-

figurations whose activation parameters are P (a=l, •.. ,n). Using the 
a 

. f M k h" b h (63) h h d 1 propert~es 0 ar ov c alns lt may e s own t at t e expecte va ue 

of the time required for the transformation is 

'* <t > 
X 

2 and that variance, 0 
X 

2 
o 

X 

n 2 r C5 
ct=l ct 

* of t is 
X 

(III-E-23) 

(III-E--24 ) 

More specifically, if n is large the distribution of the transformation 

i( 
times,t , approaches a normal distribution with the density function 

X 

'* p (t ) 
2 -k 

'" (12no ) 2 exp 
X 

giving the probabi.lity that the time required to complete the transfor-

'* '* mation lies in the range (t , t + dt ). 
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F. The Minimum-Energy Path 

The analysis of the preceding section reduces the problem of deter­

mining the kinetics of the phase transformation to the problem of deter­

mining the sequence of configurations assumed as the transformation pro­

ceeds. Even with the help of computer simulation, however, this problem 

remains formidable in the analysis of a transformation which occurs at 

finite temperature. The transformation path will be determined by what 

amounts to a random walk over the set of possible configurations, Parti­

culary if there are metastable intermediate states during the transforma­

tion, the transformation may not go at all monotonically toward comple­

tion, but rather oscillate for long periods of time before making a net 

positive step. 

To construct a tractable treatment of the phase transformation, it 

is useful to have a representation of the transformation path which is 

both reasonably accurate and relatively simple to analyze, The obvious 

choice is the minimum-energy path, which is the path found if at each 

step of the transformation the transformation progresses in a way which 

minimizes the total activation energy. 

An examination of the equations in the preceding section will show 

that at each step of the transformation that event which involves the 

least value of the activation energy is most likely to happen, and is 

also least likely to be reversed by back-transformation in the following 

step, Hence, while the transformation may take many paths, there will 

be a tendency for it to follow the path which progresses toward comple­

tion through those steps which involve the minimum activation energy. 

This tendency will become increasingly strong as the temperature goes 

down. 
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A simple way to locate the minimum~energy path in computer simulation, 

which will be used in the following, is to assume that the transformation 

cannot reverse itself, that is, that it goes monotonically to completion, 

and to choose each transformation step so that the incremental energy is 

as low as possible. If we rule out the possibility of reverse transfor~ 

mat ions , then the computation of transformation kinetics along the mini~ 

mum-energy path is straightforward and simple. In the more realistic 

case in which reverse transformation is allowed the kinetics may be 

approximated by using equations analogous to diffusion through random-

walk processes, in which the kinetic consequences of the reverse trans~ 

formation are gathered into a "correlation factor". 

Specification to the minimum~energy path defines the particular 

sequence of configurations a = 1 •...• n assumed as the reaction goes to 

completion. This particular sequence of configurations may be readily 

found through computer simulation of the transformation, as is done, for 

example, in the following sections. 

The predicted kinetics of transformation along the minimum-energy 

path depend on the assumed reversibility of the transformation. If the 

transformation is assumed to be irreversible, but is confined to the 

. . h h h· . d f h th . m~nlmum-energy pat t en t e tlme requ~re or tea step ~s 

* <t > = 1 + exp (B~G ). (II1-E-26) 
a a 

* ",here!J,G is defined in the previous section. If the transformation is 
a 

assumed to be reversible, but biased in the fOrIJJard direction by the 

chemical driving force. ~~. then a first approximation to the net rate 

of fO~lard progress may be phrased as follows: 

th If the body has the a configuration along the transformation path 
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then the probability that the body will move to the (~+l)st configura-

tion in a single attempt is 

(III~E~2 7) 

To obtain the net probability for forward progres the probabili p 
~ 

must be weighted by the probability P I that the transformation will not 
~ 

subsequently reverse itself to regenerate the configuration~, Since the 

body may perform a rather complicated random walk along the transforma~ 

tion path before regenerating the configuration ~, P I will be difficult 
~ 

to compute exactly, If the thermodynamic driving force N fI.\1 is large 
. 0 

and negative, however, it is unlikely that the body will return to 

from configurat ions ~ + QI, I where QI,' is large, 

As a first approximation, we account for returns to a from ~+l, but 

ignore returns from QI,+QI,' when Ql,1 > 1, The probability P I is then QI, 

approximated by the probability that the configuration QI,+l will evolve to 

~+2 before reverting to ~, or: 

P~I ~ exp (~6f1.G:+l)/[exp(~6f1.G:+l) + exp (6~G:;J 

"" [1 + exp 6(fl.G: + fl.G:+l )]-1 (III-E-28) 

It follows that the net probability for forward progress, P:, is 

P: ~ [1 + exp (6~G:)]-1 
giving the net activation time 

~ exp 

'* when fl.G »6 and QI, 

+ fl.G:+l ] 

'* + fl.GQI,+l) > O. 
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As T ~ ° (8 ~ 00) the probability of transition approaches one for 

* * 6G < ° and zero for 6G > 0, 
a a 
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IV. COMPUTER SIMULATION OF MARTENSITIC TRANSFOR}~TION 

Before presenting the results of computer simulation of the marten~ 

site transformation, we briefly recapitulate the more important features 

of the model employed. 

The computer simulation of the martensite transformation in 3~dimen~ 

sions requires the employment of three kinds of EMP whose tetragonal 

axes (or Bain axes) lie along the [lOOJ. [OlOJ and [OOlJ directions of 

the cubic parent phase respectively. For a reasonably large crystal, 

the calculations will take considerable computer time. The resulting 

structure inside the 3-dimensional volume of the parent phase cannot be 

displayed with the same clarity and simplicity as the structure in the 

2-dimensional case. The latter can be presented simply on a sheet of 

paper. 

On the other hand, the main pecularities of the martensitic trans~ 

formation appear in a 2-dimensional model as well as in a 3-dimensional 

one. We have. therefore. chosen a 2-dimensional model for the initial 

computer simulation studies. 

In the specific model used below the crystal is assumed to be a 

pseudo 2-dimensional body. in that each point in its plane represents 

a line extending to infinity in either direction. The 2-dimensional 

crystal is represented by a square grid of points. forty on a side. in 

a square array. Each point represents an EMP of the type discussed in 

the previous section. The array is assumed to be periodic across each 

of its boundaries. 

The array initially consists of elementary volumes of the parent 

phase together with one or more defects which may serve as heterogeneous 

nucleation sites for the martensite transformation. For simplicity, 
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and since we are interested in the growth of martensite rather than in 

the details of its nucleation, these initial defects are modeled as 

elementary volumes of the martensite phase, 

The martensite transformation is assumed to involve a Bain strain 

in two dimensions: a contraction along one of the axes together with an 

expansion along the other axis of the grid (See Figure 5). In most of 

the cases reported below, the Bain strain is assumed to involve no dila-

tation; the transformation strain is therefore a pure shear, The two 

variants of the stress-free distortion are then described by the two 

tensors 

= £" G ;) C 
0 

a 
(1) 

0 
(2) 0 

(IV-I) E: •• E: •• E: 
1J 1J 

1 

where 
0 

is the magnitude of the shear. s 

Elementary volumes of the martensite phase (EMF) interact with one 

another through elastic interactions as discussed in the previous sec-

tion. The calculation of the invariant plane in three dimensions was 

described in Section II-A. The orientation of the invariant plane, 

which corresponds to the plane with minimum lattice mismatch, can also 

be calculated for the two dimensional case. When the transformation 

strain is a pure shear, the invariant planes are found to be (11) and 

The martensitic transformation is assumed to occur through the dis-

crete formation of elementary volumes of the martensitic phase (EMF), 

The net energy change on introductton of an EMF ts the sum of three 

terms: a chemical energy, which ts described in the previous section and 

is assumed to depend linearly on the undercooling, ~T; an elastic self 

energy, which is equal to the elastic energy required to accomplish 
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the Bain strain; and an elastic relaxation term which was derived in the 

previous section and includes the elastic two-body interaction with all 

other particles which are present. 

The thermoelastic potential ~p(~) is calculated by the computer in 

accordance with the equation ( ) applied for the 2~dimensional 

case. for all sites ~ of the grid and for p ~ 1 or 2. to 

the two possible variants of the EMF, The code employs the stress-free 

strains (IV-I) and carries out the integration over k in equation 
~ 

(III-B-18). Figure 6 shows a 3-dimensional plot of potential ~p(~) at 

every site. ~. for a configuration. a. which contains a type p 

EMF on the center of the net. in the case of elastic isotropy, The po-

tential field varies dramatically with direction near the EMF, The 

absolute value of ¢p(~) decreases quickly. approximately as I/R2. 

Since the surface energy. which includes the martensite-austenite 

interphase energy and the interplane energy for the martensite trans-

formation. is much less than the elastic strain energy. we neglect the 

surface energy term in equation (III-D-2), 

For each configuration formed by EMFs, the computer calculates all 

local potentials ~p(~) for every point ~ on the net and for both values 

of p. finds the ¢~(~) = min ¢p(~) and. if ~;(~) is negative, creates a 

new EMF of the kind of Po at the point ~o. Therefore ¢;(~) is the 

'quantum' of the free energy. i,e" the elementary martensite formation 

energy (EMFE) of one EMF at ~o' In all cases discussed below, the ener-

2 gies are in the unit of ~s V, where ~ is the shear modulus. s is the 
o 0 

amount of transformation strain. and V is the volume of one EMF, The 

local potential ¢p(~) is the sum of the terms ~~ch' the chemical energy 

term and ~~el(~)' the elastic energy term. As in eq. (III~C-7), the 



chemical energyAth is proportional to the amount of supercooling 

AT = T ~. T , which is expressed in units of V~£2T IN Ah. A~ h is con-
000 0 c 

stant over all lattice sites while Ll~el (R) varies. For convenience, we 

define the Elementary Martensite Elastic Energy (EMEE) for each cycle 

during the transformation process where 

EMEE "" EMFE - '" '1'ch 

The energy EMEE is also given in units of ~£2v in the following. 
o 

To establish the kinetics and path of the transformation in these 
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initial experiments, the transformation is assumed to follow the deter~ 

ministic minimum emergy path in the limit of low temperature, This 

transformation path is defined by the dual requirements that transforma-

tion can only occur if the energy associated with the formation of an 

additional particle is negative, and that, if several such particles are 

possible, that having the lowest energy will be the one formed, The 

transformation hence occurs so as to maximize the energy decrease per 

elementary step and only occurs if the incremental energy change is 

negative, 

As should be clear from the preceding section, most of the more re-

stricitive assumptions cited above can be relaxed within the context of 

the model, Some exploratory experiments in these directions have al-

ready been carried out, However, the work associated with this thesis 

has focused on the attempt to gain a fuller understanding of the simp-

lest possible case, which appears to be that cited above. 



V, COMPUTER SIHULATION RESULTS 

A, The Single Nucleus Case 

The simplest case of the transformation os that in which the two~ 

dimensional body is elastically isotropic~ initially contains only a 

single defect, and transforms via a Bain strain which is a 

simple shear. The starting point for this case is shown in Fig, 7~1, 

The development of the microstructure is illustrated in the 

other figures presented in Fig, 7, The companion Fig. 8 shows the 

incremental change in the elastic relaxation energy for the first 800 
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of the martensitic transformation, The companion Fig, 9 plots the 

average of the elastic energy per martensite particle for the first 400 

transformation steps, 

Referring to the microstructural sequence shown in Fig, 7, it will 

be seen that the martensite transformation begins from its single 

nucleus as a three~layer twinned plate along the (11) habit, which may 

be easily seen to be the habit plane for the growth of the 

martensite in the case in which the Bain strain is a simple shear, 

The reason for the three~layer initial thickness may be readily seen 

from Fig, 7~4, The first three elementary martensite particles which 

develop from the initial nucleus position themselves so as to form a 

closed box, the sum of whose tet distortions is zero, This con~ 

figuration minimizes but does not eliminate the ic energy, As dis-

cussed in previous sections, the elastic energy is always minimal for 

the morphology of a thin plate, The box shown in Fig, 7-4 hence tends 

to extend itself into a thin along the (11) plane. Since the box 

occupies three parallel (1 planes in its initial configuration. the 

.initial plate is three planes in thickness, An intermediate configura~ 



tion in the development of the three~layer plate is shown in Fig. 7-5, 

7-6. 

The plate extends throughout the periodic array until it finally 

closes on itself. as shown in Fig. 7~6. 

The incremental elastic energy associated with the growth of the 
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three~layer plate is shown in the segment of Fig. 8. The regular 

oscillation of the incremental elastic energy during growth of the three­

layer plate is evident. When the plate eventually closes on itself, at 

the l20th cycle, a situation of invariant plane strain is created. 

There is essentially no elastic driving force for further growth of the 

plate. and the additional transformation would involve a rather high 

elastic energy as shown in Fig. 8. 

The gradual decrease of the elastic energy during growth of the 

three-layer initial plate is perhaps even more evident in Fig. 9, which 

shows the average elastic energy per martensite particle. As is appa~ 

rent from the figure the elastic energy is initially high and decreases 

dramatically towards zero as the three~layer plate develops. On the 

closure of this plate. at the l20th cycle. the elastic energy becomes 

essentially equal to zero. 

Once the initial three~plane plate has completed itself, the resi­

dual interaction terms almost vanish and there is, therefore, very 

little elastic driving force to continue the martensitic transformation. 

It is apparent from the graphs shown in Figs. 8 and 9 that the transfor~ 

mation of particles to continue the transformation requires a very high 

elastic energy, and would consequently require a rather large chemical 

driving force as might be achieved through severe undercooling. The 

details of the two-body elastic interaction do, however, create a 
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slight bias for additional transformation to occur at a particular 

point in the microstructure, As shown in Fig, 7~7 and 8? this slight 

bias causes the martensite plate to thicken on further transformation by 

the addition of a two~layer twin plate that spreads along the surface of 

the ting martensite plate, The plate hence thickens by what in 

usual metallurgical terminology is known as a ledge growth mechanism, 

The two~layer twin nucleates and spreads to completion along the surface 

of the pre~existing plate. giving finally a five~layer internally twin­

ned plate. At this point the transformed region again consists of an 

infinite plate along the habit plane, and the average value of the elas­

tic energy per martensite particle is again almost identically zero as 

shown in Fig. 8 at the 200 cycle point. 

Following completion of the five-layer plate it is again necessary 

to nucleate a new plate under a situation requiring a rather high acti~ 

vation energy. Again the details of the two-body interaction create a 

small but finite bias for further transformation to initiate at a par­

ticular point within the lattice, The resulting nucleation is shown 

in Fig. 7-9 and differs from the previous nucleation event in that this 

time the preferred site for the nucleus is spatially separate from the 

pre-existing plate. As shown in the subsequent figures this nucleated 

plate develops into a three~layer martensite plate that grows in paral­

lel to the pre-existing plate leaving a layer of retained austenite in 

the interim. Interestingly, as can be seen in Fig. 7-10, the growing 

plate is, in aggregate? twin related to the initial martensite plate. 

The reason for the spatial separation between the parent and the 

autocatalytically nucleated plates appears to derive from the particu~ 

lar shape of the two~body elastic interaction, as diagrammed in Fig. 6 
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The elastic interaction has osci1lat tai19 whi.ch, 

if it construct rei.nforced the interactions from 

conf can introduce a bias for the formation of 

martenstte tcles at some distance from the icles. 

The weak oscillatton of the range interaction is in this icular 

case a consequence of the conditton and hence may be 

a feature of the model. It is, however, interest that the 

transformation formation of marten~ 

site variants at some distance from the initial martensite plate is a 

not uncommon f J:: h . . .c • (68) __ eature OJ: t e martensltlc tranSLormatlon . 

As shovm in 8 the incremental energy auto~ 

catalytic nucleation of the second is essent iden~ 

tical to that for the of the three~ plate. As 

shown in 9 the average value of the elastic energy increases slight~ 

ly the of this and returns to zero when the plate 

development is at the 320th cycle. 

The remainder of this martensitic transformation essentially re~ 

peats the features we have seen. the to comp~ 

letion of each twinned the elastic energy returns to a value very 

close to zero and a new nucleation event is in order to con~ 

tinue the transformation. on the precise conf ion of the 

martensite icles the site for this nucleation event may 

be on the surface of an exist in vlhieh case the thickens 

by a mechanism with the be a two~layer twin plate, 

or the nucleation site may be ially from any of 

the • in which case the of a nevI 

is Some elements of this process are 
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apparent in the energy curves in Figures 8 and 9. 

The thermal characteristics of the martensite transformation from a 

single nucleus are relatively uninteresting. A finite supercooling, 

of approximately 0.3 in energy units is required to start the transfor~ 

mation on its way. Following the growth to completion of the initial 

plate, an additional supercooling of approximately 0.3 energy units is 

required to continue the transformation. The sum of these undercoolings, 

0.6, is nearly equal to the chemical driving force required to balance 

the elastic self energy of the martensite particle in the absence of any 

favorable interaction terms. Once this undercooling has been establish~ 

ed a transformation will continue to completion along the energy 

shown. Hence, as a function of temperature the transformation contains 

only two steps: a first step which causes the initial nucleus to develop 

into a full plate along the habit plane, and a second step at a much 

more substantial undercooling, which completes the transformation of the 

body. 

B. Multi-Nuclei Transformations 

To simulate a wider range of interesting features of the martensite 

transformation, it is necessary to assume that multiple nuclei are pre~ 

sent within the periodic forty by forty cell of initial volumes. The 

presence of the distribution of nucleating defects serves two functions: 

it helps to eliminate the effect of the periodic boundary conditions, 

and it strongly influences the character of the martensite transforma~ 

tion. 

The specific example that we shall discuss begins from ten initial 

martensite embryos which are randomly distributed over the forty by forty 

grid. Again, the strain is assumed to be a pure shear (no dilatation),the 
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the matrix elastic constants are assumed isotropic, and the transforma­

tion path is taken to be the deterministic (low temperature limit) one 

by one transformation path, in which the transformation proceeds if and 

only if it is possible to form a particle which decreases the energy of 

the system. and the transforming particle is chosen from among the 

admissable events so as to provide the maximum energy decrease" 

The particular example discussed here has been used to create a 

computer movie of the martensite transformation, which is in fact 

rather more informative than the following discussion, based on a limi~ 

ted number of figures. is likely to be. 

The transformation is represented in the composite Figures 10, 11 

and 12. Figure 10 shows the variation of the martensite fraction with 

undercooling, with the temperature measured in energy units. The compo~ 

site Figure 11 shows the transformation through the successive stages of 

its development in the microstructure. The two variants of martensite 

are again represented by horizontal and vertical lines and the parent 

austenite is represented by open squares. The example microstructures 

are chosen to emphasize the stages of the transformation at which the 

undercooling would have to be increased in order to maintain the process. 

The composite Figure 12 plots the energy change associated with each 

successive elementary transformation. The horizontal lines in these 

figures show the chemical driving force, and hence the undercooling 

which is necessary to maintain the transformation at the stage in ques~ 

tion. The oscillating line shows the total elastic energy involved in 

each elementary transformation event. The driving force, or undercooling 

required is simply that necessary to insure that the total energy is 

ive for every preceding transformation event. 
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As discussed earlier the elastic self energy for the formation of 

a martensite particle in the periodic array is large and positive~ 

0,6447 in dimensionless energy units, If there were no relaxation due 

to interaction with other inhomogeneous defects the self energy would 

have to be provided by the chemical driving force of the transfon~tion, 

requiring an undercooling equivalent to 0,6447, However in the presence 

of the distribution of initial defects shown in Figure ll~l the required 

driving force is much smaller. The total elastic energy change involved 

on the addition one elementary martensite particle in the most favorable 

site (Figure ll~2) is 0.09. and only this supercooling, approximately 

1/7th of that required for the homogeneous nucleation of martensite, 

need be established to initiate the transformation. 

As shown in Figure 10 the martensitic transformation is initiated at 

an undercooling of 0.09~ which defines the M temperature for this par~ 
s 

ticular example, and the initiated transformation proceeds by some 

finite amount before coming to a halt, The nucleation site shows that 

it lies in the vicinity of two preexisting defects, which are so confi~ 

gured that they are naturally incorporated in a two layer twinned mar~ 

tensite plate extending from one to the other, At an undercooling of 

0,09 this two layer twin plate nucleates and begins to propagate rapidly 

through the array, Its growth is illustrated in Figures ll~l through 

ll~7, As can be seen from Figure l2~l. the elastic energy change per 

elementary event during the growth of this twinned plate is small and 

oscillates about zero, This situation maintains until the twinned plate 

almost closes on itself (Figure ll~7) at which point the transformation 

ceases abruptly. Reference to Figure 12 shows that the continuation of 

the transformation beyond the point shown in Figure 11-7 would involve 
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an elastic energy exceeding the chemical driving force; the transforma­

tion can, therefore, proceed only if the temperature is lowered further, 

Examination of Figure 11-7 indicates the source of the transfonnation 

arrest: the twin plate is trying to grow through.a region of the crystal 

that contains pre-existing defects whose strain fields interfere with 

and oppose the continued growth of the plate. 

The development of this initial martensite plate as pictured in 

Figures 11-1 through 11-7 illustrates the dual role played by pre-exist­

ing defects. In favorable configuration these defects act as preferen­

tial nucleation sites to initiate and promote the martensite transforma­

tion. The defect distribution is also, however, responsible for the 

energetic barrier that forces the transformation to stop, and necessi­

tates a continual increase in the undercooling if the transformation is 

to be maintained, 

On a slight lowering of the temperature the transformation is re-" 

started and proceeds ultimately through the nucleation and growth of a 

short plate that is in a branching orientation to the original twinned 

martensite plate (Figs. 11-10 through 11-12). The development of this 

plate is again stopped by its impingement on the strain field of pre­

existing embryos, Fig. 11-12, A further decrease of the temperature, 

to an undercooling of 0.1375, Fig, 12-1, is required to trigger a signi­

ficant additional transformation, that is shown in Figs. 11-14 to 11-17. 

It will be noted from Fig. 12-1 (Cycles 100 to 144) that during the 

growth of this new plate, the incremental elastic energy continues to 

oscillate about 0, The increased undercooling is only necessary to over~ 

come specific barriers which bring the transformation to a halt, 

Several further drops of temperature are necessary after cycle 146 



,J 

91 

to maintain the transformation; they correspond to the formation of new 

plates and the thickening of the initial plate (Figure 11~18) until 

cycle 229 (Figure 11~21). The increase in the energy required to sus~ 

tain the transformation during the impingement process is clear from 

Figure 12. 

At this stage of the transformation~ the temperature must be lowered 

still further to an undercooling of 0.27 to continue the process. The 

next nucleation event is the activation of a pre~existing defect which 

is spatially separated from the part of the microstructure which is al~ 

ready transformed. Once this nucleus is activated the propagation of 

an associated plate is energetically quite easy and fast (Figure 11~26, 

27). At the completion of the growth of this plate. other events are 

triggered at the same driving force. The transformation proceeds at 

this value of the undercooling for 663 steps. The transformation in~ 

volves the thickening of the martensite plates and the transformation 

of the space between plates. as illustrated in Figures 11~28 through 

11~33. The relatively high amplitude oscillation of the energy change 

from cycles 980 to 1170, shown in Figure l2~3, corresponds to the for~ 

mation of the thick twinned plate which fills up the space between two 

separated transformed plates Figs. 11~(33~36). At the comple~ 

tion of the transformation permitted at this value of the undercooling, 

the martensitic transformation is much more than 50% complete, and the 

microstructure, illustrated in Figure 11~38 has come to bear a very 

strong resemblance to that observed in a number of real systems at the 

approximately 50% transformation point. Discrete internally twin 

plates are present. they branch along the two variants of the (11) 

habit plane, and are separated by regions of retained austenite. 



At this point in the transformation, all of the pre-existing defects 

have been consumed by transformation. The undercooling required to 

accomplish this transformation is less than one-half of that which 

would be required to initiate the martensite transformation by a homo­

geneous nucleation process, 

The martensite transformation is brought essentially to completion 

by an additional lowering of the temperature to an undercooling of 

0,355, At this value of the undercoo1ing, further transformation is 

triggered by the annihilation of a layer of retained phase lying 

between two martensite plates (Figures 11-39,40), Transformation con­

tinues until almost all the crystal lattice sites are transformed, 

Only fifty-three austenite elementary volumes remain at the completion 

of this step, 

The undercoo1ing ~T = 0,355, resulting in the microstructure shown 

in Figure 11-40, may be reasonably regarded as the martensite finish 

temperature, Very few austenite volumes remain, and, as shown in 
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Figure 12-4, the elimination of these requires a substantial and in­

creasing undercooling. Further transformation is, in fact, only accomp­

lished by a rather substantial undercooling which results in the elimi­

nation of the residual austenite particles in almost a step by step 

process. This retention of an austenite phase which is very difficult 

to eliminate is a common experimental observation, and is also a natu­

ral consequence of the model transformation e~hibited here, The comp­

lete elimination of the residual austenite requires an undercooling 

~T = 0.62, which is still less than but almost equal to the undercool­

ing required for homogeneous nucleation of the martensite transformation. 

Three additional figures have been included, Figures 13 to 15, to 
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provide other useful illustrations of the energy change during the mar~ 

tensite transformation. Figure 13 shows the average elastic energy per 

martensite particle during the transformation. At the beginning of the 

transformation, the elastic energy per particle is high. As the trans~ 

formation proceeds, the high elastic energy is relaxed and the average 

elastic energy decreases. The elastic energy ultimately decreases to 

an average value very close to zero, though it does not quite reach 

zero because of the irregular arrangement of the elementary martensite 

particles. 

Figure 14 shows the average values of the self energy per particle, 

including the elastic and chemical energy but excluding the elastic in­

teraction term. and the average total energy per particle during the 

transformation. The upper curve represents the self energy, Each step 

in the curve is associated with a decrease in the chemical energy re~ 

suIting from the decrease in temperature, The self energy is positive 

definite through the entire transformation. reflecting the very large 

value of the elastic self energy, Inclusion of the interaction energy, 

however, has the consequence that the average total energy becomes in~ 

creasingly negative causing the transformation to proceed in an increas~ 

ingly favorable manner. 

Figure 15 plots the total energy change during the martensite trans~ 

formation, Again the total value of the self energy is positive and 

increases with the extent of transformation, while the relaxation term 

has the consequence that the total energy is negative and decreases as 

the transformation proceeds, It should be clear from this figure why 

earlier models of the martensite transformation, which effectively con~ 

sidered only the self energy had some difficulty in interpreting 
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why it is that the martensite transformation occurs spontaneously. The 

elastic interaction term along the most favorable transformation path, 

is. in fact. large and negative, and effectively cancels out a substan­

tial part of the high elastic self energy involved in the transforma­

tion of the martensite particle, 

In summary it should be noted that the model transformation descri­

bed above reproduces most of the characteristic features of observed 

martensitic transformations in a simple and intriguing correspondence, 

The transformation proceeds through the growth of discrete martensite 

plates which are twinned, In the earlier stages of transformation, 

these plates are heterogeneously nucleated at pre-existing defects in 

the lattice, The driving force for the transformation is provided 

by undercooling. which must be continuously increased to maintain the 

transformation; the transformation occurs over a range of temperatures 

between a martensite start and a martensite finish point, Some auste­

nite phase is retained in the microstructure until the undercooling be­

comes extremely large, As observed experimentally, this austenite 

phase tends to be retained in thin lamella separating adjacent marten­

site plates, Finally, the martensite transformation occurs spontaneous-

on cooling in situations in which the self energy of the martensite 

icles is large and positive, 

C, Variations on the Multi-Nucleus Case 

The martensite transformation beginning from ten randomly distributed 

nuclei which was discussed in detail in the previous subsection is typi­

cal of the results obtained when the two-dimensional martensite trans­

formation occurs in an array containing a distribution of initial 

nuclei, Of course~ given the small size of the array and the random 
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distribution of nuclei, there are statistical variations in the marten~ 

site start temperature and in the specifics of the transformation path 

which depend on the particular number and distribution of initial nuclei, 

Some additional results are shown in Figures 16-1 to 3, which 

the fraction of martensite as a function of undercooling for three 

cases containing ten, twenty and forty initial nuclei in random distri-

bution, The resulting transformation curves are somewhat different from, 

though qualitatively similar to that obtained in the ten~nucleus case 

discussed in detail, 

There is an expected statistical tendency for the martensite start 

temperature, M , to increase as the number of randomly distributed 
s 

nuclei is made greater. Recognizing that the martensite transformation 

will begin from the most favorable local configuration of pre-existing 

nuclei, this tendency simply reflects the increased likelihood of a 

particularly favorable configuration when the number of nucleating de~ 

fects is increased. A particularly favorable configuration may even 

cause the martensitic transformation to occur to a slight extent above 

the equilibrium temperature (~T ~ 0). An example is shown in Figure 

l6~3, for a martensite transformation in a case containing forty initial 

defects. In this case a slight transformation occurs at a temperature 

for which the undercooling ~T is negative. The source of the transforma-

tion is the large negative energy which may be obtained by introducing 

a martensite particle in the environment of a particularly suitable con~ 

figuration of initial defects. It is, however, not possible for the 

martensite transformation to progress significantly at negative values of 

the undercooling, 

The tendency for the martensite transformation to occur at increas~ 
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ing temperatures with the introduction of additional defects is analo­

gous to the phenomenon of deformatlon-lnduced martensite. in which the 

martenslte transformatlon temperature is ralsed by deformlng a crystal. 

It wlll also be noted that as the number of inHial defects is in­

creased the transformatlon becomes more smooth, that is, it occurs more 

uniformly as the temperature is decreased. This behavior also has a 

relatively straightforward interpretation. As we discussed in the two 

previous sections. the haltlng of the martensite transformation at a 

given temperature has one of two causes: either previous transformation 

has led to the completion of a twin plate along the habit plane, which 

dramatically reduces the elastic driving force for further transforma­

tion, or the plate has progressed to a point in which it encounters 

opposing strain fields from other plates which have previously formed, 

or from previous defects that have not yet been activated, The latter 

case is much more common when many initial defects are present. As a 

consequence, the extent of transformation per thermal step tends to be 

much less in the many defect case. On the other hand. the presence of 

many initial defects provides a smoother energy spectrum of heteroge­

neous nucleation sites. As a consequence, the degree of supercooling 

required to reinitiate a transformation that has halted tends to be 

smaller when many nuclei are present. 

The tendency toward a higher martensite start temperature and a 

smoother transformation curve of percent martensite vs. temperature in 

the presence of the larger number of initial nuclei are, of course, 

statistical trends rather than determined phenomena. Significant sta­

tistical variations in both these features of the transformation do 

occur when a particular transformation case is repeated with a differ-
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ent distribution of additional nuclei, An example may be seen by com~ 

paring the transformation curve given in Figure l6~1, for a ten~nucleus 

case, with that presented earlier in Figure 10 for the ten-nucleus case 

which was discussed in detail, Because of the difference in the initial 

defect configuration, the example shown in Figure 16-1 exhibits a sub­

stantially lower martensite start temperature and a much narrower range 

of temperatures over which the transformation is brought to completion, 

One would, of course, expect these statistical variations to 

if the array size were made arbitrarily large. The martensite start and 

finish temperatures would then become dependent only on the type and 

concentration of initial defects, 

The martensite finish temperature, M
f

, at which the last of the 

austenite particles disappears, tends to decrease as the density of 

the initial defects increases, This effect also has a relatively 

straightforward interpretation in the model. As the number of initial 

defects increases, the transformation becomes more irregular and the 

martensite plates become less well-developed. The residual austenite 

is stabilized by the elastic interference of the adjacent martensite 

plates which leads to high values of the elastic energy required to com­

plete transformation in certain unfavorable sites. As the transforma­

tion becomes more irregular, the number and unfavorability of such sites 

has a statistical tendency to increase, requiring 

to fully complete the martensitic transformation, 

D. Variation of Array Size and Dimensionality 

undercooling 

Experience with the computer simulation model seems to show that the 

characteristics of the two~dimensional transformation are not very sen­

sitive to the array size employed so long as the array size is forty by 
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forty or greater and so long as the density of the initial defects is 

reasonable~ for example. ten or more in a forty by forty array. A forty 

by array is sufficient in size to largely eliminate fluctuations 

in the two~body elastic interaction due to the periodic boundary condi~ 

tion. so that the nature of the elastic relaxation term does not change 

significantly as the array size is made larger. There is a slight ten­

dency for the martensite start temperature to increase as the array size 

is made bigger. again as a consequence of the fact that the martensite 

transformation is nucleated by the most favorable configuration of de­

fects initially present, but the effect does not seem to be pronounced 

in the cases studied to date. 

Much more pronounced effects are expected if the dimensionality of 

the array is increased from two to three. In three dimensions there are 

three rather than two simple variants of the elementary martensite part­

icle, corresponding to the three different orientations of the tetrago­

nal axis of the Bain strain. Moreover, in three dimensions there is a 

considerably enhanced freedom for the martensite particle to take non~ 

simple habit planes, for example, the (259) plane often observed in 

real systems. The problem of elastic constraint also changes somewhat 

in three dimensions since one must recognize the three-rather two-dimen­

sional confinement of an isolated martensite particle. It is clear that 

a three-dimensional simulation which incorporates these qualititative 

must be carried out if we hope to obtain quantitative simulation 

of the martensitic transformation in a real crystaL 

In anticipation of the need for three-dimensional simulation stu­

dies, a computer code was written which permits the modeling of the mar­

tensitic transformation in three dimensions, To date this code has only 



99 

been used for some preliminary experiments for debugging purposes. The 

three~dimensional transformation is not only much more difficult and ex~ 

pensive to simulate in the computer. but is also much more difficult to 

'analyze insofar as the progress of the transformation is concerned, 

since the three dimensional development of martensite particles is not 

easy to represent in a way which permits simple visualiztion, We there~ 

fore adopted a research strategy that contemplates a thorough investiga~ 

tion and understanding of the two~dimensional transformation case before 

proceeding to three~dimensional studies. 

A preliminary example of a martensitic transformation in three dimen~ 

sions is shown in Figure 17, In this case the transformation was 

allowed to occur in a fifteen by fifteen by fifteen array. the initiat~ 

ing defect was a single martensite variant in the center of the array. 

and the three martensite variants are modeled by lines along the x. y 

or z axes. A section through the transforming cube is shown in Figure 

17. The transformation tends to proceed through the growth of (110) 

twinned plates in three dimensions. Only two of the three possible 

variants appear in a single plate. as expected from either the crystal~ 

lographic or elastic energy model of the martensite plate. The results 

of this simulation seem to show that the computer code is working proper~ 

ly, but since detailed studies of the three~dimensional transformation 

have not been carried out. no more specific discussion of these results 

can be given. 

E, The Introduction of Elastic Anisotropy and Dilatation 

The martensite transformation studied in detail in this work con~ 

cerned the simplest possible case. in which the elastic constants were 

assumed to be isotropic and the Bain strain was taken to be a simple 
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shear. The modification of the model to treat cases in which the elas­

ticity is anisotropic and the Bain strain involves a dilatation as well 

as a shear is straightforward and some 

been carried out, While these invest 

investigations have 

ions have not been taken to the 

point at which a thorough discussion of the consequences of anisotropy 

or dilatation can be given, preliminary results are available, 

Figure 18 shows a series of micrographs illustrating the 

of the martensitic transformation in a t\vo~dimensional forty by forty 

array in which the elastic constants were chosen to be the anisotropic 

elastic constants of iron~nickel austenite. and the transformation was 

assumed to involve a large dilatation, roughly corresponding to the di­

latation involved in the Bain strain of iron~nickel austenite when only 

the tetragonal and perpendicular axes are included, This dilatation is 

unrealistically large, and it the relevant effects. 

The habit plane of the martensitic transformation in this case can 

be computed using relations developed in Section III. Since the dila~ 

tatfon is non-zero, the preferred habit plane is rotated somewhat away 

from (1 1) and lies close to the plane (5 4). An exami.nation of the 

effect of the dilatation on the interaction of martensite 

ie1es brings out a second effect, The dflatatfon modifj.es the short 

range two~particle interactfon so that the preference for unlike neigh~ 

bor is slightly reduced, Unlike or twinned neighbors are 

still ~ but less so than when the transformation strain is a 

pure shear. 

The transformation illustrated in , 18 occurs in an array which 

contains a distribution of twenty initial nuclei. The nucleating de-

feet is a like of initial defects~ located near the center of the 
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array on the right hand side, which are fortuitously in nearest neighbor 

relation to one another. As shown in Fig. 18~2 and 18-3 the transforma­

tion begins to develop in the form of a twinned plate roughly along the 

(1 1) direction. In contrast to the pure shear case, however, the cen­

tral rib of this plane is two layers in thickness. 

As shown in Figures 18-4 and 18-5, shortly after it begins to grow 

the plate branches in a somewhat irregular pattern. It becomes a thick 

wavy plate which contains (1 1) and (1 0) segments, An examination of 

the microstructure reveals two SOUrces for the waviness of the plate. 

First, since the habit plane of the particle is not strictly (1 1), the 

growing plate can deviate from its initial orientation without a sub­

stantial loss of energy. Second. the array through which the plate is 

growing contains initial defects, some of which are attractiVe to the 

growing plate and promote deviations in the direction of its growth. 

After some growth the plate crosses the array in roughly a (1 0) 

direction. However, the plate is displaced slightly as it is wrapped 

around the periodic array, so that the two ends of the plate are slight­

ly offset and bypass one anothe.r rather than meeting, leaving a region 

of retained austenite in the intervening region, The plates do ultima­

tely join together, as shown in Figure 18-6. and the intermediate aus­

tenite is gradually transformaed as shown in Figures 18-7 to 18-12 to 

yield an essentially complete plate traversing the array in a (1 0) di­

rection. The process of transforming the austenite between the bypass­

ing plates is accomplished primarily through the thickening of the 

upper plate in the figure; however, secondary nucleation is also involv­

ed. The transition from the state of Figure 18-8 to that of Figure 18-9 

is accomplished by a clear case of autocatalytic nucleation, The new 
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forms within an island of austenite in a position which is spa~ 

tially from any of the previously formed martensite, 

The transformation subsequent to that shovffi in Figure 18~12 is rela~ 

simple. The thick (1 0) plate shown in the figure gradually 

thickens, and by this thickening, eventually accomplishes the complete 

transformation of the array, Some residual austenite is left behind in 

this thickening process, as, for example, is seen in the microstructure 

l8~12, This austenite is eventually eliminated at large undercooling, 

Its to lie in thin platelets along the (1 0) orientation will 

be noted, 

The internal structure of the transformed region shown in Figure 

18-12 is typical of the structure observed in the late stages of the 

transformation, The internal structure of the plate is largely made 

up of twineed sub-plates which are often two layers rather than one 

in thickness, These two-layer platelets lie approximately along 

the (1 1) direction, but have occasional steps within them, which pre­

reflect the preference of the system for a habit that is slight­

rotated with respect to (1 1), 

The pattern of the transformation in this case of anisotropic elas­

tic constants and transformation strains involving non-zero dilatation 

is decidedly more complex than that observed in the transformation of 

an isotropic array through a pure shear transformation strain. The 

details of this case are under continuing investigation, We are part i-

seeking to the effect of the elastic anisotropy from 

that of the dilatational component of the transformation strain in their 

relative effects on the morphology of the transformation products, 
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VI. DISCUSSION 

The purpose of this thesis was to construct and study a theoretical 

model of the martensitic transformation, which would be simple enough 

to permit detailed study in computer simulation while being sufficiently 

profound to shed new light on the manner in which the martensitic trans-

formation proceeds. Since the martensite transformation is believed to 

be dominated by the problem of elastic accomodation between the two 

, the model that was constructed emphasizes the elastic inter~ 

action, and in its simplest form, deemphasizes other possible factors, 

The assumptions are strong in keeping with the desire to create the 

simplest reasonable initial model, We have hence made a linear elastic 

approximation, assumed homogeneous elastic constants, and modeled the 

reaction over a finite lattice of elementary volumes which is formally 

treated as a discrete lattice of points. 

A. Comparison with Experiment 

Despite the relative simplicity of this model of the transformation, 

the results are encouragingly real. Many of the most important qual ita-

tive features of the martensite transformation are already reproduced in 

this simplest case, Apparent qualitative points of contact with experi-

mental results occur in the heterogeneity of the martensite phenomenon, 

the thermal characteristics of the transformation, and the retention of 

austenite at very large undercoolings. 

As is believed to be the case experimentally, the martensite trans-

f ' , 1 d f h ' (63) h' h 'h' ormat10n 1S nuc eate rom eterogeneous s1tes , w 1C are 1n t 1S 

case elastic defects in the lattice modeled as martensite embryos, 

When many initial defects are present, the nucleation occurs preferen-

tially at the most favorable configuration of defects, an observation 
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in contact with the suggestion that arrays of defects form the 

f .. 1 1 . . (23) pre erentla nuc eatl0n sltes . The nature of the favorable configu-

rations might be discussed in detail by considering the interacting 

strain fields defects in the configuration. However, in the cases ana-

lyzed to date the most favorable configurations have a simple character-

istic form. They consist of an association of defects, such as those 

illustrated in Figure ll~l, which are so oriented with respect to one 

another that a simple twinned plate will naturally incorporate them 

during its growth. 

The growing martensite plate is an internally twinned plate two or 

three layers in thickness. From the point of view of the two~body in-

teraction, the source of the preference for the twinned plate is clear; 

as illustrated in Figure 7-2 for the case of a transformation strain of 

the pure shear type. the most favorable interaction betvleen particles 

promotes the appearance of a particle in twin orientation along a (1 0) 

direction from the initial particle. Neighboring twin particles along 

the (1 1) habit plane. The qualitative preference for the formation of 

the twinned plate has an obvious interpretation in terms of the tenden-

cy of the martensite particle to try and minimize its net tetragonal 

strain. This feature of the transformation is most clearly evident in 

the of the plate from a single nucleation center, as illustrated 

in 7~3. The first four martensite particles appear so as to 

form a square configuration in which the tetragonal strains are mutual~ 

ing. This box is the embryo of a three~layer twin plate . 

. 19 shows one example of twinned martensite. 

The driving force for the growth of a martensite plate is the de-

crease in the elastic energy associated with the spreading out of a 

its habit plane to form a completed plate along an invariant 
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plane. This process is clearly revealed in the case of the growth of 

a martensite plate from a single strain center, as illustrated in 

Figure 7~6, in which the twin particle grows to form a twinned plate 

along the (1 1) habit plane, After this growth has been completed the 

total elastic energy of the system decreases to an extremely small value, 

In the case of transformation in a lattice containing a number of 

initial defects, the martensite particle attempts to grow to complete 

the formation of a plate along the habit plane, but it is prevented from 

doing so by the interference of the strain fields of other defects al-

ready present in the lattice. In typical experimental cases the pre-

venting defects are grain boundaries or martensite particles that have 

previously developed. These serve as internal defects which prevent 

platelet growth from reaching completion, 

A continuation of the martensite transformation through the auto-

catalytic nucleation of additional plates is a consequence of the arres-

ted growth of the initial plate due to the mutual interference of the 

strain fields of the defects in the lattice. These have the consequence 
I 

that the strain field of the lattice after partial completion of the 

transformation is irregular, and there are hence sites within the lat-

tice at which the transformation can favorably proceed on slight further 

undercooling, Two types of autocatalytic nucleation are observed: 

first, and most predominately, is the activation of pre-existing defects, 

or continued growth of previously created plates, through the addition 

of particles in favorable positions in the internal strain field. 

However, the homogeneous nucleation of new plates is also occasionally 

observed. While the homogeneous nucleation of martensite is normally a 

very difficult process, a circumstance in which the strain fields of 
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acent particles strongly interfere can create the large elastic driv~ 

ing force necessary to bring about homogeneous nucleation as a means of 

continuing the transformation. 

The thermal characteristics of the transformation also strongly 

resemble those of low~temperature martensitic transformations in real 

The transformation proceeds by an amount which is a function 

of the final temperature, but not of time. To continue the transforma~ 

tion the temperature must be continually decreased. The transformation 

proceeds through a series of bursts as the undercooling is increased, 

each of '\<7hich involves the formation and grovlth of one or more marten~ 

site plates or the discontinuous extensions of plates which already 

exist. Figure 20 shows the variation of the martensite fraction with 

(67) 
temperature in a typical experimental case ,which will be seen to 

be similar to the results of the computer model as illustrated in 

During the course of the transformation the energy released per ele~ 

event is a noisy function, due to the strong variation in the 

relaxation energy associated with each elementary transformation. Ex-

, this irregular energy release should be observable in a 

noisy contribution to both the thermal and acoustic emission during the 

transformation. A typical result of the acoustic emission measurements 

the course of a martensite transformation is shown in Figure 

21(67), The function is quite irregular as anticipated from the theo-

retical modeL 

The retention of austenite in the later stages of the model marten-

site transformation also bears a strong resemblance to austenite reten=-

tion in many cases" Initially the retained austenite tends 

to form continuous bands in the interstices between adjacent martensite 



plates." For 22 shows the form of aus~ 

tenHe as by transmission electron in a low alloy 

steel, Thomas and coworkers 

of austenite is evident. In the later 

The retention of bands 

of transformation these 
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bands of austenite are eliminated~ and the retained austenite occurs in 

the form of small isolated within the lattice. This final 

morphology bears a s resemblance to that of the final residual aus~ 

tenite in, for ferritic cryogenic steels. in vlhich the auste~ 

nite takes the form of small that are the residues of bands 

of austenite that have transformed thermally. In the computer simula~ 

tion model the austenite is by the elastic strain, which is 

such that both martensite variants are unfavorable at the site at which 

the austenite is retained. This austenite can be 

example discussed in the previous section is 

stable. The 

in which very 

large undercoolings are necessary to eliminate the final fraction of 

austenite and the transformation to completion. It is, however, 

interest that the elastic stabilization of the austenite is typical~ 

ly less than that which would be achieved by simply eliminating all 

martensite icles and nucleation sites from the lattice. While the 

last few particles of retained austenite are very stable trans~ 

formation, they are, interestingly, less resistant to transformation 

than they would be if they existed as isolated icles free of the 

partly transformed lattice. This result is also in agree~ 

ment with recent 

The 

ted in this s 

evidence. 

between the martensite transformation as simula~ 

model and qualitative features of the transformation 
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observed in real systems has an important :implication that should be 

noted, One of the objectives of the theoretical study of metallurgical 

processes is to separate those features of the process that are rela~ 

tively obvious, in the sense that they are straightforward consequences 

of the nature of the process itself, from those which are subtle and 

require a substantial theoretical interpretation for their understanding, 

In the metallurgical literature the martensitic transformation is often 

treated as if it were mysterious in many of its most important features. 

The reproduction of many of these features in what appears to be the 

simplest realistic model of the transformation suggests that the domi~ 

nant features of the martensite transformation are not mysterious at 

all, but they are relatively straightforward results of the large role 

that elastic strain plays in the transformation process. 

B, Extensions of the Model. 

The model developed here is capable of a number of extensions which 

might be useful in increasing understanding of martensitic transforma­

tions, and in obtaining a semi-quantitative match with experimental 

results, In considering such modifications one should, however, keep 

in mind that the feature of the model which permits us to construct a 

forward computer simulation is the linearization which leads to 

a elastic interaction'and permits the computation of the strain 

field as a simple superposition of the strain fields of individual part~ 

icles, Modific~tions of the model that preserves linearization may be 

readily incorporated; those which destroy it will be very difficult to 

include. Features of the model which would bear examination or modifi­

cation in future vlOrk include the following: 

10 The two-particle interaction, The precise form of the two-body 

elastic interaction would appear to be a critical feature of this model, 
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Examination of the interaction field (Figure 6) shows that the inter~ 

action is maximal for the near neighbor terms, It is, of course, pre~ 

cisely these near neighbor terms which are least accurat.ely treat.ed in 

an elastic model which on the long wavelength approximation, As 

we have used it, the long wavelength approximation introduces two 

sources of error, First, the finite volume of the elementary martensite 

cell is not taken into account; the cell is treated as an equivalent 

point. Second, the deviation of the harmonic dispersion relation at 

higher values of the wave number, k, is ignored, introducing an approxi~ 
'V 

mation that becomes increasingly bad for near neighbor terms, Some 

preliminary investigation of the influence of the shape of the disper~ 

sian relation has, however, been done, with the surpris result that 

the elastic interaction does not appear to be markedly sensitive to the 

precise shape of the dispersion relation as long as that relation has a 

reasonable form, However, a more detailed investigation does appear to 

be warranted, As discussed in previous sections, the introduction of 

surface or twin boundary energy may also be formally incorporated as a 

change in the nearest neighbor interaction in the two-body interaction 

function, A preliminary investigation suggests that the principal 

effect of including surface or twin boundary energies will be to change 

the undercooling in which the transformation occurs, and simultaneously 

to modify the form of the plate so that somewhat thicker martensite 

plates are favored. The influence of these parameters also warrants 

further investigation, 

The effects of finite elementary volume size, non~linear d ion 

relations. and surface and twin boundary energies can, at least, be 
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simply incorporated into the model. Interesting features that are more 

difficult to include are the influence of inhomogeneous elastic con~ 

stants and anharmonic effects, The elastic constants of the austenite 

and martensite phases are, of course, different. In some important 

cases the martensitic transformation introduces a change in overall 

symmetry, which will cause certain elastic constants that identically 

vanish in the parent phase to take non~zero values in the product. 

Methods for incorporating non-uniform elastic constants are now under 

investigation, but the problem is not a trivial one since at least part 

of the effect of inhomogeneous elastic constants is to introduce coup­

ling terms that cannot easily be accounted for in a two-body interac­

tion mode, Inhomogeneity of the elastic constants may also destroy the 

simple linear superposition which permits the computer code to be writ­

ten in an efficient way, It is, however, possible that at least the 

greater part of the elastic modulus effect may be taken into account 

within the context of the present model and we are currently investigat­

ing ways in which this might be done, Other interesting anharmonic 

effects, such as those introduced by the severity of the deformation in 

the course of the phase transformation, are three-body effects which 

are probably beyond the domain of models of the present type, 

2. The Transformation Strain. Changes in the stress-free strain 

associated with the transformation are known to change the preferred 

habit plane of the martensite particle, but may also influence the 

transformation path in ways that are not yet clearly specified. Incor­

poration of different tetragonal strains i.nto the computer code is 

straightforward, and it should be possible to investigate the influence 

of changes in the transformation strain in some detail in future work, 
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The simplest modification, which we have invest in a 

way, involves including some dilatation into the Rain strain of the two~ 

dimensional transformation. Some preliminary results of a simulation 

of this type were included in the preceding section, More 

changes would include changes in the symmetry of the transformation, to 

simulate, for example, the martensitic transformation to the hexagonal 

epsilon phase in steel. 

3. Martensite Nucleation, Since our principal interest in the 

present research has been on the development of the martensitic trans~ 

formation rather than on its nucleation, a particularly simple nuclea~ 

tion site, the martensite embryo, was assumed. Even with this simple 

assumption, the research has shown that the true nucleation site in a 

crystal containing a distribution of defects tends to be a particular 

configuration of embryos, In most of the cases analyzed to date the 

preferred nucleation site can be simply analyzed in terms of the compa~ 

tibility of the local configuration of embryos with a hypothetical mar~ 

tensite particle, The configurations which are most compatible with a 

resulting particle seem to be the most potent as far as nucleation is 

concerned, This subject does, however, deserve a more detailed analysis. 

There is, moreover, no inherent reason why the nucleation site in 

the model must be a martensite embryo. Any strain center might serve as 

a nucleating defect, and should behave in a qualitatively similar way, 

In real crystals the nucleating defects are believed to be dislocations, 

dislocation pileups, or grain boundaries of particular types. Our simu~ 

lation code offers an efficient means for studying the nucleation beha~ 

vior and catalytic potency of hypothetical arrangements of defects of 

these types. Such an investigation should be carried out, 
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4. The Development of the Transformation. The modifications of the 

model which are perhaps of greatest potential interest are those \vhich 

involve more realistic treatments of the development of the transforma­

tion. The needed modifications included particularly incorporation of 

thermal activation and the shift to three~dimensional arrays, 

At least some of the effects of introducing thermal activation are 

obvious from the work which has already been done, If we consIder a 

case in which the thermal activation is weak, that is "lhere only those 

events which involve a very small act.ivation energy have any possibility 

of occurring sponataneously, then the principal effect of thermal acti'~ 

vation is almost certainly goIng to be to increase the burst-like cha~ 

racter of the transformation. In the thermal case which was studied in 

this research and discussed in the previous section, each of the major 

bursts of transformation tended to be separated by a few mini-,bursts in 

which only one or two activation events would occur before the tempera~ 

ture had to be lowered. The energy barriers separating these mini­

bursts was, in general, very small. As a consequence we can expect that 

the first effect of thermal activation will be to eliminate these inter­

vening steps between the major bursts of the martensite transformation, 

If thermal activation is made easier still, we should begin to 

observe a tendency for a significant amount of isothermal transforma­

tion of austenite, That is, if a system is held at a fixed value of 

the temperature for reasonable periods of time, thermal activation may 

intervene to cause an increasing transformation with time. A character 

of this isothermal transformation should strongly resemble that obser~ 

ved experimentally: a martens:i.te plate nucleates and grows rapidly to 

completion, after which one observes a finite time period before the 



second thermal activation even occurs, after which the new plate grows 

rapidly until it reaches completion. Since, as discussed in the pre~ 

vious section, only those events which trigger the growth of the plate 

require significant elastic energy, this burst~stop~nucleate~burst 
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tern is quite clearly anticipated when thermal activation is allowed 

to occur. 

At the same time that the ease of thermal activation will permit 

isothermal formation of martensite, it will also modify the transforma~ 

tion path and make the features of the transformation much less certain 

than in the cases studied to date. In a situation in which thermal 

activation is facilitated anyone of several activation events may 

occur. The subsequent development of the transformation will depend on 

which of these events happens. 

A final consequence of thermal activation will be to cause the mar~ 

tensite start temperature, and the progress of the transformation, to 

become sensitive to the rate at which the system is cooled. It is a 

common experimental observation that martensite transformations which 

occur at relatively high temperature exhibit martensite start tempera~ 

tures which depend on quenching rate. As the rate of cooling is de~ 

creased, the martensite start temperature increases. This phenomenon 

would appear to be the straightforward result of a thermally-activated 

process. In a thermally-activated process the probability that an 

event will occur increases with the time and temperature. If there is 

a range of temperatures over which the event is not unlikely, and if 

the system is continuously cooled, then the temperature at which the 

event is observed to happen will increase as the cooling rate goes down. 

Since the character of the simulated martensite transformation is such 



that the transformation may develop easily once it has been nucleated, 

one would expect to see a pronounced start to the transformation at an 

increasingly high temperature as the cooling rate is made lower, 

It is planned to demonstrate these and other features of the ther­

mally-activated transformation in the near future. 
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The generalization of the simulation to the 3-dimensional case 

poses a somewhat different problem. While the simulation in three di-, 

mensions is straightforward 9 and while a working computer code has been 

developed, and initial results presented in the preceding section, the 

extension is difficult to carry out because of the time required to 

conduct a 3~dimensional transformation, and because of the small size 

of a 3~dimensional cube compatible with the memory of the computer. 

The extension to three dimensions is, however, important since only 

the 3-dimensional case can promise a quantitative reproduction of mar~ 

tensite transformations observed experimentally, and because such qua­

litative features of the transformation as the irrational habit plane 

of typical iron martensites can only be found in the 3-dimensional case. 

We hope to conduct these studies in the near future, 

A final aspect of the growth process that is important to consider, 

though the simulation procedure is not obvious, is the possibility of 

accomodating the transformation strain through a dislocation rather 

than a twinning mechanism, In many of the most important examples of 

the martensite transformation in structural alloys the transformation 

product is dislocated rather than twinned, It is not at the moment 

clear how transformation-induced dislocations may be incorporated into 

simulation models of the sort that have been used in this research. 

However, the need to simulate dislocated martensite is real. and the 



problem of identifying suitable representations should be given consi­

deration. 

5. Mechanical and Magnetic Effects. An important problem in the 

engineering control of martensitic transformation in structural alloys 

is the influence of the interacting environment on the initiation and 

progress of the transformation. The imposition of a mechanical load 

will not only influence the onset of the transformation, but it will 

also modify the microstructure in that it influences the types of mar­

tensite particles which form. If the mechanical load results in a 

plastic strain, the results are not only striking but also puzzling; 
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the transformation is sometimes promoted and sometimes suppressed. In­

corporation of a mechanical stress into the computer simulation model is 

straightforward. The stress will provide a simple additive contribution 

to the relaxation energy. The contribution will, of course, be such 

that it is favorable for those martensite particles which relax the ex­

ternal load and unfavorable for those which oppose it, and as a conse­

quence certain characteristic variants will tend to be promoted in the 

presence of a given external stress, This simulation is well within the 

capabilities of the present model and will be performed in the near 

future. 

The influence of plastic deformation is somewhat more difficult to 

simulate, but still appears to be within the capabilities of the model. 

The simulation approach will in this case have to begin from some pre­

vious work on the nature and configuration of defects introduced by the 

plastic deformation. These may then be allowed to develop in the array 

before and during the transformation, and their influence on the trans­

formation may then be assessed. Some of the effect of the introduction 
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of defects through mechanical deformation can be foreseen from the 

results we have already obtained. The simulation results obtained in 

this research show that the defects play two roles: they introduce sites 

which may serve as heterogeneous nucleation sites for either the initia~ 

tion or continuation of the martensite transformation, and they also 

introduce internal strains which may inhibit the transformation and 

cause it to arrest. Since the net transformation observed will depend 

on the balance of these two effects, it is not surprising that one would 

empirically find cases in which deformation promoted the transformation, 

while finding other cases in which the deformation tended to bring the 

transformation to a halt. Suitable specific simulation should shed 

further light on this phenomenon. 

A rather different type of environmental interaction that has 

recently taken on special interest is the promotion of the martensitic 

transformation by magnetic fields. Since in iron the martensite phase 

is ferromagnetic while the austenite phase is not, the introduction of a 

magnetic field promotes the appearance of martensite. ~~en the field is 

high the effect may be significant and has become of some technological 

importance because of potential problems in the use of austenitic struc~ 

tural steels for the containment walls of high~field superconducting 

magnets. These operate at very low temperatures at which almost all 

austenitic steels are at least metastable with respect to the martensite 

transformation, The incorporation of magnetic fields into the simula~ 

tion model utilized here is again strai.ghtforward. The external field 

will introduce a direct contribution into the icle self~energy. We 

plan to perform simulations of this interesting case in the near future. 

In summary. the simulation of the martensite transformation as a 



117 

simple transformation of elastic elements appears to be a very fruitful 

approach to enhance our understanding of the transformation. Even the 

simplest model reporduces many of the qualitative features that are 

associated with the martensite transformation including some of those 

previously regarded as rather mysterious. The model is capable of gene~ 

ralization in a number of different directions and may realistically be 

expected to lead to a much richer understanding of martensitic transfor­

mation phenomena in the future. 
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VII. CONCLUSIONS 

The principal results of the work reported here may be summarized as 

follows: 

1, The equations governing the energy of an arbitrary distribution 

of substitutional point defects in an elastic lattice have been formul~ 

lated under the dual assumptions that the Born-von Karman constants of 

the lattice are uniform and that anharmonic effects may be neglected. 

It has been shown that under these assumptions the elastic energy 

may be written as a sum of terms which are independent of the configura~ 

tion of defects and a term which involves a simple sum of binary inter­

actions between the defects, 

2, The equations governing the elastic energy of a distribution of 

elementary point defects on an elastic lattice have been generalized to 

treat a distribution of elementary defects of finite size. Therefore, 

the energy associated with arbitrarily distributed inclusions with arbi­

trary shape (which can be considered as an, aggregation of the elementary 

defects of finite size) can be readily calculated, The resulting equa­

tions again have the form of a sum of terms which are independent of the 

configuration of the defects plus a sum of simple binary interactions 

between them, 

3, A general model of a transformation was developed and described 

in which the transformation occurs through the sequential appearance or 

disappearance of elementary defects, Statistical equations were formu­

lated which govern the choice of the transformation path, or sequence 

of elementary transformation events, and which also give the kinetics 

of transformation along any particular transformation path, In general 

the transformation path is statistically chosen and complex, A simple, 



useful representative 

and described. 
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, the "minimum energyH path, was hence defined 

4, The general transformation model was used to simulate a marten~ 

sitic transformation in the particular case of a simple, pseudo two~dimen~ 

sional lattice, The path of the transformation and the resulting micro~ 

strucute were studied as a function of the number and distribution of 

the initial nucleating defects within the model lattice, the characteris­

tics and transformation strain, and the nature of the elastic constants, 

It has been shown that many of the most important qualitative features 

associated with martensitic transformations in real solids are well 

reproduced in this simple model, 



fce -? bee 

fec -? bet 

fcc -? hep 

fce -? hep 
bee 

fcc -? fct 

bee -? hep 

Table I 

Fe, Fe-Ni, Fe~Ni (Co, Ti, Nb, V, Si), Fe~Cr, 
Fe~Co~W~Cr. 

Fe-C, Fe-C-(N, H, Mn, Cu, Si, Ni, Cr, Mo, V, 
W, AI, Co). 

Co, Co~Ni, Co-Fe, La, Ce. 

Fe-~fu, Fe-Mn(C, Ni, Ni-Cr, Cr), Fe~Cr~Ni, Fe­
(Ru, Os, Pt, Ir). 

Mu~Cu, In~TI, In-TI~Li, In-Pb. 

Na, Zr, Zr (Nd, Y, Hg, Ho, Er), TI, Hf, Ti, Ti(H2 , 

AI, Cu, Cr, Fe, Mn, Mo, Zr, V, AI-V, AI-V~Mn, 

AI~C, Cr~Mo, Ta, Nb, W) Zr-U, Cu~Al~N. 

bce -? Monoclinic Cu-AI, Ag~Cd 
orthorhombic 

bee -? orthorhombic Au-Cd-Cu, Au-Cd. 
tetragonal 

bce -? hce Li, Li~Mg, Cu-Zn 
fcc 

hcp -? fce A-N 2 

tetragonal U. U~Cr 

rhombohedral -? bet Hg. 

A15 (cubic~tetragona1). 
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FIGURE CAPTIONS 

The hypothetical procedures to create a multi~component sub~ 

stitutional solid solutions 

The Bain distortion. 

The martensite twin plate, 

The superlattice of cells, each of which is of the size of 

an EMF (elementary martensite particle). 

Bain strain in two dimensions, 

Three dimensional plot of the thermoelastic potential ~p(~) 

at every site ~, due to a type p EMF on the center of the 

net, in the case of elastic isotropy, 

The development of the microstructure in the two-dimensional 

isotropic body, initially contains only a single nucleating 

defect. and transforms via a Bain strain which is a simple 

shear, 

The companion figure to Figure 7. It shows the incremental 

change in the elastic relaxation energy for the first 800 

steps of the transformation, 

The companion figure of Figures 7 and 8. It shows the 

average elastic energy per martensite particle. 

Figure 10. The prototype simulation of the martensite transformation of 

multi-nucleus. The variation of the martensite fraction 

with undercooling, with the temperature measured in energy 

units (~E2 VT IN ~h ). 
o 000 

Figure 11. The successive stages of the development in the microstruc-

ture associated with the same transformation described in 

Figure 10, 
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Figure 12. The energy change associated with each successive elementary 

transformation associate with 10 and 11. The hori-

zontal lines in these figures show the chemical driving for-

ces, and hence the undercoo1ing, which is necessary to 

maintain the transformation in progress. 

Figure 13. The average elastic energy change per EMF dur the trans~' 

formation associate to Figure 10~12. 

Figure 14. The average values of the self energy per E}IT including the 

elastic and chemical energy but excluding the elastic inter-

action term, and the average total energy per particle dur~ 

ing the transformation. 

Figure 15. The total energy change during the martensite transformation. 

The companion figure of Figure 10~14. 

Figure 16. The fraction of martensite as a function of undercooling 

(1) Ten initial nuclei (2) Twenty initial nuclei (3) Forty 

initial nuclei. 

Figure 17. A preliminary example of a martensitic transformation in 

three dimensions. The section of (001) plane. 

Figure 18. The development of the microstructure in a two-dimensional 

anisotropic crystal and the transformation was assumed to 

involve a dilatation, 

Figure 19. An example of twinned martensite, 

Figure 20. The variation of the martensite fraction with temperature 

in Acoustic Emission test and the electrical resistance 

test(67), 

Figure 21, The Acoustic Emission measurements during the course of a 

. . f . (67) martensltlc trans ormatl0n , 
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Figure 22. The transmission Electron Micrograph of the martensite 

phase in Fe-Cr-C steel. The retained austenite is shown in 

the dark field which is obtained from the diffraction spot 

f h .. h (68,69) o t e austen1t1c page . 
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