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THE COMPUTER SIMULATION OF MARTENSITIC TRANSFORMATIONS

IN IDEALIZED SYSTEMS

by

Sheree Hsiao=-Ru Chen

ABSTRACT

Despite the engineering importance of martensitic transformations
in solids, particularly steel, there exists very little theoretical work
on the development of the martensitic transformation and the character-
istics of the resulting microstructure. It is the purpose of the pre-
sent thesis to advance the theory of the martensite transformation by
constructing a computer model of a martensitic transformation in an
idealized system. The model has its source in the general observation
that the characteristics of martensitic transformations in solids are
largely determined by the problem of accomodating the strain associated
with the martensitic distortion of the crystal lattice. A review and
adaptation of prior theoretical work leads to the development of a
theory which allows the straightforward computation of the elastic energy
associated with an arbitrary distribution of defects in an elastically
anisotropic body under the assumption that the body has uniform elastic
constants and that anharmonic effects may be neglected. These equations
are cast into a form in which the energy is written as a simple sum of
binary interactions in which the defects influence one another according
to an elastic potential whose form can be readily calculated. At the
same time that the energetic equations take a simple form the kinematics

of the process involving the appearance of elastic inclusions are also



known to be simple since in a harmonic model an inclusion may be regard-
ed as a simple sum of elementary inclusions which make it up. Given this
theoretical foundation the martiensitic transformation 1s modeled as a
transformation which occurs through the sequential formation of indivi-
dual martensitic elements, each of which carries the elementary trans-
formation strain., Statistical equations are developed which govern the
selection of the transformation path, or specific sequence in which ele~
mentary martensite particles appear in the model, and which specify the
kinetics of transformation along any known path. A useful representa-
tive path is defined, the "minimum energy" path. The resulting model

is then used for the detailed simulation of a martensitic transformation
in a pseudo two-dimensional system. Despite the simplicity of the model
virtually all interesting qualitative aspects of the developing marten-

sitic transformation are shown to be inherently present within it.
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I. INTRODUCTION

The Chinese have an adage '"The shortest step may be the beginning
of the longest jourmey". As long ago as 4,000 B.C., primitive men
were using meteoric diron as a rvare and valuable material. This 'heaven-
sent irvon' could be hammered and worked like native gold and copper but
became hafder than either of them and hence very useful for the manufac-
ture of implements. This marked the initial use of "heaven-sent"” mar-
tensitic irvon,

Over the next four millenia men learned to win irvon from its ores,
to purify it and to join it into useful implements. However, these
implements were for the most part soft and easily bent, lacking the
hardness we associlate with modervn, industrial steel tools. The deve-
lopment of steel in the modern sense occurred at about the time of
Christ. Many of its first and most important uses were military. We
know that in the battle of Insubres (220 B.C.) the Romans, using weapons
made of quenched carbon-containing iron, easily defeated Gallic forces
armed with traditional wrought iron weapons. This and subsequent Roman
military successes, which were due in no small part to their metallurgi-~
cal superiority, amply demonstrated the advantages of quenched carbon-
containing irvons for the manufacture of useful implements. Though the
Romans were not aware of the fact they were using some of the first man-
made martensitic steels.

The term "martensite' is adapted from the name of the 19th century
metallographer, A. Martens, who was among the first to study the corre-
lation between the microstructure and properties of quenched carborized
ivon. He and other 19th century metallographers observed that when iron

containing carbon is cooled rapidly from a temperature at which the high



temperature austenitic phase is stable, the usual nucleation and growth

"pearlitic' phase is avoided, and the body

transformation to the soft
instead undergoes a very rapid transformation at low temperature to an
extremely hard product phase.

In our more modern understanding martensite is not strictly a dif-
ferent phase of steel, but rather a unique microstructure which results
from the special characteristics of the martensite transformation which
gives it birth. The decomposition of the high temperature FCC éusteni»
tic phase on slow cooling involves a separation into two phases of dif-
ferent carbon content. The process hence requires diffusion. 1If the
steel is cooled so rapidly that these diffusional processes cannot
occur, however, the driving force for transformation from the high tem-
perature FCC phase to the low BCC phase becomes so great that the steel
eventually undergoes a very rapid diffusionless shear transformation to
a nearly BCC structure with no change in composition. The mechanical
character of the transformation introduces elastic strains and often high
densities of dislocations, twins, or other defects into the lattice.
These, combined with the distortions caused by the presence of the super-
saturation of carbon, induce the high structural strength that engineers
have found so useful since the time of the Romans.

We now know that the martensitic transformation in steel is only
one example of a class of similar transformations that are found in a

1

number of physical systems (Table I.). Materials known to exhibit
martensitic transformations include a variety of metal alloy systeums,
ferro-electric materials such as beryllium titanate, ceramic waterials

such as zirconium oxide, superconducting phases, and many others. The

characteristics of the martensite product differ from system to system,
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and ave particularly sensitive to the crystallography of the initial and
product phases. As a consequence of extensive experimental study over
many years, it is known that a number of morphological, kinetic and
crystallographic features are, however, common to a wide variety of mar-
tensitic transformations and their product phases. These can be summa-
rized as follows:

e Morphologically, the martensitic phase usually forms as a thin
plate, needle, or lath lying along a reasonably well defined habit plane
of the parent crystal. The crystallographic axes of the martensitic
phase show reproducible orientation relationships to those of the parent
phase. The interior of the martensite platelet is dense with crystal
defects, which may be either crystallographic twins or dislocations.

If the martensite platelet impinges on a free surface, the latter will
be deformed to exhibit a characteristic surface relief.

e Kinetically, the martensitic transformation is extremely rapid,
with each platelet growing at speeds which approach the speed of sound.
In general; the transformation begins with the rapid growth of a single
platelet which then triggers the growth of further platelets by an auto-
catalytic process., The result is a "burst" of martensitic transforma=-
tion which often produces a "click" audible in experiment.

e However, the martensitic transformation will usually not go to
completion at its initiation temperature. To maintain the transforma-
tion and bring it essentially to completion, it is necessary that the
temperature be decreased continuously. The temperature at which a mar-
tensitic transformation first begins is denoted the martensite start
temperature, MSs and that at which it essentially reaches completion is

called the martensite finish temperature, Mfs It is, however, commonly



found that the last bit of high temperature phase is extremely difficult
to remove through a martensitic transformation, Even after the trans-
formation is sensibly complete, vetained high tempevature phase may
still be found along the periphery of the martensite platelets.

® The martensitic transformation may be reversed by heating, but
transformation hysteresis effects are usually observed. The reverse
martensite transformation is dnitiated at a temperature A , and is com-

&

pleted at a higher temperature A_, which may lie several hundreds of

f
degrees above the MS remperature at which the martensite transformation
begins on cooling.

¢ In keeping with the mechanical character of the transformation,
both the temperature at which the martensite formation occurs and
the type and morphology of the martensite platelets which are formed
are strongly influenced by the presence of applied stress. 1In iron,
where the martensitic phase is ferromagnetic, these features are also
influenced by the presence of magnetic fields.

While the martensitic transformation has been studied extensively
experimentally and is reasonably well understood phenomenoclogically, its
theoretical interpretation rvemains at a rather primitive analytical
level., Significant progress has been made in understanding and inter-
preting the morphology and crystallographic orientation of isolated mar-
tensite particles. However, the nucleation and growth characteristics,
autocatalytic phenomena and resultant wmartensite microstructure remain

poorly understood. The resolution of these questlons is of major

engineering, as well as scientific, importance.



Studies on the crystallography of the isolated martensite platelets

began with the work of Bain in 1924(2)

(3)

and were developed by Kurdjumov

and Sachs and by Nishiyama(a) in the 1930's., The crystallographic

relations found by these researchers successfully predicted the lattice
correspondence between the martensite particle and the parent phase.
The crystallographic relations do not, however, uniquely fix the details

of the atomic displacements which occur, a subject which is still the

topic of much discussion(s’éjgs)s The habit plane of an isoclated mar-

tensite particle can be obtained from its orientation following crystal-

(9)

lographic models developed by Greninger and Troiano

Wechsler and Read(lo), Bowles and Mackenzie(ll)

, Liebreman,

, and later Wayman(12)°
These models essentially begin from the hypothesis that the habit of a
martensite plate will be a plane of lattice correspondence with the
parent matrix which gives rise to an invariant plane strain, so as to
minimize the elastic energy. An equivalent, but more direct approach

was taken by Khachaturyan(139149ls)

who computed the elastic energy
associated with a martensitic inclusion in an anisotropic medium as a
function of its shape and habit, and derived results for the habit plane
and structure of martensite crystals essentially identical to those
obtained from the crystallographic theory. A similar analysis was per-

(16)

formed by Shabata and Ono who emploved an alternative formulation

(17918)° As a

for the elastic energy based on the Eshelby treatment
consequence of this work, the shape and orientation of isolated part-
icles may be said to be reasonably well established, and can be based
alternatively on crystallographic or elastic energy formulations.

Our understanding of the initiation, growth and development of

martensite is, however, not nearly so well developed. The nucleation of



the martensitic transformation in steel has been studied from the point

of view of classical homogeneous nucleation theory by Kaufman and

Cohen(lg)9 Read and Breedes(l), Christian(zo)

wr o (21 . , . .
Tholen( )s These investigators treated the martensite nucleus as a dis-

, and Easterling and

crete homogeneous particle involving an internal elastic distortion and
a relatively high surface energy. They concluded that the activation
energy required for homogeneous nucleation of martensite in bulk is far
too high to be overcome purely by thermal fluctuations. This conclu-
sion is supported by experimental evidence on the martensitic transfor-
mation in steel which also appears to shown that the martensitic trans-
formation is heterogeneously nucleated. Specific mechanisms for hetero-

(22) (19)

geneous nucleation were proposed by Frank s by Kaufman and Cohen

who suggested the presence of pre-existing embryos of the martensite

phase, by Olson and Cohen(ZB), who proposed a mechanism involving co-
operative faulting from groups of existing dislocations, and others.

None of these models is widely accepted at the present time.

An alternative approach, which has been applied with some success
to nonferrous systems, treats martensitic transformations which arise
from "soft mode" mechanisms in which the parent phase becomes unstable
with respect to infinitesimal distortions. Examples of martensitic
transformations which appear to be of the soft mode type include trans-
formations in Al5 compounds, such as NbBSn and VBGa, and the well known
omega transformation in titanium alloys. Soft mode theories for the
transformation of Al5 compounds are particularly well developed. Labbe

(24) (25,26)

and Friedel proposed models based on an instability

and Pytte

with respect to a Jahn-Teller distortion of the parent phase.

(27-30)

Gorkov suggested a lattice instability due to the Peierls mecha-



d

(31)

nism of an energy gap opening near the Fermi Surface. Mattheiss
developed a successful Landau theory based on the Gorkov model. He

also proposed a microscopic model using a band structure calculated by
APW techniques which includes both the Jahn-Teller instability and the
Peierls effect. This model predicts an elastic softening (C11-Cl2 -+ 0)
for the <110> transverse mode as the transition temperature is approached.
Variations on the "soft mode" which involve instabilities with respect

(32)

to finite atom displacements have been proposed by Clapp

(33)

and by
Suzuki and Wuttig among others.

While the crystallography, shape, and habit of isolated martensite
particles may be regarded as well understood theoretically, and the
problem of the dnitiation of the martensite transformation has at least
been widely attacked, there exists virtually no prior theoretical work
on the development of the martensitic transformation and the character-
istics of the resulting microstructure., The absence of relevant theore-
tical work is perhaps not surprising given the complexity of martensitic
transformation behavior, but is disconcerting since it is during the
development of the martensitic transformation that the most interesting
phenomenological apsects of the transformations appeayr and it is the
final microstructure of the martensite phase which most strongly deter-
mines engineering properties.

It is the purpose of the present thesis to devise a more comprehen-
sive treatment of the martensitic transformation by constructing a com-
puter model of the martensitic transformation in an idealized system.

The model which will be developed here begins from the general

observation that the characteristics of the martensite transformation

are largely determined by the problem of accomodating the strain asso-



ciated with the distortion of the crystal lattice, and from the realiza-

(34-38)

tion that, due largely to the work of Khachaturyan we are now in
possession of rather elegant theoretical tools which permit the compre-
hensive treatment of elastic distortions in the context of the linear
elastic model. The model which is constructed and utilized here 1s set
up essentially as follows:

The Khachaturyan formulation of the linear theory of elastic inclu-
sions in anisotropic media permits the straightforward computation of
the elastic energy associated with an arbitrary distribution of defects
in an elastically anisotropic body having uniform elastic constants.
Moreover, if the defects consist of elementary particles of a few dis-
crete types, the equations can be cast into a form in which the energy
becomes a simple sum of binary interactions in which the defects in=-
fluence one another according to an elastic potential whose form can be
readily calculated. At the same time as the equations take a simple
form in a linear model, the kinematics of a process involving the appear-
ance of elastic inclusions also become simple since in the linear model
an inclusion may be regarded as the simple sum of elementary inclusions
which make it up.

The martensitic transformation is hence modeled as a transformation
which occcurs through the formation of individual martensitic elements,
each of which carries the elementary transformation strain. Since the
energy associated with an arbitrary distribution of such martensitic
elements can readily be calculated in a form which is particularly well
adapted for solution in a digital computer, the model martenmsitic trans-
formation can be allowed to proceed through the successive appearance

of elementary martensite particles whose type and location is chosen by
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the computer according to some reasonable energy criterion; for example.
to provide the maximum rate of energy decrease or to follow the statis-
tics of an assumed thermally activated process. The kinematics and
governing equations of the model are developed in detail in subsequent
sections. The model is then used for ﬁhe detailed simulation of a mar~
tensitic transformation in a pseudo two-dimensional system. As we shall
see, despite the simplicity of the model, virtually all dinteresting
qualitative aspects of a developing martensitic transformation ave in-
hevently present within it.

The bedy of this work is developed in four sections. The first
section contains a brief review of previous results concerning the
elastic theory of phase transformations, the formulation of the equations
giving the energy of a crystal lattice containing a distribution of sub-
stitutional defects from the lattice statics theory, the development
of the long wavelength approximation to the microscopic elastic theory
and the derivation of the limit transition te the continuum theory of the
macroscopic elastic inclusion. In the second section this model is
specified to the particular case of a martensitic transformation whose
development is driven by the need to accomodate the elastic strain. In
the third section the specific procedures for computer simulation of the
martensitic transformation in a pseudo two-dimensional crystal lattice
are discussed, and in the fourth section the results of the simulation
are presented with particular emphasis on the gqualitative reproduction

of intevesting features of martensitic transformations observed in bulk.
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1T, THE ELASTIC ENERGY OF A HETEROGENEQUS CRYSTAL

The theory of the elastic energy of a crystal containing defects
has developed along two largely independent lines that lead, vespect~
ively, to the "macroscopic' elastic theory and to the "microscopic" or
"lattice statics" theory. The former is most useful in the treatment
of large inclusions, such as precipitate particles. The latter was
developed to treat problems such as the elastic relaxation near point
defects in crystal lattices.

The model which is constructed and utilized for the study of the
martensitic transformation in the body of this thesis lies in the
middle ground between these two formulations. The present section is
included to lay the theoretical foundations for this model. In subsec-
tion A we review some salient features of the macroscopic elastic theory.
In subsection B we define the microscopic, or "lattice statics' model,
and reformulate it for the particular case of an anisotropic elastic
body which contains an arbitrary distribution of substitutional defects.
In subsections C and D we establish the corvespondence between the
microscopic and macroscopic approaches in the limit in which the defects
are aggregated into large inclusions.

It is worthwhile to mention that the model described in this section
is not only applicable to the martensitic transformation but also to a
wide variety of phase transformation in metallurgical systems, such as
order-disorder reactions, spinodal decomposition, tweed formation and
precipitation reactions. The exploration of applications to these other

transformation types is in progress at the present time.
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A. The Macroscopic Elastic Theory

ihe first serious attempt to calculate the elastic energy of a co-
herent inclusion was apparently made by Eshelby(”)s who considered an
ellipsoidal inclusion in an isotropic medium. Eshelby obtained a gene-
ral solution for the elastic energy of an ellipsoidal inclusion in a
matrix of similar elastic constants, and formulated a procedure which
might be used when the elastic moduli are not the same. His work led
to a variety of specific results which have subsequently proven to be of
significant value to the theory of phase transformations. However, his
real-space formulation of the probiem is difficult to extend to cases
involving non-ellipsoidal geometry, anisotropic elastic constants, or
distributions of inclusions. These formal limitations are important,
since many of the problems of greatest interest in the theory of phase
transformations in solids involve distributions of inclusions whose con=
figuration depends strikingly on the anisotropy of thebmatrixe

A general solution for the elastic energy of an arbitrary distribu-
tion of macroscopic elastic inclusions in an anisotropic matrix was ob-

(14)

tained by Khachaturyan , who used a Fourier transform technique to

solve the problem under an assumption of uniform elastic constants.
The central result of the Khachaturyan treatment is that the elastic
energy of an inclusion (or distribution of like inclusions) of arbitrary

shape may be written in the compact form

E - &k
el 3
)

(II-A-1)

Db

RIONISIR

where e = %f[%! is a unit vector, B(%) is a scalar elastic energy func-

tion which is independent of the shape or distribution of the inclusions
\ 2 . . . o

and I%(%)[ is an "intensity" factor which is independent of both the

nature of the inclusion and the values of the elastic constants,
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Specifically, the elastic energy function is given by

B(ﬁ) = O - (e)o K4

13k£ ij RQ £1° 13 Jk (11-4-2)

Re
where 1, j, k, 2 are cartesian indices (which are to be summed if re-
peated), Aijkz are the elastic constantssezj is the "transformation
strain', i.e., the strain required to bring the matrix lattice into coin-

. . . . o . .
cidence with that of the inclusion, Gij is the "transformation stress"

co = A £
ij 1ijk2 ke (11-4~3)

(S . . . .
and Qij is a Green's function whose reciprocal is related to the dynami-

cal matrix in the long wavelength approximation:

Q i (%) = Aik%jeiej (I11~-A-4)
The function B(s) multiplied by the volume is, in fact, equal to the
elastic energy of the inclusion when the inclusion is in the form of an
infinite plate which is oriented so that its normal vector n is parallel
to 2 and which is strained so as to provide an exact 1atticevcorrespon=
dence with the matrix in the plane of the plate.

The "intensity" factor ]8(%)[2 coincides with the Laue interference
function which describes the intensity distribution in reciprocal space
caused by scattering from the inclusion. The g (%) is the Fourier
transform of the shape function

1 for X inside an inclusion
] (E) = ” (11-A=5)
0 otherwise
The intensity factor satisfies the identity
ERIR

A

f?f =V (I1-A~6)

= (29

3

where V is the volume of the inclusion.
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13
(15)

As shown by Khatchaturyan and Shatalov , equations (II-A-1) may
be generalized to the case of simultaneous distributions of inclusions

of distinct types. The result is

3
. .7 d7k
E . =1/2 3% JI/B (e)o (k 11-A-7
el P~ pq(m) m) (ZW)B ( )
where p and q label the different inclusion types,
. _ o 0
Boq(8) = Aiqugfiy(P) ey (@)
~ e, 0. (p) 2, (&) o) (q) (11-A-8)
1999 P My 8 Tt &
and
6 (0 = 6 (o 0 (k
= 0 11-A-9
pg v p % q m) ( )

Many of the most important results of the macroscopic elastic
theory follow directly from eq. II~A-1 or II-A-7. Examples include
the following:

(1) The elastic energy is positive semi-definite (di.e. Eel > 0).

It may easily be shown that

B(%) > 0, (11-A-10)
The vanishing of B(%) occurs only in the special case, discussed below,

in which the transformation strain has an invariant plane perpendicular

to e,
¢

(2) The preferred shape of an inclusion is an infinitely thin plate
with a habit plane specified by the normal vector, Boe

Let %o be the direction for which B(%) takes on its minimum value
B(%) z B(%O) (I1-4-11)

The R will be unique except for the degeneracy imposed by symmetry
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considerations. From equation II-A-1

3

B ® n 2 d'k

g = 1/2 717 B() |6 ()] 5

® (27)

ot y 2 d3k
2 1/2 B(p ) JIJ 16 (k)| 5= 1/2 B(p) Vv (11-A-12)

- (2m)

Hence Eel takes its minimum value

E .= 1/2 B(p) Vv (I1-A-13)

when the intensity factor 1% (%}[2 is non-zero only within an arbitrary
thin rod of direction %0’ and hence when the shape factor, 6 (g), is
non-zero only within an infinitely thin plate normal to Ry

The coherent inclusions produced by phase transformations in solids
are usually found to have the predicted thin-plate morphology. Excep-
tions occur when the lattice mismatch between the inclusion and the mat-
rix {(and hence the elastic energy) is small, or when the particle is so
small that surface energy effects predominate.

(3) When the inclusion is plate-like but finite, its energy may be
written as the sum of a volume term and a peripheral energy in which the
peripheral energy is formally equivalent to the energy of a dislocation
loop with an appropriate Burger's vector.

Let the precipitate be a thin plate with normal Ry

3
®© k
B = 1/2 f15 BGe) |§ o] 2
e L & A 3
(2m)
bl oy 2 d3k
= 1/2 B(n ) V + 1/2 f1f 8B(e) |6 (k)| (11-A-14)
vy o " N 3
® (2m)
We now expand B(%) about Ro Since B(%O) is a minimum, the first term

in the expansion vanishes. To second order,
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AB(e) = B(g) - B(go)

it

1/2 (82 B(e)/aeiaej) Aei be, (I1-A~15)

e=11
v O J

24

1/2 Bij(%o) Aei Aej

where

I
Biy(Ry) = (@ B(e)/aeiaej)%g%c (I11-A-16)

For a thin plate f%(%)[z is small for angles larger than

an/2R 41 :
VY oujd VIR TR (IT-A-17)

where ¢ is the angle between e and 0o d and R are the thickness and
radius of the inclusion respectively, and A is the aspect ratio, 2R/d.
By using (II-A-15) in (II-A-14) and confining the integration to small

angles, it may be shown that

Ee = 1/2 B(%o) VvV + @F(%) dl(%) (1I-A~18)

where m is a unit vector perpendicular to the element, dl(%)9 of the
plate periphery and lying in the plane of the plate, and
2

I'(m) = iw

1n (2R/4d) Bij(%o) mimj (I1-A-19)

The function F(%) formally resembles the line tension of a dislocation
line element of Burger's vector of the order e’d.

When the function F(m) is a constant, I', as it is, for example, in
the case of a tetragonal inclusion in a cubic matrix, then the elastic

energy can be written

B = v{1/2 B(p ) + [% oo A) (11-A-20)
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Where B = Bij(no) mimj = constant. This relation allows the energy per
unit volume to be phrased as a simple function of the aspect ratio.

(4) When the transformation strain has an invariant plane,
the bulk elastic energy of a properly oriented plate is zero.

Let the transformation strain have the diadic form

O o] [¢)
= >+ 0%, ~A-21
o (Rinj leJ) (11-A-21)

where { and %O are unit vectors.
Y]

If we substitute (II-A-21) into (II-A-2)

B(%o) - 131{2(2 o ) (anz)
- ng (X ikt kn ) 2, s(%o) (xqurzqn;) “g
= 1/2 [xijkgngnZzizk -1, O kznl n ) a, L) (Aqurngn; ) gq]
(I1-A-22)
According to the definition of the tensor é
Aijkgnznz nmi () (11-A-23)
kqurngn; - Qzé (r,) (I1-A-24)

substitution of (II-A~23) and (II-A-24) into (II-A-22), using the
relation

-1
i, ) By () =8,y (11-A-25)

results in the equation,

i

B(%O)

-1 -
1/2 [Qik (%o> zizk - % (R

VO

-1
Ry %5e B %R, Qq}

it

-1 -1
1/2 [Qik (R %1k = % @ . (g,) * ]

= Q (11-A-26)
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Since B(%) z 0, the value B(Ro) = (0 provides the absolute minimum of
B(%) and therefore
B(%o) = min B(%) = 0 and (1I-A-27)
Ee = 1/2 min B(%) v = 0, (I11-A-28)
Hence an infinite thin plate lying in a plane of invariant strain has
zero elastic energy.
The result (I1-A-28) provides the connection between the elastic
5
and crystallographic theories of the habit plane of martensite plateg<1“}e

(10,11,12)

The crystallographic theories are based on the assumption that

the habit of martensite will be an invariant plane of the transformation,

The elastic theory confirms the assumption that the invariant plane
provides a minimum of the elastic energy.

It will also be noted from equation (II-A-18) or (II-A-20) that
where an inclusion has a plate morphology with an invariant habit plane,
the bulk elastic energy is equal to zero and the total energy is equal
to the peripheral energy of the plate, which may be represented as the
linear tension of a pseudo dislocation loop encircling it.

(5) When the matrix is cubic and contains a distribution of tetra-
gonal inclusions, the elastic enevgy is minimized when the inclusions
aggregate to form martensite~like crystals whose habits are invariant
planes.

(15)

This result, established by Khachaturyan and Shatalov from
equation (I1-A-7), completes the contact between the elastic and crys-
tallographic theories of the martensite habits and may also explain the
"tweed" microstructures observed in the early stages of the phase de-
(39)

composition in several systems

The Khachaturyan development of the macroscopic elastic theory
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used above involves the solution of the elastic equilibrium equations

in reciprocal space. The same results are, of course, determinable

from real space formulations of the problem along the lines proposed by

(17) . , 3 .

Eshelby . While the mathematics are more formidable in the real

space formulation and the physical content of the equations is less

transparent, significant recent results have been obtained. Shibata and
(16) . )

Ono used the Eshelby formulation to compute the preferred habit plane

of martensitic inclusions by varying the shape and orientation of ellip-

soidal inclusions to identify minimum energy configurations. Lee,

(40)

Aaronson, and Barnett generalized the Eshelby analysis to treat
o . Lo . . . (41)

ellipsoidal inclusion in anisotropic media. Lee has recently shown

how diffevences between the elastic constants of the matrix and the

inclusion may be incorporated into the treatment of ellipsoidal inclu-

sions.
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B. The Microscopic Elastic Theory

The macroscopic elastic theories described in the previous section
have the common assumption that the coherent inclusions are large com~
pared to the lattice parameter. If the particle size is more nearly
equal to the lattice parameter an alternate microscopic formulation
may be used.

The microscopic or "crystal lattice statics” model is also well

(42)

developed. Tts history apparently begins with the work of Matsubara

(43)

who modified the lattice dynamics pf Born and Huang to describe

the static equilibrium displacements around a point defect (hence the
term "lattice statics'). Matsubara's work initiated a series of theo~
retical investigations into strains associated with isoléted point
defects. The theory was developed (in several cases independently) and
extended by Kanzaki(44)9 Hardy(45946) (3éa38)9

Ho and Benedek@&ég)9 Siems(so)g and others.

5 Tewordt(47), Khachaturyan

A second class of problems for which the lattice statics model has

often been used concerns the equilibrium lattice distortion caused by

crystal dislocations. Relevant work includes that of Maradudin(51)$
Celli(sz), Gallotto and Omini(SS), Brailsford(Ségss), Boyer and Hardy(56)
and Easterling(57)n Hsei and Thomson(58> have used similar models in

the analysis of creep and crack growth problems.
The extension of point defect theories to treat crystals contain-
ing distributions of defects, for example, metallic solid solutions, is

an obvious direction for theoretical research. The associated elastic

problem is, however, difficult. Initial progress was made by Friedel(sg)

(60)

and by Eshelby who used a semi-continuum treatment to compute the
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elastic energy of an isotropic solid solution in which the solute atoms
are modeled as misfitting spheres (center of dilatation) with a random

(61)

distribution. A similar model was later used by Cahn to assess the
influence of the elastic interaction on spinodal decomposition in metals.

The assumption of quasi-continuum particles in an isotropic medium
greatly simplifies the mathematical complexity of the solid solution
model, but at some cost to the physics. The principal physical short-
comings are two. First, the elastic interaction between centers of dila-
tation in an infinite, isotropic medium is identically zero. 1In the
Friedel-Eshelby model, solute atoms interact only through an image-force
effect due to the finite dimensions of the crystal. Even when the solute
atoms are allowed to have elastic moduli different from those of the
matrix, the direct interaction is weak (of order rw6)g It is known,
however, that elastic anisotropy, as found in 21l real metals, will lead
to a direct interaction between particles of order rmB which is, more-
over, strongly divection~dependent. Second, the derivation of the Frie~
del=-Eshelby model, which proceeds divrectly from the macroscopic limit,
leaves the correspondence between the model and the microscopic physics
of the crystal lattice somewhat unclear.

Apprarently the first truly microscopic elastic treatment of a
solid solution was constructed by Khachaturyan(Ba) who formulated a
model for the energy of an interstitial solid solution. The result

(35)

was used by Khachaturyan and Shatalov to predict the crystal struc-

ture of ordered interstitial superlattices in tantalum, and has since
been widely applied in the theoretical analysis of ordering in solid

solutions(38)e These derivations were subsequently repeated by Cook
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(62)

and Fontaine .

In the present work we shall employ a model of the martensite
transformation which is essentially a quasi-continuum model in the
tradition of Friedel and Eshelby (but without the strong assumptions
of elastic disotropy). It is, however, possible to obtain this model
from a fundamental starting point in the lattice statics model. The
formulation and derivation of the model is presented in the balance of
this section. The derivation is given in some detail for three reasons:
to demonstrate the contact between. the lattice static and quasi-continu-
um treatments, to clarify the nature of the assumptions involved, and
to provide a self-contained derivation which is free of the (sometimes
real, sometimes apparent) inconsistencies between the earlier treatments.

The formulation used here is based on the Khachaturysn model of the
interstitial solid solution(Bé).

(1) Model of a Multi-component Substitutional Solid Solution.

Let a multi-component solution be created by introducing elastic
defects, which may be either solute atoms or inclusions of a wmore gene-
ral type, onto the sites of a solvent host lattice. We shall make three
general assumptions:

{(a) An elastic defect of type p may be characterized by the linear
elastic strain ezj(p),whose negative is the strain required to deform
it from a fully relaxed state until it fits precisely into the host
lattice. The strain Egj(p) is a measure of the 'lattice mismatch"
between the solute and solvent species.

, o \ ; .
The definition of Eij(p) of course requires a clear specification

of the structure of the relaxed reference state to which the solute is
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referred. When the solute preferentially forms a crystal having the
same cr?stal structure as the solvent, or when the solute is an element
cf new phase whose crystal structure is specified, then the appropriate
reference structure is clear. On the other hand, when the solute pre-
ferentially férms a crystal having an equilibrium structure different
from that of the solvent the appropriate reference structure is not
obvious and should be chosen so as to minimize the free energy of solu-
tion. Since the elastic energy associated with deformation is large and
increases monotonically with the magnitude of the deformation, the free
energy of solution will usually be minimized if the veference structure
used in the definition of gij(p) is that stable or metastable structure
of the pth solute which is geometrically closest to the structure of
the Solvente_ The solution may then be wmade through a quasi-chemical
cycle involving a structural transformation (if necessary) which brings
the solute from the equilibrium state to its metastable structure
closest to that of the solvent followed by a small elastic distortion
to establish a coincident lattice. The second step defines the elastic

, o
strain eij(p)e

If the reference structure for the pth elastic defect is identical
to that of the host crystal, then the reference strain EZj(p) is a
simple dilatation (homogeneous expansion or contraction). In this case
each solute gpecies is represented by only one elastic defect. However,
if the reference structure of the defect differs from that of the host
lattice, then the reference strain contains shear as well as dilatation-
al components and a single solute species may give rise to several dis-
tinct elastic defects, which differ in the ovientation of the principal

axes of the veference strain with respect to the axes of the host
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crystal. For example, the simplest tetragonal defect in a cubic
crystal may be present in any of three distinct variants, which differ
in the orientation of the tetragonal axis.

(b) We shall assume that the difference in the Born-von Karman con-
stants, and hence the elastic constants, between the solute and the sol-
vent is sufficiently small that it may be ignored.

The assumption of equal elastic constants is a strong one, but pro-
vides a major formal simplification of the model and insures its mathe-
matical tractability. The study éf the consequences of differences in
the elastic constants has not progressed to the point where the reason-
ableness of this assumption can be quantitatively assessed, but avail-

able prior work(16517)

based on continuum calculations does suggest
that the "modulus defect” may often be safely ignored.

{c) We shall assume that the free energy of the soiution is well
represented by an expansion to tevrms in the second order in the compo~
sition, elastic displacement, and their cross products (the harmonic
approximation). Higher order terms will be neglected.

The harmonic approximation not only simplifies the computation but
also has the advantage of preserving a simple superposition principle
within the model in which, for example, the elastic strain at a point in
the solution may be written as a simple sum of strains associated with
cach of the elementary defects. 1t is thils superposition which permits
us to extract a treatment of elastic inclusions of finite size by simply
modeling these as agglomerations of elementary defects.

The distribution of defects of type p over the lattice may be des-

cribed by the function
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1 for atom of type p at x

Cp(g) = (1I-B-1)

0 otherwise
The atomic fraction of p is

— 1 52_
c, = Efr Cp(%ﬁ) = 5 (1I-B-2)
v

where Np is the number of atoms of tybe ps N is the total number of
lattice sites, and the summation is over the lattice. If more than
one type of solute is present then clearly

€ (r) C (x) =38

C I1-B=-3
pAoqh Pq P<£) ( )

where Spq is the Kronecker symbol.

The introduction of solute atoms into the host matrix will cause
some distortion of the matrix if any of the szj(p) are non-zero.
Distrotions of the lattice, due either to solute atoms or to external

loading, will be described by the vector displacement function
)y = ¢! - (I1-B=4)

wherelg‘is the position of the lattice point in the distorted state
and x is its poition in the pure, stress—free solvent matrix.

(2) The Elastic Hamiltonian

Let a distribution Cp({) of defects of type p (p =1, ....v) be

introduced into the host lattice. Let the lattice be spatially homo-
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geneous and elastic and let its states of strain be described by the
displacement field ui(%)defined in eq. II-B~4. Treating the energy, E,
as a continuous functional of the displacement field, ui({) and of the

concentration fields, Cp(;{)9 then the energy is, to second order,

B{e(p, u (=5 +2 28 ¢ () - 1) u(p
VI §

4 PAdo. i1y o g e
+ 5 g %5 B G-xh cp(g) CQ(g ) (I1-B-5)
L P ot ¥
+ 3 i‘; %%v £ - x") Cp(g.;) u, (2"
FEI AL - u () u )
2 ,%% 1] i Y
the symbol
B, = [6B/60 ()], - (I1-B-6)
and
EW(’% -x') = [SZE/6¢(5)6¢(%')]O (11-B-7)

where the variational derivatives are taken in the reference state
Cp(%) =0 (p=1, ...v) and ui(g) = (J,
Mechanical equilibrium in the reference state requires that the

vector

E =0, (1I-B-8)
u
v

since u may have either sign. The remaining coefficilents may be

evaluated by using an equivalent cycle to create the final state, roughly



along the lines suggested by Eshelby(ls),

‘Let the solid solution be created from the pure one-component
solvent in a cycle of six operations, as diagrammed in Figure 1:
Step (1): Taking the pure solvent crystal, isolate clusters of which
the pth contains Np solvent atoms, and cut each cluster out of the sol-
vent lattice. If the solvent and each of the clusters is large enough
for surface effects to be ignored, the energy of the assewbly is not
changed in the process.
Step (2): For each atom of the pth cluster substitute an atom of the
pth solute, and let the transformed lattice relax to its stfaSSwfree
shape. This transmutation will involve the energy change

_ Y oy YT b i
b0, = LFL ) = NEC Au (11-B-9)

b, . \
where Ay is the chemical energy difference per atom between the solvent

p

th - :
and the p  solute in its reference crystal structure. The associated

. th . .

free expansion of the p cluster involves no energy change since the

s . . . o)
cluster is stress-free. It is described by the strain tensor aij(p)9
whose definition is discussed in the previous subsection.
Step (3): Let surface tractions be applied to each cluster to restore
it to the shape it had before the transmutation occurred. The rvestora-

. o . .

tion of shape requires the strain Eij = weij(p)o Since each cluster is

macroscopic, the deformation may be described by continuum elasticity.

The internal stress induced by the surface traction is

o
=) =g . I1-B-10
Oi5 = Aggug “Epp () ( )
, th . .
Since the final homogeneous strain within the p particle is

o ’
= i p BG'M
Eaj = wgoj(p)g (II-B-11)
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the change in mechanical energy is

self 1

b1 =2V P 13k£ 13(p)€k2( P)
=~ 2 NC v A1y P e, (P) (IT-B-12)

where v is the atomic volume. The total energy change for the assembly

is
_ - ,self N
A¢>3 - 5 ¢el ) gwlvcpkljkz 13(p)gk2( p) (11-B-13)
Step (4): Let the clusters (p=l, ....v) be reintroduced into the sol-

vent crystal. Since each cluster just fits into the space from which it
was removed, there is no free energy change in this process.

Step (5): Now, let the solute be dispersed through the host lattice at
constant shape to create the solute distvibution appropriate to the
solid solution. Since each atomic defect is undistorted %(%) remains
equal to zero during this step and no strain energy is developed. The
energy change is chemical, and is the chemical free energy of mixing.

It has two contributions: (1) a free energy change (Api) per atomic
defect on dissolution, which is associated with the replacement of the
homogeneous environment of the defect by an environment of host atoms
{(if the defect were an element of new phase with bulk properties this
free energy would be simply the chemical contribution to the surface
free energy of the defect particle, a point of view we shall return to
in the next section); (2) a configurational free energy change due to the
mutual chemical interaction of solute defects. To second ovder in the
solute interaction the resulting free energy change is

_.ch 1
A®5 = Gmix N Z Aup p + = pq {E pq({ X Y C (E)C (E )y (T1-B-14)

Since the final state is taken to be a specific distribution of defects
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there is no change in the configurational entropy; both the initial and
final éonfigurations are fixed to within an interchange of like part-
icles.

Step (6): Finally, let the distributed atoms relax, introducing an
equilibrium elastic strain into the lattice. In this relaxation, each
solute atom will function as a center of force which acts to displace
the lattice about it. The lattice displacement is opposed by the elas~

tic resistance of the lattice. The associated energy may therefore be

written
bo, = 0TI L p PG - x) uh) € (p)
6 T B £ - pD v C
A
ot ' ~B-
+ 1/2 %r’ Aij(£ r ) ui({ ) uj({) (I1-B~15)

Ny

which corresponds in form to the last two terms of eq., ITI-B~6 if
A, (r - {') is the Born-von Karman tensor (dynamical matrix) of the host

ij v

. 43 . 44 ; c
lattlce( ), The gp(E - {‘) are "Kanzaki forces”( ) which act from a
solute atom of type p at location r on an atom at site %‘e Since the

elastic relaxation is spontanecus, it follows that

pretax _ g (I1-B~16)

The physical effect of the elastic relaxation is to vemove part of the
energy of elastic distortion introduced when the solute species were
deformed to fit properly into the host lattice.

Summing the free energy contributions A®, to A¢, gives the total

1 6

energy in an equation formally identical to equation (II-B=5)
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AR

i

5, (0, vy pH-E

it

A¢z + A¢3 + A¢5 + A¢6

— b s
= N + + <
ng [Aup Aup 2A13k2 l3(13)8M(§‘>)j

1 ole] o .
+ 5 2o Vo (r =" Cp(g) cq(g )

9 R

o lag

: ({ £ kG () (I1-B-17)

S:{;M

P

1 '
T L Aij(g - xr") ui({) “3(% )

S

The term linear in E? represents the self-energy (chemical plus elastic)
of the solute atoms, the term quadratic in Cp(g) contains the chemical
energy of mixing, and the last two terms contain the elastic relaxation
energy and also govern the response of the solution to elastic displace-
ment due to external fields or to lattice vibration (in the harmonic)

approximation). In a simpler notation:

= Ad + Aoy (I1-B-18)

chem
where

= ) 1 Pd,. _ L
B chem = N § CpBHp T2 Bq i Verlk - & € C ) (11-B-19)

is the change of chemical free energy, where Aup is the sum of AUE and

AU; and
= - P ot
By = N 5T et @) ep () = § L £PGE - g u(p) o,
l ¢ ¥
E‘Z . Aij(% - X ) ui(E) uj(g ) (II-B=20)

is the elastic energy change.

The coefficients appearing in equation II-B-17 are, of course,
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restricted by the symmetry of the crystal in its solute and deformation~-
free state, and are further restricted by the requirement that AE be
invariant to rigid body displacements. Invariance to a rigid body trans-
lation specified by

%(%) = a (I11-B-21)

where 2 1s a constant vector, gives the constraints:

%ﬁ (gp(fg ~x') =0 (I1-B-22)
and
LA (x-x") =0 ' (IT-B-23)
%rg' :L_'}('E\ <
Invariance to a rigid body rotation, specified by the displacement
ung) = wijrj (11-B-24)

where wij are constants, gives the additional constraints:

gq rg fi(% - %‘) = 0 (II-B-25)
and
o aad LI B - 3
%%i Aijgg X ) T, rm 0 (11-B~26)

If the host crystal is symmetvic to inversion, as it is in virtually all

cases of current interest to us, then

FACRN DI A A (1T-B-27)
and
- ') = i ~Be
Aij(% x") Aij(E %) (11-B-28)
In much of the following we shall ignore the chemical contribution

to the energy and be concerned with the evaluation of the elastic con-

tribution to eq. (II-B-17), which is
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_ - 1 o} 0
A@el = N ZCP Evkijkgaij(p)skl(p) (11-B~-29)

=3 58 G - gD rGEDC,®

v

1 ¢ ¥
+ %%vAij({ =" ui({)‘uj(,{ )

(3) The Static Equilibrium Displacement:

The computation of the equilibrium lattice displacement field within
the solid solution is not only important in its own right but, as we
shall see, also permits a substantial simplification of the expression
for the elastic energy.

We begin by writing the static displacement field ui({) as a sum of

two terms:

ug (g) = ey F () (I1-8-30)

In this decomposition Eij is a uniform, macroscopic straiﬁ that has, in
general, two sources: the net deformation of the crystal due to the
solute lattice strain and the elastic deformation due to external forces.
The field vi(r) is the internal displacement, which, if it is to have no
macroscopic consequence, must be chosen so that it vanishes over the
surface of the body. The concentration field may also be decomposed
into its mean and variation:

CP(E) = Cp + ACp(%) (I1-B-31)

With these definitions, the elastic energy (eq. 1I-B-29) may be re-

written:

- N
= . +m
A®el ®el N Eij g Aij(p)cp 2 Aijkzeijskz

p § o
%13 %@fi(g - x" vi(;g ) ACP(E) (I1-B~32)
1

+ 5 %@Aij - & v vy G
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Where @21 is the elastic self energy defined in equation (II-B-13), and

is independent of the elastic displacement. The tensors Aij(p) and

Aijzm ave given by the summations:
= T p p o R
Aij(p) 1/2 % [fi<£) rj + fj(E) ri] (11-B-33)
Byjom = /4 % (A rpmy + A, ) T3ty

{I1-B-34)
+ 3 +
Aiz(g)fjrm Aj (&) rirﬁ}

(a) The Uniform Relaxation Strain

The change in the internal energy due to imposition of an external
stress is due to those terms in equation (II-B-32) which depend on the
homogeneous strain Eij since the internal displacement vi(r) vanishes
on the boundary. By the usual relations of elasticity, the macroscopic
elastic stress is related to the homogeneous strain by

29
]

O’ =

ij e (A@el/V) (I1-B~35)
1]

from which it follows that

A, . (p)
N é’A,, €
A p v ijk27kL

o, 2 (1I-B=36)
i] P

where v is the atomic volume (V/N). Defining the tensor‘zij by the

relation
e =3 p) C I-B-37
Migafin = 5 Ay @ G a )
we have
o =t e - ) (I1-B-38)
i v ikl Cke T ke o

Comparison with Hook's Law

&
~ © TT-B-3
993 T Marefre ( %)
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gives the identities

: 1
Aijkz - S'AinQ (I1-B-40)
and
el _ - -
g = Cram S (H1=B-41)

el | . . . ;
where €rp 18 that part of the elastic strain due to the externally im-
(A9

el
posed stress Gijn In the stress-free state Oij = 0 and €rp = 0; hence

{o,, = 0) (IT-B~42)

is the uniform relaxation strain introduced by alloying the crystal.
The crystal deformation on alloying may be expressed in terms of the
solute content. Setting Oij = (0 and Eij = Zgj in equation (II-B-36)

gives
— ysij<p)'“
Miketre T v % | (11-B-43)

which may be solved for the Zgj:

=1

i =G SiijAkg(p) c, (I1-B~44)

wheve Sj, is the elastic compliance tensor, the tensor inverse to

jkg
Mke
Bquation (II-B-44) shows that Vegard's Law is obeyed with respect

to each of the sclute species, as is epxected since the model is second-

order. The Vegard's Law coefficient may be estimated by making an extra-

polation to the limit C = 1. In this case

o, = n
gij = Eiji§> (Lp 1) (I1-B=45)

and we ave led to the simple result

€

it

DR C B
1 = p f13 P Gy (I1-B-46)
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The value of Aij(p) which is consistent with equation (II-B-45) is,
from equation (II-B-43),

(s}

= o = [ T
Aij(p)/v cij(p) Aijkz€ij(p) (TI~-B=47)

The stress sz(p) is a material constant, the "transformation stress"
and is simply the negative of the elastic stress required to reverse the
strain caused by the replacement of the solvent by the solute species p.

With the substitution of the uniform relaxation strain, Egjs the
elastic energy of the crystal in the absence of external stress may be
written in the simpler form:

_ .0 Nv o o -
Ay = %y g Bt ey (P € (@) € €y

P, ‘ '
- g %Ev fi(g - " vi(g ) ACp(g)

+ 1/2 %{v Aij(% - E?) vi({) vj(%') o (1I-B=-48)

The presence of an external stress, Gij’ may be simply accounted for

by adding the term

AE =V og,, Ae,, (I1-B-49)
el i3 ij
where
Ae.. = ¢,. ~ ¢, (I11-B-50)

ij ii ij
is the elastic strain measured with respect to the relaxed state.
(b) The Intermal Strain.
The equilibrium local displacement field %({) is found by requiring

that the elastic energy (AEe in Equation (II-B-58) be stable with res-

1

pect to variations of the local displacement:

SAEel/ég({) = 0 : (II-B-51)
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The necessary condition is

B Aij(g -z v (") . f? (x' - 1) ACP(E') (1I-B-52)
ny

= L
i PI
Since the local displacement %(E) vanishes on the boundary of the
body (by its definition), we may employ cyclic boundary conditions for

the crystal in its homogeneously strained state. Taking the Fourier

transform of both sides of equation (II-B-52) then gives

v
ny f
= ¥ P ~B-
Kij(§) v o =X ¥ A%p(k) (11-B-53)
where
K. =2a ()% K (11-B-54)
ij roijw~
is the dynamical matrix,
%p(k) = 3 fp(r) eai% 3 (I1-B~55)
Ny N\ T v v
N
and
A () = zal () &K K (1I-B-56)
pv o Ep

The solution of II-B-53 for the Fourier component Ui(ﬁ) is

av
v

- Y P B
(U0 =6, ) FEAO al () (11-B-57)

ij
where Gij is the Green's tensor which is the inverse of the dynamical
matrix K:
v
G, (k = -
0 K G =8y,
The Hermitian tensor Gij(k) can be written in terms of eigentensors,
2
, y . . . . Th
%5(%)’ and eigenvalues, mws(%) of the dynamical matrix Alj(k) ese
are the solutions to the equation
X . edgo = mwz(k) e (11-B-58)
ijin s s N 8 n,

where m is the mass of the host atom, W is the vibration frequency of
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the branch s, and k is a wave vector. The Green's tensor G°j<k) may
i
then be written
1 3
e (k) e (k)
3 ¥
G, (k) = 32 S 82 (I11-B-59)
ij™n s=1 mmz(k>
8N
Substituting II-B-59 into (II-B-~57) then gives
P
\ v e (0 (e (OF )
p(k) = 5 o g sV s M TR (11-B-60)
Y p=l s=1 2 pv
muy (k)

Using the solutions (II-B-54) for the internal displacement field, the

elastic relaxation energy becomes

relax _ N e
®el B 2 gq Vxl}kl 1J(p) Qkﬁ(q) Cpcq

- == 3

, p q* & %
2 Bq % (F, (k) 6, (%) Fj (k) ACp(%) ACP(%)

=-Y5 2. ey, (@) ¢

2 pq 13k q
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and hence

AQ = — T{vA

el © 72 4 (p>ak2(p)> C

ijkl k

N

q kljkl ;j(P) akQ(Q)) Cp’q

1 LY va* o Nk
e ; , ( B
i Bq FFL 0000 FY ) a€ o aC (o (11-B-62)
Bg. (II-B-62) is the total elastic energy due to alloying an unconstrain-

ed crystal; the relaxation of the elastic energy due to the total volume

expansion during the transformation process is taken into account,
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(4) Separation of Physically Distinct Contributions to the Elastic
Energy.

Physically, the elastic contribution to the free energy of the
crystal can be divided into three parts: (a) the elastic self energy,
which is a simple sum of one-particle elastic energies and is equal to
the energy which would be observed if the particles did not interact, for
example, 1f they were present in infinite dilution; (b) a configuration
- independent pairwise interaction energy whose magnitude depends only
on the type and the total concentration of the solute atoms present;
this interaction is indirect and has iés gource in the elastic image
forces which arise from relaxation of the unconstrained crystal boundary;
(¢) a configuration - dependent pairwise interaction energy which results
from the direct elastic interaction of the defects. The correct separa-
tion of these physically different contributions to the elastic energy
can be important. For example, in treating the effect of elastic energy
on the decomposition of a binary alloy, one needs to consider only the
direct pairwise interaction since the self energy and image force con-
tributions are unchanged by the reconfiguration of a fixed number of
solute atoms. In treating the elastic energy contribution to the free
energy of an elastically isotropic binary solution, it may be easily
shown that the direct pairwise interaction vanishes, so that only the
self-energy and image-force contributions need to be taken into account.

Equation TI-B~62 does not, in fact separate the elastic energy into
physically distinct terms; parts of both the self energy and the 'image
force" contributions are buried in the third term on the right hand side.

To complete the separation we rewrite this term in the form:
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mzﬁ’gq % (Fi(%) Gij(%) Fj (%) qu) ACp(k) Aquk)
1 v &
4 = % AC (k) AC (k I1-B-63
3 Bq % § 650 4€ 0 ( )
where
= ,\)p {\Jq% N oy
Q. = <F (0 o (o ¥ o> (11-B-64)
is an average over th first Brillouin zone. Using the identities
1 "y Y . oo N )
= 5 AC (k) AC (k) = N6 C - NCC 11-B~65)
N % p(%) q(%) pq P pdq (
and using (II1-B~3) we have
1. wp yg#® v &
5 gq % (¥ (k) Gij(%) Fj (%>)ACP(%) ACQ(%)
1 . e D g Y ik
== N 3 ¥ G, (k) F, (k) - ) AC (k) AC (k)
2 pq % ( i(%) 13(%) i % Ug) 0 464K
N . -~ _ N -
+ = L C Z cC {I1-B-66)
2 3%e’p T 2 B qu P q
Substituting equation 1I-B-66 into II1-B-62 and gathering like tevms
yields
N ) o] -
Ay =y B ey (P) By (P) = Q) €
N ,
2y fey 4 =B
5 3¢ Aa;kz . (p) €k£(q) Q) 3 c (I1-B-67)
+ Loy o ¢, {0 Fq I+ Q. >Ac (k) Ac (k)
2N pg % i

The contributions to eq. I1-B-67 are sepavrated into three terms,
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The first one is a self energy, which is limear in the E?, the second
is an indirect binary interaction, or image force term, which depends on
the cross-~products Eéégg and the third is a configurationally-dependent
pairwise interaction which depends on the products of the Fourier compo-
n %
nents AC (k) AC (k).
p v q

(5) Real~Space Form of the Elastic Hamiltonian.

One final modification of the elastic energy expression is useful.
If the elastic energy expression is back-Fourier transformed to real
space, it should yield an expression of the form

= © 1 . d ~B-68
A@el ; % Ep cp(g) + 3 %E, %quq(% X ) cp({) cq(g ) (11-B-68)

fael

t

where wpq({ {') is the two-particle elastic interaction in real space.
To rephrase eq. II-B-67 in a form in which the reverse transformation

to eq. 1I-B-68 is obvious, we use the identity

~ _ -ik o ¥ ——
& = 3 c (e T R (11-B-69)

from which it follows that

N C if % = (
c_(k) = p (1I-B-70)
P 0  if k# 0
N
and that
% _ i
ACP<%) = % (< ({) - ¢ e N '3
0 if % =
AC (k) = (I1~-B-71)
P ¢ () if Kk # 0
NOORTE®
With these didentities we have
..el N o - —
A 4 = N %®self(P) c_+ 2 4 Voq CoCq
( k) 5 (k) 8 (k) (I1-B-72)

ZN pq %v "



39
where
1 1
@:elf(p) = E(vkijkgegj(p) 6§£<p) - Qpp) (I1-B-73)
O - O O - n_
qu = (vkijkgeij(p) ak%(q) qu) (I1-B-74)
and
el yp n, *
_ q
qu(%) = - ¥ (k) Gij(§) Fj (k) + qu
e G - FPa) ¢ g - Fan”
I I\JS% % }G '\JS}\% ALY +Q (II=‘B“75)

] 2 Pq
mws(g)

The prime on the summation in the third term on the right hand side of
I1-B-72 indicates that the summation is not to include the term % = (
which is a branch point of Vii(k) (eq. 1I-B-75). 1If, however, we

define the potential

~rel % =0
AR pd | (11-B-76)
el
pq(%) k#0
then, using (II-B-70), A@el may be written
N el s
A®el ) % ®self(P) Cp
1 ~el Y "y
+ N gq % qu(%) Cp(%) Cq(}&)u (11-B-77)

The Fourier inverse of eq. (II-B-77) has the form of eq. II-B-68 with

o _ el = ;
Ep = N @Self(p) Cp (11-B-78)
and
Ceny =Ly el ok (- gD ~B-
wpq(r r?) N % qu(%) e (I1-B-79)

The two-particle interaction in real space is hence just the Fourier
. ~el . . .
transform of the function qu(}\g)9 which has been so defined that its

% = 0 value gives the indirect, or image force interaction between
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species, and its values at % # 0 give the direct elastic interaction.
One may easily show that the real space interaction of a particle with
itself, wpq(O), vanishes (at least to within terms of order %J as it
should.,

Equation I1I-B-77, or its equivalent real-space form, equation
I1-B-68, gives the total elastic energy in the lattice statics model,
The equation provides a solvable expression for the elastic energy of an
arbitrary distribution of substitutional defects of arbitrary types under
the dual assumptions that non-uniformity in the elastic constants and
anharmonic effects may be ignored. The equation has an appealing physi-
cal form in the sense that the elastic energy is expressed as a sum of
an elastic self energy and a two-particle interaction term. The latter
is, in turn, easily separated into its two physical components: a con-
figurationally-independent "image force' interaction, which is given by
the value of %eé(%) at

P
tive to the precise configuration of defects, and which is responsible

% = (0, and a direct interaction, which is sensi-
. : . . sel
for the Fourier components of the interaction potential qu(k) for k # 0.
The lattice statics model is, however, difficult to use in actual
~el

calculations since the evaluation of the interaction potentials qu(%)

or (r ~ E') requires a knowledge of the full phonon spectrum of the

w
pq v
matrix, which is rarely known. The evaluation of the interaction terms
can be greatly simplified through the introduction of a long wavelength
approximation in the spirit of the Debye model of lattice vibrations.
(6) The Total Free Energy and the Thermoelastic Potential
Returning to equation (II-B-18), the total free energy of the crys-

tal containing a distribution of interaction defects is

AE = A + Ad (I1-B-18)
chem el



41
where
= ~ é; ch ot v
Pchem TN § Cp Myt 2 Bq Fr Vpak T KD W) oD
(11-B-19)
and
AD . =N g @el (p) C 4 X T oZoyw (r-1xr')cC (r)C (xr")
el p “self p 2 pg {E' pg v A p X q K
(11-8-20)

where the elastic interaction parameters are evaluated as described above.

The total energy may also be written as the equivalent lattice sum:

AE

it

AE (fe (ph

el
= +
L3 [Aup @Self<p)] CP(E)

=

T [vCh(£ - ')t

5‘%£v gq pq "] Cp({) Cq(g‘) (11-B-80)

(v -
pg v

It is useful to define a "thermoelastic potemtial”'9 ¢p(£,%€q({‘)§)s
which is equal to the free energy change on introducing a defect of
type p at position r in a body containing defects distributed according
to the distribution functions Cq(g“) (g =1,....v). The introduction of
the extra defect (pgg) corresponds to the change of the distribution

functions

| il
6 ) e+ o0

From equation II-B-8

it

¢p<£9§cq(£*)§ A (écq(Q?) +6_ 6 v}) - BE ({cq(g*)})

PA KX

i

¢P + ¢p({9 {Cq({ );) (11-B-81)
where

s) el
- TI-B=82
@p A“p + @Self(p) + wpp(O) (11-B )
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and the "partial thermoelastic potential"

]
Pt
<

AR CNENN B3 IVaG - £+ G k) 6
. Lo (r - §’) Cq(g') (I1I-B=83)

The thermoelastic potential governs the free energy change during defect
additions.

It follows from the preceding paragraphs that the creation of a solu-
tion of defects through the successive addition of elementary defects
which are selected according to an energy criterion may be treated by
computing the thermoelastic potentials for all possible events in an
initial state and updating these by simple addition as individual events
are selected and allowed to occur. This method of analysis is particu-
larly well suited for use in a digital computer.

The thermoelastic potential also governs the energy change on redis-
tributing defects within the body. If a defect of type p at E, is repo-
sitioned to I L the process may be represented by deleting the defect
(pgﬁo) and adding a defect (pggl)o The associated free energy change is

a simple difference between partial thermoelastic potentials:
1 ¥
- = v - ] —Ra
bE[(pax ) » (poxy)] @p(glgé Cq(g )%) ¢p(go‘%cq({ )}) (II-B-84)

where the symbol éCq(%')é has the meaning, as in eq. II-B-83, of the
distribution of defects less that under consideration. The transition
(p;{c) > (p9€1> change the thermoelastic potentials for other events

(pggg) by the simple addition:
¢
s 4C (") + 8§ 8 -5 &6 é
bk é g+ O £y 9p £'K, )

=0, (x, %Cq(r’)§> RICONTRG Bl TR IR C Ry W) (11-B-85)

pN "
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where the function ¢p'p(g = av) is defined in equation I1I-B-83. Equa-~
tions IT1-B-81 to II-B-85 are particularly useful for analysis of diffu-

sional processes in a digital computer.
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C. The Long-Wavelength Approximation

The governing equation of the lattice statics model may be consider-
ably simplified by introducing the long-wavelength approximation, which
essentially involves replacing the dynamical properties of the matrix
by those of an equivalent elastic continuum. The simplification comes
principally in the evaluation of the term

el NP . . wg* e
Voo = %j(k) Gy (o) %i () (11-C-1)

Consider first the force %2(%)3 By its definition

f?(g)e”i% "k (11-C=2)

0 P i

%j(%) W % fj(§) (L =ik r+...)
- p - I3 o
= % fj(g) 1k£ % fj(g) r, | (I1-C-3)

where the summation convention is assumed for the subscript L. The
first term on the right in II-C-3 is automatically zero from the condi-
tion that the energy be invariant to rigid displacements (eq. II-B-22}.

The second may be simplified by adding and subtracting symmetrizing

terms:
P I 4 p P
1 =5k [fj(g) r, + £ (p) Tj]
N Y
1 P _ ¢P —C-
v23 (5 vy - £ r] (11-C-4)

The second term on the right in (II-C-4) vanishes by the condition that
the energy is invariant to rigid rotations. The first term was evalua-

ted in eq. (11-B-47) and gives

p _ O (e
% fj(g) £, =V Ojg(o)g (11=-C~5)
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where G?Q(p) is the transformation stress for a particle of type p. 1t

follows that in the long-wavelength approximation

up = 0
Fjﬁk) = lkz v a,

JQ(p) (11-C-6)

The Green's function, Gij(k) was defined in equation I1-B-59 to be

the inverse of the dynamical matrix, Aij(k)a The long-wavelength form of

the dynamical matrix is well known(13) and is
A = iy
= lk]zwfxikﬂjekel
= ]kav QE%(%) (11-C-7)

where ¢ is a unit vector in the direction of k and the equation defines
-1
the inverse matrix Qijn It follows that the long-wavelength form of the

Green's function is

6,50 = 2, () (11-C-8)
Using equations (II-C-6) and (II-C-8), it then follows that

el o o
qu(}g) = -ve, 0,4 () D ®) g (ey, + Q. (I1-C-9)

for k # 0, where

o o]
= >
qu <eigij (p) Qjﬁ(e) G’Q‘m(Q) em Y
"N eigij(p) @ ®) op (q) e (11-C-10)

The term k = 0 is eliminated from the summation, since g and hence Q(%)
are undefined there.

Equation II-C-9 presents the Fourier component of the two-body elas-
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tic interaction as a product of terms which can be computed from the

elastic constants, A,

. . O .
.., and the transformation strain e, (p). Since
ijlm 1]

the image force interaction, V;i(@) depends on the same quantities, the
elastic energy of an arbitrary distribution of substitutional species
can readily be computed in the long-wavelength approximation,

The long-wavelength approximation 1s valid when the substitutional
defects are aggregated into macroscopic inclusions whose dimensions are
large compared to the lattice spacing. When this condition is not strict-
ly satisfied, as in the model of the martensite transformation presented
in the following section, the long-wavelength approximation is used in
the spirit of the Debye model: to allow a simple, tractable analysis of

a more complex situation.
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b. Limit Transition to the Continuum Theory of Macroscopic Elastic
Inclusions.

The model of the martensite transformation that is developed and
used in the following section is a semi-continuum model. It will employ
the real space form of the lattice statics equation for the elastic
energy as presented in equation II-B-68, but will assume a binary inter-
action, wpq(r - '), which is obtained through the long-wavelength appro-
ximation. The equations needed for this model were derived in subsec-
tions II-B and II-C. For the sake of completeness, however, and to de-
monstrate the internal cohesiveness of the gheory of elastic defects as
developed here, we shall conclude this section by deriving the form of
the elastic Hamiltonian in its full continuum limit. The resulting equa-
tion will be seen to be identical to that derived by Khachaturyan and

(

Shatalov 14) (equation I1-A-7) from a starting point in continuum elas-
ticity.

The veduction to the case of macroscopic elastic inclusions in the
continuum limit involves three steps: (1) The inclusions are assumed to
be large compared to the lattice spacing. (2) The summations appearing
in the expression for the elastic energy are replaced by asymptotically
equivalent integrations. (3) The interaction potentials are evaluated
in the long-wavelength limit.

Consider a body which contains a distribution of coherent inclusions
which are individually large compared to the lattice parameter. To
maintain contact with the lattice statlcs model, we may imagine these
inclusions to be formed by agglomerating individual point defects. For

simplicity let each inclusion be composed of a single type (p) of defect,

The distribution of inclusions of type p is described by the



function

0, (k) = é

Then clearly

1 for r inside an inclusion of type p
0 otherwise
C = 0
NORENO)
The Fourier transform of the distribution function is
ny -ik -
=X kK
o) ¥ C,(xe
When the inclusions are macroscopic in the sense that

tic linear dimension, %, satisfies the constraint a/fL

summation in equation (II-D-3) may be replaced by the

y 1 @ 3 ik - 1w
Chpny Fpe™ Reo =¥ G,

where v is the volume of the unit cell,
To find the elastic energy of the distribution of
continuum limit, it is simplest to return to equation

may be written:

N o o}
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(I1-p-1)

(11-D-2)

(11-D-3)

their characteris-~
<< 1 then the

integration

(11-D-4)

inclusions in the

I1-B~62, which

BEL1 = 7 Bq VAqguafig ) &y (@) (€8 - € C)
s 2 a0 6,0 F00 a8 G0 a8 g0 (11-D-5)
2N B f T1) Gy ) Fy (9 860 8GO
or
IR O (o O
A1 = o8 3q i VA ka3 P Eig ()
_ap ety n % L
¥ oG ¥ €00 Eap (11-D-6)

where the identities (II-B-64) and (II1-B-66) have been used, and the

prime on the summation over k indicates deletion of the k = (0 term.
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With the definition
BLLUD = A €5, (0) eny(a)
- (5 ¥a9 ¢ 00 Flap (11-D-7)
and the use of equation (II-D-4),
BE_, = §§§’ I %7 B () Ep(%) ﬁz(%), (1T-D-8)

The summation on the vight hand side_of equation II-D-8 is taken
over the N points of the first unit cell of the ciystal (excluding the
point % = 0). Each of these points occupies a volume in kwspacé equal
to <2W)3/ V, where V = Nv is the total volume of the crystal. Taking
the limit of large crystal size under the condition that the inclusion

1/3

size is small compared to that of the crystal (R/V << 1) the summa-

tion in equation (II-D-8) may be replaced by the integration

1 dBR e nk

. "y & - 1 .
2w § B ® B0 B =5 = B ® 5% 6

(11-D-9)

where thé integral is taken over the first Brillouin Zone of the cryystal
and where ﬁhe prime on the integral has the meaning that a volume
(ZW)B/V about k = 0 is to be excluded from the integration. When V is
large this exclusion defines the "'principal value" of the integral.
Using equation II-D-9 the elastic energyvis

1 s dzk‘

Y
el 2597 (93 "ok %

% , ;
() o, () (11-D-10)

To complete the identification of equation (II-B-10) with the
Khachaturyan-Shatalov equation (equation II-A-7) we note that the shape

function Ep(%) of an inclusion of volume Vp(<< V) will have significant
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magnitude over a volume of approximately (Ak)3 A (271)3/\7p about k = 0.
If Vp is large Ak is small, and we are usually justified in replacing
B q(}@) by its long-wavelength form. Using equations II-D-7, II-C-6,

P
and 1I1-C-8, we have

qu(%) ) qu(%)

= Aiguefig (P S (D

o} o
- eicij(p) sz(%) sz(q) e (11-D~11)
Substitution of the expression for qu(%) given in II1-D-11 into
I1-D~10 makes this equation identical with the Xhatchaturyan-Shatalov

solution (eq. II-A-7) for the elastic energy of a distribution of

ccherent inclusions in an elastic continuum.,
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ITI. THE MARTENSITE TRANSFORMATION.

As described in the introduction the martensite transformation is a
diffusionless transformation which accomplishes a change in crystal
structure. Since, at least in the initial stages of the transformation,
the particles of the new phase are coherently connected to the parent
matrix, the problem of elastic accomodation necessarily plays a major
role in the thermodynamics of the transformation.

The uneed to accomodate elastic distortions significantly influences
both the nucleation of the martensite phase and the kinetics and morpho-
logy of its subsequent development. In the case of alloy steels (and of
many of the other systems that are known to undergo martensitic transfor-
mations) elastic strain affects nucleation in two rather different ways.
First, the relevant theoretical studies avrgue that the strain energy
associated with a coherent, single variant martensite particle is so
large that it is not possible for the transformation to nucleate spon-
taneously in a perfect crystal. It is now commonly thought that the
martensite transformation nucleates heterogeneously and that its initia-
tion is catalyzed by the presence of crystal lattice defects whose own
strain fields may partly compensate for the strain associated with the
formation of the martensite particle. Second, the nature of the marten-
site transformation is such that a single nucleation process is general-
1y dinsufficient to permit the transformation to proceed to completion.
The repeated nucleation of individual martensite plates is necessary.
The strain energy associated with the martensite transformation may also
be important in promoting this secondary nucleation, by catalyzing nu-
cleation in those places and orientations which serve to relieve the

internal elastic field.
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The influence of elastic strain on the growth and morphology of mar-
tensite plates is conditioned by the fact that the martensite particle
may form in any one of several crystallographic variants, each of which
exhibits the preferred crystallographic relation with the pavent matrix.
For example, the FCC - BCC martensite transformation provides three dis~
tinct crystal lattice rearrangements. These differ in the orientation
of the tetragonal axis of the Bain distortion, which may lie along any
one of the three cubic axes of the parent phase. A similar situation
occurs whenever the transformation is pf the crystallographic type cubic
+ tetragonal (fig. 2).

The existence of several distinct orientational variants of the pro-
duct phase provides a configurational freedom which may be used to
reduce the elastic energy. The martensite particle is free to grow as a
composite particle of two or more variants which are so configured as to
provide a mutual relaxation of elastic strain. 1In the case of the FCC -~
BCC transformation, the martensite particle tends to grow as a thin
plate which consists of periodically alternating layers of the tetrago-
nal phase with different directions of the tetragonal axis (Fig. 3). If
the relative fractions of the two variants within this plate are proper-
ly chosen, and if the plate is given an appropriate habit in the parent
matrix, then the bulk elastic energy may be made very small. This
result is the implicit theoretical basis for the crystallographic theo-
ries of the habit plane of martensitic particles(lo>,

Given the prominence of elastic effects in the nucleation, growth,
and morphology of martensite, it seems reasonable to suppose that many
of the other interesting and unique features of the martensite transfor-

mation will have their source in the need to accomodate elastic strain
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as the transformation proceeds. Tractable models of the development of
the martensite transformation which include the predominant elastic ef-
fects should hence prove particularly fruitful in new theoretical in-
sight, Such a model can be drawn directly from the elastic theory
developed in the preceding section. Since this theory permits one to
calculate the elastic energy of an arbitrary distribution of elastic
inclusions, it may be used to compute the elastic enevrgy of a progressing
martensitic transformation in any hypothetical intermediate stage, and
to identify the incremental transformation steps which are most favor-
able with respect to the elastic enmergy. While such a model is not
likely to be tractable analytically, the form of the equations is such
that they can be quite easily phrased for solution in a computer, lead-
ing to a developmental model of the martensitic transformation.

A simple elastic model of the developing martensite transformation
is formulated in the balance of this section. It is obtained through a
straightforward adaptation of the lattice-statics model presented in
the preceding section, with minor modifications to show how the possibly
finite size of the elementary martensite particles and their surface and

twin-boundary energies may be taken into account.
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A. The Description of Martensite in Terms of Elementary Particles

The simulation of the martensite transformation requires the intro-
duction of a minimal element of martensite phase, which we shall call
the elementary martensite particle (EMP). The distribution of marten-
site within a crystal will then be vrepresented by a suitable combination
of EMP. 1In the linear approximation which we shall use the elastic
strain within the crystal is simply the sum of the strains associated
with each of the EMP; the elastic energy is the sum of their self-ener-
gies plus the energy associated with their mutual interaction.

The smaller the EMP the more accurately an arbitrary distribution of
the martensite phase can be modeled. However, it should be recognized
that there is a physical lower boundary on the size of an EMP which can
be reasonably assumed to exist in isolation. This boundary is set by
the need for the EMP to have the crystallographic identity‘of the mar-
tensite phase; 1f the particle is too small, surface tension will domi-
nate and destroy the internal atomic arrangement. The linear size of
the particle must at least exceed the correlation length required for a
coherent transition from the pavrent lattice to that of the martensite,
esséntially the thickness of the mavtensite parent-interface.

A rough estimate of the correlation length (RC) may be found by
equating the surface energy of a particle of radius Rc to the heat re-

(1),

leased on forming it :

Y4uR 2 o éE-R 3Q, (I11-A-1)
¢ 3 e

(1,62)

According to the evaluation for iron based martensite, the surface
energy is about 1.2 x 1Om5 kcal/cmz and the heat release is about 240

kcal/cm3 which gives
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R, v 3y/Q v 15 A (I1TI-A-2)

This.evaluation suggests a minimum particle size of “8-27 unit cells of
the martensite phase. (2 ~ 3 crystal lattice parameters).

To describe the martensite distribution in tevms of a distribution

of finite EMP, we vefer the parent crystal to a superlattice of cells,
each of which is of the size of an EMP. If there avre v variants of the
martensite, we must assume vV kinds of EMP., Each of these is distin-
guished by its orientation and by its transformation strain, g?j(p)
(p =1, ...v), where the S?j(p) differ only through a rotation with res-
pect to axes fized in the parent phase. The martensite distribution is
then reproduced by placing EMP of the correct variant at the appropriate
sites of the superlattice.

The sgpatial distribution of the martensite phase is described mathe-
matically by the function

1 for an EMP of type p at E
L @) = (ITI-A-3)
P 0 otherwise
where % is a translation vector of the superlattice. This description
is illustrated in two-dimensions in Fig. 4, in which both the fine grid
of the parent crystal lattice and the coarse grid of the superlattice
are displayed. Since only one martensite particle may occupy a given
cell of the superlattice, the Qp(ﬁ) satisfies the identity
1 for % occupied by martensite

v
c(R) = 2 . 0 (R) = (I11-A-4)
v p=l "p 0 otherwise

In order to establish contact between the superlattice distribution
functions gp(g} and the lattice distributions Cp(};)9 let x(%) be the set

of lattice sites which fall within the supercell located at %“ Then
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the shape of the supercell at R is described by the function

1 if X - R ex(r)
n(g-R) = é v (ITI-A-5)
0 otherwise

With this definition,

Cp(g) = & nlr - R) Cp(;§)9 (I11-A-6)

e

which relates the occupation numbers within the two lattices. Taking

the Fourier transform of both sides, we have
¢ = mi% ° X, = ¥ o A
€0 = 1 ¢, (pe NG T (o) (IT1-A-7)

where the function n(%) is defined by

e 1 _ -ik © (r = R) (I1I-A-8)
n(k) = o : n(x - Re ko G -R
and
Ep(§) = % cp(%)emi% "R (I11-A-9)

where the % are the lattice points of the superlattice,

If the total number of cells in the superlattice is M, and if Mp
are those occupied by particles of type p, then

Tp = M /M = E% (I11-A-10)
If each supercell contains only one lattice point, then M = N and

n(%) = 1 M= N). (I11-A-11)
If M # N there are No = N/M lattice points per supercell and n(%) has
non-zeyro values over a volume (Zﬁ)B/NOv of k-space about % = Qa When

NO is large the supercell is macroscopic and the long-wavelength approxi-

mation is wvalid.
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B. The Elastic Energy
The elastic energy of an arbitrary distribution of elementary marten-

site particles may be computed by means of the equations developed in
section II-B. Ideally, we wish to express the equation in a form iden-
tical to that in equation II-B-~78 (k-space form) or II-B-69 (real space
form) but with the lattice sums renormalized to sums overbthe superlat-
tice of EMP, so that the free energy of the distribution of EMP can be
computed directly, without reference to a microscopic reference lattice,

To accomplish the renoymalization we return to equation II-B-62:

A® = — 3 (vA

(o] O —
01723 .(p)ekg(p)) Cp

19ke519

N

o —
2 3q °(p)€kz(Q)) Cqu

VA e’
ijke"ij
1 up Nq* LY &
- e A A . I<B=
o Bq B DG UOTS () AC G 46 () (111-B-1)
Using equations III-A-7 and II1-A-10 this equation may be rewritten

Ad =

el (VA

o

o O

[9] O oy
ijzmgij(P)gzm(p))gp

% (VA ©

o —
z ijzmsij(p)egm(q)) szq

- 52 5 100096, FT G0 [n0|® 0 (o sl (o (TI-B-2)
where V = Nov is the volume of an EMP.
To accomplish a renormalization to the superlattice we rewrite the
wavenumbers, %, of the elementary lattice as
K=k +k' (T11-B-3)
where %o is a reciprocal lattice vector of the superlattice

k o R = Zwn (n = integer) (I11-B~4)
Vs 4V
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Since the volume of the supercell is NO times the volume of the unit

cell of the crystal the volume in reciprocal space of the Brillouin zone
of the superlattice is l/NO times that of the Brillouin zone of the crys~
tal. It follows that there are No superlattice reciprocal vectors %O
within the first Brillouin zone of the crystal and N/No = M wave vectors,

%‘ associated with each. From the definition, III-B-4,

tolky T K1) = %cp(ﬁ)e_i(&o tkD R o, k" (111-B-5)

By means of the scalar
- wp ngw 2 n
Fog0) = N G306, GOF () (o | (111-B~6)

the summation over k on the third term of the right hand side of equa-

tion III-B-2 can be written

- )
N %rpq(k)AgP(g)Ac(§)
1 A
= e Zz § ) 1] R
RS qu(%o + k ) Agp(% )Acq(% ) (111-B-7)
[AVERRAV & ]
S (k"Yar (k")Aar (k")
2M %7 pg N PR g~ 7®
where
ro(k') = % + k'), ~B-
qu(k ) %Orpq(§o k ) (I11-B-8)

When the EMP is of reasonable gize so that the non-negligible values of
n({k) are well confined to the first Brillouin zone of the superlattice
then

~

pq(%’) = qu(%')e (111-B-9)

and only the first Brillouin zone of the superlattice need be considered
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in evaluati A .
uating ¢e1
To complete the task of re-casting equation (III-B-2) into compact
form we need to separate out that part of the sum over reciprocal space
which is independent of the precise configruation of EMP. Proceeding as

in the equations following II-B~62 we re-define the scalar qu:

= <F kf > = — r k? ) III"“B"lO

Using the definitions III-B-8 and III-B~10 and the identity

o 0 k=0 ‘ .
he () = CP(%) - = | » (I11-B-11)

cp(%) k#0

equation III-B-2 may be rewritten

el - M cel —
A =M ZA - = LT (0
Pe1 p \PISY: *p T2 Bq pq( ) “ptq
cLos oy ielgens goye () (I11-B<12)
2M pq %‘ Pq p qv ‘
where
st =L vl €2 (e (p) - Q) (TT1-8-13)
self 2 ijem 1] Lm pp
el o o
,qu(O) = - (V kij£m€ij<p)e£m(q) - qu) . (III-B-14)
pel (k # 0) = r (g') m}Q (I11-B~15) -
pq Vv Pq Pq

and where the summation over k is taken over the first Brillouin zone
of the superlattice and the prime on the summation indicates that the
k' = Q term is to be excluded.

Defining the elastic potential



zel R
ol ) qu(O) % = (
£ (k) =
A Cel .
oo k0

and using the identity
N 1 -
cp<0) " %

we obtain

el =

A¢el =M % A¢self€

1 el
&£
2M % jals}

. ) T30 T %)

P

where the prime on the summation has been removed.
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(111-B~16)

(111-B-17)

(111-B-18)

This compact

equation is identical in form to the final equation (II-B-78) of the

lattice statics model, with the difference that the elementary particles

are EMP rather than atomic defects and the sum is taken over the points

of the superlattice rather than over those of the fundamental lattice.

The inverse transformation of equation ILI-B-18 to its real space

form yields the final equation

s =3 I aeSt
A®el % P A¢self Cp(ﬁ)

1y 5 el ) )

where
G OIS ey (ST T
Y

wpq Voo M pq v

gives the real space interaction between EMP.

(1I11-B-19)

(111-B-20)
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C. The Chemical Energy
From equation (II-B-19) the total chemical energy of a crystal con-

taining a distribution of elementary particles of the martensite phase

is

1 ch
= L L =% I - p! ! B -
Moy =5 r AppCp({) R ' qu({ ") Cp(E) cq(g ). (I1-B-19)
Using the definition
= L - —A—
¢, x) R n(g = R o, R (111-A~6)

this equation may be venormalized into a sum over the points of the

superlattice., Letting r= % + Ts

= 3
Ad R g (N0 Aup) Cp(g)

_,1;. z % gch _pt t . e
YRR pq pqgR TRt R £ RY (111-C-1)
where
sch = ch o opt et ' e
Vog® - R = %gvqu[(% R+ (x - 1] n(m) n(gh (I11-C~2)

When the elementary martensite particle has finite size, it is use-
ful to represent the chemical free energy as a conventional sum of bulk
free energy and surface energy terms, The bulk-free energy term is the
same for all martensite variants (A“§)° If we ignore the temperature
dependence of the enthalpy (Aho) and entropy (ASO) of the transformation,
which is reasonable at least for T near Tog the transformation tempera-

ture, then A“E may be written in the familiar form
b Aho
Auo = m?;-(T - TO) = ASO(T - TO) (111-C=3)



62

where AhO is the transformation enthalpy per atom.

The representation of the surface energy is more complex. Two dis-
tinct surface energies are relevant to the martensite transformation:
the free energy Api of an element of coherent interface with the parent
phase and the free energy Au;q of an element of interface between mar-
tensite variants of types p and g. Both interfacial free energies will
generally depend on orientation. The total interfacial energy should
be computed by integration over the surface of each distinct martensite
particle. At least in certain cases, however, this dintegration may be
replaced by a summation over the EMP.

Let the surface energy of a martensite particle be strongly orienta-
tion~dependent, as will usually be the case, and assume that the shape
which minimizes the surface energy of an isolated particle gives a fi-
gure which may be repeated to fill space, i.e., a figure which corre-
sponds to the Wigner-Seitz cell of a periodic lattice. If the EMP is
taken to have the shape which minimizes surface energy and if the super-
lattice of EMP is taken to be the periodic lattice appropriate to this
shape, then the surface energy of a martensite particle represented as
an agglomeration of EMP is well approximated by summing the surface
energies of the exposed facets of the EMP which lie in its periphery.
This sum may be evaluated by taking an appropriate sum over all EMP.
The relevant equations ave simplest when the EMP is a cube, though they
may be formulated for any shape which fills the space on periodic repi-
tition.

Assume a cubic EMP, and let its facets have the energy Aui, if in

contact with the matrix, Ay if in contact with an EMP of different

s
1

type, and zero if in contact with an EMP of the same type. Defining
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s T
Aul 6Pq If (% % ) §o

(111-C-4)

Otherwise

where Ro is any lattice vector connecting nearest neighbors, it follows

that the surface energy may be written

s

=23 s
Ad R b (Zbu ) Cp(%)

Ly N
7 5q RR' pq(% R') ¢ (E) 2 &) (I11-C-6)

where Z is the number of nearest neighbors of an EMP (Z = 6 for a cube).

If equation III-C-3 and III-C-6 are substituted into equation
ITI-C~1, and if the direct chemical interaction between EMP is neglected
on the grounds that the EMP avre finite, the expression for the total

chemical energy becomes

NOAhO s
Ad 4 = % [ T (T =T) + o] 2 (R
PN _ O
* 9 Ry . pq(R R £ R L R (I11-C-7)
where

s - = Y o I
T (II1-C~8)
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D. The Total Energy and the Thermoelastic Potential.
Summing equations (III-B~19) and (III-C-6) gives an expression for
the total energy of a configuration of elementary martensite particles

specified by the set of v distribution functions %cq(%*)%z

N Ah

fe (b =3 (o2 (p . s el vy
AE }Cq(g)é % ( T (T =T+ b0+ 80y 20 (R)
1y elip . g S (R - R v
* 9 Rr B lopg® - R TV R -RDT 2 R T R

(I11-D-1)
where we have used the fact that the self energy of all martensite
variants is the same. Equation (I1I-D-1) gives the elastic energy as a
sum of bulk free energy, surface energy, and elastic energy contributions,
in keeping with the representation for systems of finite particles.

A thermoelastic potentilal may be defined for the EMP using a proce-
dure identical to that employed in section II-B-3. Given the distribu~

tion of EMP specified by the set gcq(R?)§ we define

]

0, Ro{r RDD = [ee, ®) + 6qp6%%g§ ] - (38 {2 (g)Y]

NOAhO s
““§;“(AT) + ¢O + ¢

el
self

i

(111-D-2)

el ]
+ 3y L fw (R -RYY AV (R=-RD] T RY.
%‘ § Lo ® - R pq k7R ] gk
The thermoelastic potential is the free energy change on introduction of

an EMP of type p at position R in the presence of the distribution

écq(%’)} over sites other than R. If the EMP (p,R) is present in the
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initial distribution, then the energy change on removing it is just
e ) N
AF ¢p(§,§§q(§ ) () (I11-D-3)

f

}Cq(§?){ again represents the distribution of EMP over sites

J
other than ga

where

For analysis of the martensite transformation, it is useful to
write the thermoelastic potential in a compact form. Let the transfor-
mation occur in a body which is finite, though it may be arbitrarily
large. If the body is finite the possible distributions of EMP over its
lattice sites are denumerable, and may be designated by assigning to each
a particular value of a single index, say o. The thevmoelastic potential

may then be written
pk _ Oy D=
¢, = ¢p(§k§§cq(g )?)9 | (III-D-4)

where the index o assigns specific values to the funcﬁionsézi(%q)g
(g = 1....v) and the index k may be used to designate a lattice site

(%k) since the lattice sites are denumerable.
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E. The Path and Kinetics of the Martensite Transformation.

A phase transformation may be described by specifying its path, or
the sequence of intermediate microstructures that a body assumes between
the time the transformation is initiated and the time it is completed.
In the present case the transformation is a martensitic transition which
is to be represented by the stepwise addition of elementary martensite
particles (EMP) to the lattice. The specific path of the transformation
is specified by giving the sequence of distinguishable configurations
éc%(%)% which are adopted by the body as the transformation proceeds.

If the configurations are numbered in the order of their appearance, and
if the transformation is assumed to occur in unit steps which involve
the creatién or annihilation of single EMP, then each configuration is

related to its predecessor by the simple addition

f a+l §: o 4+ 4D T T

%4 (R) gﬁq(ﬁ) X 6RR°§’ (III-E-1)
where

qqp .

8 § § (111-E=2)
RR' qp E%?
A

If the sign in equation I11-E~1 is positive, the transformation step is
the addition of an EMP of type p at %‘ to §C2<R)§; a negative sign has
the meaning that this EMP is eliminated from écg(%)} by reverse trans-
formation.

Given a configuration ggz(%)§$ the set of possible events connect-
. . . . , { utl . .
ing it to the succeeding configuration qu (%) contains the creation
of an EMP of type p (=1, ...V) in any lattice cell R, which is free of

martensite, and the annihilation of any of the existing EMP. The free

energy changes associated with each of these events may be simply
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expressed in terms of the appropriate thermoelastic potentials:
k .
0,0 AE L (RD =0, a=1l,...v
kq o 4 ,
AG@ = (IT1I-E-3)
kq ) o _ '
9y if Z;q(%{)f=
All other AGSq correspond to impossible processes and are undefined.
The thermodynamic stability of the configuration iﬁz(%)é is deter—
mined by the minimum value of the Aeiqe Let
. kq ;
AG& = min (AGQ ) (II1-E~4)

If AG@«:O then there is at least one elementary change of {cg(%)é
which will lead to a decrease in the free energy; hence ézg(%)éis thermo-
dynamically unstable., If AGa >0 then every elementary change in éci(%)?
leads to an increase in the free energy, and {gi(%); is at least meta-
stable. |

The kinetics of the transformation will be governed, at least in
part, by the statistics of thermal activation. The formation of an EMP
through a thermally activated process will generally be opposed by an
activation barrier of height Ag*a Making the usual assumption that the
barrier is maximal at the point of half-completion of the elementary

event, it follows that the total activation barrier opposing the event

(k9Cl) is
" %23; AGKY 4 pgx if Agr > AGHY
ac kA _ a ¢ (I11-E-5)
o kq ;
AGa otherwise

%
where AG&kq is defined only for possible events. Of course, the activa-
tion energy, Ag¥*, need not be the same for all events; in particular,

the activation energy for creation of an EMP may differ from that for
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annihilation.

The kinetic stability of the configuration {CZ(§)§ is determined by

*
the minimum of the activation energy AGakq, Let
* *ic
AG, = min (AG kD) (ITI-E-6)
%
When Ag? is the same for all events
MG = e -2 agh) 11-E-7
o - 2 o - g s (I I-E- )

If AGZ > 0 then every elementary change in %Ci(%)}is opposed by a finite
activation barrier and requires a thefmal fluctuation in order to happen.
Such a configuration will be termed kinetically stable in the sense that
it can be maintained by forbidding positive fluctuations in the energy.
On the other hand, if AGZ < 0 then there is at least one elementary event
which represents a thermodynamic instability of {Qi(%)} (since AG@ <0

if AG: is) and which is unopposed by an activation barriér, This event
will occur spontaneously even in the absence of thermal fluctuation.

The configuration égz(%)§ is hence kinetically unstable.

The analysis of the kinetics of transformation through kinetically
unstable configurations poses problems which are beyond the scope of the
present investigation and which have their source in the finite speed of
sound in real crystals. The theory leading to the definition and evalua-
tion of the free energy change AGa is based on equations which assume
static elastic equilibrium. But, if an elementary transformation occurs
at a point (%) within a crystal, the associated elastic disturbance pro-

pagates only at the speed of sound {(c¢). It will not be sensed at a point

|2 |

R' until after a time interval At ~v , and the modified static equi~

librium state cannot be assumed until several of these time intervals



have passed. The kinetics of transformations which evolve at speeds
near that of sound are strictly bound beyond the scope of a static equi-
librium model.

However, an error in the precise kinetics of unstable events is of
no great concern so long as the sequence of these events is reasonably
well represented. In the time frame which is usally of interest in the
kinetics of phase transformations, the distinction between a process
which happens at sound speed and one which happens instantaneously is
immaterial. The sensible kinetics of the phase transformafionbare con-
trolled by those configurations along the transformation path which are
kinetically stable, and which, consequently, require either finite time
or additional undevrcooling before they transform. The nature of the
kinetically stable configurations which are reached along the transfor-
mation path may depend on the sequence in which unstable configurations
ave sampled, but does not depend on the kinetics of thelr evolution.

Given this analysis, we shall represent the martensite transformation
by model which ignores the finite speed of sound and assumes that elas-
tic equilibrium 1s instantaneously reestablished after each elementary
event. The resulting kinetic equations will give a good estimate for
the transformation rate provided that the model is reasonably successful
in selecting the intermediate configurations along the transformation
path.

(1) Statistics of Thermal Activation

The kinetics of a martensite transformation which occurs through the
thermally activated formation or annihilation of elementary martensite
particles may now be developed. The treatment follows that in reference

(64) for a formally similar, though physically distinct problem.
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Let the transforming crystal have the configuration %CZ(%)? which
may be changed by adding the EMP (p,%) at any untransformed site R or
by eliminating any EMP (q,%) which is present in §C35)5° Let the
attempts at each of these events be uncorrelated and random in time with
mean frequency v,

An attempt to achieve event (q, §k) has two possible outcomes: a
success, which would require overcoming the activation barrvier AG:kq de~
fined in equation (III-E~5) or a failure, for which the activation bar-
rier is zero. If the temperature is T (written in energy units, kT, for
simplicity) the normalized probability for the event (q,%k) in one

attempt is

F3 %*
pzq = exp (~8AGakq)/[l + exp(“BAG@kq)]
(I1I-E-8)
= [1+ exp (8AG K9]
where
g = 1/T (I1I-E-9)

The probability [Riq(j)] that (q,%k) has not happened after j trials
is
qu(j) = (1 - pkq)J (I11-E-10)
o o
If the activation trials occur randomly in time with expectation

one per unit of dimensionless time
t = v t (I11I-E-11)
)

* %
then the probability of exactly j trials in time t , p{(j,t ) is

*_J
p(jgt*) = (tjg exp (~t*) (ITI-E-12)

*
and the probability that no success has been achieved in time t ds
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]

kg, *, _ O oyl ° , kq. 3
Ry (6 = 5 GDT () exp (-¢h) (- p DY (111-E~13)

0

ka *
exp (apaqt y.

The configuration of EMP will be changed if any one of the possible
elementary events occurs. Hence, the probability Pa(t%) that the con-

( %
figuration éiz(%)é is retained for a time greater than t 1is equal to

%
the probability that no elementary event happens in time t :

%* kq, * : #* ‘
P (¢ = = - TeF-
a( ) Eq RQ (£t ) exp ( Pat ) (11 14)
where the product 1s taken over all possible events and

- kq _—
P, ﬁq P (I1I-E-15)

the sum of the probabilities of all possible events. It follows that the
S
probability Pa(t Jdt that the configuration transforms in the time inter-

% & %
val (£ , t + dt ) is

% % 3 % #%
Pa(t yde = = ;z;-zexp(mpat )j dt . (ITI-E-16)

The expected lifetime of configuration o is hence

* % * %
<t > = [ top () dt
°o ¢ (III-E-17)
-1
=),
and its variance is
G 2 <t*2> - <t*>2 = P&Z
o o o o ,
(I11-E-18)
* 2

= <t >
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Equations (II1-E-16) and (III-E-17) give the mean and variance of
the time required for the first elementary transformation to happen from
the configuration §c2(5)39 irrespective of its identity. The probability
p(q,k) that the specific event (q,%k) is the first to occur may be

easily shown to be

. kg T T Fe
p(q,k) = P, /ch (T11-E-19)

as would be expected intuitively.
Equations II1-E=~17 to III-E-19 give the activation time, variance,

and site for evolution of the configuration, 5@2(%)}, They are expressed

{
in terms of the set of probabilities qus defined in equation III-E-8,
which can be computed from a knowledge of the thermoelastic potentials
and activation energies for each of the possible elementary transitions
from §gg(§)} via equations III1-E-3 and III-E-5. It is important to re-
cognize that under the assumptions we have made, particulérly the assump-~

: . cq s s crs s k
tion of instantaneous equilibrium, the probabilities paq

are fixed by
the current configuration and are not influenced by the prior transforma-
tion path.

(2) The Statistical Transformation Path and Transformation Time

The statistics of the martensite transformation are complicated by
the fact that, except under very restrictive assumptions, the sequence
of configurations assumed during the transformation (the transformation
path) is not unique. Given finite temperature and activation energy any
one of the elementary processes permitted by the instantaneous configura-
tion of the transforming body is possible. The sequence of subsequent

configurations will generally depend on the specific event which occurs.

The problem is, however, somewhat simplified by the fact that the
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configurations assumed during the transformation form an irreducible
Markov chaine(64)

The Markovian character of the transformation path follows immedia-
tely from the fact, emphasized at the end of the previous subsection,
that the probabilities of all possible elementary transformation steps
are uniquely determined by the current configuration of the EMP. If the
ath configuration is égZ(%)} then the (q+1)th configuration is determined
by the particular event (p,%k) which continues the transformation from
step a. Since the probability that (pg%k) will occur at step ® is uni-
quely fixed by éCZ(%)} then the probability that a particular configura-
tion will be the (u+l)th member of the chain is fixed once écg(%§~ is
known, independent of previous events. Hence, the transformation path
is Markovian.

The irreducible character of the Markov chain follows so long as the
transformation can be assumed to go to completion in a number of steps
which is less than some finite upper bound, where completion is defined
as the first realization of a configuration having EMP at all lattice
sites. There are, then, a finite number of possible transformation
paths, which may be labelled by the index, ¥, and a finite number of
distinguishable configurations, which may be labelled by the index, ao'.
The elements of the set of all distinguishable configurations ga‘s form
an irreducible chain since any given configuration of EMP may be created
by adding EMP to an empty lattice, and, hence, may lie along the trans-
formation path.

It follows from the property of irreducible Markov chains that the
probability, yX9 that the transformation takes path y is defined and

that ¢ u = 1 (IT1-E-20)
X X ‘
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The probability Moo that the transformation passes through the
particular configuration o' is just the sum of ux over all paths which

contain of,
Woe = ko Uos (I1I-E-21)

and

n = geu . {(I11-E~22)

is the expected number of configurations assumed. Both Hyo and UX will,
of course, be rather complex functions of temperature.

Let the transformation follow a pérticular path, %, which has n con-
figurations whose activation parameters are Pa(a:ls,e”n)e Using the

(63)

properties of Markov chaing it may be shown that the expected value

of the time required for the transformation is
*s o<t ¥yt (III-E-~23)
< = > == e
tx 01 “Fy azl( a)

. 2 LI
and that variance, OX , of tx is

2 o2 n =2
UX = aglc@ = uél(Pa) . (I1I-E-24)

More specifically, 4if n is large the distribution of the transformation

&
timesgtx , approaches a normal distribution with the density function

% x 9
% 2 =L I»_ (tx - <t >) ]
p(t) = (lZwGX) * exp 5 X (IT1-E-25)

e30)

giving the probability that the time required to complete the transfor-

* #*
mation lies in the range (¢ , t + dt ).
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F. The Minimum-Energy Path

The analysis of the preceding section reduceskthe problem of deter-
mining the kinetics of the phase‘transformation to the problem of deter-
mining the sequence of configurations assumed as the transformation pro-
ceeds. Even with the help of computer simulation, however, this problem
remains formidable in the analysis of a transformation which occurs at
finite temperature. The transformation path will be determined by what
amounts to a random walk over the set of possible configurations. Parti-
culary if there are metastable intermediate states during the transforma-
tion, the transformation may not go at all monotonically toward comple-
tion, but rather oscillate for long periods of time before making a net
positive step.

To comstruct a tractable treatment of the phase transformation, it
is useful to have a representation of the transformatiqn path which is
both reasonably accurate and relatively simple to analyze. The obvious
choice is the minimum—~energy path, which is the path found if at each
step of the transformation the transformation progresses in a way which
minimizes the total activation energy. |

An examination of the equations in the preceding section will show
that at each step of the transformation that event which involves the
least value of the activation energy is most likely to happen, and is
also least likely to be reversed by back-transformation in the following
step. Hence, while the transformation may take many paths, there will
be a tendency for it to follow the path which progresses toward comple-
tion through those steps which involve the minimum activation energy.
This tendency will become increasingly strong as the temperature goes

down .
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A simple way to locate the minimum-energy path in computer simulation,
which will be used in the following, is to assume that the transformation
cannot reverse itself, that is, that it goes menotonically‘to completion,
and to choose each transformation step so that the incremental energy is
as low as possible. If we rule out the possibility of reverse transfor-
mations, then the computation of transformation kinetics along the mini-
mum-energy path is straightforward and simple. In the more realistic
case in which reverse transformation is allowed the kinetics may be
approximated by using equations analogous to diffusion through random-
walk processes, in which the kinetic consequences of the reverse trans-
formation are gathered into a 'correlation factor'.

Specification to the minimum-energy path defines the particular
sequence of configurations a = 1,..., n assumed as the reaction goes to
completion., This particular sequence of configurations may be readily
found through computer simulation of the transformation, as is done, for
example, in the following sections.

The predicted kinetics of transformation along the minimum-energy
path depend on the assumed reversibility of the transformation. If the
transformation is assumed to be irreversible, but is confined to the

.o . . th .
minimum~energy path then the time required for the g atep is

<ta> = 1 + exp (6&62)9 (I1I-E=26)
where AGZ is defined in the previous section., If the transformation is
assumed to be reversible, but biased in the forward direction by the
chemical driving force, Ay, then a first approximation to the net rate
of forward progress may be phrased as follows:

If the body has the ath configuration along the transformation path
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then the probability that the body will move to the (or%—l)st configura-
tion in a single attempt is

*o.-1
P@ = (1 + exp (BAG@)) (I11-E=27)

To obtain the net probability for forward progres the probability Pa
must be weighted by the probability Pa“ that the transformation will not
subsequently reverse itself to regenerate the configuration o. S8ince the
body may perform a rather complicated random walk along the transforma-
tion path before regenerating the configuration a, Pa’ will be difficult
to compute exactly. If the thermodynamic driving force NOAU is large
and negative, however, it is unlikely that the body will return to
from configurations o+ o' where o' is large.

As a first approximation, we account for returns to o from ot+l, but
ignore returns from at+o' when o' > 1. The probability POLg is then
approximated by the probability that the configuration o+l will evolve to

at+2 before reverting to o, or:

lxY)
23

% * *
exp (wBAG@+1)/[exp(~BAGa+l) + exp (BAGQ}]

B

[ ‘A* Ac” ]"1 (I11-E-28
1+ exp B( Gy + Ga+l) ~E-28)

+
It follows that the net probability for forward progress, P@s is

+ x 7 -1 ¥ 7 -1 o
P@ = [1 + exp (BAG@)J [1 + exp B(AG@ + AG@+1,] (I11-E-29)

giving the net activation time

+. +, =1
<ta> = (P@)

- % %
f\} 1 e =
n exp B[ZAGa + AGa+l] (I11-E-=30)

%

m+1) > 0.

% %
when AG@ >> B and (AG@ + AG



A48 T » 0 (B + ) the probability of transition approaches one for

% #
AGa < 0 and zero for AG@ > 0.
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IV. COMPUTER SIMULATION OF MARTENSITIC TRANSFORMATION

Before presenting the results of computer simulation of the marten-
site transformation, we byriefly recapitulate the more important features
of the model employed.

The computer simulation of the martensite transformation in 3-dimen-
sions requires the employment of three kinds of EMP whose tetragonal
axes (or Bain axes) lie along the [100]9 [Ole and EOOlJ directions of
the cubic parent phase respectively. TFor a reasonably large crystal,
the calculations will take considerable computer time. The resulting
structure inside the 3-dimensional volume of the parent phase cannot be
displayed with the same clarity and simplicity as the structure in the
2-dimensional case. The latter can be presented simply on a sheet of
paper.

On the other hand, the main pecularities of the martensitic trans-
formation appear in a 2-dimensional model as well as in a 3-dimensional
one, We have, therefore, chosen a 2-~dimensional model for the initial
computer simulation studies.,

In the specific model used below the crystal is assumed to be a
pseudo 2-dimensional body, in that each point in its plane vepresents
a line extending to infinity in either divection. The 2-dimensional
crystal is represented by a square grid of points, forty on a side, in
a square array. Each point represents an EMP of the type discussed in
the previous section. The array 1s assumed to be periodic across each
of dits boundaries.

The array initially consists of elementary volumes of the parent
phase together with one or more defects which may serve as heterogeneous

aucleation sites for the martensite transformation. For simplicity,
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and since we are interested in the growth of martensite rather than in
the details of its nucleation, these initial defects are modeled as
elementary volﬁmes of the martensite phase.

The martensite transformation is assumed to involve a Bain strain
in two dimensions: a contraction along one of the axes together with an
expansion along the other axis of the grid (See Figure 5). 1In most of
the cases reported below, the Bain strain is assumed to involve no dila-
tation; the transformation strain is therefore a pure shear. The two

variants of the stress-free distortion are then described by the two

tensors
o 0 o o 10
Eij ~ €ij (2) = ¢ (1v=-1)
1 0 1

where ¢° is the magnitude of the shear.

Elementary volumes of the martensite phase (EMP) interact with one
another through elastic interactions as discussed in the previous sec-
tion. The calculation of the invariant plane in three dimensions was
described in Section II-A. The orvientation of the invariant plane,
which corresponds to the plane with minimum lattice mismatch, can also
be calculated for the two dimensional case. When the transformation
strain is a pure shear, the invariant planes avre found to be (11) and
(11).

The martensitic transformation is assumed to occur through the dis-
crete formation of elementary volumes of the martensitic phase (EMP).
The net energy change on introduction Qf an EMP is the sum of three
terms: a chemical energy, which is deséribed in the previous section and
is assumed to depend linearly on the undercooling, AT; an elastic self

energy, which is equal to the elastic enexrgy vequired to accomplish
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the Bain strain; and an elastic relaxation term which was derived in the
previous section and includes the elastic two-body interaction with all
other particles which are present.

The thermoelastic potential @p(%) is calculated by the computer in
accordance with the equation (I11-D~2) applied for the 2-dimensional
case, for all sites % of the grid and for p = 1 or 2, corresponding to
the two possible variants of the EMP., The code employs the stress—free
strains (IV-1) and carries out the integration over % in equation
(I11-B-18). Figure 6 shows a 3-dimensional plot of potential ¢p(§> at
every site, Rs for a configuration, &, which contains a single type p
EMP on the center of the net, in the case of elastic isotropy. The po-
tential field varies dramatically with direction near the EMP. The
absolute value of ¢p(§) decreases quickly, approximately as 1/R2a

Since the surface energy, which includes the martensite-austenite
interphase energy and the interplane energy for the martensite trans-
formation, is much less than the elastic strain energy, we neglect the
surface energy term in equation (III-D-2).

For each configuration formed by EMPs, the computer calculates all
local potentials ¢p(§) for every point R on the net and for both values
of p, finds the ¢§(§) = min ¢p(§) and, if ¢;(§) is negative, creates a
new EMP of the kind of ?O at the point %09 Therefore @;(R) is the
"quantum' of the free energy, i.e., the elementary martensite formation
energy (EMFE) of one EMP at %OQ In all cases discussed below, the ener-
gies ave in the unit of u€§V9 where 4 is the shear modulus, € is the
amount of transformation strain, and V is the volume of one EMP. The
local potential ¢p(§) is the sum of the texms A¢ch9 the chemical energy

term and A¢e1(§)9 the elastic energy term. As in eq. (I1I-C-7), the
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chemical energyﬁﬂjlis proportional to the amount of supercooling
AT = T - T , which is expressed in units of VuEZT /N Ah, Ad is con~
o oo o ch
stant over all lattice sites whileﬁiél(R) varies. TFor convenience, we
define the Elementary Martensite Elastic Energy (EMEE) for each cycle
during the transformation process where

EMEE = EMFE - ¢Ch (1v-2)

The energy EMEE is also given in units of ueiv in the following.

To establish the kinetics and path of the transformation in these
initial experiments, the transformation is assumed to follow the deter-
ministic minimum emergy path in the limit of low temperature. This
transformation path is defined by the dual requirements that transforma-
tion can only occur if the energy associated with the formation of an
additional particle is negative, and that, if several such particles are
possible, that having the lowest energy will be the one formed. The
transformation hence occurs so as to maximize the energy decrease per
elementary step and only occurs if the incremental energy change is
negativg,

As ghould be clear from the preceding section, most of the more re-
stricitive assumptions cited above can be relaxed within the context of
the model. Some exploratory experiments in these directions have al-
ready been carried out. However, the work associated with this thesis
has focused on the attempt to gain a fuller understanding of the simp-

lest possible case, which appears to be that cited above.
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V., COMPUTER SIMULATION RESULTS

A, The Single Nucleus Case

The simplest case of the transformation os that in which the two-
dimensional body is elastically isotropic, initially contains only a
single nucleating defect, and transforms via a Bain strain which is a
simple shear. The starting point for this case is shown in Fig. 7-1.
The subsequent development of the microstructure is illustrated in the
other figures presented in Fig. 7. The companion Fig. 8 shows the
incremental change in the elastic relaxation energy for the first 800
steps of the martensitic transformaﬁiona The companion Fig. 9 plots the
average of the elastic energy per martensite particle for the first 400
transformation steps.

Referring to the microstvuctural sequence shown in Fig. 7, it will
be seen that the mavtensite transformation begins from‘its single
nucleus as a three-layer twinned plate along the (11) habit, which may
be easlly seen to be the preferred habit plane for the growth of the
martensite plate in the case in which the Bain strain is a simple shear.
The reason for the three~layer initial thickness may be readily seen
from Fig. 7-4. The first three elementary martensite particles which
develop from the initial nucleus position themselves so as to form a
closed box, the sum of whose tetragonal distortions is zero. This con-
figuration minimizes but does not eliminate the elastic energy. As dis-
cussed in previous sections, the elastic energy is always minimal for
the morphology of a thin plate. The box shown in Fig. 7-4 hence tends
to extend itself into a thin plate along the (11) plane. Since the box
oceupies three parallel (11) planes in its initial configuration, the

initial plate is three planes in thickness. An intermediate configura-



84

tion in the development of the three-layer plate is shown in Fig. 7-5,
7-6,

The plate extends throughout the periodic array until it finally
closes on itself, as shown in Fig. 7-6.

The incremental elastic energy assoclated with the growth of the
three-~layer plate is shown in the first segment of Fig. 8. The regular
oscillation of the incremental elastic energy during growth of the three-
layer plate is evident. When the plate eventually closes on itself, at
the 120th cycle, a situation of invariant plane strain is created.

There is essentially no elastic driving force for further growth of the
plate, and the additional transformation would involve a rather high
elastic energy as shown in Fig. 8.

The gradusl decrease of the elastic energy during growth of the
thyree-layer initial plate is perhaps even more evident in Fig. 9, which
shows the average elastic energy per martensite particle. As is appa-
rent from the figure the elastic energy is initially high and decreases
dramatically towards zero as the three-layer plate develops. On the
closure of this plate, at the 120th cycle, the elastic energy becomes
egsentially equal to zero.

Once the initial three-plane plate has completed itself, the resi-
dual dnteraction terms almost vanish and there is, therefore, very
little elastic driving force to continue the martensitic transformation.
It is apparent from the graphs shown in Figs. 8 and 9 that the transfor-
mation of particles to continue the transformation requires a very high
elastic energy, and would consequently require a rather large chemical
driving force as might be achieved through severe undercooling. The

details of the two-body elastic intevaction do, however, create a
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slight bias for additional transformation to occur at a particular
point in the microstructure. As shown in Fig, 7-7 and 8, this slight
bias causes the martensite plate to thicken on further transformation by
the addition of a two-layer twin plate that spreads along the surface of
the pre-existing martensite plate. The plate hence thickens by what in
usual metallurgical terminology is known as a ledge growth mechanism,
The two-layer twin nucleates and spreads to completion along the surface
of the pre-existing plate, giving finally a five-layer internally twin-
ned plate. At this point the transformed region again consists of an
infinite plate along the habit plage9 and the average value of the elas-
tic energy per martensite particle is again almost identically zero as
shown in Fig. 8 at the 200 cycle point.

Following completion of the five-layer plate it is again necessary
to nucleate a new plate under a situation requiring a rather high acti-
vation energy. Again the details of the two-body interaction create a
smali but finite bias for further transformation to initiate at a par-
ticular point within the lattice. The rvesulting nucleation is shown
in Fig. 7-9 and differs from the previous nucleation event in that this
time the preferred site for the nucleus is spatially separate from the
pre-existing plate. As shown in the subsequent figures this nucleated
plate develops into a three-layer martensite plate that grows in paral-
lel to the pre-existing plate leaving a layer of retained austenite in
the interim. Interestingly, as can be seen in Fig. 7-10, the growing
plate ig, in aggregate, twin velated to the initial martensite plate.

The reason for the spatial separation between the parent and the
autocatalytically nucleated plates appears to derive from the particu-

lar shape of the two-body elastic interaction, as diagrammed in Fig. 6
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The two-body elastic interaction has a weakly oscillating tail, which,
if it is constructively reinforced by the overlapping interactions from
properly configured plates, can introduce a bias for the formation of
martensite particles at some distance from the pre-existing particles.
The weak oscillation of the long range interaction is in this particular
case a consequence of the periodic boundary condition and hence may be
a spuriocus feature of the model. It is, however, interesting that the
transformation through formation of crystallographically-related marten-
site variants at some distance from the initial martensite plate is a
not uncowmmon experimental feature of éhe martensitic transformation<68)a

As shown in Fig. 8 the incremental energy pattern following auto-
catalytic nucleation of the second three-layer plate is essentially iden-
tical to that for the development of the original three-~layer plate. As
shown in Fig. 9 the average value of the elastic energy igcreases slight=
ly during the growth of this plate and returns to zero when the plate
development is completed at the 320th cycle.

The remainder of this martensitic transformation essentially re-
peats the features we have already seen. Following the growth to comp-
letion of each twinned plate the elastic energy returns to a value very
cloge to zero and a new nucleation event is required in ovder to con-
tinue the transformation. Depending on the precise configuration of the
martensite particles the preferred site for this nucleation event may
be on the surface of an existing plate, in which case the plate thickens
by a ledge growth mechanism with the ledge being a two-layer twin plate,
or the preferred nucleation site may be spatially separated from any of
the pre~existing plates, in which case the growth of a new three-layer

plate is autocatalytically triggered. Some elements of this process are



apparent in the energy curves pteseﬁtad in Figures 8 and 9.

The thermal characteristics of the martensite transformation from a
single nucleus are relatively uninteresting. A finiﬁe supercooling,
of approximately 0.3 in energy units 1s required to start the transfor-
mation on its way. Following the growth to completion of the initial
plate, an additional supercooling of approximately 0.3 energy units is
required to continue the ttansférmaticn.. The sum of these undercoolings,
0.6, is nearly equal to the cheﬁical driving force required to balance
the elastic self energy of the martensite‘particle in the absence of any
favorable interaction terms. Once this undercooling has been establish-
ed a transformation will continue to completion along the energy path
shown. Hence, as a function of tempevrature the transformation contains
only two steps: a first step which causes the initial nucleus to develop
into’a full plate along the habit plane, and a second step at a much
more substantial undercooling, which completés the transformation of the
body.

B. Multi-Nuclei Transformations

To simulate a wider range of interesting features of the martensite
transformation, it is neceésary to assume that muitiple nuclei are pre-
sent within the periodic forty by forty cell of initial volumes. The
presence of the distribution of nucleating defects serves two functions:
it helps to eliminate the effect of the periodic boundary conditions,
and it strongly influences the character of the martensite transforma-
tion.

The specific example that we shall discuss begins from ten initial
martensite embryos which are randomly distributed over the forty by forty

grid. Again, the strain is assumed to be a pure shear (no dilatation),the
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the matrix elastic constants are assumed isotropic, and the transforma-
tion path is taken to be the deterministic (low temperature limit) one
by one transformation path, in which the transformation proceeds if and
only if it is possible to form a particle which decreases the energy of
the system, and the transforming particle is chosen from among the
admissable events so as to provide the maximum energy decrease.

The particular example discussed here has been used to create a
computer movie of the martensite transformation, which is in fact
rather more informative than the follqwing discussion, based on a limi-
ted number of figures, is likely to be.

The transformation is represented in the composite Figures 10, 11
and 12, Figure 10 shows the variation of the martensite fraction with
undercooling, with the temperature measured in energy units. The compo-
site Figure 11 shows the transformation through the successive stages of
its development in the microstructure. The two variants of martensite
are again represented by horizontal and vertical lines and the parent
austenite is represented by open squares. The example microstructures
are chosen to emphasize the stages of the transformation at which the
undercooling would have to be increased in order to maintain the process.
The composite Figure 12 plots the energy change associated with each
successive elementary transformation. The horizontal lines in these
figures show the chemical driving force, and hence the undercooling
which is necessary to maintain the transformation at the stage in ques-
tion. The oscillating line shows the total elastic energy involved in
each elementary transformation event. The driving force, or undercooling
required is simply that necessary to insure that the total energy is

negative for evevry preceding transformation event.
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As discussed earlier the elastic self energy for the formation of
a martensite particle in the periodic array is large and positive,
0.6447 in dimensionless energy units. If there were no relaxation due
to interaction with other inhomogeneous defects the self energy would
have to be provided by the chemical driving force of the transformation,
requiring an undercooling equivalent to 0.6447, However in the presence
of the distribution of initial defects shown in Figure 11-1 the required
driving force is much smaller. The total elastic energy change involved
on the addition one elementary martensite particle in the most favorable
site (Figure 11-2) is 0.09, and only this supercooling, approximately
1/7th of that required for the homogeneous nucleation of martensite,
need be established to initiate the transformation.

As shown in Figure 10 the martensitic transformation is initiated at
an undercooling of 0.09, which defines the MS temperature for this par=-
ticular example, and the initiated transformation proceeds by some
finite amount before coming to a halt. The nucleation site shows that
it lies in the wvicinity of two preexisting defects, which are so confi-
gured that they are naturally incorporated in a two layer twinned mar-
tensite plate extending from one to the other. At an undercooling of
0.09 this two layer twin plate nucleates and begins to propagate rapidly
through the array. Its growth is 1llustrated in Figures 11-1 through
11-7. As can be seen from Figure 12-1, the elastic energy change per
elementary event during the growth of this twinned plate is small and
oscillates about zero. This situation maintaine until the twinned plate
almost closes on itself (Figure 11-7) at which point the transformation
ceases abruptly. Reference to Figure 12 shows that the continuation of

the transformation beyond the point shown in Figure 11-7 would involve



90
an elastic energy exceeding the chemical driving force; the transforma-
tion can, therefore, proceed only if the temperature is lowered further.
Examination of Figure 11-7 indicates the source of the transformation
arrest: the twin plate is trying to grow through.a region of the crystal
that contains pre-existing defects whose strain fields interfere with
and oppose the cogtinued growth of the plate.

The development of this initial martensite plate as pictured in
Figures 11-1 through 11-7 {llustrates the dual role played by pre-exist-
ing defects. 1In favorable configuration these defects act as preferen~
tial nucleation sites to initiate and.prﬂmote the martensite transforma-
tion. The defect distribution is also, however, responsible for the
energetic barrier that forces the transformation to stop, and necessi-
tates a continual dncrease in the undercooling if the transformation is
to be maintained.

On a slight lowering of the temperature the transformation is re-
started and proceeds ultimately through the nucleation and growth of a
short plate that is in a branching orientation to the original twinned
martensite plate (Figs. 11-10 through 11-12). The development of this
plate is again stopped by its impingement on the strain field of pre-
existing embryos, Fig. 11-12. A further decrease of the temperature,
to an undercooling of 0.1375, Fig. 12-1, is required to trigger a signi-
ficant additional transformation, that is shown in Figs. 11-14 to 11-17,
It will be noted from Fig. 12-1 (Cycles 100 to 144) that during the
growth of this new plate, the incremental elastic energy continues to
oscillate about 0., The increased undercooling 1s only necessary to over=-
come gpecific barriers which bring the transformation to a halt.

Several further drops of temperature are necessary after cycle 146
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to maintain the transformation; they correspond to the formation of new
plates and the thickening of the initial plate (Figure 11-18) until
cycle 229 (Figure 11-21), The increase in the energy required to sus-—
tain the transformation during the impingement process is clear from
Figure 12,

At this stage of the transformation, the temperature must be lowered
still further to an undercooling of 0.27 to continue the process. The
next nucleation event is the activation of a pre-existing defect which
is spatially separated from the part of the microstructure which is al-
ready transformed. Once this nucleus is activated the propagation of
an associated plate is energetically quite easy and fast (Figure 11-26,
27y. At the completion of the growth of this plate, other events are
triggered at the same driving force. The transformation proceeds at
this value of the undercooling for 663 steps. The transformation in-
volves the thickening of the martensite plates and the transformation
of the space between plates, as illustrated in Figures 11-28 through
11-33. The relatively high amplitude oscillation of the energy change
from cycles 980 to 1170, shown in Figure 12-3, correspounds to the for-
marion of the thick twinned plate which fills up the space between two
widely separated transformed plates Figs. 11-(33-36). At the comple-
tion of the transformation permitted at this value of the undercooling,
the martensitic transformation is much more than 50% complete, and the
microstructure, illustrated in Figure 11-38 has come to bear a very
strong resemblance to that observed in a number of veal systems at the
approximately 507 transformation point. Discrete internally twin
plates are present, they branch along the two variants of the (11)

habit plane, and they are separated by regions of retained austenite.
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At this point in the transformation, all of the pre-existing defects
have been consumed by transformation. The undercooling required to
accomplish this transformation is less than one-half of that which
would be required to initiate the martensite transformation by a homo-
geneous nucleation process.

The martensite transformation is brought essentially to completion
by an additional lowering of the temperature to an undercooling of
0.355, At this value of the undercooling, further transformation is
triggered by the annihilation of a layer of retrained phase lying
between two martensite plates (Figures 11-39,40), Transformation con-
tinues until almost all the crystal lattice sites ave transformed.

Only fifty-three austenite elementary volumes remain at the completion
of this step.

The undercooling AT = 0.355, resulting in the microstructure shown
in Figure 11-40, may be reasonably regarded as the martensite finish
temperature. Very few austenite volumes remain, and, as shown in
Figure 12-4, the elimination of these requires a substantial and in-
creasing undercooling. Further transformation is, in fact, only accomp-
lished by a rather substantial undercooling which results in the elimi-
nation of the residual austenite particles in almost a step by step
process. This retention of an austenite phase which is very difficult
to eliminate is a common experimental observation, and is also a natu-
ral consequence of the model transformation exhibited here. The comp=
lete elimination of the residual austenite requires an undercooling
AT = 0.62, which is still less than but almost equal to the undercool-
ing required for homogeneous nucleation of the martensite transformation.

Three additional figures have been included, Figures 13 to 15, to
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provide other useful illustrations of the energy change during the mar-
tensite transformation., Figure 13 shows the average elastic energy per
martensite particle during the transformation. At the beginning of the
transformation, the elastic energy per particle is high. As the trans-
formation proceeds, the high elastic energy is relaxed and the average
elastic energy decreases. The elastic energy ultimately decreases to
an average value very close to zero, though it does not quite reach
zero because of the irregular arvrangement of the elementary martensite
particles.

Figure 14 shows the average values of the self energy per particle,
including the elastic and chemical energy but excluding the elastic in-
teraction term, and the average total energy per particle during the
transformation. The upper curve represents the self energy. Each step
in the curve is associated with a decrease in the chemical energy re-~
sulting from the decrease in temperature. The self energy is positive
definite through the entire transformation, rveflecting the very large
value of the elastic self energy. Inclusion of the interaction energy,
however, has the consequence that the average total energy becomes in-
creasingly negative causing the transformation to proceed in an increas-
ingly favorable manner.

Figure 15 plots the total energy change during the martensite trans-
formation. Again the total value of the self energy is positive and
increases with the extent of transformation, while the relaxation term
has the consequence that the total energy is negative and decreases as
the transformation proceeds. It should be clear from this figure why
earlier models of the martensite transformation, which effectively con-

gidered only the self energy term, had some difficulty in interpreting
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why it is that the martensite transformation occurs spontaneously. The
elastic interaction term along the most favorable transformation path,
is, in fact, large and negative, and effectively cancels out a substan-
tial part of the high elastic self energy involved in the transforma-
tion of the martensite particle.

In summary it should be noted that the model transformation descri-
bed above reproduces most of the characteristic features of observed
martensitic transformations in a simple and intriguing correspondence.
The transformation proceeds through the growth of discrete martensite
plates which are twinned. 1In the earlier stages of transformation,
these plates are heterogeneously nucleated at pre-existing defects in
the lattice. The driving force for the transformation is provided
by undercooling, which must be continuously increased to maintain the
transformation; the transformation occurs over a range of temperatures
between a martensite start and a martensite finish point. Some auste-
nite phase is retained in the microstructure until the undercooling be-
comes extremely large. As observed experimentally, this austenite
phase tends to be retained in thin lamella separating adjacent marten-
site plates. Finally, the martensite transformation occurs spontaneous-
ly on cooling in situations in which the self energy of the martensite
particles is large and positive.

C. Variations on the Multi-Nucleus Case

The martensite transformation beginning from ten randomly distributed
nuclei which was discussed in detail in the previous subsection is typi-
cal of the results obtained when the two-dimensional martensite trans-
formation occurs in an array containing a distribution of initial

nuclei. Of course, given the small size of the array and the random
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distribution of nuclei, there are statistical variations in the marten—
site start temperature and in the specifics of the transformation path
which depend on the particular aumber and distribution of initial nuclei.
Some additional resulis are shown in Figures 16-1 to 3, which present
the fraction of martensite as a function of undercooling for three
cases containing ten, twenty and forty initial nuclei in random distyri-
bution. The resulting transformation curves are somewhat different from,
though qualitatively similar to that obtained in the ten-nucleus case
discussed in detail,

There is an expected statistical tendency for the martensite start
temperature, MS9 to increase as the number of randomly distributed
nuclei is made greater. Recognizing that the martensite transformation
will begin from the most favorable local configuration of pre-existing
nuclei, this tendency simply reflects the increased likelihood of a
particularly favorablé configuration when the number of nucleating de-
fects is increased. A particularly favorable configuration may even
cause the martensitic transformation to occur to a slight extent above
the equilibrium temperature (AT = 0). An example is shown in Figure
16-3, for a martensite transformation in a case containing forty initial
defects. In this case a slight transformation occurs at a temperature
for which the undercooling AT is negative. The source of the transforma-
tion is the large negative energy which may be obtained by introducing
a martensite particle in the environment of a particularly suitable con-
figuration of initial defects. It is, however, not possible for the
martensite transformation to progress significantly at negative values of
the undercooling.

The tendency for the martensite transformation to occur at increas-
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ing temperatures with the introduction of additional defects is analo-
gous to the phenomenon of deformation-induced martensite, in which the
martensite transformation temperature is raised by deforming a crystal.

It will also be noted that as the number of initial defects is in-
creased the transformation becomes more smooth, that is, it occurs more
uniformly as the temperature is decreased. This behavior also has a
relatively straightforward interpretation. As we discussed in the two
previous sections, the halting of the martensite transformation at a
given temperature has one of two causes: either previous transformation
has led to the completion of a twin plate along the habit plane, which
dramatically reduces the elastic driving force for further transforma-
tion, or the plate has progressed to a point in which 1t encounters
opposing strain fields from other plates which have previously formed,
or from previous defects that have not yet been activated. The latter
case 1is much mgre common when many initial defects are present. As a
consequence, the extent of transformation per thermal step tends to be
much less in the many defect case. On the other hand, the presence of
many initial defects provides a smoother energy spectrum of heteroge-
neous nucleation sites. As a consequence, the degree of supercooling
required to reinitiate a transformation that has halted tends to be
smaller when many nuclei are present.

The tendency toward a higher martensite start temperature and a
smoother transformation curve of percent martensite vs. temperature in
the presence of the larger number of initial nuclei are, of course,
statistical trends rather than determined phenomena. Significant sta-
tistical variations in both these features of the transformation do

occur when a particular transformation case is repeated with a differ-
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ent distribution of additional nuclel. An example may be seen by com-
paring the transformation curve given in Figure 16-1, for a ten-nucleus
case, with that presented earlier in Figuve 10 for the ten-nucleus case
which was discussed in detail. Because of the difference in the initial
defect configuration, the example shown in Figure 16-1 exhibits a sub~
stantially lower martensite start temperature and a much narrower range
of temperatures over which the transformation is brought to completion.
One would, of course, expect these statistical variations to disappear
if the arvay size were made arbitrarily large. The martensite start and
finish temperatures would then become dependent only on the type and
concentration of initial defects.

The martensite finish temperature, M at which the last of the

£
austenite particles disappears, tends to decrease as the density of
the initial defects increases. This effect also has a relatively
straightforward interpretation in the model. As the number of initial
defects increases, the transformation becomes more irregular and the
martensite plates become less well-developed. The residual austenite
is stabilized by the elastic interference of the adjacent martensite
plates which leads to high values of the elastic energy required to com-
plete transformation in certain unfavorable sites. As the transforma-
tion becomes more irregular, the number and unfavorability of such sites
has a statistical tendency to increase, requiring greater undercooling
to fully complete the martensitic transformation.

D. Variation of Array Size and Dimensionality

Experience with the computer simulation model seems to show that the

characteristics of the two-dimensional transformation are not very sen-

sitive to the array size employed so long as the array size is forty by
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forty or greater and so long as the density of the initial defects is
reasonable, for example, ten or more in a forty by forty array. A forty
by forty array is sufficient in size to largely eliminate fluctuations
in the two-body elastic interaction due to the periodic boundary condi-
tion, so that the nature of the elastic relaxation term does not change
significantly as the array size is made larger. There is a slight ten-
dency for the martensite start temperature to increase as the array size
is made bigger, again as a consequence of the fact that the martensite
transformation is nucleated by the most favorable configuration of de-
fects initially present, but the effect does not seem to be pronounced
in the caseg studied to date.

Much more pronounced effects are expected if the dimensionality of
the array is increased from two to three. In three dimensions there are
three rather than two simple variants of the elementary martensite part-
icle, corresponding to the three different orientations of the tetrago-
nal axis of the Bain strain. Moreover, in three dimensions there is a
considerably enhanced freedom for the martensite particle to take non-
simple habit planes, for example, the (259) plane often observed in
real systems. The problem of elastic constraint also changes somewhat
in three dimensions since one must recognize the three-rather two-dimen-
sional confinement of an isolated martensite particle. It is clear that
a three-~dimensional simulation which dincorporates these qualititative
changes must be carried out if we hope to obtain quantitative simulation
of the martensitic transformation in a real crystal.

In anticipation of the need for three-dimensional simulation stu-
dies, a computer code was written which permits the modeling of the mar-

tensitic transformation in three dimensions. To date this code has only
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been used for some preliminary experiments for debugging purposes. The
three-dimensional transformation is not only much move difficult and ex-~
pensive to simulate in the computer, but is also much more difficult to
analyze insofar as the progress of the transformation is concerned,
since the three dimensional development of martensite particles is not
easy to represent in a way which permits simple visualiztion. We there~
fore adopted a research strategy that contemplates a thorough investiga-
tion and understanding of the two-dimensional transformation case before
proceeding to three-dimensional stgdies,

A preliminary example of a martensitic transformation in three dimen-
sions is shown in Figure 17. In this case the transformation was
allowed to occur in a fifteen by fifteen by fifteen array, the initiat-
ing defect was a single martensite variant in the center of the array,
and the three martensite variants are modeled by 1ines‘along the %, v
or z axes., A section through the transforming cube is shown in Figure
17. The transformation tends to proceed through the growth of (110)
twinned plates in three dimensions. Only two of the three possible
variants appear in a single plate, as expected from either the crystal-
lographic or elastic energy model of the martensite plate. The results
of this simulation seem to show that the computer code is working proper-
ly, but since detailed studies of the three-dimensional transformation
have not been carried out, no more specific discussion of these results
can be given,

E. The Introduction of Elastic Anisotropy and Dilatation

The martensite transformation studied in detail in this work con-
cerned the simplest possible case, in which the elastic constants were

assumed to be isotropic and the Bain strain was taken to be a simple
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shear. The modification of the model to treat cases in which the elas-
ticity is anisotropic and the Bain strain involves a dilatation as well
as a shear is straightforward and some preliminary investigations have
been carried out. While these investigations have not been taken to the
point at which a thorough discussion of the consequences of anisotropy
or dilatation can be given, preliminary results are available.

Figure 18 shows a series of micrographs illustrating the development
of the martensitic transformation in a two-~dimensional forty by forty
array in which the elastic constants were chosen to be the anisotropic
elastic constants of iron-nickel austenite, and the transformation was
assumed to involve a large dilatation, roughly corresponding to the di-
latation involved in the Bain strain of iron-nickel austenite when only
the tetragonal and perpendicular axes are Included. This dilatation is
unrealistically large, and it exaggerates the relevant effects,

The habit plane of the martensitic transformation in this case can
be computed using velations developed in Section III. Since the dila-
tation i1s non-zero, the preferred habit plane is rotated somewhat away
from (1 1) and lies close to the plane (5 4)., An examination of the
effect of the dilatation on the pair-wise intevraction of martensite
particles brings out a second effect. The dilatation modifies the short
range two-particle interaction so that the preference for unlike neigh-
bor particles is slightly reduced. Unlike or twinned neighbors are
sti11ll preferred, but less so than when the transformation strain is a
pure shear.

The transformation illustrated in Fig. 18 occurs in an arrvay which
contains a distribution of twenty initial nuclei. The nucleating de-

fect is a like pailyr of dnitial defects, located near the center of the
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array on the right hand side, which are fortuitously in nearest neighbor
relation to one another. As shown in Fig. 18-2 and 18-3 the transforma-
tion begins to develop in the form of a twinned plate roughly along the

(1 1) direction. In contrast to the pure shear case, however, the cen-

tral rib of this plane is two layers in thickness.

As shown in Figures 18~4 and 18-5, shortly after it begins to grow
the plate branches in a somewhat irregular pattern. It becomes a thick
wavy plate which contains (1 1) and (1 0) segments. An examination of
the microstructure reveals two sources for the waviness of the plate.
First, since the habit plane of the particle is not strictly (1 1), the
growing plate can deviate from its initial orientation without a sub-
stantial loss of energy. Second, the array through which the plate is
growing contains initial defects, some of which are attractive to the
growing plate and promote deviations in the direction of its growth.

After some growth the plate crosses the array in roughly a (1 0)
direction. However, the plate is displaced slightly as it is wrapped
arvound the periodic array, so that the two ends of the plate are slight-
ly offset and bypass one anothéer rather than meeting, leaving a region
of retained austenite in the intervening region. The plates do ultima-
tely join together, as shown in Figure 18-6, and the intermediate aus-
tenite is gradually transformaed as shown in Figures 18-7 to 18-12 to
yield an essentially complete plate traversing the array in a (1 0) di-
rection. The process of transforming the austenite between the bypass-
ing plates is accomplished primarily through the thickening of the
upper plate in the figure; however, secondary nucleation is also involv-
ed. The transition from the state of Figure 18-8 to that of Figure 18-9

is accomplished by a clear case of autocatalytic nucleation. The new



102

particle forms within an island of austenite in a position which is spa-
tially separate from any of the previcusly formed martensite.

The transformation subsequent to that shown in Figure 18-12 is rela-
tively simple. The thick (1 0) plate shown in the figure gradually
thickens, and by this thickening, eventually accomplishes the complete
transformation of the array. ©Some residual austenite is left behind in
this thickening process, as, for example, is seen in the microstructure
18-12. This austenite 1s eventually eliminated at large undercooling.
Its tendency to lie in thin platelets along the (1 0) orientation will
be noted.

The internal structure of the transformed region shown in Figure
18-12 is typical of the structure observed in the late stages of the
transformation. The internal structure of the plate is largely made
up of twineed sub-plates which are often two layers rather than one
layer in thickness. These two-layer platelets lie approximately along
the (1 1) direction, but have occasional steps within them, which pre-
sumably veflect the preference of the system for a habit that is slight-
1y rotated with respect to (1 1),

The pattern of the transformation in this case of anisotropic elas-
tic constants and transformation strains involving non-zero dilatation
ig decidedly more complex than that observed in the transformation of
an lsotropic array through a pure shear transformation strain. The
details of this case are under continuing investigation. We are parti-
cularly seeking to separate the effect of the elastic anisotropy from
that of the dilatational component of the transformation strain in their

relative effects on the worphology of the transformation products.
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VI. DISCUSSION

The purpose of this thesis was to construct and study a theoretical
model of the martensitic transformation, which would be simple enocugh
to permit detailed study in computer simulation while being sufficiently
profound to shed mew light on the maonner in which the martensitic trans-
formation proceeds. Since the martensite transformation is believed to
be dominated by the problem of elastic accomodation between the two
phases, the model that was constructed emphasizes the elastic inter-
action, and in its simplest form, deemphasizes other possible factors.
The assumptions are strong in keeping with the desire to create the
simplest reasonable initial model. We have hence made a linear elastic
approximation, assumed homogenecus elastic constants, and modeled the
reaction over a finite lattice of elementary volumes which is formally
treated as a discrete lattice of points.

A. Comparison with Experiment

Despite the relative simplicity of this model of the transformation,
the results are enccutagingly real. Many of the most important qualita-
tive features of the martensite transformation are already reproduced in
this simplest case. Apparent qualitative points of contact with experi-
mental results occur in the heterogeneity of the martensite phenomenon,
the thermal characteristics of the transformation, and the retention of
austenite at very large undercoolings.

As is believed to be the case experimentally, the martensite trans-

(63)

formation is nucleated from heterogeneous sites , which are in this
case elastic defects in the lattice modeled as martensite embryvos.

When many initial defects are present, the nucleation occurs preferen-

tially at the wmost favorable configuration of defects, an observation
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in contact with the suggestion that arrays of defects form the
preferential nucleation sites(ZB)e The nature of the favorable configu-
vations might be discussed in detail by considering the interacting
strain fields defects in the configuration. However, in the cases ana-
lyzed to date the most favorable configurations have a simple character-
istic form. They consist of an association of defects, such as those
illustrated in Figure 11-1, which are so oriented with respect to one
another that a simple twinned plate will naturally incorporate them
during its growth.

The growing martensite plate is an internally twinned plate two or
three layers in thickness. From the point of view of the two~body in-
teraction, the source of the preference for the twinned plate is clear;
as illustrated in Figure 7-2 for the case of a transformation strain of
the pure shear type, the most favorable interaction between particles
promotes the appearance of a particle in twin orientation along a (1 0)
direction from the initial particle. Neighboring twin particles along
the (1 1) habit plane. The qualitative preference for the formation of
the twinned plate has an obvious interpretation in terms of the tenden-
cy of the martensite particle to try and minimize its net tetragomal
strain. This feature of the transformation is most clearly evident in
the growth of the plate from a single nucleation center, as illustrated
in Figure 7-3. The first four martensite particles appear so as to
form a square configuration in which the tetragonal strains are mutual-
1v compensating. This box is the embryo of a three-layer twin plate,
Fig. 19 shows one example of twinned martensite.

The driving force for the growth of a martensite plate is the de-
crease in the elastic energy associated with the spreading out of a

plate along its habit plane to form a completed plate along an invariant
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plane. This process is clearly revealed in the case of the growth of

a mavtensite plate from a single strain center, as illustrated in

Figure 7-6, in which the twin particle grows to form a twinned plate
along the (1 1) habit plane. After this growth has been completed the
total elastic energy of the system decreases to an extremely small value.

In the case of transformation in a lattice containing a number of
initial defects, the martensite particle attempts to grow to complete
the formation of a plate along the habit plane, but it is prevented from
doing so by the interference of the strain fields of other defects al-
ready present in the lattice. In typical experimental cases the pre-
venting defects are grain boundaries or martensite particles that have
previously developed. These serve as internal defects which prevent
platelet growth from reaching completion.

A continuation of the martensite transformation through the auto-
catalytic nucleation of additional plates is a consequence of the arres-
ted growth of the dinitial plate due to the mutual interference of the
strain fields of the defects in the lattice. These have the co§§equence
that the strain field of the lattice after partial completion of the
transformation is irregular, and there are hence sites within the lat-
tice at which the transformation can favorably proceed on slight further
undercooling. Two types of autocatalytic nucleation are observed:
first, and most predominately, is the activation of pre-existing defects,
or continued growth of previously created plates, through the addition
of particles in favorable positions in the internal strain field,
However, the homogeneous nucleation of new plates is also occasionally
observed. While the homogeneous nucleation of martensite is normally a

very difficult process, a circumstance in which the strain fields of
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adjacent particles strongly interfere can create the large elastic driv-
ing force necessary to bring about homogeneous nucleation as a means of
continuing the transformation.

The thermal characteristics of the transformation also strongly
resemble those of low-temperature martensitic transformations in real
systems. The transformation proceeds by an amount which is a function
of the final temperature, but not of time. To continue the transforma-
tion the tempevature must be continually decreased. The transformation
proceeds through a series of bursts as the undercooling is increased,
each of which involves the formation and growth of one or more marten-
site plates or the discontinuous extensions of plates which already
exist. Figure 20 shows the variation of the martensite fraction with
temperature in a typical experimental case(67)§ which will be seen to
be similar to the results of the computer model as illustrated in
Figures 10, 16-1~3,

During the course of the transformation the energy released per ele-
mentary event is a noisy function, due to the strong variation in the
relaxation energy associated with each elementary transformation. Ex~
perimentally, this irregular energy release should be observable in a
noisy contribution to both the thermal and acoustic emission during the
transformation. A typical result of the acoustic emission measurements
during the course of a martensite transformation is shown in Figure
21(67>9 The function is quite irregular as anticipated from the theo-
retical model.

The retention of austenite in the later stages of the model marten-
site transformation also bears a strong resemblance to austenite reten~

tion in many experimental cases. Initially the retained austenite tends

to form continuous bands in the interstices between adjacent martensite
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plates. For expevimental comparison Figure 22 shows the form of aus-
tenite as observed by transmission electvon microscopy in a low alloy
steel, following Thomas and coworkers%nég)° The retention of bands
of austenite is evident. 1In the later stages of transformation these
bands of austenite are eliminated, and the retained austenite occurs in
the form of small isolated pavticles within the lattice. This final
morphology bears a stvrong resemblance to that of the final residual aus-
tenite in, for example, ferritic cryogenic steels, in which the auste~
nite takes the form of small particles that are the residues of bands
of austenite that have transformed thermally. In the computer simula-
tion model the austenite is stabilized by the elastic strain, which is
such that both martensite variants are unfavorable at the site at which
the austenite is retained. This austenite can be quite stable. The
example discussed in the previous section is typical, in which very
large undercoolings are necessary to eliminate the final fraction of
austenite and bring the transformation to completion. It is, however,
interesting that the elastic stabilization of the austenite is typical-
ly less than that which would be achieved by simply eliminating all
martensite particles and nucleation sites from the lattice. While the
last few particles of retained austenite are very stable agains trans-
formation, they avre, interestingly, less resistant to transformation
than they would be if they existed as isolated particles free of the
partly transformed lattice. This vesult is also in qualitative agree-
ment with vrecent experimental evidence.

The correspondence between the martensite transformation as simula-

ted in this simple model and qualitative features of the transformation
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observed in real systems has an important iImplication that should be
noted. One of the objectives of the theoretical study of metallurgical
processes 1s to separate those features of the process that are rela-
tively obvious, in the sense that they are straightforward consequences
of the nature of the process itself, from those which are subtle and
require a substantial theoretical interpretation for their understanding.
In the metallurgical literature the martensitic transformation is often
treated as 1if it were mysterious in many of its most important features.
The reproduction of many of these features in what appears to be the
simplest realistic model of the transformation suggests that the domi-
nant features of the martensite transformation are not mysterious at
all, but they are velatively straightforward results of the large role
that elastic strain plays in the transformation process.

B. Extensions of the Model.

The model developed here is capable of a number of extensions which
might be useful in increasing understanding of martensitic transforma-
tions, and in obtaining a semi-quantitative match with experimental
results. In considering such modifications one should, however, keep
in mind that the feature of the model which permits us to construct a
straightforward computer gsimulation is the linearization which leads to
a two-body elastic interaction and permits the computation of the strain
field as a simple superposition of the strain fields of individual part-
icles. Modifications of the model that preserves linearization may be
readily dncorporated; those which destroy it will be very difficult to
include. Features of the model which would bear examination or modifi-
cation in future work include the following:

1. The two-particle interaction. The precise form of the two-body

elastic interaction would appear to be a critical feature of this model.
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Examination of the interaction field (Figure 6) shows that the inter-
action is maximal for the near neighbor terms. It is, of course, pre-
cisely these near neighbor terms which are least accurately treated in
an elastic model which relies on the long wavelength approximation. As
we have used it, the long wavelength approximation introduces two
sources of error. First, the finite volume of the elementary martensite
cell is not taken into account; the cell is treated as an equivalent
point. Second, the deviation of the harmonic dispersion relation at
higher values of the wave number, Eg is ignored, introducing an approxi-
mation that becomes increasingly bad for near neighbor terms. Some
preliminary investigation of the influence of the shape of the disper-
sion relation has, however, been done, with the surprising result that
the elastic interaction does not appear to be markedly sensitive to the
precise shape of the dispersion relation as long as thét relation has a
reasonable form. However, a more detailed investigation does appear to
be warranted. As discussed in previous sections, the introduction of
surface or twin boundary energy may also be formally incorporated as a
change in the nearest neighbor interaction in the two-body interaction
function. A preliminary investigation suggests that the principal
effect of including surface or twin boundary energies will be to change
the undercooling in which the transformation occurs, and simultanecusly
to modify the form of the plate so that somewhat thicker martensite
plates are favored. The influence of these parameters also warrants
further investigation.

The effects of finite elementary volume size, non-linear dispersion

relations, and surface and twin boundary energies can, at least, be
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simply incorporated into the model. Interesting features that are more
difficult to include are the influence of inhomogeneous elastic con-
stants and anharmonic effects. The elastic constants of the austenite
and martensite phases are, of course, different. In some important
cases the martensitic transformation introduces a change in overall
symmetry, which will cause certain elastic constants that identically
vanish in the parent phase to take non-zero values in the product.
Methods for incorporating non-uniform elastic constants are now under
investigation, but the problem is not a trivial one since at least part
of the effect of inhomogeneous elastic constants is to introduce coup-
ling terms that cannot easily be accounted for in a two-body interac-
tion mode. Inhomogeneity of the elastic constants may also destroy the
simple linear superposition which permits the computer code to be writ-
ten in an efficient way. It is, however, possible that at least the
greater part of the elastic modulus effect may be taken into account
within the context of the present model and we are currently investigat-
ing ways in which this might be done. Other interesting anharmonic
effects, such as those introduced by the severity of the deformation in
the course of the phase transformation, are three-body effects which
are probébly beyond the domain of models of the present type.

2. The Transformation Strain, Changes in the stress-free strain
associated with the transformation are known to change the preferred
habit plane of the martensite particle, but may also influence the
transformation path in ways that are not yet clearly specified. Incor-
poration of different tetragonal strains into the computer code is
straightforward, and it should be possible to investigate the influence

of changes in the transformation strain in some detail in future work.
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The simplest modification, which we have investigated in a preliminary
way, involves including some dilatation into the Bain strain of the two-
dimensional transformation. Some preliminary results of a simulation

of this type were included in the preceding section. More general
changes would include changes in the symmetry of the transformation, to
simulate, for example, the martensitic transformation to the hexagonal
epsilon phase in steel.

3. Martensite Nucleation. Since our principal interest in the
present research has been on the development of the martensitic trans-
formation rather than on its nucleation, a particularly simple nuclea-
tion site, the martensite embryo, was assumed. Even with this simple
assumption, the research has shown that the true nucleation site in a
crystal containing a distribution of defects tends to be a particular
configuration of embryos. In most of the cases analyzed to date the
" preferred nucleation site can be simply analyzed in terms of the compa-
tibility of the local configuration of embryos with a hypothetical mar-
tensite particle. The configurations which are most compatible with a
resulting particle seem to be the most potent as far as nucleation is
concerned. This subject does, however, deserve a more detailed analysis.

There is, moreover, no inherent reason why the nucleation site in
the model must be a martensite embryo. Any strain center might serve as
a nucleating defect, and should behave in a qualitatively similar way.
In real crystals the nucleating defects are believed to be dislocations,
dislocation pileups, or grain boundaries of particular types. Our simu-
lation code offers an efficient means for studying the nucleation beha-
vior and catalytic potency of hypothetical arrangements of defects of

these types, Such an investigation should be carried out.
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4, The Development of the Transformation. The modifications of the
model which are perhaps of greatest potential interest are those which
involve more realistic treatments of the development of the transforma-
tion. The needed modifications included particularly incorporation of
thermal activation and the shift to three-dimensional arrays,

At least some of the effects of introducing thermal activation are
obvious from the work which has already been done. If we consider a
case in which the thermal activation is weak, that is wheve only those
events which involve a very small activation energy have any possibility
of occurring sponataneously, then the principal effect of thermal acti-
vation is almost certainly going to be to increase the burst-like cha-
racter of the transformation. In the thermal case which was studied in
this research and discussed in the previous section, each of the major
bursts of transformation tended toc be separated by a few mini-bursts in
which only one or two activation events would occur before the tempera-
ture had to be lowered. The energy barriers separating these mini-
bursts was, in general, very small. As a consequence we can expect that
the first effect of thermal activation will be to eliminate these inter-
vening steps between the major bursts of the martensite transformation.

If thermal activation is made easier still, we should begin to
observe a tendency for a significant amount of isothermal transforma-
tion of austenite. That dis, 1f a system is held at a fixed value of
the temperature for reasonable periods of time, thermal activation may
intervene to cause an increasing transformation with time. A character
of this isothermal transformation should strongly resemble that obser-
ved experimentally: a martensite plate nucleates and grows rapidly to

completion, after which one observes a finite time period before the
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second thermal activation even occurs, after which the new plate grows
rapidly until it reaches completion. Since, as discussed in the pre-
vious section, only those events which trigger the growth of the plate
require significant elastic energy, this burst-stop-nucleate-burst
pattern is quite clearly anticipated when thermal activation is allowed
to occur.

At the same time that the ease of thermal activation will permit
isothermal formation of martensite, it will also modify the transforma-
tion path and make the features of the transformation much less certain
than in the cases studied to date. 1In a situation in which thermal
activation is facilitated any one of several activation events may
occur. The subsequent development of the transformation will depend on
which of these events happens.

A final consequence of thermal activation will be to cause the mayr-
tensite start temperature, and the progress of the transformation, to
become sensitive to the rate at which the system is cooled. It is a
common experimental observation that martensite transformations which
occur at relatively high temperature exhibit martensite start tempera-
tures which depend on quenching rate. As the rate of cooling is de-
creased, the martensite start temperature increases. This phenomenon
would appear to be the straightforward result of a thermally-activated
process. In a thermally-activated process the probability that an
event will occur increases with the time and temperature. If there is
a range of temperatures over which the event is not unlikely, and if
the system is continuously cooled, then the temperature at which the
event is observed to happen will increase as the cooling rate goes down.

Since the character of the simulated martensite transformation is such
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that the transformation may develop easily once it has been nucleated,
one would expect to see a pronounced start to the transformation at an
increasingly high temperature as the cooling rate is made lower.

It is planned to demonstrate these and other features of the ther-
mally-activated transformation in the near future.

The generalization of the simulation to the 3-dimensional case
poses a somewhat different problem. While the simulation in three di~
mensions is straightforward, and while a working computer code has been
developed, and initial results presented in the preceding section, the
extension is difficult to cavry out because of the time required to
conduct a 3-dimensional transformation, and because of the small size
of a 3-dimensional cube compatible with the memory of the computer.

The extension to three dimensions is, however, important since only

the 3-dimensional case can promise a quantitative reproduction of mar-
tensite transformations observed experimentally, and because such qua-
litative features of the transformation as the irrational habit plane
of typical iron martensites can only be found in the 3~dimensional case.
We hope to conduct these studies in the near future.

A final aspect of the growth process that is important to consider,
though the simulation procedure is not obvious, is the possibility of
accomodating the transformation strain through a dislocation rather
than a twinning mechanism. In many of the most important examples of
the martensite transformation in structural alloys the transformation
product is dislocated rather than twinned. It is not at the moment
clear how transformation-induced dislocations may be incorporated into
simulation models of the sort that have been used in this research.

However, the need to simulate dislocated martensite is real, and the
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problem of identifying suitable representations should be given consi-
deration.

5. Mechanical and Magnetic Effects. An important problem in the
engineering control of martensitic tramsformation in structural alloys
is the influence of the interacting environment on the initiation and
progress of the transformation. The imposition of a mechanical load
will not only influence the onset of the transformation, but it will
also modify the microstyucture in that it influences the types of mar-
tensite particles which form. If ;he mechanical load results in a
plastic strain, the results are not only striking but also puzzling;
the transformation is sometimes promoted énd sometimes suppressed. In-
corporation of a mechanical stress into the computer simulation model is
straightforward. The stress will provide a simple additive contribution
to the relaxation energy. The contribution will, of course, be such
that it is favorable for those martensite particles which relax the ex-
ternal load and unfavorable for those which oppose it, and as a conse-
quence certain characteristic variants will tend to be promoted in the
presence of a given external stress. This simulation is well within the
capabilities of the present model and will be performed in the near
future,

The influence of plastic deformation is somewhat more difficult to
simulate, but still appears to be within the capabilities of the model.
The simulation approach will in this case have to begin from some pre-
vious work on the nature and configuration of defects introduced by the
plastic deformation. These may then be allowed to develop in the array
before and during the transformation, and their influence on the trans-

formation may then be assessed. Some of the effect of the introduction
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of defects through mechanical deformation can be foreseen from the
results we have already obtained. The simulation results obtained in
this research show that the defects play two roles: they intvoduce sites
which may serve as heterogeneous nucleation sites for either the initia-
tion or continuation of the martensite transformation, and they also
introduce internal strains which may inhibit the transformation and
cause it to arrest. Since the net transformation observed will depend
on the balance of these two effects, it Is not surprising that one would
empirically find cases in which deformation promoted the transformation,
while finding other cases in which the deformation tended to bring the
transformation to a halt. Suitable specific simulation should shed
further light on this phenomenon,

A rather different type of environmental interaction that has
recently taken on special interest is the promotion of the martensitic
transformation by magnetic fields. Since in iron the martensite phase
is ferromagnetic while the austenite phase is not, the introduction of a
magnetic field promotes the appearance of martensite. When the field is
high the effect may be significant and has become of some technological
importance because of potential problems in the use of austenitic struc-
tural steels for the containment walls of high-field superconducting
magnets. These operate at very low temperatures at which almost all
austenitic steels are at least metastable with respect to the martensite
transformation. The incorporation of magnetic fields into the simula-
tion model utilized here is again straightforward. The external field
will introduce a direct contvibution into the particle self-energy. We
plan to perform simulations of this interesting case in the near future.

In summary, the simulation of the martensite transformation as a
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simple transformation of elastic elements appears to be a very fruitful
approach to enhance our understanding of the transformation. Even the
simplest model reporduces many of the qualitative features that are
associated with the martensite transformation including some of those
previocusly regarded as rather mysterious. The model is capable of gene-
ralization in a number of different directions and may realistically be
expected to lead to a much richer understanding of martensitic transfor-

mation phenomena in the future.
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VII. CONCLUSIONS

The principal results of the work reported here may be summarized as
follows:

1. The equations governing the energy of an arbitrary distribution
of substitutional point defects in an elastic lattice have been formul-
lated under the dual assumptions that the Born-von Karman constants of
the lattice are uniform and that anharmonic effects may be neglected.

It has been shown that under these assumptions the elastic energy

may be written as a sum of terms which are independent of the configura-
tion of defects and a term which involves a simple sum of binary inter-
actions between the defects,

2. The equations governing the elastic energy of a distribution of
elementary point defects on an elastic lattice have been generalized to
treat a distribution of elementary defects of finite size. Therefore,
the energy associated with arbitrarily distvibuted inclusions with arbi-
trary shape (which can be considered as an. aggregation of the elementary
defects of finite size) can be readily calculated. The resulting equa-
tions again have the form of a sum of terms which are independent of the
configuration of the defects plus a sum of simple binary interactions
between them.

3. A general model of a transformation was developed and described
in which the transformation occurs through the sequential appearance or
disappearance of elementary defects. Statistical equations were formu-
lated which govern the choice of the transformation path, or sequence
of elementary transformation events, and which also give the kinetics
of transformation along any particular transformation path. In general

the transformation path is statistically chosen and complex. A simple,
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useful representative path, the "minimum energy' path, was hence defined
and described.

4. The general transformation model was used to simulate a marten-
sitic transformation in the particular case of a simple, pseudo two~dimen-
sional lattice., The path of the transformation and the resulting micro-
strucute were studied as a function of the number and distribution of
the initial nucleating defects within the model lattice, the characteris-
tics and transformation strain, and the nature of the elastic constants,
It has been shown that many of the most important qualitative features
associated with martensitic transformations in real solids are well

reproduced in this simple model.
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Table 1
fee » bee Fe, Fe-Ni, Fe-Ni (Co, Ti, Nb, V, Si), Fe-Cr,
Fe=Co~W=-Cr.
fce + bet Fe-C, Fe-C-(N, H, Mn, Cu, Si, Ni, Cr, Mo, V,
W, Al, Co).
fce - hep Co, Co-Ni, Co-Fe, La, Ce.
fee =+ hep - Fe-Mn, Fe-Mn(C, Ni, Ni-Cr, Cr), Fe-Cr-Ni, Fe-
bce (Ru, 0s, Pt, Ir).
fce » fct Mu=Cu, In-T1l, In-Tl-~Li, In-Pb.
bece = hep Na, Zr, Zr (Nd, Y, Hg, Ho, Exr), T1, Hf, Ti, Ti(HZ,

Al, Cu, Cr, Fe, Mn, Mo, Zr, V, Al-V, Al-V-Mn,
Al-C, Cr=Mo, Ta, Nb, W) Zr-U, Cu-Al-N.

bece -+ Monoclinic Cu~-Al, Ag-Cd
orthorhombic

bee + orthorhombic Au-Cd-Cu, Au-Cd.

tetragonal

bee + hee Li, Li-Mg, Cu-in
fee

hep =+ fce AsNZ

tetragonal U, U=Cr

rhombohedral -+ bct Hg.

Al5 (cubic-tetragonal).
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FIGURE CAPTIONS

The hypothetical procedures to create a multi-component sub-
stitutional solid solutions
The Bain distortion.
The martensite twin plate.
The superlattice of cells, each of which is of the size of
an EMP (elementary martensite particle).
Bain strain in two dimensions.
Three dimensional plot of the thermoelastic potential ¢p(§)
at every site %, due to a type p EMP on the center of the
net, in the case of elastic isotropy.
The development of the microstructure in the two-dimensional
isotropic body, initially contains only a single nucleating
defect, and transforms via a Bain strain which is a simple
shear,
The companion figure to Figure 7. It shows the incremental
change in the elastic relaxation energy for the first 800
steps of the transformation.
The companion figure of Figures 7 and 8. It shows the
average elastic energy per martensite particle.
The prototype simulation of the martensite transformation of
multi-nucleus. The variation of the martensite fraction
with undercooling, with the temperature measured in energy
units (ue2 VT /N Ah ).

! o oo o
The successive stages of the development in the microstruc=-
ture associated with the same transformation described in

Figure 10.
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The energy change associated with each successive elementary
transformation associate with Figures 10 and 11. The hori-
zontal lines in these figures show the chemical driving for-
ces, and hence the undercoocling, which is necessary to
maintain the transformation in progress.

The average elastic enerpy change per EMP during the trans-
formation associate to Figure 10712,

The average values of the self energy per EMP including the
elastic and chemical energy but excluding the elastic inter-
action term, and the average total energy per partficle dur-
ing the transformation.

The total energy change duvring the martensite transformation,
The companion figure of Figure 10714,

The fraction of martensite as a function of undercooling

(1) Ten initial nuclei (2) Twenty initial nuclei (3) Forty
initial nuclei.

A preliminary example of a martensitic transformation in
three dimensions. The section of (001} plane.

The development of the microstructure in a two~-dimensional
anisotropic crystal and the transformation was assumed to
involve a dilatation.

An example of twinned martensite.

The variation of the martensite fraction with temperature

in Acoustic Emission test and the electrical resistance

test(67)°

The Acoustic Emission measurements during the course of a

(67)

martensitic transformation .
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The transmission Electron Micrograph of the martensite
phase in Fe-Cr-C steel. The retained austenite is shown in
the dark field which is obtained from the diffraction spot

of the austenitic phase(68’6g)e
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Two Dimensional Case
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