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Vessel network detection using contour evolution and color components

Abstract— Automated retinal screening relies on vasculature
segmentation before the identification of other anatomical
structures of the retina. Vasculature extraction can also be
input to image quality ranking, neovascularization detection
and image registration, among other applications. There is an
extensive literature related to this problem, often excluding
the inherent heterogeneity of ophthalmic clinical images. The
contribution of this paper relies on an algorithm using front
propagation to segment the vessel network. The algorithm
includes a penalty in the wait queue on the fast marching
heap to minimize leakage of the evolving interface. The method
requires no manual labeling, a minimum number of parameters
and it is capable of segmenting color ocular fundus images in
real scenarios, where multi-ethnicity and brightness variations
are parts of the problem.

I. INTRODUCTION

Retinopathy damages the retina, often with blindness
implications and severe vision loss or impairment. Ocular
fundus image screening can support retinopathy diagnosis
in several cases. Almost 100% of individuals with diabetes
will present some kind of retinopathy after 15 years of illness
and 60% of them will develop the proliferative case. Diabetic
retinopathy is the major cause of blindness among working
age adults in United States, with 20,000 diabetics to become
legally blind each year, while less than 50% of them receive
needed annual exam.

Research in automated image analysis of ocular fundus has
reported encouraging results in retinopathy diagnosis [3]. In
collaboration with optometrists, we aim at designing efficient
algorithms to be incorporated to telemedicine softwares as
EyePacs [1] and enable retinopathy screening from color
fundus photographs. We believe that automation could be in-
corporated to ophthalmology routine for both nonemergency
examination and screening of retinal image databases.

In previous work considering retinal screening automation,
we apply mathematical morphology operators for image
enhancement, segmentation of vessels and microaneurysm
detection [6]. By combining successful algorithms from [13],
[17] with feature extraction using intensity measurements as
in Cree [3], we obtained 84% of correct classification of
microaneurysms using neural networks. These tests used only
DRIVE database, later we observed that the performance of
such algorithms are of limited use when the task involves
clinical routine image databases. The major problem is
to generalize the algorithms enough to correctly identify
anatomical structures of ocular fundus images, given that
image brightness is correlated to skin pigmentation, iris color
and ethnicity.

Morphological operators have been used to improve ocular
fundus images through filtering as well as segmentation of

structures [15] as vessels [17], red-lesions [7], optical disk
[10], [9] and microaneurysms [2]. The reader is refered to
[4], [3] for a recent review on analysis of retinal images using
automated computer techniques in telemedicine screening,
including the benefits and challenges of automated health
care in the field of ophthalmology. Mathematical morphology
(MM) based algorithms are the standard, but often generate
false discontinuities, which cause errors when checking for
vascular non-perfusion. On the other hand, we show that such
algorithms can be suitable to elaborate initial conditions to
numerical schemes as front propagation [11].

This paper introduces an algorithm using fast marching
to efficiently segment the vessel network from ocular fundus
images. The pipeline encloses three main steps: a) a standard
procedure of shade correction to even up the background
illumination due to retina reflectance variation; b) detection
of source points by a rough global thresholding of the shaded
corrected image; c) front propagation using a speed function
calculated from a sum of top-hats over the shaded corrected
image; the motivation here is to emphasize the elongated
structures, using images from a 2 datasets. Particularly,
we describe the application of fast marching methods to
vasculature segmentation from fundus photographs and com-
pare the results to a standard method, using cross-curvature
evaluation, originally proposed by Zana and Klein [17] and
revisited in several publications the past 5 years [12], [5],
[3].

II. MATERIAL AND METHODS

We test computer algorithms using ocular fundus
photographs from the publicly available database
DRIVE (Digital Retinal Images for Vessel Extraction
at http://www.isi.uu.nl/Research/Databases/DRIVE) [14],
containing 40 color images, dimensions 565 x 584
pixels, and respective manual segmentation, often used
in comparisons between different segmentation methods.
We also provide vascular segmentation using images from
a clinical database (EyePacs), subsampled according to
DRIVE images for fair comparisons. Eyepacs contains
non-macular centric, with nonuniform illumination views
of the eye fundus from clinical routine, kept in an online
web-based program to support remote image referrals.

This section presents two algorithms for vessel segmen-
tation: a standard technique using mathematical morphology
and an original method, which uses a propagating interface
to identify the vessel network from the fundus images. Both
methods use mathematical morphology for shade correction
and vessel contrast enhancement as a previous step (Figure



Fig. 1: Creating the speed function F : (a) green plane, (b)
shade corrected image I0, (c) opening by reconstruction Iop
and (d) sum of top-hats Ith.

1), however they present a major difference in the segmenta-
tion; while the former method approximates the sign of the
curvature by the sign of the Laplacian, calculated over the
previous step, our method uses such step as a speed function
for the evolution of a interface, separating the vessels from
the background. Our approach starts with seed points to move
the interface, which depends on the intensity of the speed
image and, ultimately, is regulated by the color properties in
the vicinity of the propagating front to improve the accuracy
of the segmentation at the borders.

A. A contrario model using MM

The method for vessel segmentation using MM and cur-
vature evaluation in [17] is often described as a contrario
model since it focuses on eliminating what is not a ves-
sel [5]. This algorithm was tailored to enhance vessel-like
patterns by using a model that incorporates local linearity
of the vessels, piecewise connectivity and vessel brightness
modeled by a Gaussian-like profile. This is accomplished by
using morphological reconstruction and top-hat transform to
highlight vessels, roughly approximating a vessel segment
by a straight line of n pixels (suggested: 15 pixels [17]).

Advantages of these morphological operators are the re-
moval of noise while preserving most of the capillaries by
transforming the shade corrected image (I0) using opening
by reconstruction (Eq. 1), given a rotational linear structuring
elements Li, such that |Li| = n and Li − Li−1 = 15o. The
resulting image Iop is input to the sum of top-hats (Ith) step,
which enhances vessels independently of their direction (Eq.
2).

Iop = γrecI0 (maxiγLi(I0)), i = 1, ...12 (1)

Ith(I) =
∑

i

Iop − γLi
(I0) (2)

The Ith image representation is input for two steps in our
algorithm: a) a global threshold (Otsu [8]) to select a set of
source points (S) belonging to vessel parts to initialize the
front evolution; b) the partial differential equation, which
uses Ith as the speed function F to evolve S, based upon
the numerical scheme presented in the next section.

B. Front propagation and color penalty

Among the several algorithms to solve equations of motion
for moving interfaces using partial differential equations,
fast marching methods can solve the Eikonal equation,
F |∇T (x, y)| = 1, in O(NlogN), where F is a speed
function that depends only on the position of the front and
T (x) is the arrival time at each point, N is the total number
of points in the computational domain.

The main idea is to propagate a front, which advances
monotonically with a speed function F that never changes
sign. In our approach, it models an interface S moving
always outward. The position of the front at each time step of
an iterative process is recorded by T , starting with T (S) = 0.

The implementation of this numerical scheme relies on
the solution of the an upwind-scheme, which itself depends
on computing the arrival time T at each point X given a
neighborhood. The upwind-scheme discretizes the gradient
∇T by calculating:

max(D−x
i,j T,D

+x
i,j T )2 +max(D−y

i,j T,D
+y
i,j T )2 =

1

F 2
i,j

(3)

where D− and D+ are the backward and forward finite
differences, namely:

D−x
i,j =

Ti,j − Ti−1,j

∆x
(4)

analogously defined for y.
Starting with the seeds in S from the binarization method,

we can assign T (xi, yi) = 0 to the n pixels at the position
xi, yi, for i ∈ [1, n]. Each of these n seeds is embedded in
the functions Φi, (1 <= i <= n), hereafter called fronts.
The front movement is limited by the position of other fronts,
such that every time a front is moved one step, the outcome
is considered as a trial, preventing the fronts from crossing.
The step status updates from trial to definitive state, also
known as “burnt” state, after selecting the minimum trial
value from a heap, the data structure to organize the arrival
times T . The efficiency of the algorithm proposed by Sethian
[11] is the search for the minimum trial value using a heap.

Preliminary results showed that the application of fast
marching to ocular fundus vessel segmentation depended
on minimizing the “leakage effect” of the algorithm [16].
This effect corresponds to the accuracy during the interface
evolution to determine the borders of the vessel, a problem
that stems from essentially local properties to evolve the
functions Φi. Our contribution relies on adding a step to
the algorithm, so that we can impose local relationships



regarding color similarity of the pixels. The algorithm can
be summarized as the following:

1) select trial pixel p such as Tp=min(trial-list);
2) solve the quadratic equation as in Eq.3 to update Tp;
3) select neighborhood to go to trial list based on position;
4) add neighbors to trial-list if satisfies color similarity;
5) if not satisfy color similarity, then pixel is not part of

vessel;
6) go back to step (1) until trial-list is empty or converged

(no changes to the trial-list).
The color similarity calculation transforms the RGB color

of p into its respective CIELab coordinates, such that color
similarities correspond to small distances in the color space.

(a) (b) (c)

Fig. 2: Evolution of the front during vasculature segmenta-
tion of ocular fundus.

III. RESULTS AND DISCUSSION

We compared the performance of the algorithms by cal-
culating the sensitivity (SE = TP/(TP +FN)), specificity
(TN/(TN +FP )) and predictive value (PV = TP/(TP +
FP )) using the 40 available images and manual segmen-
tations from DRIVE dataset [14]. These measurements are
based in the number of true positives (TP), false positives
(FP), true negatives (TN) and false negatives (FN), calculated
by comparing the manual segmentation of each of the 40
images to the output of the algorithms, similarly to Figure 2.
The relative performance comparison, illustrated in Figure 4,
presents the efficacy of the proposed wave propagation (WP)
method, which is more sensitive, more specific for most
of the images and presented higher prediction value. The
method using MM-only [17] performed poorly, although the
vessel detection in few images presented higher specificity -
this happened due to the low sensitivity of the algorithm in
such cases. We also observed that there is less fluctuations
of SE, SP and PV among images by using proposed FM
algorithm in comparison with the MM-only approach.

Our method presents the advantage of maintaining the
connectivity of the vessels (Fig.3), lower level of false neg-
atives and proposes the use of color similarity to minimize
mistakes at the vessel boundaries. In addition, we illustrate
preliminary results using clinical routine image database in
Figure 5, where the magenta-transparent color present the
result of segmentation over the original image. The current
computing time per image is approximately 45 seconds, at
least 50% faster than the MM-only approach, both using an

unoptimized Matlab code and running in a computer with
Intel Centrino Duo 2.16GHz, 2GB RAM.

Although we showed improved accuracy in comparison to
a standard method for vasculature segmentation [17], further
improvements must still account for the leakage effect of the
fast marching at the capillary level, here compromised due to
imprecision of our speed function. Also, other thresholding
schemes should be tested, since this is a key step in guar-
anteeing vessel segmentation, particularly in cases of non-
perfusion in the vessel network. We are currently working
on an approach that considers orientation of the propagation
front to be considered during its evolution, in addition to the
description of the segmented vessel area in terms of viscosity
parameters.
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