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ABSTRACT 

The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore 

spill in U.S. history and its impacts on marine ecosystems are largely unknown.  Here, we 

showed that the microbial community functional composition and structure were dramatically 

altered in a deep-sea oil plume resulting from the spill.  A variety of metabolic genes 

involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the 

plume compared to outside the plume, indicating a great potential for intrinsic bioremediation 

or natural attenuation in the deep-sea.  Various other microbial functional genes relevant to 

carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage 

replication were also enriched in the plume.  Together, these results suggest that the 

indigenous marine microbial communities could play a significant role in biodegradation of 

oil spills in deep-sea environments. 
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INTRODUCTION 

On April 20, 2010, a massive oil leak occurred in the Gulf of Mexico’s Mississippi Canyon 

area at a depth of 1,544 m releasing approximately 4.9 million barrels of crude oil into the 

deep ocean before the wellhead was finally capped on July 15, 2010 (The Federal 

Interagency Solutions Group, Oil Budget Calculator Science and Engineering Team, 

November 2010).  Chemical dispersants, including COREXIT EC9500A and COREXIT 

EC9527A, were used on site at one of the highest rates in history to accelerate oil dispersal.   

A deep-water oil plume was initially detected at a depth of 1,000-1,200 m below the surface 

(Camilli et al., 2010; Hazen et al., 2010; Mascarelli, 2010a), but at last account (Mascarelli, 

2010b) could no longer be detected, presumably as a result of dispersion and microbial 

degradation (OSAT, 2010).  Significant environmental differences in the deep-sea of Gulf of 

Mexico from other historic offshore oil spills present an urgent need to better understand the 

fate and impacts of the oil in this specific habitat (Kerr et al., 2010a; Kerr et al., 2010b).  

In marine ecosystems, microorganisms are known to play predominant roles in degradation 

of oil contaminants (Head et al., 2003; Larter et al., 2003).  Therefore, it was expected that 

the indigenous microbial communities would play a significant role in degradation of the 

deep oil plume.  This hypothesis was supported by two recent studies that explored the 

microbial and chemical properties of samples collected from the deep oil plume (Camilli et 

al., 2010; Hazen et al., 2010).  Hazen et al. (2010) used a combination of molecular, 

chemical and physiological approaches to investigate the microbial and chemical composition 

in the deep-sea plume compared to uncontaminated water from the same depth outside the 

plume.  They demonstrated that the oil depletion was due to a combination of mixing, 

dispersion and biodegradation by microbes residing in the deep-sea (Hazen et al., 2010).  

In this study, samples from the deep-sea plume, oil-contaminated seawater (hereafter 

referred to as “oil plume” in the following text) and non-plume controls (seawater samples at 
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same depth that were not contaminated with oil) were analyzed with a functional gene 

microarray, the GeoChip 4.0 (Hazen et al., 2010), to address the following questions: (i) How 

did the oil contamination affect the marine microbial community functional composition and 

structure? (ii) How did different microbial functional genes involved in key microbial 

processes shift in response to the oil spill? (iii) Were functional genes specific to hydrocarbon 

degradation processes enriched in the oil plume?  Our results indicated that the oil spill 

dramatically altered microbial community functional structure, the marine microbial 

communities present were metabolically diverse, and that these communities were able to 

respond to the oil spill. 

 

Materials and Methods 

The following is the summary of methods used in this study.  More detailed information is 

provided in the Supplemental Data A. 

Sample description 

Between May 27 and June 2, 2010, seawater samples were collected from the Gulf of Mexico 

during two monitoring cruises on the R/V Ocean Veritas and R/V Brooks McCall (Table S1) 

as previously described (Hazen et al., 2010).  Briefly, two colored dissolved organic matter 

(CDOM) WETstar fluorometers (WET Labs, Philomath, OR) were attached to a CTD 

sampling rosette (Sea-Bird Electronics Inc., Bellevue, WA) and used to detect the presence of 

oil. The fluorometer results were subsequently confirmed by laboratory hydrocarbon analysis.  

Niskin bottles attached to the CTD rosette were used to capture water samples at various 

depths with detected hydrocarbons. Eight samples (BM053, BM054, BM057, BM058, 

BM064, OV201, OV401 and OV501) from the MC252 dispersed oil plume, and five samples 

(OV003, OV004, OV009, OV013, OV014) from non-plume at depth of 1099-1219m were 

analyzed in this study. 
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To better define the geochemical properties of the plume and non-plume samples, two 

sets of variables were measured: (i) seawater variables (dissolved oxygen (DO), temperature, 

small particle counts, total ammonia nitrogen (TAN), nitrite (NO2-N), total Iron (Tot Fe), 

Ortho-phosphate (PO4-P), and acridine orange direct count (AODC)), and (ii) oil composition 

variables (Fluorometer detection of oil, benzene, toluene, ethylbenzene, isopropylbenzene, 

n-propylbenzene, 1,3,5-trimethylbenzene, tert-butylbenzene, 1,2,4-trimethylbenzene, 

sec-butylbenzene, p-isopropyltoluene, n-butylbenzene, naphthalene, o-xylene, m, p-xylenes) 

(Hazen et al., 2010). 

DNA amplification and labeling 

Approximately 100 ng of DNA that was previously extracted from the samples (Hazen et al., 

2010) was amplified using a modification of the Templiphi kit (GE Healthcare, Piscataway, 

NJ).  The amplified DNA (2 µg) was then labeled with Cy3 using random primers and the 

Klenow fragment of DNA polymerase I (Wu et al., 2006), and then purified and dried in a 

SpeedVac (45°C, 45 min; ThermoSavant) before hybridization. 

GeoChip 4.0 hybridization and data pre-processing 

The GeoChip 4.0, containing 83,992 50-mer oligonucleotide probes targeting 152,414 genes 

in 410 gene categories for different microbial functional and biogeochemical processes, was 

synthesized by NimbleGen (Madison, WI).  All hybridizations were carried out at 42°C with 

40% formamide for 16 h on a MAUI hybridization station (BioMicro, Salt Lake City, UT).  

After hybridization, the arrays were scanned (NimbleGen MS200) at a laser power of 100%. 

Signal intensities were measured based on scanned images, and spots with signal-to-noise 

ratios (SNR) lower than 2 were removed prior to statistical analysis as described previously 

(He et al., 2010).  

Statistical analysis 

Pre-processed GeoChip data were further analyzed with different statistical methods: (i) 
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Microbial diversity index, the two-tailed t-test, and response ratio (RR) (Luo et al., 2006); (ii) 

Hierarchical clustering for microbial community structure and composition (de Hoon et al., 

2004); (iii) Analysis of similarity (ANOSIM), permutational multivariate analysis of variance 

using distance matrices (Adonis), and multi response permutation procedure (MRPP) analysis 

of differences of microbial communities (Anderson, 2001); (iv) Canonical correspondence 

analysis (CCA) for linking microbial communities to environmental variables (Ramette and 

Tiedje, 2007; Zhou et al., 2008); (v) partial CCA for co-variation analysis of wellhead 

distance and environmental variables (variation partitioning analysis, VPA).  Details for all 

methods are provided in the Supplementary Information. 

 

Results 

Functional gene changes in response to oil spill 

To assess the dynamic changes of microbial communities in response to oil spill, microbial 

community functional composition and structure was analyzed using functional gene arrays 

(GeoChip 4.0). Significantly more functional genes (p< 0.01) were detected in the oil plume 

samples than non-plume control (Table S2).  The overall microbial functional diversity was 

also significantly (p<0.01) higher in the plume samples based on Shannon-Weiner (H’) and 

Simpson’s (1/D) indices.  Consistent with geochemical ordination patterns, hierarchical 

clustering analysis showed that all plume samples were clustered together and well separated 

from non-plume samples (Fig. 1 and S1), as also shown for the microbial communities at a 

phylogenetic level (Hazen et al., 2010).  However, considerable variability in functional 

gene distribution was observed among different samples and some functional genes were 

common to all samples while others were unique to oil plume samples (Fig. 1).  For 

example, Group 6, with 1439 or 20.14% of all genes detected, largely involved in organic 

remediation, carbon degradation, denitrification, sulfate reduction, metal resistance, and 
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stress response were generally detected in all samples. Group 1, 2, 10 and 17, with 2.2%, 

3.9%, 20.5%, and 10.8% of all genes detected, were mainly detected in the plume samples 

(Fig. 1).  In addition, the microbial community functional structure was significantly (p< 

0.05) different between the plume and non-plume samples as revealed by three 

complimentary non-parametric multivariate statistical tests (ANOSIM, adonis, and MRPP) 

(Table 1). 

Oil as a predominant factor shaping microbial community functional structure 

Canonical correspondence analysis (CCA) was performed to determine the most significant 

environmental variables shaping microbial community structure.  Based on variance 

inflation factors (VIFs), seven variables were selected: DO, temperature, total volatile 

hydrocarbon [HC], total extractable petroleum HC, fluorometer detection of oil, phosphate, 

and iron.  The specified CCA model was significant (p=0.026).  Of these, the total volatile 

HC, extractable petroleum HC, fluorometer detection of oil, and DO were most significantly 

correlated with plume samples (Fig. 2).  To separate the effects of seawater geochemical 

variables, geographic distance and oil composition on microbial community structure, a 

CCA-based variation partitioning analysis (VPA) (Ramette and Tiedje, 2007; Zhou et al., 

2008) was performed.  Seawater geochemical variables, oil composition and wellhead 

distance showed a significant correlation (p=0.041) with the functional gene structure of the 

community.  Oil composition explained substantially more variations (48.34%, p=0.03) than 

seawater variables (21.76%, p=0.017), whereas distance independently explained 9.1% 

(p=0.43) of the observed variation (Fig. 3).  About 28% of the community functional 

variation based on GeoChip data remained unexplained by the above selected variables, 

which is significantly lower than those observed in other systems such as soils (Ramette and 

Tiedje, 2007; Zhou et al., 2008).  These results indicate that oil contaminants could be a 

dominant factor shaping microbial community functional structure, and potentially regulating 
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associated microbial functional processes. 

Oil spill stimulated increase in functional genes for hydrocarbon degradation 

A substantial number of genes involved in hydrocarbon degradation were detected in the oil 

plume samples (Hazen et al., 2010), especially those involved in degrading alkanes, alkynes 

and cycloalkanes, BTEX and related aromatics, chlorinated aromatics, heterocyclic aromatics, 

nitroaromatics, polycyclic aromatics and aromatic carboxylic acids. For example, gene alkB 

encoding alkane 1-monooxygenase, a key enzyme responsible for the initial oxidation of 

inactivated alkanes, showed a significantly (p<0.05) higher abundance with 19 to 26 genes 

detected in the oil contaminated samples and 11 to 15 detected in the non-oil contaminated 

samples.  The alkB genes derived from Rhodospirillum centenum SW, Bdellovibrio 

bacteriovorus HD100, Prauserella rugosa, Roseobacter sp. CCS2, Mycobacterium bovis 

AF2122/97, Bacillus sp. BTRH40, Gordonia sp. Cg and Rhodococcus sp. RHA1 appeared to 

be dominant in all oil plume samples (Fig. S2).  

GeoChip analysis also detected many aerobic PAH degradation genes from a variety of 

microorganisms (Fig. 4 and S3). PAH degradation genes were more abundant in the plume 

samples while some were unique to the plume samples.  Although oxygen was still present 

in the plume samples (Camilli et al., 2010; Hazen et al., 2010), the gene bbs (beta-oxidation 

of benzylsuccinate) for anaerobic toluene degradation was also enriched in plume samples.  

These bbs genes were derived from putative E-phenylitaconyl-CoA hydratase of Azoarcus sp. 

EbN1 and Thauera aromatic, and benzylsuccinyl-CoA dehydrogenase of Azoarcus sp. EbN1 

(Fig. 5). 

Shifts of the genes involved in key biogeochemical cycling processes  

Carbon.  Among the carbon cycling genes detected, 798 genes involved in the degradation 

of complex carbon compounds such as starch, hemicellulose, cellulose, chitin, lignin and 

aromatics showed positive hybridization signals.  Most of these genes (e.g., pula, xylA, xynA, 
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lip, limEH, and vanA) showed significantly (p< 0.05) higher abundances in plume than in 

non-plume samples (Fig. S4).  These types of genes could also be important in degradation 

of various oil components and their intermediates. 

In this study, 9 to 14 mcrA genes encoding the alpha subunit of methyl coenzyme M 

reductase, and 5 to 8 pmoA genes for methane monooxygenase were detected in the plume 

samples.  Specifically, mcrA genes from Methanococcus aeolicus Nankai-3, Methanoculleus 

marisnigri JR1 and Methanocorpusculum labreanum Z were detected in all of the oil plume 

samples, but most of them were from uncultured microorganisms.  Significantly (p<0.05) 

higher signal intensities were observed for mcrA in the plume than non-plume samples (Fig. 

S5).  However, no significant differences were found for pmoA and mmoX (particulate 

methane monooxygenase) between plume and non-plume samples.  

 Nitrogen. Petroleum generally contains about 0.1-2% nitrogen, and given the large 

quantities of oil involved it may act as a N pool in this ecosystem.  Interestingly, nasA 

(nitrate reductase) and nir (nitrite reductase) for assimilatory N reduction and gdh (glutamate 

dehydrogenase) for ammonia assimilation exhibited significantly (p< 0.05 or 0.01) higher 

signal intensities in plume samples (Fig. 6).  The observed stimulation of N assimilation 

processes could be due to an increase of microbial biomass (Hazen et al., 2010).  However, 

no significant differences were observed for other N-cycling genes, e.g. nitrification, 

denitrification and N fixation (Fig. 6). 

 Sulfur. Sulfite reduction genes were highly abundant in the deep-sea plume: 81 to 102 

dsrA/B genes for dissimilatory sulfite reductase, and 8 to 12 AprA genes for dissimilatory 

adenosine-5'-phosphosulfate (APS) reductase were detected with significantly (p<0.05) 

higher abundance in the plume than in non-plume samples (Fig. S6).  Microbial populations 

similar to Alkalilimnicola ehrlichei MLHE-1, Chlorobium ferrooxidans DSM 13031, 

Clostridium leptum DSM 753, Desulfomicrobium thermophilum, Pyrobaculum calidifontis 



10 
 

JCM 11548, Thermodesulforhabdus norvegica, Magnetococcus sp. MC-1, Pyrobaculum 

aerophilum str. IM2, Alkalilimnicola ehrlichei MLHE-1, Desulfohalobium retbaense DSM 

5692, sulfate-reducing bacterium QLNR1 and Syntrophobacter fumaroxidans MPOB were 

frequently detected in each sample, while most of the genes detected were from uncultured 

microorganisms (e.g, sulfate-reducing bacteria, SRB) from various environments.  The 

results suggest that sulfate reduction could be enhanced when coupled with hydrocarbon 

degradation.  

 Phosphorus and iron reduction. Since phosphorus is often a limiting factor for oil 

bioremediation, it is essential to understand phosphorus cycling in marine ecosystems.  

Genes encoding exopolyphosphatase (ppx) for inorganic polyphosphate degradation and 

phytase for phytate degradation were detected with significantly (p<0.01 and p<0.05, 

respectively) increased abundances in plume samples (Fig. S7).  These results suggested that 

organic phosphorus release could be stimulated by oil contamination.  In addition, higher 

(p<0.1) signal intensities for 61 detected cytochrome C genes were observed in plume 

samples (Fig S8), suggesting that hydrocarbon degradation coupled with metal reduction 

could occur in the deep water. 

 Metal resistance. A substantial number (917) of the genes involved in resistance to 

various metals were detected, many of which showed significantly (p<0.05) increased 

abundance in plume samples (Fig. S9).  Genes encoding reductases for As (arsC) and Hg 

(mer), efflux transporters for Cd (cadA), Cu, Co, and Zn (czcA and czcD), Cr (ChrA), Cu 

(copA), Hg (merT), Ag (silC), and Zn (zntA), and the proteins involved in Te resistance (terC, 

terD and terZ) were more (p<0.05 or 0.01) abundant in the plume samples.  

Bacteriophages were also significantly stimulated 

  In total, 52 bacterial phage genes associated with host recognition, lysis, replication, and 

structure were observed in all samples.  The signal intensities for many of the genes 
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involved in replication were significantly (p<0.05) higher in the plume than non-plume 

samples (Fig. 7), supporting the suggestion by Head et al. (2006) that bacteriophages could 

be an important factor for intrinsic bioremediation of hydrocarbons. 

Discussion 

The Deepwater Horizon oil spill in the Gulf of Mexico was one of the worst environmental 

disasters in U.S. history.  The impact of an oil spill of such an unprecedented magnitude and 

depth on marine ecosystems is largely unknown.  Using the GeoChip-based high throughput 

microarray technology, we showed that diverse microbial functional groups (a group of genes 

involved in certain functional processes), including those important to hydrocarbon 

degradation, carbon metabolism, methanogenesis, nitrogen assimilation, sulfate reduction, 

phosphorus release, metal resistance, and bacteriophage replication, were more highly 

represented in the oil plume samples than in non-plume samples from the same depth.  Also, 

the changes in community functional structure were highly correlated to the changes in 

geochemistry, with oil being the predominant factor shaping the functional composition and 

structure of the microbial communities.  Our results support the phylogeny-based study by 

Hazen et al. (2010) that the deep-sea marine microbial communities underwent a dynamic 

change in response to the oil spill and associated geochemical changes.  Our results are also 

consistent with previous studies of oil spill and petroleum contamination (Bordenave et al., 

2007; Harayama et al., 2004; Head et al., 2006), which showed that microorganisms able to 

utilize hydrocarbons became dominant in oil-contaminated sites.  Such functional gene 

information is useful for assessing the impacts of oil spills and should facilitate design of 

appropriate strategies and approaches to deal with petroleum contamination.  

 The clean-up of the deep sea oil plume will primarily depend on the indigenous microbes 

present in this environment since current technology does not allow removing the dispersed 

oil and gas at such great depths. One of the critical environmental questions is whether 
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microorganisms for degrading various hydrocarbons exist in the community and whether they 

respond to oil spill. Our GeoChip results indicated that many functional genes/populations 

involved in both aerobic and anaerobic degradation of various oil components are detected 

and/or enriched in the oil plume, indicating that the indigenous hydrocarbon-degrading 

populations are capable of responding to the oil spill. For example, alkB for alkanes, Xamo 

for alkene, genes bco, ohbAB, GCoADH and pimF for benzoate, genes mdlA, mdlB and mdlC 

for mandelate, genes Apc, catB for BTEX metabolic pathway exhibited a significantly 

(p<0.05) higher abundance in oil plume than in the non-oil plume. The changes in relative 

abundance of these genes/populations were significantly correlated with the concentration of 

various oil contaminants in the samples (Hazen et al., 2010). Especially, several genes for 

PAH degradation were enriched in the oil plume samples, which could be important in 

determining the long-term effects of the oil spill on the marine ecosystems. Also, consistent 

with phylogenetic gene distribution obtained using a phylogenetic microarray “PhyloChip” 

(Hazen et al., 2010), functional genes representative of the order Oceanospirillales appeared 

to have significantly higher (p < 0.01) abundance in the plume samples than in non-plume 

samples. While the dominance of the Oceanospirillum population consuming the oil in the 

plume was based on clone library and sequence analysis of 16S rRNA genes (Hazen et al., 

2010). GeoChip was not originally designed to link the detection of functional genes to the 

existence of related microbial population and it contains 567 functional genes derived from 

the order Oceanospirillales with 25 genes detected in this study.  In addition, large number 

of metal resistance genes were enriched in plume samples, which are usually linked to 

organic degradation genes, for example on plasmids (Kunapuli et al., 2007; Parales and 

Haddock, 2004).  Our GeoChip results demonstrated that there is a great potential for 

intrinsic bioremediation of oil contamination in the deep-sea environment. 

Anaerobic hydrocarbon degradation associated with sulfate reduction, denitrification and 
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methanogenesis has long been considered the prevailing mechanism for petroleum 

biodegradation in the deep subsurface (Aitken et al., 2004; Head et al., 2003; Jones et al., 

2008; Kniemeyer et al., 2007).  Recent investigations have demonstrated that several classes 

of petroleum hydrocarbons including alkanes (So et al., 2003), mono- and polycyclic 

aromatic compounds (Meckenstock et al., 2000; Widdel and Rabus, 2001), and short-chain 

hydrocarbons (Kniemeyer et al., 2007), can be degraded anaerobically under nitrate-, iron-, 

or sulfate-reducing conditions, or under methanogenic conditions (Harayama et al., 2004; 

Jones et al., 2008).  Indeed, a substantial number of dsrA/B genes for sulfate reduction, 

mcrA genes for methanogenesis, narG, nirS, nirK, and nosZ responsible for denitrification, 

and populations for metal reduction were detected in this study.  Also, dsrA/B and mcrA 

genes showed significantly (p<0.05 or 0.01) higher abundances in the plume than non-plume 

samples.  In addition, bbs for the strict anaerobic toluene degradation were detected and 

enriched in the plume samples. It is possible that anaerobic hydrocarbon degradations could 

have most likely occured through microaggregate formation as reported in Hazen et al., 2010.  

Hydrocarbon degradation is generally limited by nutrient availability, which can be 

improved by nutrient recycling through phage-mediated biomass turnover (Head et al., 2006; 

Jiang et al., 1998; Paul, 2008).  Because significant biomass increase was observed (Hazen 

et al., 2010) in the plume samples, bacteriophages could play critical roles in hydrocarbon 

degradation.  Approximately 43% of marine bacterial isolates have been found to 

contain prophages (Jiang et al., 1998; Paul, 2008), which are induced by various 

environmental contaminants such as fuel oil (Cochran et al., 1998).  The oil spill may 

stimulate the growth of pathogenic bacteria in marine environments and many pathogens are 

capable of efficiently degrading hydrocarbons (Rojo and Martínez, 2010).  The research on 

phages has been heavily slanted to those that affect human related activities, health/medical 

and industry.  Since no target genes for Oceanospirillum phages were designed on GeoChip 
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4.0, the Oceanospirillum phages were not detected.  Genes for both iron uptake (iro) and 

adherence (pap and pilin) were significantly (p< 0.01 or 0.05) enriched in the plume samples.  

The increase in the abundance of microorganisms capable of producing siderophores, highly 

specific iron chelating compounds, may facilitate microbial acquisition of iron, a limiting 

nutrient in marine systems (Barbeau et al., 2001a; Barbeau et al., 2001b), thereby potentially 

increasing hydrocarbon degradation.  

A substantial quantity of methane gas was released together with the oil (Oil budget 

calculator science and engineering team, 2010; Kessler et al., 2011), which may result in 

more methane in the oil plume ecosystem and have the potential to greatly impact methane 

metabolism.  GeoChip targets three key genes/enzymes involved in methane metabolism 

with mcrA encoding methyl coenzyme M reductase for methanogenesis and two 

enzymes/genes (methane monooxygenase/mmoX and particulate methane 

monooxygenase/pmoA) for methanotrophy (He et al., 2010).  In this study, pmoA and mmoX 

genes for aerobic methane oxidation did not show a statistically significant change though 

their abundance was higher in plume samples than in non-plume samples.  There are two 

possible explanations for this: one is that the aerobic methane oxidation was inhibited due to 

the presence of easier to degrade alkanes in the deep-sea, and the other is that the methane 

gas was moved up to the surface more directly and did not accumulate in the deep oil plume.  

Also, unlike propane, methane may form gas hydrates at the deep plume temperature and 

pressure, making it unavailable to microorganisms (Valentine et al., 2010). However, 

significantly (p<0.05) higher signal intensities were observed for mcrA in the plume than 

non-plume samples, indicating that those enriched mcrA genes derived from methanogens 

likely link to hydrocarbon degradation rather than plume methane release (Harayama et al., 

2004; Jones et al., 2008).  Enzymes or genes involved in anaerobic methane oxidation, 

however, remain unclear, thus we could not detect this functional process. 
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In this study, many functional genes were detected in the uncontaminated samples that 

were not detected in the contaminated samples (Table S3 and Fig S10).  These results 

suggest that oil spills can select against those populations containing these genes, or that 

specific members of the community have a selective advantage if they are capable of 

hydrocarbon degradation and these grow to represent a greater proportion of the functional 

gene repertoire.  

In conclusion, our results indicate that a variety of hydrocarbon-degrading functional genes 

were enriched in response to oil contamination and associated environmental changes.  Our 

results also imply that there is a great potential for in situ bioremediation of oil contaminants 

in the deep-sea water ecosystem, and such oil-degrading populations and associated microbial 

communities may play a significant role in determining the ultimate fates and consequences 

of the spilled oil.  However, to further understand and evaluate the potential impacts of this 

unprecedented oil spill on the marine ecosystem structure and function, it is essential to 

launch an integrated and comprehensive monitoring program to track the dynamics and 

adaptive responses of microbial communities together with other physical and chemical 

analysis of tracing oil contaminants and their products. 
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Table 1. Significance of the effects of the oil spill on the overall microbial community 

structure and geochemical pattern using three statistical analyses.  

 Geochemical parametersd Microbial community 

Method Statistic P value Statistic P value 

MRPPa 233.112 0.037 53.617 0.003 

ANOSIMb 0.057 0.046 0.501 0.002 

Adonisc 0.258 0.043 0.192 <0.001 

 

aMultiple Response Permutation Procedure, a nonparametric procedure that does not depend 

on assumptions such as normally distributed data or homogeneous variances, but rather 

depends on the internal variability of the data. 

bAnalysis of Similarities. 

cNon-parametric multivariate analysis of variance (MANOVA) with the adonis function. 

dGeochemical parameters included: temperature, DO concentration, fluorometer detection of 

oil, small particle concentrations, Fe, nitrate, phosphate, benzene, toluene, naphthalene, 

ethylbenzene, isopropylbenzene, n-propylbenzene, 1,3,5-trimethylbenzene, tert-butylbenzene, 

1,2,4-trimethylbenzene, sec-butylbenzene, p-isopropyltoluene, n-butylbenzene, total xylenes, 

total volatile HC, and total petroleum hydrocarbons - extractable (DRO). 

All three tests are non-parametric multivariate analyses based on dissimilarities among 

samples. 
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Figure legend 

Fig 1. Hierarchical cluster analysis of all genes present in at least two out of five samples. 

Results were generated in CLUSTER and visualized using TREEVIEW. Red indicates signal 

intensities above background while black indicates signal intensities below background. 

Brighter red coloring indicates higher signal intensities. All oil plume samples clustered 

together and were well separated from non-plume samples.  

 

Fig. 2 Canonical correspondence analysis (CCA) compares the GeoChip hybridization signal 

intensities (symbols) and environmental variables (arrows). Environmental variables were 

chosen based on significance calculated from individual CCA results and variance inflation 

factors (VIFs) calculated during CCA. The percentage of variation explained by each axis is 

shown, and the relationship is significant (p=0.026). 

 

Fig 3. Variation partitioning based on canonical correspondence analysis (CCA) for all 

functional gene signal intensities. A CCA-based variance inflation factor (VIF) was performed 

to identify common sets of oil composition and sea water variables important to the microbial 

community structure. Oil composition variables included fluorometer detection of oil, the 

concentration of total volatile hydrocarbons, xylenes, and petroleum hydrocarbons - 

extractable (DRO). Sea water geochemical variables included temperature, DO, Fe, and 

phosphate. 

 

Fig 4. The normalized signal intensity of the nahA genes (naphthalene 1,2-diooxygenase) for 

the initial oxidation of naphthalene. The signal intensity for each sequence was the average of 

the total signal intensity from all the replicates. Gene number is the protein ID number for 

each gene as listed in the GenBank database. All data are presented as mean ± SE. ***p<0.01, 
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**p<0.05, *p<0.1.  

 

Fig 5. The normalized signal intensity of bbs (beta-oxidation of benzylsuccinate) genes for 

anaerobic toluene degradation. The signal intensity for each sequence was the average of the 

total signal intensity from all the replicates. Gene number is the protein ID number for each 

gene as listed in the GenBank database. All data are presented as mean ± SE. ***p<0.01, 

**p<0.05, *p<0.1. In a total, 7 probes were designed for bbs genes in GeoChip 4.0 and 3 

probes were detected in the samples. 

 

Fig. 6 The relative changes of the detected genes involved in the N cycle in oil plume. The 

signal intensity for each gene detected was normalized by all detected gene sequences using 

the mean. The percentage of a functional gene in a bracket was the sum of signal intensity of 

all detected sequences of this gene divided by the grand sum of signal intensity of the 

detected N cycle genes, and weighted by the fold change of the signal intensity of this gene in 

plume to that in non-plume. For each functional gene, red indicates that this gene had a 

higher signal intensity in plume than in non-plume and their significance was indicated with 

two stars (**) at p<0.01, while blue indicates that this gene had a lower signal intensity in 

oil-plume than in non-plume. Grey-colored genes were not targeted by this GeoChip, or not 

detected in those samples. It remains unknown if nosZ homologues exist in nitrifiers. 

Description of the genes: (A) gdh, encoding glutamate dehydrogenase, ureC, encoding urease 

responsible for ammonification. (B) nasA, encoding nitrate reductase, NiR, encoding nitrite 

reductase, responsible for assimilatory N reduction; (C) nifH, encoding nitrogenase 

responsible for N2 fixation; (D) narG encoding nitrate reductase, nirS and nirK-D (with 

denitrification activity), encoding nitrite reductase; nosZ, encoding nitrous oxide reducatse, 

norB, encoding nitric oxide reducatse, responsible for denitrification (E) napA, encoding 
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periplasmic nitrate reductase, nrfA, encoding c-type cytochrome nitrite reducatse, responsible 

for dissimilatory N reduction to ammonium; (F) hao, encoding hydroxylamine 

oxidoreductase, and nirK-N encoding nitrite reductase for nitrifiers (an indication of 

nitrification activity), responsible for nitrification. 

 

Fig. 7 The normalized signal intensity of the replication genes for bacteriophage. The signal 

intensity for each sequence was the average of the total signal intensity from all the replicates. 

Gene number is the protein ID number for each gene as listed in the GenBank database. All 

data are presented as mean ± SE. ***p<0.01, **p<0.05, *p<0.1.  



20 
 

References 

Aitken CM, Jones DM, Larter SR. (2004). Anaerobic hydrocarbon biodegradation in deep 
subsurface oil reservoirs. Nature 431: 291-294. 

Anderson M. (2001). A new method for non-parametric multivariate analysis of variance. 
Austral Ecol 26: 32-46. 

Barbeau K, Rue EL, Bruland KW, Butler A. (2001a). Photochemical cycling of iron in the 
surface ocean mediated by microbial iron(III)-binding ligands. Nature 413: 409-413. 

Barbeau K, Zhang G, Live DH, Butler A. (2001b). Petrobactin, a photoreactive siderophore 
produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J 
Am Chem Soc 124: 378-379. 

Bordenave S, Goni-Urriza MS, Caumette P, Duran R. (2007). Effects of heavy fuel oil on the 
bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 73: 
6089-6097. 

Camilli R, Reddy CM, Yoerger DR, Van Mooy BAS, Jakuba MV, Kinsey JC et al. (2010). 
Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 
330: 201-204. 

Cochran PK, Kellogg CA, Paul JH. (1998). Prophage induction of indigenous marine 
lysogenic bacteria by environmental pollutants. Mar Ecol Prog Ser 164: 125-133. 

de Hoon MJ, Imoto S, Nolan J, Miyano S. (2004). Open source clustering software. 
Bioinformatics 20: 1453-1454. 

Harayama S, Kasai Y, Hara A. (2004). Microbial communities in oil-contaminated seawater. 
Curr Opin Biotechnol 15: 205-214. 

Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N et al. (2010). 
Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330: 204-208. 

He Z, Deng Y, Van Nostrand JD, Tu Q, Xu M, Hemme CL et al. (2010). GeoChip 3.0 as a 
high-throughput tool for analyzing microbial community composition, structure and 
functional activity. ISME J 4: 1167-1179. 

Head IM, Jones DM, Larter SR. (2003). Biological activity in the deep subsurface and the 
origin of heavy oil. Nature 426: 344-352. 

Head IM, Jones DM, Roling WFM. (2006). Marine microorganisms make a meal of oil. Nat 
Rev Micro 4: 173-182. 

Jiang SC, Kellogg CA, Paul JH. (1998). Characterization of marine temperate phage-host 
systems isolated from Mamala Bay, Oahu, Hawaii. Appl Environ Microbiol 64: 535-542. 

Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM et al. (2008). Crude-oil 
biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451: 
176-180. 

Kerr R, Kintisch E, Stokstad E. (2010a). Will deepwater horizon set a new standard for 
catastrophe? Science 328: 674-675. 

Kerr RA, Kintisch E, Schenkman L, Stokstad E. (2010b). Five questions on the spill. Science 
328: 962-963. 

Kessler JD, Valentine DL, Redmond MC, Du MR, Chan EW, Mendes SD et al. (2011). A 
persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. 



21 
 

Science 331: 312-315. 

Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M et al. (2007). 
Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. 
Nature 449: 898-901. 

Kunapuli U, Lueders T, Meckenstock RU. (2007) The use of stable isotope probing to 
identify key iron-reducing microorganisms involved in anaerobic benzene degradation. 
ISME J 1: 643–653. 

Larter S, Wilhelms A, Head I, Koopmans M, Aplin A, Di Primio R et al. (2003). The controls 
on the composition of biodegraded oils in the deep subsurface-part 1: biodegradation rates 
in petroleum reservoirs. Org Geochem 34: 601-613. 

Luo Y, Hui D, Zhang D. (2006). Elevated CO2 stimulates net accumulations of carbon and 
nitrogen in land ecosystems: a meta-analysis. Ecology 87: 53-63. 

Mascarelli A. (2010a). Extent of lingering Gulf oil plume revealed. Nature. 
(doi:10.1038/news.2010.1420). 

Mascarelli A. (2010b). Deepwater Horizon: After the oil. Nature 467: 22-24. 

Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B. (2000). Anaerobic 
naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ 
Microbiol 66: 2743-2747. 

Operational Science Advisory Team (OSAT). Summary report for sub-sea and sub-surface 
oil and dispersant detection: sampling monitoring. December 17, 2010. 
(http://www.restorethegulf.gov/release/2010/12/16/data-analysis-and-findings). 

Parales RE, Haddock JD. (2004). Biocatalytic degradation of pollutants. Curr Opin 
Biotechnol 15: 374-379. 

Paul JH. (2008). Prophages in marine bacteria: dangerous molecular time bombs or the key to 
survival in the seas? ISME J 2: 579-589. 

Ramette A, Tiedje J. (2007). Biogeography: an emerging cornerstone for understanding 
prokaryotic diversity, ecology, and evolution. Microb Ecol 53: 197-207. 

Rojo F, Martínez JL. (2010). Oil Degraders as Pathogens. In: Timmis KN (ed). Handbook of 
Hydrocarbon and Lipid Microbiology. Springer Berlin Heidelberg. pp 3293-3303. 

So CM, Phelps CD, Young LY. (2003). Anaerobic transformation of alkanes to fatty acids by 
a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69: 3892-3900. 

The Federal Interagency Solutions Group, Oil Budget Calculator Science and Engineering 
Team. Oil budget calculator deepwater horizon technical documentation. November 2010 
(http://www.restorethegulf.gov/sites/default/files/documents/pdf/OilBudgetCalc_Full_HQ
-Print_111110.pdf). 

Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C et al. (2010). 
Propane respiration jump-starts microbial response to a deep oil spill. Science 330: 
208-211. 

Widdel F, Rabus R. (2001). Anaerobic biodegradation of saturated and aromatic 
hydrocarbons. Curr Opin Biotechnol 12: 259-276. 

Wu L, Liu X, Schadt CW, Zhou J. (2006). Microarray-based analysis of subnanogram 
quantities of microbial community DNAs by using whole-community genome 
amplification. Appl Environ Microbiol 72: 4931-4941. 



22 
 

Zhou J, Kang S, Schadt CW, Garten CT. (2008). Spatial scaling of functional gene diversity 
across various microbial taxa. Proc Natl Acad Sci USA 105: 7768-7773. 



1 
 

 

Fig. 1 Hierarchical cluster analysis of all genes present in at least two out of five samples. 

Results were generated in CLUSTER and visualized using TREEVIEW. Red indicates 

signal intensities above background while black indicates signal intensities below 

background. Brighter red coloring indicates higher signal intensities. All oil plume samples 

clustered together and were well separated from non-plume samples. 
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Fig. 2 Canonical correspondence analysis (CCA) compares the GeoChip hybridization 

signal intensities (symbols) and environmental variables (arrows). Environmental variables 

were chosen based on significance calculated from individual CCA results and variance 

inflation factors (VIFs) calculated during CCA. The percentage of variation explained by 

each axis is shown, and the relationship is significant (p=0.026).
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Fig. 3 Variation partitioning based on canonical correspondence analysis (CCA) for all 

functional gene signal intensities. A CCA-based variance inflation factor (VIF) was 

performed to identify common sets of oil composition and sea water variables important to 

the microbial community structure. Oil composition variables included fluorometer 

detection of oil, the concentration of total volatile hydrocarbons, xylenes, and petroleum 

hydrocarbons - extractable (DRO). Sea water geochemical variables included temperature, 

DO, Fe, and phosphate. 
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Fig. 4 The normalized signal intensity of the nahA genes (naphthalene 1,2-diooxygenase) 

for the initial oxidation of naphthalene. The signal intensity for each sequence was the 

average of the total signal intensity from all the replicates. Gene number is the protein ID 

number for each gene as listed in the GenBank database. All data are presented as mean ± 

SE. ***p<0.01, **p<0.05, *p<0.1.  
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Fig. 5 The normalized signal intensity of bbs (beta-oxidation of benzylsuccinate) genes for 

anaerobic toluene degradation. The signal intensity for each sequence was the average of 

the total signal intensity from all the replicates. Gene number is the protein ID number for 

each gene as listed in the GenBank database. All data are presented as mean ± SE. 

***p<0.01, **p<0.05, *p<0.1. In a total, 7 probes were designed for bbs genes in GeoChip 

4.0 and 3 probes were detected in the samples. 
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Fig. 6 The relative changes of the detected genes involved in the N cycle in oil plume. The 

signal intensity for each gene detected was normalized by all detected gene sequences 

using the mean. The percentage of a functional gene in a bracket was the sum of signal 

intensity of all detected sequences of this gene divided by the grand sum of signal intensity 

of the detected N cycle genes, and weighted by the fold change of the signal intensity of 

this gene in plume to that in non-plume. For each functional gene, red indicates that this 

gene had a higher signal intensity in plume than in non-plume and their significance was 

indicated with two stars (**) at p<0.01, while blue indicates that this gene had a lower 

signal intensity in oil-plume than in non-plume. Grey-colored genes were not targeted by 

this GeoChip, or not detected in those samples. It remains unknown if nosZ homologues 

exist in nitrifiers. Description of the genes: (A) gdh, encoding glutamate dehydrogenase, 

ureC, encoding urease responsible for ammonification. (B) nasA, encoding nitrate 

reductase, NiR, encoding nitrite reductase, responsible for assimilatory N reduction; (C) 

nifH, encoding nitrogenase responsible for N2 fixation; (D) narG encoding nitrate reductase, 
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nirS and nirK-D (with denitrification activity), encoding nitrite reductase; nosZ, encoding 

nitrous oxide reducatse, norB, encoding nitric oxide reducatse, responsible for 

denitrification (E) napA, encoding periplasmic nitrate reductase, nrfA, encoding c-type 

cytochrome nitrite reducatse, responsible for dissimilatory N reduction to ammonium; (F) 

hao, encoding hydroxylamine oxidoreductase, and nirK-N encoding nitrite reductase for 

nitrifiers (an indication of nitrification activity), responsible for nitrification.
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Fig. 7 The normalized signal intensity of the replication genes for bacteriophage. The signal intensity for each sequence was the average of the 

total signal intensity from all the replicates. Gene number is the protein ID number for each gene as listed in the GenBank database. All data are 

presented as mean ± SE. ***p<0.01, **p<0.05, *p<0.1.  
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