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ABSTRACT

A method is introduced for diagnosing a transilient matrix for moist convec-
tion. This transilient matrix quantifies the nonlocal transport of air by convective
eddies: for every height z, it gives the distribution of starting heights z′ for the
eddies that arrive at z. In a cloud-resolving simulation of deep convection, the
transilient matrix shows that two thirds of the subcloud air convecting into the
free troposphere originates from within 100 meters of the surface. This finding
clarifies which initial height to use when calculating convective available potential
energy from soundings of the tropical troposphere.
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1. Introduction

A transilient matrix b for a convecting fluid describes the vertical transport of mass by
eddies. Each column of the matrix corresponds to an initial height and each row corresponds
to a final height: the element bij describes the amount of mass transported from zj to zi. If
this matrix can be diagnosed for a convecting fluid, it can provide valuable information on
the transilient (i.e., nonlocal) transport by eddies.

a. Methods of diagnosing b

A transilient matrix b was first defined for convection by Stull (1984) (see also the review
by Stull (1993)). As originally defined, the element bij is proportional to the mass of air
transported from zj at t = 0 to zi at t = ∆t (per infinitesimal intervals around zi and zj).
As such, b is a function of the time interval ∆t. In a numerical simulation, bij is easily
diagnosed using a “set-and-go” method with tracers: initialize a horizontally uniform tracer
qj at t = 0 in the layer containing zj, run the simulation until t = ∆t while advecting the
tracer passively, and then set bij proportional to the average concentration of qj in the layer
containing zi. By using a tracer for every level, the entire matrix can be diagnosed in one
simulation.

Although the set-and-go method is straightforward, it is not well suited to discerning the
origins and destinations of convective eddies. If ∆t is chosen to be comparable to or shorter
than the lifetime of a convective eddy, then bij will have significant contributions from eddies
that were only passing through zj at t = 0 or passing through zi at t = ∆t. On the other
hand, if ∆t is chosen to be comparable to or larger than the lifetime of a convective eddy,
then layers other than zj will become significantly polluted by qj, which will cause bij to
have contributions from eddies arriving at zi but coming from layers other than zj.

This paper introduces a way to diagnose b that avoids these problems. The method
uses radioactive tracers that are continuously injected at their respective heights and that
decay away with some timescale τ ; we may refer to this method as “inject-and-decay”. The
steady-state profiles of the tracers are arranged in a matrix that is inverted to obtain the
transilient matrix b. This transilient matrix can then be used to answer several questions
about convection. In a simulation of moist convection, it can tell us where in the boundary
layer cumuli originate.

b. Importance of cloud origin

The calculation of convective available potential energy (CAPE) often depends sensitively
on the height of origin used for the lifted parcel (Williams and Renno 1993; Mapes and Houze
1992; Smith 1997; Kingsmill and Houze Jr 1999). This sensitivity is caused by the fact that
equivalent potential temperature θe need not be well mixed within the mixed layer even
though virtual potential temperature θv is. To deal with the ambiguity of initial height, a
common approach has been to calculate CAPE using a parcel with the average mixed-layer
potential temperature and specific humidity (e.g. Bluestein and Jain 1985; Kingsmill and
Houze Jr 1999). If, however, cumuli draw their mass preferentially from a surface layer
where θe is higher than the mixed-layer average, then these approaches will underestimate
the “true” CAPE.
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The details of cloud origin are also relevant to theories of the triggering of moist convec-
tion. Current lines of research have begun to parameterize the dry thermals that become
convecting clouds (e.g., Cheinet 2003; Siebesma et al. 2007; Neggers et al. 2009). An im-
portant input into these models is how much air the thermals entrain as they rise from the
surface to the lifting condensation level. The thermal’s entrainment rate affects the proba-
bility that a newborn cumulus will have the kinetic energy and buoyancy to reach its level
of free convection.

c. Evidence on cloud origin

It is well known that cumuli are formed by thermals fed from plumes rising off the surface.
In a cumulus-topped boundary layer, glider pilots, hang gliders, paragliders, and pilots of
model gliders are often able to ride an individual updraft from near the surface to the base
of a newborn cumulus (Wallington 1961; Reichmann 1978; Pagen 1995; Rennó and Williams
1995). What is less certain is what fraction of a newborn cumulus originates from the surface
as opposed to having been entrained by the thermal from other heights in the subcloud layer.
This leads us to our main research question: what fraction of an average newborn cumulus
is composed of air transported to the cloud base directly from a surface layer?

In observations (Crum et al. 1987; Raymond 1995) and in cloud-resolving models (CRM)
(Kuang and Bretherton 2006; Romps and Kuang 2010a), the thermodynamic properties of
thermals and cumuli at the top of the boundary layer are very similar to the thermodynamic
properties of surface air. The most likely explanation for this is that thermals transport
surface air almost undiluted to the top of the boundary layer. An alternative explanation,
however, is that thermals leave the surface with higher-than-average heat and moisture and
then entrain enough air during their journey to reduce their thermodynamic properties to
the surface-air mean. Another line of evidence – comparing observed cloud-base heights to
the theoretical lifting-condensation level (LCL) of surface air – has produced mixed results.
In some studies, the cloud base was found to agree with the LCL of undiluted surface air
(Wilde et al. 1985; Stull and Eloranta 1985), while another study found the cloud base to
agree with the LCL for air taken equally from all heights in the subcloud layer (Craven et al.
2002).

The use of Lagrangian particles in cloud-resolving simulations has also yielded mixed
results. In a 3D simulation of shallow trade-wind cumuli, Heus et al. (2008) studied the
vertical distribution of particles half an hour prior to being observed in a cloud at 1000
meters (third panel of their Figure 6). Of the particles that were below the 500-m cloud
base half an hour before, 30% were below 100 meters; this suggests an important, but not
dominant, role for near-surface air. In another study using Lagrangian particles, Lin (1999)
defined the origination height for a particle as the height where the particle’s vertical velocity
was smaller than 0.0125 m s−1 for eight consecutive minutes. In a 2D simulation of shallow
trade-wind cumuli, it was found that, of the particles in convecting clouds that originate from
below the cloud base, about 60% of them originate from below 100 meters (Figure 4d, Lin
1999). But, when the same methodology was applied to a 2D simulation of deep convection,
no preference was found for subcloud particles to originate from below 100 meters (Figure
7d, Lin 1999). One possibility for this discrepancy is that the 0.0125 m s−1 threshold is
too sensitive for deep convection, in which downdrafts and cold pools frequently disturb the
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boundary layer.

d. Outline of paper

The theory of the transilient matrix and the inject-and-decay method for diagnosing it are
introduced in section 2. In section 3, low-resolution simulations are used to assess various
properties of the transilient matrix, including the effect of the advection scheme and the
matrix’s invariance with respect to the timescale for tracer decay. Section 4 presents high-
resolution simulations, which reveal that the majority of subcloud air in cumuli originates
from within 100 meters of the surface. The transilient matrix used to obtain these results
is compared to the transilient matrix of Stull (1984) in section 5. Section 6 summarizes the
results and discusses applications.

2. Theory

We wish to describe fluid flow with a transilient function b(z, z′) that gives the mean
advective mass flux from z′ to z. This function is useful for two important reasons, among
others. First, it reveals where large eddies begin and end, which is relevant for the construc-
tion of convective parameterizations. Second, it can predict the convective redistribution of
tracers without the need for explicit simulation.

We begin by defining b̃(z, z′) as the flux of mass from z′ to z due to individual large eddies,
which is a non-negative quantity. This has dimensions of mass per time, per horizontal area,
per height interval around z′, and per height interval around z (kg m−4 s−1). Here, an “eddy”
is any fluid motion whose advective timescale is short compared to the timescales of interest.
A “large eddy” is any eddy whose vertical extent is large enough that it acts non-diffusively
on the tracers of interest; we could refer to this synonymously as a “transilient eddy”. We
refer to all other eddies as “small”. The effect of a “small eddy” on the relevant tracers is
simply to diffuse the tracers in the vertical; we could also refer to this as a “diffusive eddy”.
The vertical scale that distinguishes between large and small eddies is the vertical scale of
features whose transport we wish to study. Later, when we discretize the transilient matrix,
this vertical scale is implicitly chosen to be the discretization length.

In the moist atmosphere, we are often interested in the transport of chemical tracers
whose sources and sinks act on timescales much longer than the advective timescales of
moist convective updrafts, moist convective downdrafts, and eddies in clear-air turbulence. In
addition, atmospheric tracers typically have mean profiles that vary vertically on lengthscales
that are large compared to the depth of clear-air eddies, which are confined vertically by
static stability. Therefore, we can identify moist convective updrafts and downdrafts as
large (i.e., transilient) eddies and the motions in clear-air turbulence as small (i.e., diffusive)
eddies.

Now, consider a passive scalar with a mixing ratio q in a convecting fluid. Let us assume
that three conditions are satisfied:

1. the fractional area of large eddies is much less than one,

2. the large eddies begin with the average q from their height of origin, and
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3. the sources and sinks of q act on timescales much longer than the large-eddy advective
timescales.

As shown in the Appendix, these conditions allow us to write the vertical convergence and
advection of q in terms of b̃,

− ∂

∂z
qρw(z) =

∫
dz′ b̃(z, z′)

[
q(z′)− q(z)

]
−M(z)

∂

∂z
q(z) +

∂

∂z

[
k(z)

∂

∂z
q(z)

]
, (1)

where an overbar denotes an average over x, y, and t. The compensating mass flux M is
defined as

M(z) ≡
∫ z

0

dz′′
∫ ∞
z

dz′ b̃(z′′, z′)−
∫ ∞
z

dz′′
∫ z

0

dz′ b̃(z′′, z′) (2)

because the first term on the right is the eddy flux from above z to below z and the second
term is the eddy flux from below z to above z. The diffusivity k is the turbulent diffusivity
effected by the small eddies. Equation (1) has a straightforward interpretation. The first
term on the right-hand side describes the displacement of q(z) with the q(z′) brought in by
large eddies starting at z′ and ending at z. The second term describes the advection of q by
compensating subsidence. The third term describes the diffusion of q by small eddies.

The transilient function b(z, z′) is defined as

b(z, z′) ≡ b̃(z, z′)− δ(z − z′)
∫
dz′′ b̃(z′′, z) +M(z′)

∂

∂z′
δ(z − z′) +

∂

∂z′

[
k(z′)

∂

∂z′
δ(z − z′)

]
,

(3)
where δ is the Dirac delta function. The terms on the right-hand side describe the net
source of mass at z due to four effects: individual large eddies arriving at z from z′, large
eddies leaving z for all possible z′′, compensating subsidence, and turbulent diffusion by
small eddies. As shown in the Appendix, the vertical fluxes of q are related to b and q by

− ∂

∂z
qρw(z) =

∫
dz′ b(z, z′)q(z′) . (4)

It is also shown in the Appendix that b conserves mass. In particular, the net sink of mass
at z′ (due to motions going to all possible z destinations) is zero,∫

dz b(z, z′) = 0 . (5)

This guarantees that the integral over z of the right-hand side of (4) is zero, just like the
left-hand side. Also, the net source of mass at z (due to motions leaving from all possible z′

origins) is zero, ∫
dz′ b(z, z′) = 0 . (6)

This guarantees that, if q is replaced by a constant, the right-hand side of (4) is zero, just
like the left-hand side.

Using a set of radioactive tracers in a cloud-resolving simulation, we can diagnose a
discretized version of the transilient function, i.e., the transilient matrix. Consider a set of n

5



radioactive tracers with mixing ratios {qk; k = 1, . . . , n}. Each tracer will be given its own
time-independent source Sk(z) and will decay with a timescale τ . The governing equation
for the kth tracer is

∂

∂t
(qkρ) + ~∇ · (qkρ~u) = Sk − qkρ/τ .

Averaging over x, y, and time, this equation reduces to

∂

∂t

(
qkρ
)

= Sk − ρ qk/τ − ∂

∂z
qkρw

where the average is denoted by an overbar. If the three previously listed conditions are
satisfied, then we can use equation (4) to write this as

∂

∂t

(
qkρ
)

= Sk − ρ qk/τ +

∫
dz′ b(z, z′)qk(z′) . (7)

Let us now choose a vertical grid {zi; i = 1, . . . , n} and an associated set of grid spacings
{∆i; i = 1, . . . , n}. Defining ρi = ρ(zi), bij = b(zi, zj), qik = qk(zi), and Sik = Sk(zi), we can
approximate equation (7) as

∂

∂t
(ρiqik) = Sik − ρiqik/τ +

∑
j

∆jbijqjk . (8)

Solving for bij gives

bij =
1

∆j

∑
k

[
∂

∂t
(ρiqik) +

ρiqik
τ
− Sik

] (
q−1
)
kj
, (9)

where q−1 is the matrix inverse of q.
The q and b matrices have straightforward interpretations, as shown in Figure 1. Row

i of the q matrix contains the mean tracer values at level i. Column j is the mean profile
of tracer j. Roughly speaking, each row of b tells us where air at a specific level originated,
and each column tells us where air from a specific level is destined to go. More precisely,
row i gives the sources (due to large eddies, small eddies, and compensating subsidence) at
level i binned by origin. Similarly, column j gives the sinks at level j binned by destination.

This definition of the transilient matrix does not suffer from the “convective structure
memory” (Ebert et al. 1989; Stull 1993; Sobel 1999; Larson 1999) that hampers the definition
used by Stull (1984). If we define the matrix fij ≡ ∆jbij/ρi, then e∆t f is the matrix operator
that evolves a horizontally averaged profile of a conserved tracer forward in time by ∆t. In
other words, the vector (i.e., discretized profile) of tracer values qi(t+ ∆t) is related to qi(t)
by

qi(t+ ∆t) =
∑
j

(
e∆t f

)
ij
qj(t) .

If qi has sources Qi(t), this generalizes to

q(t+ ∆t) = e∆t fq(t) +

∫ t+∆t

t

dt′ e(t′−t)fQ(t′) ,
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where, to avoid clutter, the indices and summation are implicit. If Q is time-independent,
then this becomes

q(t+ ∆t) = e∆t fq(t) +
(
e∆t f − 1

)
f−1Q ,

where f−1 is the matrix inverse of f . See section 6 for further comparison of this transilient
matrix and the one defined by Stull (1984).

3. Low-resolution runs

Simulations are performed using the fully compressible cloud-resolving model called Das
Atmosphärische Modell (DAM) (Romps 2008). The finite-volume advection scheme uses the
three-dimensional Uniformly Third-Order Polynomial Interpolation Algorithm (UTOPIA)
(Leonard et al. 1993) combined with the three-dimensional, monotonic flux limiter of Thuburn
(1996). All variables are stored as double precision, and all prognostic variables are conserved
by the finite-volume scheme to within roundoff error. For microphysics, DAM uses the six-
class Lin-Lord-Krueger scheme (Lin et al. 1983; Lord et al. 1984; Krueger et al. 1995) and,
for radiation, it uses the fully interactive Rapid Radiative Transfer Model (RRTM) (Clough
et al. 2005; Iacono et al. 2008). The top-of-atmosphere downwelling shortwave flux is set to
572 W m−2 incident at a zenith angle of 43 degrees. This provides the average first-of-January
equatorial insolation using a zenith angle whose cosine is equal to its insolation-weighted av-
erage on that day. The computational domain is three-dimensional with a doubly periodic
boundary condition in the horizontal. The surface fluxes are parameterized with a bulk-flux
scheme. Since there is no mean advection in these simulations, a 5-m-s−1 eastward velocity
is added to the local wind speed when calculating the bulk fluxes in order to simulate the
flux enhancement from large-scale flow. The sea-surface temperature is set to 300 K.

Several simulations are performed, all of which use the setup just described. The simu-
lations differ in only three respects: grid size, duration, and tracer decay time τ . The first
simulation, designed as a proof of concept, has a cubic domain that is 32 km wide. The
grid spacing is relatively coarse, with a 2-km horizontal grid spacing and 64 vertical levels
with a spacing ranging from 75 m near the surface to 500 meters in the upper troposphere.
Higher-resolution simulations are described in section 4. Since there are 64 vertical levels in
this simulation, there are 64 radioactive tracers, each injected at its respective level. Each
tracer is given a decay time of τ = 24 hours. The simulation is run for one month and
the first ten days are discarded as spin-up time. The tracer profiles are averaged over the
remaining days and plugged into equation (9) to calculated bij.

a. Near-diagonal terms

In both the qij and bij matrices, the largest elements are clumped in a band around the
diagonal. This band is shaped by small eddies, but also by gravity waves and numerical
diffusion. To check that our main results are insensitive to the numerics, all simulations
have been run twice: once advecting the tracers with a first-order upwind scheme, and once
advecting the tracers using the third-order UTOPIA scheme with the Thuburn flux limiter.
Only the advection scheme for the tracers differs between the two runs; physical variables
are always advected using the UTOPIA/Thuburn scheme.

We might guess that the diagonal bands in q and b are formed primarily by vertical
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diffusion. Ignoring large eddies and compensating subsidence, the effective 1D equation for
a diffusive, radioactive tracer injected at z0 is

ρ
∂

∂t
q = sδ(z − z0)− ρq/τ + ρk

∂2

∂z2
q , (10)

which can be written in terms of a transilient matrix

b(z, z′) = ρk
∂2

∂z2
δ(z − z′) .

The discretized version of the transilient term is∑
j

∆bijqj =
ρk

∆2
(qi−1 − 2qi + qi+1) ,

so the rows of b have the form

bi• =
ρk

∆3

(
0, . . . , 0, 1,−2, 1︸ ︷︷ ︸

i−1,i,i+1

, 0, . . . , 0

)
. (11)

The steady-state solution to (10) is

q =
s

2ρ

√
τ

k
e−|z−z0|/

√
τk . (12)

Given z0, s, ρ, and τ , there is only one free parameter: the vertical diffusivity k. In fact, by
comparing the q and b matrices diagnosed from the CRM to the theoretical predictions in
equations (12) and (11), we can read off the vertical diffusivity in the CRM.

Figure 2 compares columns of the q matrix to equation (12) and rows of the b matrix
to equation (11). The solid lines in the upper panels show the column of q that is equal
to the profile of the tracer injected at 6.4 km. The solid lines in the lower panels show the
corresponding row of the transilient matrix, which equals the sources of air at 6.4 km binned
by origin. To make visible the very small oscillations in b, the ordinate comprises two log
axes with a linear axis in between. The results in the left (right) panels were generated with
the first-order (third-order) advection scheme.

There are three ways to estimate the vertical diffusivity from these profiles. We can use
the peak value of q, the middle three values of bi•, or the slope of the log of q,

k = τ

(
s

2ρq(z0)

)2

k =
∆3

4ρ

i+1∑
j=i−1

|bij|

k =
1

τ
∣∣ ∂
∂z

log q
∣∣2 .

For the first-order advection, the value of k calculated in these three ways ranges from 14 to
19 m2 s−1. For the third-order advection, k = 7–9 m2 s−1. These are within the wide range
of estimated diffusivities for the troposphere (e.g.,Table 1, Wilson 2004).
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The dashed lines in Figure 2 plot equations (11) and (12) with k chosen as the mean of
the three estimates. With first-order advection, we see that the profile of q closely matches
the expected exponential decay and the row of b closely resembles the diffusion operator.
With third-order advection, the tracer decays more rapidly than exponential. A consequence
of this non-exponential decay is the more complicated structure of the transilient matrix,
which corresponds to an operator with higher-order derivatives in addition to second-order
diffusion. We also see that q is higher below the injection point than above, which is caused
by compensating subsidence.

b. Off-diagonal terms

The parts of the transilient matrix that are of most interest to us are the off-diagonal
terms corresponding to large eddies (i.e., convective clouds). Figure 3 shows the base-ten
logarithm of the elements of b in units of kg m−4 s−1. The abscissa corresponds to the origin
of the eddies and the ordinate corresponds to the destination of the eddies. For example,
we can read off that the mass flux in eddies originating between 1000 and 1001 meters and
ending between 7000 and 7001 meters is about 10−10 kg m−2 s−1.

The most striking feature of Figure 3 is the left-most column, which corresponds to
convective eddies that begin in the first layer (0–75 m) and end between 2 and 16 km. This
column contains the largest elements away from the diagonal. The relative statistical error
in Figure 3 is about 10% or less, so this feature is statistically robust. In fact, the flux from
that first layer is so large that it dominates the transport out of the subcloud layer. Of
course, this simulation uses a very coarse vertical grid, so this result is explored at much
higher resolution in section 4.

c. Independence from τ

As stated in section 1 and shown in the Appendix, equation (9) gives the transilient
matrix when the decay timescale τ of the tracers is large compared to the lifetime of eddies.
In moist convection, the lifetimes of clouds are on the order of one hour, so bij should be
independent of τ so long as τ is much greater than an hour. When τ is comparable to an
hour, equation (9) should give a matrix that is τ -dependent and no longer equal to the true
transilient matrix.

To test this, a two-month simulation is performed using τ = 48 hours. Month-long
simulations are also run using τ = 24, 12, 6, 3, 1.5, and 0.75 hours. Figure 4 shows the
fractional differences between the bij calculated from these runs and the 48-hour run. We
see that bij changes very little over the first few halvings of τ , but it diverges significantly
for τ equal to 1.5 and 0.75 hours. This confirms the invariance of bij for τ much larger than
one hour and the divergence of bij from the true transilient matrix for τ comparable to one
hour.

4. High-resolution runs

The most striking result from the previous section is that the air convecting out of the
boundary layer comes predominantly from the layer adjacent to the surface. We check this
phenomenon now with a high-resolution simulation. This simulation uses a 200-meter grid
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spacing in the horizontal and 175 levels in the vertical with a spacing ranging from 5 meters
near the surface to 200 meters in the free troposphere. The domain is a 25.6-km-wide square
with a model top at 30 km. To expedite the approach to equilibrium while keeping τ much
greater than the eddy lifetimes, τ is set to 12 hours. The simulation is run twice, advecting
the radioactive tracers once with first-order advection and once with third-order advection.
Recall that the physical variables (momentum, water, etc.) are always advected with third-
order advection, so the convection is exactly the same in both runs. The simulation is run
for at least one week with the q matrix and its tendency obtained from an average over the
last day.

a. Height of origin

The transilient matrices obtained from this simulation are shown in Figure 5. With both
advection schemes, there is a column of high values along the left edge of the matrix. This
band is spread out over 10–20 vertical levels, so it is very well resolved. The matrix obtained
using third-order advection has a strip of negative values centered on the column corre-
sponding to 200 meters. Since b̃ij is, by definition, a non-negative function, the transilient
matrix must be non-negative away from the diagonal. Clearly, the matrix obtained from
tracers advected with the third-order scheme violates this criterion. The matrix obtained
with first-order advection does not suffer from this problem, which inspires more confidence.
With either scheme, however, the band of high values along the left-most edge of the matrix
is robust, persistent, and well-resolved.

The band of high values extends from 0 to 100 meters on the abscissa. In other words, the
function b(z, z′) returns large values for z′ < 100, which means that individual large eddies
are pumping air into the free troposphere from below 100 meters. To quantify this effect,
we can calculate the fraction of air passing upward through the cloud base that originated
from below 100 meters. For the high-resolution simulation, the cloud base is at 567 meters.
Therefore, for each height z in the free troposphere, we calculate∫ h

0
dz′ b(z, z′)∫ 567

0
dz′ b(z, z′)

,

which is the fraction of subcloud air detrained at z that originated from below h. This is a
cumulative distribution as a function of h.

Figure 6 plots this function of h for a variety of height ranges. The negative values in bij
for third-order advection show up as negative slopes in the cumulative distributions. With
either advection scheme, the majority of air transported out of the subcloud layer originates
from below 100 meters. With first-order (third-order) advection, the fraction is 67% (81%).
This result concurs qualitatively with the laboratory experiments of Sánchez et al. (1989),
who found that incipient thermals have low entrainment rates.

b. Check with purity tracers

Recall that three conditions were used to identify the b in equation (4) as the transilient
matrix. The third condition – that the tracer sources and sinks have long timescales – is
easily satisfied by choosing a decay timescale τ that is sufficiently large. The other two
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– that the fractional area of eddies is much less than one and that eddies begin with the
average tracers at their height of origin – are not under our control. In the subcloud layer,
the circulation comprises dry thermals that occupy a substantial fraction of the domain,
which violates the first condition and may also lead to violations of the second condition. It
is incumbent upon us, then, to check the results with an independent method.

To verify the conclusion that air from 0–100 meters dominates the subcloud air in cumuli,
we use the purity tracer that was first introduced by Romps and Kuang (2010a). The purity
tracer is initialized to a mixing ratio of 1 below some height h and to 0 above h. As eddies
rise up past h, they carry with them an initial purity of 1 that is subsequently reduced by
the entrainment of air from above h. The mixing ratio of the purity tracer tells us what
fraction of the air in the eddy originated from below h.

To analyze steady-state convection, the purity tracer is reset to 1 below h at every time
step. Above h, the purity is set to 0 well outside the eddies at every time step. In Romps
and Kuang (2010b), a grid cell was defined as “well outside” if the surrounding 7×7×7 box
of grid cells contained only non-eddying air. Here, we want to err on the side of too small a
purity, so we use a box that is 3× 3× 3 grid cells. This provides a buffer of one grid cell in
any direction from an eddying grid cell; a smaller box (i.e., 1×1×1) would cause the purity
tracer to be zeroed as an eddy advects from one grid cell to the next. Since there is no cloud
in the subcloud layer and updraft velocities are small, a grid box is defined as eddying if
its vertical velocity is positive. At any given moment, roughly half of the boundary layer
satisfies this condition, but only those parcels that maintain a continuously positive velocity
avoid having their purity set to zero.

We introduce two purity tracers into the high-resolution simulation: “low” and “high”.
The low purity tracer is set to 1 below h = 100 meters and 0 above. The high purity tracer
is set to 1 below the cloud base (h = 567 m) and 0 above. For a parcel above the cloud base,
the ratio of the low to high tracers tells us the fraction of subcloud air that originated from
below 100 meters.

Figure 7 shows the horizontally averaged low tracer divided by the horizontally averaged
high tracer. Below 100 meters, both tracers are set to 1, so their ratio is 1. As we move up
in the boundary layer, the high purity is still 1, but the average low purity is equal to the
fractional area of eddies times the average low purity of the eddies. We see that the average
low purity dips to as low as 0.1 just below the cloud base.

Above the cloud base, however, the ratio rises to ∼70% (∼80%) for first-order (third-
order) advection. This matches the result from the transilient matrix, which gave a ratio
of 67% (81%). This confirms that the majority of subcloud air in cumuli originates from
below 100 meters. Compare this conclusion with the null hypothesis that new cumuli are
comprised of air taken equally from all heights below cloud base. If the null hypothesis were
true, then the ratio of low to high purities above the cloud base would be 100/567 = 18%,
which is denoted by the dashed line in Figure 7.

c. Implications of near-surface origin

One implication of a predominantly near-surface origin is that CAPE is more accurately
calculated by lifting parcels from near the surface. In Figure 8, CAPE is calculated by
adiabatically lifting (without the latent heat of fusion) a parcel initialized to the average
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properties of air at the height on the abscissa. The left panel shows the results of this
calculation using 4096 soundings from snapshots of the high-resolution simulation. The
right panel shows the same calculation using 1934 soundings collected at the ARM site
in Nauru. The observations exhibit much more variability than the simulation due to the
presence of diurnal, mesoscale, and synoptic variability, but the qualitative picture is the
same. For both the CRM and ARM data, CAPE decreases almost monotonically with the
height of origin. Therefore, calculating CAPE for an average subcloud parcel underestimates
the true CAPE available to cumuli, which mostly originate from the first 100 meters.

What is so special about 100 meters? In dry boundary layers or boundary layers topped
by non-precipitating clouds, a surface layer can often be identified in the bottom 10% of the
boundary layer by larger mean values of θv. Beneath precipitating cumulonimbi, however,
the boundary layer is strongly affected by cold pools (e.g., Moeng et al. 2009), which in-
troduce horizontal heterogeneity that complicate the interpretation of the mean θv profile.
Nevertheless, a surface layer can be identified from the largest percentiles of θv. This is
shown in Figure 9, which plots the 95th percentile of CAPE for parcels taken from the initial
height on the abscissa and lifted to the cloud base. In this calculation, we use profiles from
ARM soundings at Nauru and soundings from snapshots of the cloud-resolving simulation.
Again, the observations exhibit much more variability, which causes the 95th percentile to
be much larger for Nauru than for the CRM. Nevertheless, in both the observations and the
model, the CAPE value decreases rapidly within the first 100 meters. This identifies the first
100 meters as a surface layer in which some parcels have enough buoyancy to reach their
level of free convection.

5. Comparison to Stull

To compare the transilient matrix introduced here with the one defined by Stull (1984,
1993), we use the thought experiment depicted in Figure 10. For simplicity, we work in
non-dimensional units. Consider an incompressible fluid of unit density in a rectangular
2D domain. Let us conceptually divide the domain into five horizontal layers of unit depth.
Imagine that fluid rises from the first layer to the fifth layer in a fraction ε� 1 of the domain
at a speed of one (i.e., one layer per unit time). The remaining 1− ε of the domain sinks at
a speed of ε/(1 − ε) ≈ ε. A transilient matrix can be diagnosed in two different ways: the
set-and-go method of Stull (1984) and the inject-and-decay method described in section 2.

In Stull’s set-and-go method, five tracers are initialized to a value of one in their respective
layers and zero elsewhere. Using the notation of section 2, the q matrix is defined with
columns equal the vertical profiles of the tracers. At time t = 0, q is equal to the identity
matrix,

qt=0 =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 ≡ I .

Following convention, the matrix is shown upside-down, which makes the diagonal rise from
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bottom-left to upper-right. Advecting the tracers for time ∆t, the equation

∂

∂t
q = bStull,∆t q

is solved for bStull,∆t by discretizing in time,

qt=∆t − qt=0

∆t
= bStull,∆t qt=0 = bStull,∆t .

At ∆t = 1, the ascending column has risen by one layer while the rest of the fluid has
descended a distance ε. Since the ascending branch covers a fraction ε of the domain and
the descending branch covers a fraction ∼1, bStull,∆t is

bStull,∆t=1 ≈ ε


0 0 0 1 −1
0 0 1 −2 1
0 1 −2 1 0
1 −2 1 0 0
−1 1 0 0 0

 . (13)

In the first column, we see that the ascending branch has removed ε of fluid from the first
layer and deposited it in the second layer. In the second column, we see two effects: the
ascending branch has removed ε of fluid from the second layer and deposited it in the third
layer, and the descending branch has removed ε of fluid from the second layer and deposited
it in the first layer. Analogous explanations apply to the other columns.

Now, let us wait a time equal to the eddy turnover time, which is ∆t = 4 in this case.
This gives us the following:

bStull,∆t=4 ≈
ε

4


1 1 1 1 −4
1 0 0 −5 4
1 0 −5 4 0
1 −5 4 0 0
−4 4 0 0 0

 . (14)

The 1s in the top row tell us that fluid has been transported to the fifth layer from each
of the first four layers. This corresponds to the flushing out of the initial tracers in the
ascending column. The 1s in the left-most column tell us that fluid was transported from
the first layer to each of the other layers; this corresponds to the ascending column filling
itself with the tracer from the first layer.

There are two main problems with the matrices in equations (13) and (14). First, neither
matrix conveys the simple story of convective transport from the bottom to the top with
compensating subsidence in between. The matrix in equation (13) is simply the diffusion
operator: each row has the {. . . , 1,−2, 1, . . .} pattern of the discretized ∂2/∂z2 operator.
Therefore, it contains no information about the large eddies, which defeats the purpose of
a transilient matrix. The matrix in equation (14), on the other hand, has nonzero elements
corresponding to large eddies that are not present in the flow. The second problem is that
of “convective structure memory” (Ebert et al. 1989). If the two matrices in (13) and (14)
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were consistent, then bStull,∆t=4 would equal 4 times bStull,∆t=1, but it does not. This leads to
the question of which, if either, of these is the correct description of the fluid flow.

If we are concerned with the redistribution of tracers on timescales long compared to
the eddy turnover time, the answer is that neither is correct. We get the correct matrix
using the inject-and-decay method, whereby we continuously inject the five tracers into
their respective levels and let the tracers decay on a timescale τ that is large compared to
the eddy’s advective timescale, i.e., τ � 4. For simplicity of illustration, let τ be small
compared to 1/ε, which is the time it takes the compensating subsidence to move one unit of
height; this assumption of τ � 1/ε is not necessary, but it simplifies our thought experiment.
In a steady state, the factor of qik/τ − Sik in equation (8) is equal to the source of tracer
k at height i due to the fluid motion. The ascending branch generates a sink ε of tracer 1
in layer 1 and a source ε of tracer 1 in layer 5. Since we have assumed that the decay time
τ is much smaller than the subsidence timescale 1/ε, the surplus of tracer 1 decays in layer
5 before it is exported by subsidence. Therefore, q51/τ − S51 = ε. Similarly, the export of
tracer 1 from layer 1 by the ascending eddy is matched locally by q11/τ − S11 = −ε. By the
same token, the compensating subsidence, which also occurs at a rate of ε, must be matched
by (q/τ − S)ii = −(q/τ − S)i−1,i = −ε for i > 1. There is also nonzero decay of tracer 1 in
the ascending column, but this is of magnitude ε/τ , and we have required that τ � 4 (see
condition 3 of section 2), so ε/τ is much smaller than the other elements of q/τ − S. With
our simplifying assumption of τ � 1/ε, q−1 is equal to the identity matrix plus O(ε) terms.
Therefore, the non-dimensionalized version of (9) yields

b =
( q
τ
− S

)
[I +O(ε)] = ε


1 0 0 0 −1
0 0 0 −1 1
0 0 −1 1 0
0 −1 1 0 0
−1 1 0 0 0

+O(ε2) +O(ε/τ)

This transilient matrix describes the flow accurately: the first column describes the transport
of fluid from the bottom layer to the top layer by the ascending branch, and the other columns
describe the compensating subsidence. Since this matrix contains all the information about
the flow, it can be safely exponentiated to any time interval, large or small.

The relationship between this inject-and-decay transilient matrix and Stull’s set-and-go
matrix bears some similarity to the relationship between the two approaches of construct-
ing linear response functions of cumulus ensembles to large-scale temperature and moisture
anomalies (Kuang 2010). Like the set-and-go transilient matrix, a matrix that describes the
response of the atmosphere some time after an initial temperature or moisture perturbation
suffers from complications due to the finite lifetime of convective eddies. On the other hand,
introducing temperature or moisture sources, building a matrix of the resulting temperature
and moisture anomalies, and then performing a matrix inversion, like the inject-and-decay
method introduced here, is appropriate for flows with timescales longer than the convec-
tive timescale and results in a linear response functions matrix that can be exponentiated
(Appendix of Kuang 2010).
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6. Conclusions and discussion

We have introduced a transilient matrix that describes the rearrangement of mass by
convective eddies in moist convection. It is shown how this matrix can be diagnosed using a
set of radioactively decaying tracers in cloud-resolving simulations. The resulting transilient
matrix tells us that the majority of air in newborn cumuli originates from within 100 meters
of the surface. This conclusion is confirmed independently using purity tracers.

This conclusion has important implications for how CAPE is calculated. There are
many choices that must be made when calculating CAPE for a lifted parcel, including the
entrainment rate, how condensates fall out, and the effective temperature of condensate
freezing. One of the most significant choices to be made is the initial height from which
to lift the parcel. The influence of the initial height is so large that operational forecasts
distinguish CAPE calculations by this choice: surface-based CAPE (SBCAPE) uses a parcel
from the surface, mean-layer CAPE (MLCAPE) initializes the parcel to the mean potential
temperature and specific humidity in a layer typically 50–100 mbar deep, and maximum-
unstable CAPE (MUCAPE) picks the initial height that gives the largest value of CAPE
(Doswell and Rasmussen 1994; Bunkers and Klimowski 2002). The results obtained here
suggest that CAPE should be calculated using a parcel with the mean potential temperature
and specific humidity of the air below 100 m.

For a study of boundary-layer processes, a 200-m horizontal grid spacing is far from
ideal. Unfortunately, this is near the limit of computational feasibility for simulations with
the following requirements: a run time much greater than an hour, a domain sufficient to
contain deep convection, and a passive tracer for every vertical layer. There are two obvious
concerns about this coarse spacing, and they would have opposite effects. One concern is
that the simulated boundary-layer thermals may be wider, and therefore more protected from
lateral entrainment, than real thermals. This would tend to overestimate the fraction of air
originating from below 100 m. The other concern is that the 200-m horizontal spacing may
imprint itself on the vertical scale of eddies, which would cause a spuriously large amount
of air to be scooped up from above 100 m. This would tend to underestimate the fraction
of air originating from below 100 m. Since both of these effects would naively scale with
the grid spacing, and since the 2-km and 200-m simulations agree quite well, it appears that
these effects are not significant.

Although the simulations presented here are in a steady state, there is no requirement
of a steady state in the derivation of b. All that is needed is for the time derivative in
(9) to be averaged over a sufficiently large domain or a sufficiently long time to capture
the ensemble effects of convection. This makes possible a wide range of applications. One
such application is in a superparameterized general circulation model (GCM), in which a
cloud-resolving model is embedded within each GCM grid cell. In this case, the CRM’s
large-scale features (including tracer profiles) are time-dependent. By diagnosing b in this
time-dependent convection, and then exponentiating b to the full GCM time step, we can
faithfully model the effect of convection on the GCM’s passive tracers. If the rank of b were
small compared to the number of GCM tracers, this approach would be less computationally
expensive than simulating all of the GCM’s tracers explicitly in the CRM.

Another potential application of the transilient matrix is as a way to improve the trans-
port of chemical tracers by standard convective parameterizations. If the transilient matrix
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could be parameterized in terms of bulk convective mass fluxes, then convective parame-
terizations could be augmented to include the transilient transport of chemicals in a GCM.
There is no guarantee that such a parameterization is feasible, but the possibility merits
investigation.
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Appendix: Deriving the transilient matrix

For convenience, we will denote the four-vector (x, y, z, t) by xµ. Note that xµ is a non-
unique label for the parcel of air located at (x, y, z) at time t. If xµ is within a large eddy, then
we define zi(x

µ) as the initial height of parcel xµ when it enters the large eddy and zf (x
µ)

as the final height of the parcel when it exits the large eddy. We then define T (z′′, z′;xµ) as

T (z′′, z′;xµ) ≡
{
δ [z′′ − zf (xµ)] δ [z′ − zi(xµ)] if xµ in a large eddy

0 otherwise
. (15)

Note that the double integral of T is∫
dz′
∫
dz′′ T (z′′, z′;xµ) =

{
1 if xµ in a large eddy

0 otherwise
. (16)

To reduce clutter, integrals are assumed to be taken over their variables’ full range (i.e., from
0 to ∞ above) unless specified otherwise. When the integrals are taken over finite ranges,
we get

∫ z2+∆z

z2

dz′′
∫ z1+∆z

z1

dz′ T (z′′, z′;xµ) =


1

if xµ in a large eddy and parcel
xµ enters from [z1, z1 + ∆z] and
exits to [z2, z2 + ∆z]

0 otherwise

. (17)

Furthermore, if we pick z between z′ and z′′, multiply the above expression by ρw(xµ), and
integrate x and y over the domain area A, then we get the net upward mass flux eddying
from [z1, z1 + ∆z] to [z2, z2 + ∆z] through height z at time t. If we then integrate over time,
we get the net mass transported from [z1, z1 + ∆z] to [z2, z2 + ∆z] by large eddies through
height z during that time period.

This leads naturally to a definition for b̃. For T much larger than eddy turnover times,
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b̃(z′′, z′) is defined as

b̃(z′′, z′) ≡ sign(z′′ − z′) 1

T

∫ T

0

dt
1

A

∫
A

dx dy T (z′′, z′;xµ) ρw(xµ)

for any z between z′ and z′′ , (18)

where A is the area of the domain. We can use any value of z between z′ and z′′ because a
parcel eddying from z′ to z′′ must pass through all intermediate heights. Even if the parcel
doubles back through the height z on its convoluted path from z′ to z′′, the fact that w will
be negative during downward passes through z guarantees that the parcel’s net contribution
to the integral will be its mass and no more. If we were to choose a z outside z′ and z′′, then
the integral on the right-hand side would be zero because parcels eddying from z′ to z′′ will
pass as many times downward through z as they will upward through z. Therefore, we can
also write

1

T

∫ T

0

dt
1

A

∫
A

dx dy T (z′′, z′;xµ) ρw(xµ) =


b̃(z′′, z′) if z′′ > z > z′

−b̃(z′′, z′) if z′ > z > z′′

0 otherwise

. (19)

We can use (17) to see that ∫ z2+∆z

z2

dz′′
∫ z1+∆z

z1

dz′ b̃(z′′, z′)

is the flux of mass into [z2, z2 +∆z] due to individual large eddies originating in [z1, z1 +∆z].
Let us define q(z′′, z′; z) as the mass-weighted average of q in large eddies at z traveling

from z′ to z′′:

q(z′′, z′; z) ≡


∫ T

0
dt
∫
A
dx dy T (z′′, z′;xµ) qρw(xµ)∫ T

0
dt
∫
A
dx dy T (z′′, z′;xµ) ρw(xµ)

for {z, z′, z′′} such that the
denominator is nonzero

0 otherwise

. (20)

Denoting the average over x, y, and t by an overbar, qρw(z) is the net vertical mass flux of
q at height z. Using (16), this can be separated into an integral over large eddies and the
region outside large eddies,

qρw(z) ≡ 1

T

∫ T

0

dt
1

A

∫
A

dx dy qρw(xµ)

=
1

T

∫ T

0

dt
1

A

∫
A

dx dy qρw(xµ)

∫
dz′ dz′′ T (z′′, z′;xµ)

+
1

T

∫ T

0

dt
1

A

∫
xµ outside large eddies

dx dy qρw(xµ) . (21)
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The term involving T can be rewritten using (20) and (19),

1

T

∫ T

0

dt
1

A

∫
A

dx dy qρw(xµ)

∫
dz′ dz′′ T (z′′, z′;xµ)

=

∫
dz′′ dz′ q(z′′, z′; z)

1

T

∫ T

0

dt
1

A

∫
A

dx dy T (z′′, z′;xµ) ρw(xµ)

=

∫ ∞
z

dz′′
∫ z

0

dz′ q(z′′, z′; z)b̃(z′′, z′)−
∫ z

0

dz′′
∫ ∞
z

dz′ q(z′′, z′; z)b̃(z′′, z′) .

The last term in (21) is integrated over the region of fluid that contains only compensating
mass flux and small eddies. We can write the flux of q due to the compensating mass flux M
(i.e., the average ρw in the region outside large eddies) as M times the horizontal average
of q in the non-eddying region. The compensating mass flux M is given by

M(z) =

∫ z

0

dz′′
∫ ∞
z

dz′ b̃(z′′, z′)−
∫ ∞
z

dz′′
∫ z

0

dz′ b̃(z′′, z′) (22)

because the first term on the right is the eddy flux from above z to below z and the second
term is the eddy flux from below z to above z. The small eddies act diffusively by assumption,
so their effect can be described by a vertical diffusivity k(z) acting on the horizontal average
of q in the non-eddying region. Assuming that the fractional area of large eddies is small, we
can approximate the non-eddying q by the horizontal average of q over the whole domain.
Therefore, we can write qρw as

qρw(z) =

∫ ∞
z

dz′′
∫ z

0

dz′ q(z′′, z′; z)b̃(z′′, z′)−
∫ z

0

dz′′
∫ ∞
z

dz′ q(z′′, z′; z)b̃(z′′, z′)

+ q(z)M(z)− k(z)
∂

∂z
q(z) .

We will now make two approximations. First, we will assume that the sources and sinks of
q act on timescales long compared to the large-eddy advective timescales. This allows us to
approximate q(z′, z; z) as the mean mixing ratio that parcels have right before they enter a
large eddy at z and q(z, z′; z) as the mean mixing ratio that parcels have right before they
enter a large eddy at z′. Second, we will assume that the average large eddy starting at z has
the same q as the horizontal average at z. These two approximations reduce this equation
to

qρw(z) =

∫ ∞
z

dz′′
∫ z

0

dz′ q(z′)b̃(z′′, z′)−
∫ z

0

dz′′
∫ ∞
z

dz′ q(z′)b̃(z′′, z′)+q(z)M(z)−k(z)
∂

∂z
q(z) .

Taking minus the vertical derivative and using (22), this becomes

− ∂

∂z
qρw(z) =

∫
dz′ b̃(z, z′)

[
q(z′)− q(z)

]
−M(z)

∂

∂z
q(z) +

∂

∂z

[
k(z)

∂

∂z
q(z)

]
. (23)

In other words, the vertical convergence and advection of q into z (left side) is equal to the
flux of large eddies to z times their q surplus (first term on right), plus the advection of q
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by the compensating subsidence (second term on right), plus the diffusive convergence of q
(third term on right). We define the transilient function b(z, z′) as

b(z, z′) ≡ b̃(z, z′)− δ(z − z′)
∫
dz′′ b̃(z′′, z) +M(z′)

∂

∂z′
δ(z − z′) +

∂

∂z′

[
k(z′)

∂

∂z′
δ(z − z′)

]
.

(24)
The physical interpretation of this equation is discussed in section 2.

It follows immediately from (24) that the integral of b over its first argument is zero. It
can also be shown that the integral over its second argument is zero,∫

dz′ b(z, z′)

=

∫
dz′ b̃(z, z′)−

∫
dz′ b̃(z′, z)− ∂

∂z
M(z)

=

∫
dz′ b̃(z, z′)−

∫
dz′ b̃(z′, z) +

∫
dz′ b̃(z′, z)−

∫
dz′ b̃(z, z′)

= 0 .

These two identities reflect the fact that b conserves mass. In particular, the net source of
mass originating from z′ is zero, ∫

dz b(z, z′) = 0 , (25)

and the net source of mass arriving at z is zero,∫
dz′ b(z, z′) = 0 . (26)

Since the action of b on q can be rearranged as∫
dz′ b(z, z′)q(z′)

=

∫
dz′ b̃(z, z′)q(z′)−

∫
dz′ b̃(z′, z)q(z)−M(z)

∂

∂z
q(z)

−q(z)
∂

∂z
M(z) +

∂

∂z

[
k(z)

∂

∂z
q(z)

]
=

∫
dz′ b̃(z, z′)q(z′)−

∫
dz′ b̃(z′, z)q(z)−M(z)

∂

∂z
q(z)

−q(z)

∫
dz′ b̃(z, z′) + q(z)

∫
dz′ b̃(z′, z) +

∂

∂z

[
k(z)

∂

∂z
q(z)

]
=

∫
dz′ b̃(z, z′)

[
q(z′)− q(z)

]
−M(z)

∂

∂z
q(z) +

∂

∂z

[
k(z)

∂

∂z
q(z)

]
,

equation (23) can be written in terms of b as

− ∂

∂z
qρw(z) =

∫
dz′ b(z, z′)q(z′) . (27)
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To arrive at equation (27), we required three conditions: the fractional area of large eddies
is much less than one; the large eddies begin with the average q from their height of origin;
and the sources and sinks of q act on timescales much longer than the large-eddy advective
timescales.
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sources and sinks of air (due to large eddies, small eddies, and compensating subsidence)
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Fig. 3. Part of the transilient matrix b obtained using (left) third-order advection and
(right) first-order advection in the low-resolution simulation. The colors and contours map
out the base-10 logarithm of the matrix elements in units of kg m−4 s−1. For example, the
mass flux in large eddies originating between 1000 and 1001 meters and ending between 7000
and 7001 meters is about 10−10 kg m−2 s−1. White areas are outside the bounds of the color
bar.
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Fig. 4. Fractional changes in b (with respect to the run with τ = 48 hours) for various τ .
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Fig. 5. The same as Figure 3, but for the high-resolution simulation.
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Fig. 6. For various destination height ranges, the cumulative distribution of air origin for
the high-resolution simulation with (left) third-order and (right) first-order advection.
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Fig. 7. The ratio of low purity to high purity with first-order and third-order advection of
tracers. The ratio predicted by the null hypothesis is denoted by the dashed line.
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Fig. 8. Percentiles of adiabatic, no-fusion CAPE from 10% to 90% in intervals of 10% as
a function of original height (grey lines). The plot on the left is constructed from pointwise
soundings taken from snapshots of the high-resolution simulation, and the plot on the right
is constructed from ARM soundings at Nauru. The mean is indicated by the dark line.
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Fig. 9. The 95th percentile of CAPE as integrated from the original height to 567 m.
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