
 
 

Extension of the weak-line approximation and application to 
correlated-k methods 

A.J. Conley a,*, W.D. Collins b,c
 

 

a National Center for  Atmospheric Research, 1850 Table  Mesa Dr.,  Boulder, CO 80305, United 
States 
b Department of Earth and Planetary Science, University of California, Berkeley, United States 
c Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S. 

 
 

a b s t r a c t   

 
Global climate models require accurate and rapid computation of the 
radiative transfer through the atmosphere. Correlated-k methods are often 
used. One of the approximations used in correlated-k models is the weak-
line approximation. We introduce an approximation Tg which reduces to the 

weak-line limit when optical depths are small, and captures the deviation 
from the weak-line limit as the extinction deviates from the weak-line limit. 
This approximation is constructed to match the first two moments of the 
gamma distribution to the k-distribution of the transmission.  We   
compare the errors of the weak-line approximation with Tg in the context of 

a water vapor spectrum. The extension Tg is more accurate and converges 

more rapidly than the weak-line approximation. 

 
 

1.   Introduction 
 

Accurate treatments of the interactions of 
incident sunlight and emitted thermal radiation with 
Earth system components are    essential for models of 
the climate system. While computations that 
resolve the line structure of the gases using line-by-
line methods can provide a reference computation of 
radiative transfer for the known spectral 
characteristics of the known atmospheric com- 
position, they are computationally too  expensive—by 
several orders of  magnitude—for routine  use   in  
global climate  models.  Band   transmission models 
have been used in earlier generations of global 
climate models to estimate the radiative fluxes 
through the earth’s atmosphere [1].  According to 
recent surveys of the climate modeling community 
(Q. Fu, private communication), correlated-k 
methods are currently the most widely used method 
of approximating the solution while maintaining 
acceptable accuracy and speed [2,3].  In these 
methods, the integrals over frequency required for   
broadband fluxes and heating rates are replaced via  
 
 

 
 
 
Laplace transforms with mathematically identical  
integrals over specific extinction. 

 
A significant source of error in correlated-k 

methods is the quadrature error associated with 
the parameterization of the integration over the 
distribution of extinctions. The line strengths of 
radiatively active gases can vary over several orders 
of magnitude through a band; there are often many 
lines in a band, making accurate and fast 
integration through the corresponding range of 
extinctions difficult. Instead, the integration 
through the extinctions (or frequencies) is often 
parameterized by a weighted sum of exponentials 
[4–7]. This weighted sum is called the weighted 
sum of gray gases, or the exponential sum fitting of 
transmission. 

A constructive method for approximating the 
transmission with a rigorous and predefined error 
constraint at all path lengths is found in [8]. This 
method appears to overestimate the terms required 
to construct an approximation satisfying the 
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predefined error constraints. Furthermore, the number of
terms required to meet the predefined error may be
quite large.

The method described in this paper provides a higher

2. Definitions

For a frequency band n 2 ½n1,n2�, the band transmission
is defined as
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order basis function, with a resulting faster convergence,
but lack the necessary rigorous error bounds provided by
the constructive method.

One of the gray gas approximations is the weak-line
approximation [1] for the band transmission:

TðuÞ ¼
1

Dn

Z n2

n1

dn expð�kðnÞuÞ ð1Þ

TðuÞ � expð�/kSuÞ ð2Þ

where

Dn¼ n2�n1 ð3Þ

/kS¼
1

Dn

Z n2

n1

dn kðnÞ ð4Þ

Here /kS is the mean absorption coefficient, kðnÞ is the
specific absorption, u is the path length, and n1 and n2 are
the frequency bounds of the band. This approximation is
based on a number of assumptions that we will review,
but despite the limited validity of these assumptions the
weak-line approximation is commonly used to develop
correlated-k methods. Typically correlated-k methods
partition the range of extinctions and assign an effective
extinction to each range. It is not clear a priori whether
the weak-line limit is the optimal approximation for
arbitrary partitioning and for arbitrary path lengths
through the radiatively active medium.

We present an extension of the weak-line approxima-
tion that takes higher moments into account and provides
a more accurate representation of the transmission. An
analogue can be seen in the difference between the
trapezoidal rule and Simpson’s rule for numerical inte-
gration. In the case of transmission, the problem is
complicated by the fact that the gray gas approximation
has an exponential order error, i.e., the specific extinction
appears in the exponent. In this paper, we approximate
the k-distribution instead of approximating the argument
of the exponential. We thereby obtain a parameterization
that is more accurate and converges at higher order. The
method is also easily constructed without reference to
any numerical optimization. The only required informa-
tion from the k-distribution is the first two moments of
the distribution, although we present some alternatives in
the appendices that require additional information.

This paper first provides a few definitions in Section 2.
It reviews the weak-line approximation in Section 3.
In Section 4 we introduce an extension of the weak-line
approximation that is applicable to a larger range of
extinctions and converges to the weak-line approxima-
tion when the range of extinctions is small. We test the
approximation for a simple spectrum consisting of two
Lorentz lines in Section 5. For a more rigorous test of the
approximation, we study the approximation in the con-
text of a realistic water vapor spectrum for a near-infrared
band under stratospheric conditions in Section 6. Finally,
we summarize the results in Section 7.
TðuÞ ¼
1

Dn

Z n2

n1

dn expð�kðnÞuÞ ð5Þ

TðuÞ ¼

Z 1
0

dk f ðkÞexpð�kuÞ ð6Þ

where f(k) is the inverse Laplace transform of the trans-
mission T(u). The k-distribution g(k) is defined in terms of
f(k) as follows:

f ðkÞ ¼L�1
ðTðuÞ; kÞ ð7Þ

gðkÞ ¼

Z k

k
dk f ðkÞ ð8Þ

kðgÞ ¼ g�1ðkÞ ð9Þ

where the minimum and maximum extinctions denoted
by

k ¼ min
n2½n1 ,n2 �

kðnÞ ð10Þ

k ¼ max
n2½n1 ,n2 �

kðnÞ ð11Þ

are assumed to be positive, i.e. k40. For some parts of
this paper, the requirement of positivity is not required,
but the development of the idea is clearest under the
assumption that the extinction is positive in all parts of
the band.

The coefficient of variation, defined as the ratio of
standard deviation to mean value

V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/k2S

/kS2
�1

s
ð12Þ

This coefficient will turn out to be a useful measure of the
deviation of the k-distribution from a d-distribution. As
V-0, the k-distribution becomes narrowly distributed
around k¼/kS, and the transmission will be seen to be
well approximated by the weak-line approximation. As V

increases, the range of path lengths for which the weak-
line approximation is useful for band transmission will be
seen to decrease.

The effective extinction for the transmission T(u), used
to compare transmission over a large range of paths, is
defined as

keðuÞ ¼ �
1

u
logðTðuÞÞ ð13Þ

The mean value of a function h(k) is defined as follows

/hðkÞS¼
Z k

k
dk f ðkÞhðkÞ ð14Þ

/hðkÞS¼
1

Dn

Z n2

n1

dn hðkðnÞÞ ð15Þ

In addition, it is useful to refer to a partition PN of the
range of extinctions into N parts defined as

fki 3 k ¼ k0ok1o � � �okN ¼ kg ð16Þ
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and to define corresponding statistical measures on each
part of the partition (where i indexes the part)

gi ¼ gðkiÞ ð17Þ

the transmission is the Padé function [10],

P0,1 ¼
1

1þ/kSu
ð30Þ

3. Converges to T (u) when V-0.
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dig ¼ gi�gi�1 ð18Þ

/hðkÞSi ¼
1

dig

Z gi

gi�1

dg hðkðgÞÞ ð19Þ

Vi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/k2Si

/kS2
i

�1

s
ð20Þ

Lastly, to compare the transmission T(u) with an approx-
imation, say Ta(u), we will graph the relative error of ke for
Ta(u). This relative error is defined as

RðTaðuÞÞ ¼
jlnðTðuÞÞ�lnðTaðuÞÞj

jlnðTðuÞÞj
ð21Þ

This can be regarded as the relative error in effective
extinction or as the relative error in band effective
optical depth.

3. Weak-line approximation

The weak-line approximation TW(u) can be derived as
follows:

TðuÞ ð22Þ

¼
1

Dn

Z n2

n1

dn expð�kðnÞuÞ ð23Þ

�
1

Dn

Z n2

n1

dn 1�kðnÞuþ1

2
k2ðnÞu2

� �
ð24Þ

¼ 1�/kSuþ
1

2
/k2Su2 ð25Þ

� 1�/kSuþ
1

2
/kS2u2 ð26Þ

� expð�/kSuÞ � TW ðuÞ ð27Þ

The approximation from (23) to (24) requires that the
optical depth tðnÞ ¼ kðnÞu is small compared to unity.
From (25) to (26) requires that the coefficient of variation
is small. And lastly, from (26) to (27) requires that
/kSu51 (which is implied by the optical depth being
small).

The weak-line approximation can be summarized as
follows:

/expð�kuÞS� expð�/kSuÞ ð28Þ

Since the exponential function is convex, we know (using
Jensen’s inequality for measures of convex functions [9])
that the weak-line approximation will always underesti-
mate the transmission. Thus, there is no reason to assume
that, for an arbitrary extinction distribution, the weak-
line approximation is the best one or that it is particularly
valid for a large range of path lengths.

As an example, for an exponential k-distribution,

f ðkÞ ¼
1

b
expð�k=bÞ ð29Þ
and the coefficient of variation is

V ¼ 1 ð31Þ

So while the simple algebraic form of P0,1 is exact in this
case, TW(u) is a poor approximation at large u. Of course,
the k-distribution in this case has a significant weight at
k=0, so the example is not particularly applicable for
carefully chosen bands. Nevertheless, this example illus-
trates that for a band, a simple ratio of polynomials may
be a better approximation than an exponential function.

In summary, if the optical depth is small compared to
one for all frequencies then the weak-line limit is a good
approximation. The coefficient of variation provides a
measure of the error of the weak-line approximation as
optical depths become larger. In the case of larger coeffi-
cient of variation, a different functional form may provide
an approximation that provides a larger range of applic-
ability or better error characteristics.

4. Extension of the weak-line approximation

Since the transmission has different algebraic forms
for different k-distributions, we seek an approximation
guaranteed to have the following properties:

1. Decreases monotonically from 1 to 0 as u goes from 0
to 1.

2. Matches the first two moments of the k-distribution.
W

e such approximation is an extended weak-line
On
app
roximation,
TgðuÞ ¼
1

ð1þbuÞg
ð32Þ

where

g¼ 1=V2 ð33Þ

b¼/kSV2 ð34Þ

V2 ¼
/k2S

/kS2
�1 ð35Þ

keg ¼
lnð1þ/kSV2uÞ

V2u
ð36Þ

are chosen so that the first three terms in the Taylor
expansions near u=0 of T(u) and TgðuÞ match.

In the limit of small coefficient of variation (V 51Þ,

TgðuÞ ¼ exp �/kSuþ
V2/kS2u2

2
þEðuÞ

 !
ð37Þ

where

EðuÞ ¼ OðV4/kS3u3Þ ð38Þ

indicating that the weak-line approximation is recovered
for /kS2V2u2

51.
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TgðuÞ has a k-distribution (density) known as the
gamma distribution

f ðkÞ ¼
1 k

� �g
expð�k=bÞ ð39Þ

6. Water vapor spectrum

As another comparison, consider the transmission
through water vapor in the stratosphere. The water vapor
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Fig. 2. Effective extinction of double line spectrum in Eq. (41). Also

shown are the effective extinction of the weak-line approximation TW(u)

and the extended-weak-line approximation TgðuÞ.
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Fig. 3. The k-distribution for water vapor in the stratosphere between

0.7 and 5 mm. The cusps in the curve near g=0 are numerical artifacts of

the sampling of far-wing shapes.
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g GðgÞk b

Other possible extensions are discussed in Appendix A.
For comparison, the k-distribution corresponding to

TW(u) is the Dirac-delta function

fW ðkÞ ¼ dðk�/kSÞ ð40Þ

Comparison of TW(u) and TgðuÞ with T(u) for a range of
path lengths is illustrative of the applicability of this
extension of the weak-line approximation. We evaluate
the accuracy of TgðuÞ relative to TW(u) for idealized and
realistic spectra in the next two sections.

5. Two Lorentz lines

As our first example, consider transmission through
two Lorentz lines. The k-distribution (Fig. 1) corresponds
to the extinction kðnÞ defined by a sum of two Lorentz
lines,

kðnÞ ¼ S1a1

pða2
1þðn�n1Þ

2
Þ
þ

S2a2

pða2
2þðn�n2Þ

2
Þ

ð41Þ

where S1 ¼ 3,a1 ¼ :3,n1 ¼ 2,S2 ¼ 3,a2 ¼ :5, and n2 ¼ 3. The
band is defined as the frequencies n 2 ½1,4�. Fig. 2 com-
pares the effective extinction for the band transmission
through the two lines with the effective extinctions for
TW(u) and TgðuÞ. As this figure shows, the effective
extinction for TgðuÞ is much closer to the effective extinc-
tion of T(u) than is the effective extinction of TW(u). Note
that the relative error in the transmission is proportional
to the exponential of the differences of the effective
extinction,

TðuÞ�TgðuÞ

TðuÞ
¼ 1�expððke�kegÞuÞ ð42Þ

So even small differences in the effective extinction
can lead to large relative errors for the transmission for
large u.

 3.5
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 1
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 3
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k

g

Fig. 1. The k-distribution of double line spectrum defined in Eq. (41).

Cusps in the distribution of extinctions exist at maxima and minima

of kðnÞ.
spectrum in the stratosphere in the near-IR has a large
number of lines and these lines are much narrower than
in the lower troposphere. As a result the extinction
spectrum spans nearly 12 orders of magnitude (Fig. 3).
We study the approximation of this spectrum for all path
lengths. Typical water vapor paths do not saturate all
parts of the frequency spectrum from 0.7 to 5 mm, so the
longest path lengths studied here are an extreme test.
Nevertheless, the comparisons provide insight into the
applicability of TW and Tg for bands and gases with a large
range of extinction.

The effective extinction decreases as a function of path
length as can be seen in Fig. 4. The band is saturated for
path lengths larger than 106.

For bands such as the near-IR stratospheric water
vapor where the extinction varies over many orders of
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magnitude, the weak-line limit is not applicable, so in
many correlated-k codes the extinction is partitioned and
the weak-line approximation is used on each part. By

We graph the relative error of the effective extinction
at two different path lengths for TW and Tg in Fig. 7.
Noting that the relative errors are approximately linear,

quency quadrature of the transmission. Matching the first
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Fig. 4. Effective extinction as a function of path for the water vapor spectrum in Fig. 3. As the path length increases from zero, the effective extinction

decreases from the average extinction /kS to the minimum extinction.
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partitioning the extinction spectrum so that the log of the
extinction is evenly divided

kiþ1=ki ¼ constant, i¼ 0,1,2, . . . ,N ð43Þ

a weak-line approximation of the transmission function
can be specified as

TN
W ðuÞ ¼

XN

i ¼ 1

digexpð�/kSiuÞ ð44Þ

Similarly, an extended weak-line approximation (Sec-
tion 4) can be specified as

TN
g ðuÞ ¼

XN

i ¼ 1

dig

ð1þbiuÞ
gi

ð45Þ

where

gi ¼ 1=V2
i ð46Þ

bi ¼/kSiV
2
i ð47Þ

As the partition is refined, the coefficient of variation Vi on
each partition goes to zero and the extended weak-line
approximation converges to the weak-line approxima-
tion. This illustrates how Vi is one measure of the error
associated with the weak-line limit. Fig. 5 shows that the
relative error in the effective extinction for TW(u) is much
larger than TgðuÞ. When the partition has 20 parts, the
magnitudes of the relative errors have both decreased
toward zero, but the error of TW(u) is approximately
10 times that of TgðuÞ for all values of u (Fig. 6).
we can define an order of convergence, a, as

ln
ke�keg

ke

� �
¼ b�alnðNÞ ð48Þ

or, equivalently, as

ke�keg

ke
¼

N0

N

� �a
ð49Þ

In other words, a is the slope of each line in Fig. 7. As can
be seen the order of convergence of TgðuÞ is larger than
TW(u).

7. Discussion

Correlated-k methods typically parameterize the fre-
two moments of the gamma distribution to the k-dis-
tribution provides a parameterization TgðuÞ that offers a
significant improvement when compared to the weak-
line approximation. The extension is more accurate for a
larger range of path lengths.

This method also provides a measure Vi of the error on
each part of the partition. It remains to be seen if this
measure of the error could be used to improve the choice
of the partition boundaries, ki.

While this paper has considered extensions to the
weak-line limit in the context of correlated-k methods,
these extensions could be quite useful in other contexts
where an estimate of a Laplace transform of a distribution
of positive values is required.

5



The extension TgðuÞ of the weak-line approximation
(Section 4) is applicable for a large range of k-distribu-
tions, in the sense that it can be constructed for a generic

Furthermore, the Taylor expansion near u=0 matches for
the first two terms of the approximation.

In general there are a large class of possible models.
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Fig. 6. With a refined partition of 20 parts, the error associated with the weak-line limit is typically more than 10 times the error of T20
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k-distribution, without having to worry about any con-
straints on the range of validity. For example, it is
guaranteed that V Z0. While the error is not guaranteed
to be small in general, the approximation will at least be a
decreasing (from 1 to 0) function of the path length.
TgðuÞwas constructed to match the first two moments and
thus be asymptotic (for small u) to order Oðu2Þ. Some
alternatives are provided in Appendix A.

The ease with which this approximation can be con-
structed, its robustness, its easy algebraic representation,
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and its higher order convergence indicate that it should
be tested in a correlated-k method for a realistic atmo-
spheric profile and compared with results from existing
correlated-k codes.

where YðxÞ is the unit step function, yields an approx-
imation that also matches the first two moments /kS and
/k2S as follows:
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Appendix A. Other extensions

We list here some other approximations that could be
valuable. These methods also require the k-distribution to
be known, a priori. But additional constraints on the
k-distribution are required, beyond those necessary for
the construction of TgðuÞ.

A.1. Truncated exponential

Choosing an exponential model for the k-distribution,

faðkÞ ¼
1

a
expð�ðk�kÞaÞYðk�kÞ ðA:1Þ

k¼/kSð1�VÞ ðA:2Þ

a¼/kSV ðA:3Þ
TaðuÞ ¼
expð�kuÞ

1þau
ðA:4Þ

This approximation has the advantage that it is easy to
compute the transmission through a sequence of two
materials. If the pencil of radiation has path u1 through
material with k1 and a1, followed by path u2 through
material with k2 and a2, it is easily derived that for
correlated extinctions,

TðuÞ ¼
expð�kuÞ

1þau
ðA:5Þ

u¼ u1þu2 ðA:6Þ

k¼ k1u1þk2u2

u
ðA:7Þ

a¼ a1u1þa2u2

u
ðA:8Þ

In this approximation, k can become negative when
/k2S42/kS2 as can be seen from Eq. (A.2). Under these
conditions the exponential is no longer decreasing.
So band boundaries or partition boundaries would have
to be chosen so that the coefficient of variation meets
the criterion /k2So2/kS2 for this approximation to be
useful.

A.2. Padé forms

Padé approximations [10] are often more accurate for a
larger range of path length than the corresponding Taylor
approximation. The following Padé approximations (with
an additional exponential factor) are constructed to have
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an effective extinction that is asymptotic to k for large u,
and to have an effective extinction asymptotic to /kS for
small u.

emission, and multiple scattering in vertically inhomogeneous

atmospheres. Journal of Geophysical Research 1991;96:9027–63

doi: 10.1029/90JD01945.
[3] West R, Crisp D, Chen L. Mapping transformations for broad-band

atmospheric radiation calculations. Journal of Quantitative Spectro-
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P0,1 ¼ expð�
kuÞ

1þs
ðA:9Þ

P1,2 ¼ ð1þsÞexpð�
kuÞ

1þ2sþrs2
ðA:10Þ

s¼ ð/kS�kÞu ðA:11Þ

r¼
1

2
4�/ðk�

kÞ2S

ð/kS�kÞ2

 !
ðA:12Þ

Both of these approximations are quite useful when
k �/kS, but as the coefficient of variation becomes large
these will have regions where T 0ðuÞ40.
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