
!"#$%&"'()!!

"#$%!&'()*+,-!./%!01+0/1+&!/%!/,!/(('),-!'2!.'13!%0',%'1+&!45!-#+!6,$-+&!7-/-+%!

8'9+1,*+,-:!;#$<+!-#$%!&'()*+,-!$%!4+<$+9+&!-'!(',-/$,!('11+(-!$,2'1*/-$',=!,+$-#+1!-#+!

6,$-+&!7-/-+%!8'9+1,*+,-!,'1!/,5!/>+,(5!-#+1+'2=!,'1!-#+!?+>+,-%!'2!-#+!6,$9+1%$-5!'2!

@/<$2'1,$/=!,'1!/,5!'2!-#+$1!+*0<'5++%=!*/3+%!/,5!./11/,-5=!+A01+%%!'1!$*0<$+&=!'1!/%%)*+%!

/,5!<+>/<!1+%0',%4<$-5!2'1!-#+!/(()1/(5=!('*0<+-+,+%%=!'1!)%+2)<,+%%!'2!/,5!$,2'1*/-$',=!

/00/1/-)%=!01'&)(-=!'1!01'(+%%!&$%(<'%+&=!'1!1+01+%+,-%!-#/-!$-%!)%+!.')<&!,'-!$,21$,>+!

01$9/-+<5!'.,+&!1$>#-%:!?+2+1+,(+!#+1+$,!-'!/,5!%0+($2$(!('**+1($/<!01'&)(-=!01'(+%%=!'1!

%+19$(+!45!$-%!-1/&+!,/*+=!-1/&+*/13=!*/,)2/(-)1+1=!'1!'-#+1.$%+=!&'+%!,'-!,+(+%%/1$<5!

(',%-$-)-+!'1!$*0<5!$-%!+,&'1%+*+,-=!1+('**+,&/-$',=!'1!2/9'1$,>!45!-#+!6,$-+&!7-/-+%!

8'9+1,*+,-!'1!/,5!/>+,(5!-#+1+'2=!'1!-#+!?+>+,-%!'2!-#+!6,$9+1%$-5!'2!@/<$2'1,$/:!"#+!9$+.%!

/,&!'0$,$',%!'2!/)-#'1%!+A01+%%+&!#+1+$,!&'!,'-!,+(+%%/1$<5!%-/-+!'1!1+2<+(-!-#'%+!'2!-#+!

6,$-+&!7-/-+%!8'9+1,*+,-!'1!/,5!/>+,(5!-#+1+'2!'1!-#+!?+>+,-%!'2!-#+!6,$9+1%$-5!'2!

@/<$2'1,$/:!

!

BReW: Blackbox Resource Selection for e-Science
Workflows

Yogesh Simmhan1, Emad Soroush2, Catharine van Ingen3, Deb Agarwal4 and Lavanya Ramakrishnan4

1Computer Engineering Division, University of Southern California, Los Angeles CA
2Computer Science Department, University of Washington, Seattle WA

3eScience Group, Microsoft Research, San Francisco CA
4Advanced Computing for Science Department, Lawrence Berkeley National Lab, Berkeley CA

simmhan@usc.edu, soroush@cs.washington.edu, vaningen@microsoft.com, {daagarwal, lramakrishnan}@lbl.gov

Abstract—Workflows are commonly used to model data
intensive scientific analysis. As computational resource needs
increase for eScience, emerging platforms like clouds present
additional resource choices for scientists and policy makers.
We introduce BReW, a tool enables users to make rapid, high-
level platform selection for their workflows using limited
workflow knowledge. This helps make informed decisions on
whether to port a workflow to a new platform. Our analysis of
synthetic and real eScience workflows shows that using just
total runtime length, maximum task fanout, and total data
used and produced by the workflow, BReW can provide
platform predictions comparable to whitebox models with
detailed workflow knowledge.

Keywords-workflow; resource selection; planning; workflow
migration; resource platforms; cloud; HPC

I. INTRODUCTION
The need to manage and analyze the deluge of digital

data from sensors and scientific instruments has resulted in
the popularity of eScience workflows [1,2]. The tasks in
these workflows are scientific applications or data processing
scripts that pass the output of their computation to the next
application in the logical dataflow. eScience workflows run
on a spectrum of resource platforms today, from desktops,
clusters, and high performance computing (HPC) resources
to, more recently, cloud platforms. With the increasing scale
of experiments, scientific user groups are interested in
exploring large capacity platforms like HPC and cloud
computing [3,13].

Porting an existing or evolving workflow onto a new
resource platform and evaluating it is often a tedious exercise
that requires interdisciplinary teams of domain scientists,
computer researchers, and programmers. As a result,
eScience workflow developers and users are interested in
rapid, high-level analysis of workflows on novel platforms.
Low overhead tools that let them compare and contrast
various resource platforms prior to embarking on the costly
exercise of workflow and application migration are
opportune.

Current workflow planning and resource analysis tools
enable careful planning of user workflows on diverse
resource platforms. However, they are unsuitable for making
high-level resource platform decisions for two reasons. First,
these tools require a detailed knowledge of a workflow’s
structure, resource needs, and performance characteristics.

This information is often hard to predict, measure and
maintain for a large number of constantly evolving eScience
workflows. Second, these tools are often embedded into
execution frameworks such as workflow engines and require
porting some or all of the workflow into these environments.

In this paper, we introduce and describe BReW –
Blackbox Resource selection for e-Science Workflows,
which facilitates resource platform decisions with limited
workflow information. BReW uses blackbox or coarse-
grained knowledge of a workflow, such as workflow fanout
width and runtime length dimensions, that are easily
available, to estimate the workflow makespan on resource
platforms with different resource availability [4]. Our current
implementation of BReW is focused on comparing existing
platform choices – desktop, cluster, HPC and cloud
resources. However, our approach, methodology, and
implementation are extensible to support other new and
emerging hybrid resource platforms.

Specifically, we describe BReW and make the following
contributions in this paper:
1. We develop the BReW blackbox platform selection model

and contrast it with existing resource scheduling methods.
2. We evaluate and analyze our model for synthetic

workflows with varying characteristics to understand the
scope and limitations of our model.

3. We apply the blackbox model to four exemplar eScience
workflows to gauge its practical effectiveness.
 Our analysis of eScience workflows and synthetic

workloads show that the BReW approach is feasible on a
variety of platforms, including HPC and cloud, for diverse
workflow sizes, and is limited by the quality of resource
information available.

The rest of this paper is organized as follows. We discuss
related work in Section II; provide an overview of eScience
workflows and resource platforms in Section III; detail the
BReW blackbox model in Section IV; describe our
evaluation approach in Section V; present our analysis of
BReW for synthetic workflows in Section VI; evaluate it for
four eScience workflows in Section VII; and present our
conclusions in Section VIII.

II. RELATED WORK
Science workflows are run today on desktops and grid

environments. There have been a number of tools that mange
execution in these varied environments and manage resource

selection decisions [15]. Workflow systems like Pegasus [5],
Swift [6], and Trident [7] usually incorporate features to
schedule tasks onto remote resources, such as Grids or
clusters. For example, Swift uses Falkon execution
framework to dispatch workflows tasks using multi-level
scheduling [8]. This typifies fine-grained resource selection
where detailed workflow structure and resource needs are
known. DAG scheduling algorithms for Grids use heuristic
models to schedule applications to meet time budgets [9].
The blackbox methodology is similar to these methods but
finding an optimal schedule is not our goal. A number of
groups have evaluated clouds for running scientific
workflows [8,10,11].

However, these tools do not enable users to make high-
level resource policy decisions. Our work considers various
aspects of cloud computing and the feasibility of running in
that environment given workflow characteristics and
resource platform characteristics.

III. OVERVIEW
In current day eScience workflow scheduling techniques,

detailed knowledge of each workflow task is needed, such as
the execution time, input and output data in the Motif
genomics workflow [12] shown in Figure 1. This workflow
consists of a pre-processing step followed by a number of
parallel runs of interprocscan followed by a post-processing
step that generates over one gigabyte of output data.
However, due to the constantly evolving nature of scientific
processes and uncertainties that often get resolved at runtime
for dynamic workflows [21], this level of detail is typically
not available for all scientific workflows. The overhead for
instrumenting, collecting and maintaining fine-grained
application profile information on diverse platforms is
prohibitive for most but advanced users.

 In contrast, we use a blackbox approach where coarse-
grained, approximate dimensions of the workflow as shown
in Figure 2, viz., length (runtime duration), width (number of
CPU cores) and total data input and output, to make resource
platform decisions. In our model, we forego knowledge of
the detailed execution time of the tasks and the intermediate
data products that might enable certain optimizations.
Despite that, we are able to use just the critical pieces of

workflow information we have identified to generalize the
resource needs and make informed resource platform
selection choices.

A. Resource Platforms and their Selection
Common resource platforms available for scientists to

run their applications include desktop workstations, local
clusters, shared HPC resources and more recently,
commercial clouds. In this paper, we use these as our
candidate resource platforms for eScience workflows.
However, our methodology is not bound to any specific
platform and can be applied in general to other resources that
might be available.

1) Resource Platforms: A large number of science
applications today still run on desktop workstations whose
multiple cores are suited for compute intensive and
interactive visualizations. However, growth of data and the
nature of analyses are far exceeding what is possible even on
high-end workstations. Scientists often own and operate mid-
sized local clusters (! 512 cores) within their research
groups. These dedicated resources are often under-
subscribed with low queue latency. Nevertheless, these are
only suitable for small to mid-range computations that fit
within the cluster’s core capacity.

Scientific workflows also use shared HPC resources at
academic and national supercomputing centers. These are
typically accessible to multiple user groups through
allocations and are often over-subscribed causing significant
queue wait times. Users in this environment often have less
control and are subject to site level policies and software
changes. Cloud computing promises a greater degree of
freedom to end-users while enabling resource scale-out
comparable to shared HPC centers. On-demand access to
massive cycles eliminates queue contention but virtualization
can impact some applications.

2) Platform Selection: We use the term platform
selection to denote the policy and process required to select a
particular resource platform for an eScience workflow.
Unlike workflow, task, or resource scheduling, our goal is
not the optimization of the workflow on a particular or a
range of resources. We consider platform selection as a high-
level decision process that will be used by decision makers
such as funding agencies and principal investigators to
decide the choice of platforms for their scientific
explorations. This information is also crucial when deciding
whether to port an existing application from one platform to
another, and analyze the cost-benefit trade-off. Thus, while
there is an overlap of concepts, our platform selection
approach is complementary to traditional scheduling
methods. Once a platform is selected, users can use
scheduling tools for actual workflow execution on the
platform.

Platform suitability also depends on several qualitative
factors such as availability of dependent operating system,
packages, access policies, and so on. These issues are
orthogonal to our approach but will still need to be
considered.

In our evaluation, we use resource information from
typical cloud and HPC resources available today. For

!
Figure 1 & 2. Motif workflow attributes used for (1) whitebox (left) and

(2) blackbox (right) approach to considering workflow structure.

simplicity, we assume that all tasks of a workflow are run on
the same platform. These resources were selected as a
representative set of diverse platform characteristics. We
demonstrate the selection of platforms for eScience and
synthetic workflows in our comparative evaluation. Our goal
is to show the effectiveness of our blackbox approach in
comparison to traditional whitebox approach. A particular
choice of platform is an artifact of the workflow and resource
characteristics we use. Thus, the results should not be
interpreted as one platform is better than the others for a
certain or for all workflows.

B. Resource Platform and Workflow Attributes
Resource platforms have attributes that can be used to

evaluate their suitability for running workflows with certain
characteristics. Availability of both resource and workflow
attributes enables matchmaking.

The degree of parallelism offered by a resource platform
depends on the number of cores available for computation.
For desktop and local clusters, this may be all available cores
while for cloud and shared HPC, the bounds may be set by
policy. The core speed can also impact the computation since
cloud resources may be rated at a lower speed or run slower
due to virtualization. Computation latency can be introduced
through batch queues controlling access to shared HPC
clusters or by VM startup times. Network bandwidth in and
out of the resource platform from desktop determines data
transfer time between client and remote compute resources.
Persistence and size of available local storage determine if
intermediate data must be moved between remote platforms
and desktop. Network latency within the resource platform
can affect communication costs of tightly coupled MPI tasks.
We consider these resource attributes in our blackbox model
to characterize resource behavior.

Workflows exhibit features and have requirements that
can be used to determine the resource best suited to run part
or all of the workflow. Structural features of a workflow
characterize the data and control flow pattern. Common
patterns are sequential pipeline, map-reduce (or fork-join)
pattern, and iterations of these. The width of the structure
(i.e. fanout of tasks), the length in terms of number of stages
and their runtime, and the number of iterations determine
resource selection [11]. Resource usage features of a
workflow quantify the computational, data storage, and
networking resources needed. The compute usage can be
specified as time taken to run the stage on a specific core
speed. The data and networking resources can be given in
terms of input and output file sizes as well as characteristics
such as access patterns. Memory size may also be key for
some applications.

C. Resource Cost
Finally, cost of using the resource is a factor in resource

choice. The costs of a desktop, local cluster or shared HPC
resources are often partially hidden or amortized. Cloud
costs are very visible. Shared HPC resources may also have
quotas that limit user access. Users might need to tradeoff
system performance for cost in their decisions. Cost models

for resource platforms is a separate issue and is outside the
scope of this paper.

IV. THE BREW BLACKBOX MODEL
BReW has been developed to enable users to perform

high-level platform selection. BReW works with the limited
knowledge of the workload that the user provides and
information it has about resource platforms. It is not a
replacement for existing workflow technologies but a tool
that scientists and decision makers will use to determine
suitability of a resource platform for specific scientific
workflows. The blackbox model used by BReW is discussed
below.

A. Model Attributes
The blackbox resource selection uses four commonly

known attributes for the entire workflow:
1) Workflow Width: The maximum fanout of the

workflow tasks at any point in the workflow. This captures
the maximum parallelism of the workflow and would be
equal to one for a serial workflow.

2) Workflow Length: The total time to run the workflow
computation at full parallelism assuming required resources
are available (i.e. no latency). This is the execution time of
the workflow and depicts the duration of resource needs.

3) Data Sizes: The initial workflow input and final
workflow output data sizes that are transferred prior to and
after a workflow executes on a particular resource platform.

4) Concurrent Minimum Cores (mincore): Minimum
number of concurrent cores needed for workflow execution.
Captures constraints where part of the workflow, such as
MPI tasks, needs at least a certain number of CPU cores. For
purely loosely coupled tasks, this equals one core.

B. Blackbox Model
We use total workflow turnaround time as a metric to

compare resource platforms. The workflow turnaround time
denotes the duration between when the user submits the
workflow for execution and the time when the last task of the
workflow completes.

The blackbox model provides us an approximation of the
resource needs that we use to calculate the workflow
turnaround time as follows:

FWorkflowTime = TLatencyMax + TDataSum +
 TLength! NWidth)/NCores

Where
TLatencyMax : Time to acquire resources for the
workflow. This corresponds to batch queue wait times in
HPC centers and virtual machine startup overheads on
cloud machines.
TDataSum : Time to transfer initial input and final
output data between client desktop and the workflow
execution platform;
TLength : Workflow length time as defined above;
NWidth : Width/maximum fanout of the workflow;
NCores : # of available cores to run workflow.

C. Comparison with Traditional Whitebox Model
Whitebox model assumes that the workflow structure and

all attributes for each workflow task are available. This is
similar to workflow scheduling algorithms that is used to
manage execution of a workflow on a diverse distributed set
of resources. This means the data input, data output and the
CPU time for each task is known before workflow’s launch.
Also, the fanout of each stage of the workflow is known
from the structure. Given this relatively fine-grained detail,
each workflow task can be scheduled independently. Each
task incurs a latency time to access one CPU core, but needs
the core only for the duration of that task. The workflow
turnaround time for a workflow given the whitebox model is

FWorkflowTime = " FiStageTime
Where
FiStageTime is the time taken by workflow stage i, and is:

FiStageTime =
TiData +
Ceil(NiTaskWidth/NiCores)!TiLatencyOne +
(TiTaskLength ! NiTaskWidth)/NiCores

Where:
TiData : Time to transfer input, output data
between desktop and the execution platform for the ith
stage;
TiLatencyOne : Latency time to start executing one task
in the ith stage on one core, due to queue wait or VM
start- time;
TiTaskLength : Maximum task runtime among those
workflow tasks scheduled concurrently in the ith stage;
NiTaskWidth : Width/fanout of the number of tasks in ith
stage;
NiCores : # of available cores to run tasks; NiCores
! NiTasks.

V. ANALYSIS FRAMEWORK AND ASSUMPTIONS
The goal of our analysis is to evaluate the effectiveness

and limitations of BReW for workflow resource selection
when compared to the whitebox model. Effectiveness is
measured by the ability to accurately discriminate between or
rank the resource platforms based on the makespan estimated
for a given workflow, rather than the precision of the
absolute values estimated for the makespan.

BReW is implemented as a prototype decision making
framework that takes the specification of a workflow and
considers it against resource platforms it is configured for to
provide the makespan estimate for the workflow on each
platform. Our framework implements both the proposed
blackbox model and the whitebox model. This allows us to
compare the makespan estimates from both the models for
the same workflow, with the blackbox model using only the
workflow dimensions as input while the whitebox uses the
complete workflow DAG details. The details of workflow
specification used, resource platform configurations, and
assumptions of our experiments are described here.

A. Resource Platform Configuration
We perform the analysis for three types of platforms, and

four platform instances: Local Cluster, Azure Cloud, IU
BigRed HPC cluster, and SDSC TeraGrid HPC Cluster. The
local cluster is a hypothetical cluster configured with
between 1—512 CPU cores rated at 2.5GHz connected on a
1Gbps LAN to the desktop client. While not explicitly
considered, a 1-core local cluster is the equivalent of a
workstation. For the shared HPC clusters and Azure, we use
prior micro-benchmarks and public data to define their
configuration. The Azure cloud has up to 2048 cores
available rated at 1.6GHz with a 10Mbps network
connection to the desktop client. While the Azure cloud may
be much larger, this is representative of policy limits that
may be enforced. The median VM startup latency is
measured to be a linear function of number of cores required
at (200+20!cores). The shared HPC clusters are
modeled on the TeraGrid clusters at Indiana University
(BigRed) and San Diego Supercomputing Center. They have
similar configurations with 2048 available cores rated at
2.5GHz, a 100Mbps network bandwidth to the desktop
client, and the queue latency time for job submission is
provided by the TeraGrid Batch Queue Prediction Service
(QBETS) [14,16]. We use a 50% quantile for these
predictions. These platform configurations are provided as a
text file input to BReW and can be easily updated.

B. BReW Implementation
The BReW tool provides blackbox makespan runtimes

used to rank resource platforms. It uses the blackbox model
by default but can also provide whitebox model predictions
if provided the complete workflow DAG. Workflow inputs
are provided as a DAG in case of whitebox estimates (Figure
1) or as the workflow dimensions in case of blackbox
(Figure 2). The nodes in the whitebox workflow DAG are
tasks that have task runtime, data input and output specified.
In our implementation, tasks run on a single core by default,
and tasks that can run concurrently are grouped into stages.
Stages additionally have the minimum required cores
(mincore) specified that captures tasks that might require
simultaneous access to more than one core. BReW supports
estimates for arbitrary whitebox DAGs, but we limit our
analysis to workflows that are a linear pipeline of stages. For
blackbox estimates, the workflow inputs are the task fanout
width, runtime length, total data input and output, and
optionally, the mincore (defaulting to workflow width), as
shown in the bounding box in Figure 2. For convenience, the
simulator is able to reduce a given whitebox DAG
specification to the equivalent blackbox dimensions for the
sake of comparison of the models. Both DAGs and blackbox
dimensions are represented using a simple XML schema
input.

In case of whitebox estimates, the provided DAG is
traversed and the makespan function applied for the tasks
and stages in the workflow for each resource platform.
Queue latency for the HPC clusters is dynamically queried
from the QBETS web service while static configuration
values are used for the other platforms. The cumulative
runtime for the stages is computed and emitted as the

makespan for the workflow on each platform. For blackbox,
we apply the makespan function on the workflow
dimensions for each platform to provide the makespan
estimate. It too uses the QBETS service for HPC queue
latency. In both models, we do not actually execute the
workflow but just apply the makespan functions. The tool is
implemented in C# and expected to be publicly available.

C. Assumptions
We make the following assumptions in BReW when

estimating the makespan using the models, to make the
problem tractable. In both models, we request for the smaller
of available cores on the resource platform and the minimum
number required cores for the workflow or stage for
calculating the queue wait and VM startup latency times. The
latency time is a function of the number of cores in Azure
cloud. In HPC clusters, both number of cores and the
duration they are requested for affect queue latency times.

In the BReW blackbox model, acquired cores are
retained for the duration of the workflow, so the latency time
appears only once per workflow in the blackbox model. In
the whitebox model, the cores are retained for the duration of
the task. The latency times appear once per task since they
are independently scheduled. For concurrent tasks in a stage,
their latency times also run concurrently, but across stages,
the latency times accumulate. When more concurrent tasks
are present than available cores, the latency times of later
tasks interleave with runtime of prior tasks, thus causing the
latency times to appear only once per stage even in this case.

For simplicity, all workflow tasks are assumed to run on
the same platform. While in the blackbox model, we estimate
data transfer between desktop workflow client and the
resource platform only at the start and end of workflow
execution, in whitebox model, input and output data are
transferred to and from the desktop client for each workflow
task.

VI. MODEL ANALYSIS ON WORKFLOW PARAMETER
SPACE

In these analyses, we measure the sensitivity of BReW to
different workflow characteristics to determine the scope of
workflows for which the blackbox model shows a high
degree of consistency in platform selection with the
whitebox model. We use synthetic workflows using a
workflow generator tool that produces whitebox DAGs and
their blackbox dimensions based on provided parameter
ranges that are fed to the BReW simulator. The parameter
space that we cover for generating the synthetic workflows is
shown in Table I.

TABLE I. SPACE OF SYNTHETIC WORKFLOWS CONSIDERED

WF Length (L) 20mins–60hrs

Stage Length 30secs – 6hrs

of Stages 4, 10, 50, 100

WF Width (W) 1–1600

Mincores per Stage 1, 0.25"W, 0.50"W, 0.75"W, W

A. Effect of Length
In the first set of experiments, we evaluate the effect of

increasing workflow length on the consistency of our
blackbox model’s platform prediction to the whitebox
model. We estimate makespan using whitebox and blackbox
models as we increase the workflow length from 20mins to
60hrs, and fanout from 1 to 1600 tasks. We use 10-stage
workflows with uniform fanout, and mincore equal to fanout
for both workflow and stages. The platforms are assumed to
have sufficient cores available. The data transfer sizes are
10MB.

1) Effect of Workflow Total Length: Figure 3 shows a
heatmap of the consistency of the BReW blackbox platform
selection to the whitebox as total workflow length varies on
the X Axis, and workfllow width on Y axis. Each cell is one
workflow, and its color indicates if the blackbox and
whitebox make consistent platform choices. Given that this
workflow has 10 stages, the length per stage at each cell is
the workflow length/10. Blue indicates blackbox and
whitebox are consistent, with specific shades refering to
specific platforms selected by both models. Bright red is
correct selection of HPC over Local Cluster and Azure, but
incorrect discrimination between SDSC and IU BigRed.
Maroon is absence of estimates due to lack of information
from the QBETS service.

QBETS relies on historical data to make queue
predictions. For workflow that are 200mins or longer with a

 Figure 3. Heatmap showing consistency of platform prediction using blackbox
estimates with the whitebox estimates with varying workflow length (X Axis)
and width (Y Axis). The inconsistency in discriminating between the two HPC

clusters (bright red) is due to different queue latency times estimated by the
models. A large region at the upper extreme of width and length (maroon) has

not data available from QBETS.

high fanout of 64 to 1600, it does not return any results for
the blackbox model (maroon color) due to the extreme
resource needs. Given this constraint of QBETS, the BReW
blackbox model cannot be used for very long and wide
workflows. At the very extreme corner of 60hrs and
1024/1600 width, we see that Azure is selected (dark blue)
due to lack of information from QBETS for both blackbox
and whitebox models.

 At the lower end of the spectrum, for very short
workflow lengths of 20 to 300mins using fanout of 8 tasks or
less, we see that both blackbox and whitebox select HPC
platforms over Azure, but the blackbox is unable to
discriminate between SDSC and IU BigRed. This is because
of two reasons: (1) the difference in SDSC and BigRed
queue times for small jobs below 32 Core-Minutes, where
BigRed initially has smaller queue times than SDSC, but
returns larger queue times beyond that (Figure 4), and (2) the
difference in scheduling approaches for blackbox and
whitebox models –blackbox requests HPC resources to fit
the entire workflow while whitebox requests resources for a
stage at a time, since mincore=fanout. For workflows larger
than 32 core-mins but the core-time per stage smaller than 32
core-minutes, the blackbox chooses SDSC while whitebox
chooses BigRed. When the core-time per stage is greater
than 32 core-mins, both models choose SDSC (Figure 3,
light blue). At the lower extreme, the workflow size itself is
less than 32 core-mins, so both models choose BigRed
accurately.

For the rest of the region in light blue, we see that the
BReW blackbox model is able to accurately track the
whitebox selection for the workflows considered. In the
space of synthetic workflows considered for this experiment,
none of the estimations were incorrect across HPC and
Azure.

2) Effect of Length per Workflow Stage: Blackbox and
whitebox models use different granularity (workflow vs.
stage/task) for acquiring resources, and hence the length of
each stage has an impact on the resource prediction.

We compare the effect of the length per workflow stage
on the degree of consistency between blackbox and whitebox
models, measured as the % of times the blackbox model
makes the same prediction as the whitebox for a set of

workflows. We consider 162 workflows with length of each
stage varying from 2mins to 6hrs, uniform fanouts ranging
from 1 – 1600 tasks each, and with constant 10 stages, all
using mincore=fanout for the workflow and stages. The
effect of varying stage length on the consistency % between
blackbox and whitebox models is plotted in Figure.

Figure 5 shows that for small workflow stage lengths less
than 20mins, we are able to give a Blackbox prediction
consistent with whitebox at least 80% of the time (green).
The remaining 20% of inconsistency (red) is due to inability
to discriminate between the two HPC clusters as discussed
before. For 20min stages and longer, we see the introduction
of errors due to lack of data from QBETS for the BReW
blackbox. This region grows larger as the length per stage
increases from 20mins to 6hrs, with consistent predictions
decreasing from 80% to 55%.

When we vary the number of stages above and below the
10 stages considered here (not shown due to lack of space),
we observe the shape of the plot and the green/red/gray
regions to remain the same but their areas change. The peak
of the consistent % (green) is observed at workflow lengths
of 100mins: 95% for 4 stages/25min per stage, 90% for 10
stage/10min per stage, and 78% for 50 stages/2mins per
stage.

3) Effect of Number of Stages in Workflow: Since BReW
blackbox and whitebox models schedule at different
granularity (workflow vs. stage/task), the number of stages
has an impact on the prediction.

This study is similar to the previous one, except that we
vary the number of stages from 1 to 100 while keeping their
overall length constant, for workflows with lengths and
fanouts that range from 20mins – 60hrs and 1 – 1600 tasks.
We plot the % of consistent blackbox and whitebox resource
predictions grouped by stages for a set of 162"5 workflows
with varying workflow length, fanout, and stages.

Figure 6 shows that as the number of stages increases, the
ability of the blackbox model to discriminate between the
two HPC clusters reduces (red). The percentage of HPC
discrimination inconsistency increases linearly with number

Figure 4. Plot of queue latency times predicted by QBETS for increasing
number of requested core-minutes for SDSC and IU BigRed clusters. Plot

shows crossover between SDSC and BigRed, where latter initially has
lower latency but increases beyond 32 core-hours.

!

Figure 5. Prediction consistency % between blackbox and whitebox
models for 162 workflows as length per workflow stage increases.

Inconsistency of 20% is introduced in small stage lengths <20mins due to
incorrect queue latency estimation for the two HPCs. For stage lengths >
30mins, QBETS does not provide sufficient data for making estimates.

of stages. This is the result of the earlier described queue
latency difference between the HPC clusters for small stage
lengths, with its effect being compounded at each stage. As
the number of stages increase for a constant length
workflow, the length of the stage decreases, thus pushing
them into this error space, and these errors also accumulate
at each workflow stage.

The inconsistency due to lack of QBETS information is
almost constant across workflow stages. Since it was mainly
observed for queue latencies requested by the blackbox
model, it has no impact in these experiments since the
blackbox model does not use the number of stages for its
estimates. For a workflow with just one stage, there is no
error since the blackbox and whitebox models have identical
information about the workflow available to them.

B. Effect of Workflow Width
The effect of total workflow width was discussed as part

of discussion on workflow length (Sec VI.A.1). To recap, as
the workflow width goes beyond 64 tasks for large values of
workflow lengths of 200mins to 60hrs, we are unable to get
results from QBETS (maroon in Figure 3). For small values
of fanout below 32 core-hours, the Blackbox model is unable
to discriminate between the two HPCs.

1) Varying width of stages according to a probability
distribution: We use a normal distribution to generate the
width of each stage in the workflow. All stages have the
same mean width (µ), but we increase the standard
deviations (#) as a fraction of the mean width. As the #
increases, the width of stages within a workflow shows more
variability.

In a normal distribution, 99% of randomly drawn values
lie within 3# of the mean. For example, with a mean
workflow stage fanout of µ=20 and using #=0.25µ, the width
of a stage in the workflow lies between 5 and 35 with 99%
probability.

In this experiment, for workflows with lengths and
fanouts that range from 20mins – 60hrs, 1 – 1600 tasks, we
increase the fanout # from 0 to µ, and plot the consistency

between blackbox and whitebox model resource predictions
on the primary Y Axis. Since the BReW blackbox model
overestimates the core-hours required by the workflow, we
also plot the actual utilization % of core-hours by blackbox
against the acquired core-hours in the secondary Y Axis.

We observe that with increasing workflow stage width
variability, the impact on the platform prediction consistency
between the two models is small. We see that the consistency
% changes from 75% for no width variation to 65% for #=µ.
When using a large static variability (#=64, plot not shown)
we see more errors due to missing HPC prediction values
even at smaller fanouts for 50 or more stages.

Despite consistent platform prediction with variability in
width, the utilization of resources in the blackbox model
decreases as the variability increases (Figure 7, secondary Y
axis). Resource utilization is ratio of resources (core-hours)
actually used as against the resources that blackbox model
estimates it will use. However, the blackbox model is just
used for selection of resource platform and not for resource
scheduling at runtime. So the actual resource utilization is
only be affected by the scheduling model at execution.

C. Effect of Min-Cores
We vary the mincores required by each stage in the

whitebox model between 1 (pure loosely coupled), a fraction
of fanout in a stage, and the max-fanout for a stage (pure
tightly coupled). We predict the resource platform
consistency % for synthetic workflows with workflow
lengths from 20mins – 60hrs, workflow widths from 1 –
1600 tasks, and with 4, 10 and 50 stages. For the BReW
blackbox model, we use a constant mincore of workflow
width (tightly coupled workflow), shown in Figures 8.

In Figure 8, we observe that when whitebox uses
mincore=1 and blackbox uses mincore=workflow width, the
fraction of times that they are consistent is small at 30%
(green). 50% of the inconsistency is due to lack of
discrimination between the HPC clusters (red) and 20% due

!
Figure 6. Prediction consistency % between blackbox and whitebox models

for 810 workflows. HPC discrimination inconsistencies increase with
number of stages as it accumulates at each stage. QBETS inconsistencies

remain static since they were observed for blackbox model which is
unaffected by number of stages.

!
Figure 7. Prediction consistency % between blackbox and whitebox

models (primary Y Axis) with increasing workflow stage with variation.
Minimal impact is seen on consistency % with increasing width
variation within a workflow. However, resource utilization %

(secondary Y axis) using blackbox model reduces with width variation
since cores remain idle for narrower stages in the workflow compared to

its widest.

to lack of QBETS data. This is because with mincore=1 in
whitebox, the HPC clusters are requested one core at a time
causing the core-hours per task to be small – within the 32
core-hour region of error seen in Figure 4. As the whitebox
mincore increases as a fraction of stage width, the region of
HPC disagreement monotonically decreases with a
concomitant increase in consistency to reach 75%
consistency at mincore=stage width. The fraction of time that
we do not get a result from QBETS is uniformly constant
(gray), caused by the extreme values of workflow width and
length used by the BReW blackbox model with
mincore=workflow width.

When the same experiment is done using mincore=1 (not
shown for brevity) for the blackbox model, we see a similar
HPC discrimination inconsistency with whitebox mincore=1,
but this diminishes sharply for any higher fractions of
whitebox mincore. As all tasks are loosely coupled in both
models, we do not hit extremities where QBETS has no data.

VII. MODEL ANALYSIS FOR ESCIENCE WORKFLOWS
In this section, we use BReW to make resource platform

selections for five different eScience workflows with
features described in Table II.

TABLE II. CHARACTERISTICS OF ESCIENCE WORKFLOWS ANALYZED

Name Domain Length
(h:m:s) Width Stages Data In/Out

Montage Astronomy 0:06:10 662 9 700M/1.5M

MODIS Environ Sci. 0:29:40 60,000 4 400G/1G

Motif Genomics 1:31:30 135 3 13M/1.2G

GWAS Comp. Bio. 0:19:00 1100 7 150M/10M

We compare the blackbox platform prediction against
whitebox using the four platforms used before: Local cluster,
SDSC HPC, IU BigRed HPC and Azure Cloud, and in
addition impose constraints on the number of cores available
in each platform to mimic real world policy decisions that
BReW is intended for. In all cases, we use the blackbox

mincore as the workflow width while the mincore for
whitebox is 1 in all workflows unless noted otherwise. In the
evaluation we present below, the intended goal is for BReW
to make the same platform choice as the whitebox model
with full workflow DAG knowledge does.

A. Simple reference: Motif Network
The Motif workflow is a long running workflow (shown

in Figure 1) with just three stages and is not very wide at 135
tasks [12, 17]. Figure 9 plots the makespan estimates of this
workflow using the whitebox (Fig.9a) and BReW blackbox
(Fig.9b) models on the Y axis for 1 to 512 available cores.
The platform ordering by the models is examined.

We see that the ordering of resource platforms by BReW
is consistent with the whitebox for different core
availabilities considered of the four platforms. The absolute
values predicted in both cases are also similar with the most
absolute error exhibited by IU BigRed at 50%. However,
even this variation is small enough that we can compare the
platforms with not just the same number of cores but even
different cores across platforms. For e.g. Azure cloud with
128 cores has a shorter makespan than cluster with 64 cores
in both cases.

B. Short Tasks: Montage Astronomy Image Processing
Montage is a popular image processing workflow for

astronomy datasets [18]. It is characterized by seven short
stages between 11 – 100 seconds long, three of which have

Figure 8. Prediction consistency between blackbox and whitebox models
as the mincores for each workflow stage in whitebox DAG varies from 1

core to fractions of stage width (W). Blackbox uses constant
mincore=workflow width.

(a) MOTIF Whitebox

(b) MOTIF BReW Blackbox

Figure 9. Estimated runtime for MOTIF with whitebox & blackbox models

with increasing number of available cores on the 4 platforms. Platform
selection is consistent across all core availabilities.

fanouts between 166 – 662 tasks. Whitebox and BReW
blackbox makespan estimates are shown in Figure 10 for 1 to
2048 available cores on each platform.

 We see that the ordering across Cloud, HPC and Cluster
platforms are consistent across both models across different
core availabilities. Beyond 128 cores, we see the Azure
Cloud runtime increasing for BReW since the sequential VM
startup latency time outstrips the application runtime gains.
The whitebox model starts VMs independently in parallel
since the application is loosely coupled (mincore=1), giving
it constant latency times.

 However, BReW fails to discriminate between IU
BigRed and SDSC HPC platforms. The cause for this is the
difference in latency times of the HPC systems when the
workflows have short stages, as discussed in Section VI.A.2.
Given that this is a loosely coupled workflow (mincore=1)
with short tasks (<2mins), it falls in the far left of the X axis
in Figure 4 at ~2 core-mins in the whitebox model, where
SDSC latencies are longer than BigRed. However, our
blackbox model treats this as a workflow requiring 4000
core-mins (662 width, 6:10mins length) and it falls at the far
right of the X Axis in Figure 4, where IU BigRed latencies
are longer than SDSC.

C. Data intensive: MODIS Environmental Data Subsetting
The MODIS satellite data reduction pipeline is a 4-stage,

highly data parallel and data intensive workflow with stage
widths of 1000 to 60,000 loosely coupled tasks used for

processing 1-years’ worth of data [19]. Figure 11 shows its
whitebox and BReW runtime estimates for 1—2048 cores.

While the data transfers were marginal in earlier
workflows, the input and intermediate data are large in this
workflow. We see that BReW predicts the platform selection
ordering consistent with the whitebox model. Our blackbox
underestimates the data transfer times since it is not aware of
the intermediate data transfers, but overestimates the
computation compensating for each other.

D. Compute Intensive: GWAS
The Genome Wide Association Study (GWAS)

workflow [20] implements computational and statistical
techniques to analyze relationships between gene markers
and features seen in subjects. The compute intensive GWAS
workflow consists of two fork-join stages of fanouts 1100
and 150 that take about 10mins each. Figure 12 shows the
whitebox and blackbox estimates for GWAS on the four
platforms.

The behavior of GWAS is similar to Montage: the
blackbox model tracks the whitebox model for selection
across cluster, cloud and HPC but fails to order SDSC and
HPC due to the short runtimes of the stages. In addition, we
see that BigRed estimates for Blackbox hits another
crossover point at 1024 cores that causes its latency times to
increase further and obviate application runtime gains from
the additional cores. Azure hits a similar transition point at
256 cores.

(a) Montage Whitebox

(b) Montage BReW Blackbox

Figure 10. Estimated runtime for Montage with whitebox & blackbox
models with increasing number of available cores on the 4 platforms.

Platform selection is consistent across Local cluster, HPC and Cloud but not
within the 2 HPC platforms.

(a) MODIS Whitebox

(b) MODIS Blackbox

Figure 11. Estimated runtime for MODIS with whitebox & BReW models

with increasing number of available cores.

VIII. CONCLUSION
BReW introduces a novel, model for making high-level

resource platform selection decisions that is crucial for
domain scientists and policy makers as new resource
platforms like clouds emerge. BReW is distinct from
traditional workflow execution scheduling, and it uses
limited workflow knowledge to make platform selections
with low user overhead. Our detailed analysis using synthetic
workflows has shown that BReW is as effective as the more
complex, whitebox model for a large class of workflows.
The limited inconsistencies seen were more due to inability
to discriminate between the HPC clusters and lack of
QBETS data. Our evaluation with real eScience workflows
from diverse domains also shows that the blackbox method
makes accurate platform selections.

IX. ACKNOWLDEMENTS
This work was supported by the Director, Office of

Science, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

X. REFERENCES
[1] The Fourth Paradigm: Data-Intensive Scientific Discovery, Tony Hey,

Stewart Tansley, Kristin Tolle (Eds.), Microsoft Research, 2009.
[2] Workflows for e-Science: Scientific Workflows for Grids, Taylor, I.J.;

Deelman, E.; Gannon, D.B.; Shields, M. (Eds.), Springer, 2007.
[3] Scientific workflows and clouds, Gideon Juve and Ewa Deelman, ACM

Crossroads, 16(3), 2010.
[4] Comparison of Resource Platform Selection Approaches for Scientific

Workflows, Yogesh Simmhan and Lavanya Ramakrishnan, in
Workshop on Scientific Cloud Computing (ScienceCloud), 2010.

[5] Pegasus: Mapping Scientific Workflows onto the Grid, E Deelman, J
Blythe, Y Gil, C Kesselman, G Mehta, S Patil, M Su, K Vahi and M
Livny, in Grid Computing, 2004.

[6] Swift: Fast, Reliable, Loosely Coupled Parallel Computation, Y. Zhao,
M. Hategan, B. Clifford, I. Foster, G. von Laszewski, V. Nefedova, I.
Raicu, T. Stef-Praun, and M. Wilde, in SERVICES, 2007

[7] Building the Trident Scientific Workflow Workbench for Data
Management in the Cloud, Yogesh Simmhan, Roger Barga, Catharine
van Ingen, Ed Lazowska, and Alex Szalay, in Advanced Engineering
Computing and Applications in Sciences (ADVCOMP), 2009.

[8] Falkon: A fast and light-weight task execution framework, Ioan Raicu,
Yong Zhao, Catalin Dumitrescu, Ian Foster, and Mike Wilde in SC
2007.

[9] Scheduling Workflows with Budget Constraints, R. Sakellariou, H.
Zhao, E. Tsiakkouri and M. Dikaiakos, in Integrated Research in
GRID Computing, Springer, 2007.[10] Bioclouds, Nature Methods,
vol. 7, 2010.

[11] Seeking Supernovae in the Clouds: A Performance Study, K. Jackson,
L. Ramakrishnan, R. Thomas and K. Runge, in ScienceCloud, 2010.

[12] MotifNetwork: Genome-Wide Domain Analysis using Grid-enabled
Workflows, J. L. Tilson, et al., in BIBE, 2007.

[13] An Autonomic Approach to Integrated HPC Grid and Cloud Usage, H.
Kim, Y. el-Khamra, S. Jha, M. Parashar, in IEEE eScience 2009.

[14] QBETS: queue bounds estimation from time series, Nurmi, D. C.,
Brevik, J., and Wolski, R., SIGMETRICS Perform. Eval. Rev., 35(1),
2007.

[15] Forecasting Duration Intervals of Scientific Workflow Activities
Based on Time-Series Patterns, Liu, X., Chen, J., Liu, K., and Yang,
Y., in IEEE eScience 2008.

[16] https://portal.teragrid.org/hpc-queue-prediction
[17] A Survey of Distributed Workflow Characteristics and Resource

Requirements, L. Ramakrishnan and D. Gannon, Technical Report
TR671, Indiana University, 2008.

[18] Characterization of Scientific Workflows, S. Bharathi, A. Chervenak,
E. Deelman, G. Mehta and M. Su, in Workflows in Support of Large
Scale Science (WORKS), 2008.

[19] eScience in the Cloud: A MODIS Satellite Data Reprojection and
Reduction Pipeline in the Windows Azure Platform, Jie Li, Deb
Agarwal, Marty Humphrey, Catharine van Ingen, Keith Jackson, and
Youngryel Ryu, in IPDPS, 2010.

[20] Correction for Hidden Confounders in the Genetic Analysis of Gene
Expression, J. Listgarten, C. Kadie, E. Schadt and D. Heckerman,
PNAS (In press).

[21] Chapter: Dynamic, Adaptive Workflows for Mesoscale Meteorology,
Dennis Gannon, Beth Plale, Suresh Marru, Gopi Kandaswamy,
Yogesh Simmhan and Satoshi Shirasuna, Workflows for e-Science:
Scientific Workflows for Grids, Taylor, I.J.; Deelman, E.; Gannon,
D.B.; Shields, M. (Eds.), Springer, 2007.

(a) GWAS Whitebox!

(b) GWAS Blackbox

Figure 12. Estimated Runtime for GWAS from whitebox & blackbox

models with increasing number of available cores

