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Abstract—Workflows are commonly used to model data 
intensive scientific analysis. As computational resource needs 
increase for eScience, emerging platforms like clouds present 
additional resource choices for scientists and policy makers. 
We introduce BReW, a tool enables users to make rapid, high-
level platform selection for their workflows using limited 
workflow knowledge. This helps make informed decisions on 
whether to port a workflow to a new platform. Our analysis of 
synthetic and real eScience workflows shows that using just 
total runtime length, maximum task fanout, and total data 
used and produced by the workflow, BReW can provide 
platform predictions comparable to whitebox models with 
detailed workflow knowledge. 

Keywords-workflow; resource selection; planning; workflow 
migration; resource platforms; cloud; HPC 

I. INTRODUCTION 
The need to manage and analyze the deluge of digital 

data from sensors and scientific instruments has resulted in 
the popularity of eScience workflows [1,2]. The tasks in 
these workflows are scientific applications or data processing 
scripts that pass the output of their computation to the next 
application in the logical dataflow. eScience workflows run 
on a spectrum of resource platforms today, from desktops, 
clusters, and high performance computing (HPC) resources 
to, more recently, cloud platforms. With the increasing scale 
of experiments, scientific user groups are interested in 
exploring large capacity platforms like HPC and cloud 
computing [3,13].  

Porting an existing or evolving workflow onto a new 
resource platform and evaluating it is often a tedious exercise 
that requires interdisciplinary teams of domain scientists, 
computer researchers, and programmers. As a result, 
eScience workflow developers and users are interested in 
rapid, high-level analysis of workflows on novel platforms. 
Low overhead tools that let them compare and contrast 
various resource platforms prior to embarking on the costly 
exercise of workflow and application migration are 
opportune. 

Current workflow planning and resource analysis tools 
enable careful planning of user workflows on diverse 
resource platforms. However, they are unsuitable for making 
high-level resource platform decisions for two reasons. First, 
these tools require a detailed knowledge of a workflow’s 
structure, resource needs, and performance characteristics. 

This information is often hard to predict, measure and 
maintain for a large number of constantly evolving eScience 
workflows. Second, these tools are often embedded into 
execution frameworks such as workflow engines and require 
porting some or all of the workflow into these environments. 

In this paper, we introduce and describe BReW – 
Blackbox Resource selection for e-Science Workflows, 
which facilitates resource platform decisions with limited 
workflow information. BReW uses blackbox or coarse-
grained knowledge of a workflow, such as workflow fanout 
width and runtime length dimensions, that are easily 
available, to estimate the workflow makespan on resource 
platforms with different resource availability [4]. Our current 
implementation of BReW is focused on comparing existing 
platform choices – desktop, cluster, HPC and cloud 
resources. However, our approach, methodology, and 
implementation are extensible to support other new and 
emerging hybrid resource platforms.  

Specifically, we describe BReW and make the following 
contributions in this paper: 
1. We develop the BReW blackbox platform selection model 

and contrast it with existing resource scheduling methods. 
2. We evaluate and analyze our model for synthetic 

workflows with varying characteristics to understand the 
scope and limitations of our model. 

3. We apply the blackbox model to four exemplar eScience 
workflows to gauge its practical effectiveness. 
 Our analysis of eScience workflows and synthetic 

workloads show that the BReW approach is feasible on a 
variety of platforms, including HPC and cloud, for diverse 
workflow sizes, and is limited by the quality of resource 
information available.  

The rest of this paper is organized as follows. We discuss 
related work in Section II; provide an overview of eScience 
workflows and resource platforms in Section III; detail the 
BReW blackbox model in Section IV; describe our 
evaluation approach in Section V; present our analysis of 
BReW for synthetic workflows in Section VI; evaluate it for 
four eScience workflows in Section VII; and present our 
conclusions in Section VIII.  

II. RELATED WORK 
Science workflows are run today on desktops and grid 

environments. There have been a number of tools that mange 
execution in these varied environments and manage resource 



 

 

selection decisions [15]. Workflow systems like Pegasus [5], 
Swift [6], and Trident [7] usually incorporate features to 
schedule tasks onto remote resources, such as Grids or 
clusters. For example, Swift uses Falkon execution 
framework to dispatch workflows tasks using multi-level 
scheduling [8]. This typifies fine-grained resource selection 
where detailed workflow structure and resource needs are 
known. DAG scheduling algorithms for Grids use heuristic 
models to schedule applications to meet time budgets [9]. 
The blackbox methodology is similar to these methods but 
finding an optimal schedule is not our goal. A number of 
groups have evaluated clouds for running scientific 
workflows [8,10,11].  

However, these tools do not enable users to make high-
level resource policy decisions. Our work considers various 
aspects of cloud computing and the feasibility of running in 
that environment given workflow characteristics and 
resource platform characteristics. 

III. OVERVIEW 
In current day eScience workflow scheduling techniques, 

detailed knowledge of each workflow task is needed, such as 
the execution time, input and output data in the Motif 
genomics workflow [12] shown in Figure 1. This workflow 
consists of a pre-processing step followed by a number of 
parallel runs of interprocscan followed by a post-processing 
step that generates over one gigabyte of output data. 
However, due to the constantly evolving nature of scientific 
processes and uncertainties that often get resolved at runtime 
for dynamic workflows [21], this level of detail is typically 
not available for all scientific workflows. The overhead for 
instrumenting, collecting and maintaining fine-grained 
application profile information on diverse platforms is 
prohibitive for most but advanced users.  

 In contrast, we use a blackbox approach where coarse-
grained, approximate dimensions of the workflow as shown 
in Figure 2, viz., length (runtime duration), width (number of 
CPU cores) and total data input and output, to make resource 
platform decisions. In our model, we forego knowledge of 
the detailed execution time of the tasks and the intermediate 
data products that might enable certain optimizations. 
Despite that, we are able to use just the critical pieces of 

workflow information we have identified to generalize the 
resource needs and make informed resource platform 
selection choices.  

A. Resource  Platforms and their Selection 
Common resource platforms available for scientists to 

run their applications include desktop workstations, local 
clusters, shared HPC resources and more recently, 
commercial clouds.  In this paper, we use these as our 
candidate resource platforms for eScience workflows. 
However, our methodology is not bound to any specific 
platform and can be applied in general to other resources that 
might be available.  

1) Resource Platforms: A large number of science 
applications today still run on desktop workstations whose 
multiple cores are suited for compute intensive and 
interactive visualizations. However, growth of data and the 
nature of analyses are far exceeding what is possible even on 
high-end workstations. Scientists often own and operate mid-
sized local clusters (! 512 cores) within their research 
groups. These dedicated resources are often under-
subscribed with low queue latency. Nevertheless, these are 
only suitable for small to mid-range computations that fit 
within the cluster’s core capacity. 

Scientific workflows also use shared HPC resources at 
academic and national supercomputing centers. These are 
typically accessible to multiple user groups through 
allocations and are often over-subscribed causing significant 
queue wait times. Users in this environment often have less 
control and are subject to site level policies and software 
changes. Cloud computing promises a greater degree of 
freedom to end-users while enabling resource scale-out 
comparable to shared HPC centers. On-demand access to 
massive cycles eliminates queue contention but virtualization 
can impact some applications.  

2) Platform Selection: We use the term platform 
selection to denote the policy and process required to select a 
particular resource platform for an eScience workflow. 
Unlike workflow, task, or resource scheduling, our goal is 
not the optimization of the workflow on a particular or a 
range of resources. We consider platform selection as a high-
level decision process that will be used by decision makers 
such as funding agencies and principal investigators to 
decide the choice of platforms for their scientific 
explorations. This information is also crucial when deciding 
whether to port an existing application from one platform to 
another, and analyze the cost-benefit trade-off. Thus, while 
there is an overlap of concepts, our platform selection 
approach is complementary to traditional scheduling 
methods. Once a platform is selected, users can use 
scheduling tools for actual workflow execution on the 
platform.  

Platform suitability also depends on several qualitative 
factors such as availability of dependent operating system, 
packages, access policies, and so on. These issues are 
orthogonal to our approach but will still need to be 
considered. 

In our evaluation, we use resource information from 
typical cloud and HPC resources available today. For 

!
Figure 1 & 2. Motif workflow attributes used for (1) whitebox (left) and 

(2) blackbox (right) approach to considering workflow structure. 

 



 

 

simplicity, we assume that all tasks of a workflow are run on 
the same platform. These resources were selected as a 
representative set of diverse platform characteristics. We 
demonstrate the selection of platforms for eScience and 
synthetic workflows in our comparative evaluation. Our goal 
is to show the effectiveness of our blackbox approach in 
comparison to traditional whitebox approach.  A particular 
choice of platform is an artifact of the workflow and resource 
characteristics we use. Thus, the results should not be 
interpreted as one platform is better than the others for a 
certain or for all workflows.  

B. Resource  Platform  and Workflow Attributes  
Resource platforms have attributes that can be used to 

evaluate their suitability for running workflows with certain 
characteristics. Availability of both resource and workflow 
attributes enables matchmaking. 

The degree of parallelism offered by a resource platform 
depends on the number of cores available for computation. 
For desktop and local clusters, this may be all available cores 
while for cloud and shared HPC, the bounds may be set by 
policy. The core speed can also impact the computation since 
cloud resources may be rated at a lower speed or run slower 
due to virtualization. Computation latency can be introduced 
through batch queues controlling access to shared HPC 
clusters or by VM startup times. Network bandwidth in and 
out of the resource platform from desktop determines data 
transfer time between client and remote compute resources. 
Persistence and size of available local storage determine if 
intermediate data must be moved between remote platforms 
and desktop. Network latency within the resource platform 
can affect communication costs of tightly coupled MPI tasks. 
We consider these resource attributes in our blackbox model 
to characterize resource behavior. 

Workflows exhibit features and have requirements that 
can be used to determine the resource best suited to run part 
or all of the workflow. Structural features of a workflow 
characterize the data and control flow pattern. Common 
patterns are sequential pipeline, map-reduce (or fork-join) 
pattern, and iterations of these. The width of the structure 
(i.e. fanout of tasks), the length in terms of number of stages 
and their runtime, and the number of iterations determine 
resource selection [11]. Resource usage features of a 
workflow quantify the computational, data storage, and 
networking resources needed.  The compute usage can be 
specified as time taken to run the stage on a specific core 
speed. The data and networking resources can be given in 
terms of input and output file sizes as well as characteristics 
such as access patterns. Memory size may also be key for 
some applications. 

C. Resource Cost 
Finally, cost of using the resource is a factor in resource 

choice. The costs of a desktop, local cluster or shared HPC 
resources are often partially hidden or amortized. Cloud 
costs are very visible.  Shared HPC resources may also have 
quotas that limit user access. Users might need to tradeoff 
system performance for cost in their decisions. Cost models 

for resource platforms is a separate issue and is outside the 
scope of this paper.  

IV. THE BREW BLACKBOX MODEL 
BReW has been developed to enable users to perform 

high-level platform selection. BReW works with the limited 
knowledge of the workload that the user provides and 
information it has about resource platforms. It is not a 
replacement for existing workflow technologies but a tool 
that scientists and decision makers will use to determine 
suitability of a resource platform for specific scientific 
workflows. The blackbox model used by BReW is discussed 
below. 

A. Model Attributes 
The blackbox resource selection uses four commonly 

known attributes for the entire workflow:  
1) Workflow Width: The maximum fanout of the 

workflow tasks at any point in the workflow. This captures 
the maximum parallelism of the workflow and would be 
equal to one for a serial workflow. 

2) Workflow Length: The total time to run the workflow 
computation at full parallelism assuming required resources 
are available (i.e. no latency). This is the execution time of 
the workflow and depicts the duration of resource needs.  

3) Data Sizes: The initial workflow input and final 
workflow output data sizes that are transferred prior to and 
after a workflow executes on a particular resource platform.  

4) Concurrent Minimum Cores (mincore): Minimum 
number of concurrent cores needed for workflow execution. 
Captures constraints where part of the workflow, such as 
MPI tasks, needs at least a certain number of CPU cores. For 
purely loosely coupled tasks, this equals one core. 

B. Blackbox Model  
We use total workflow turnaround time as a metric to 

compare resource platforms. The workflow turnaround time 
denotes the duration between when the user submits the 
workflow for execution and the time when the last task of the 
workflow completes.  

The blackbox model provides us an approximation of the 
resource needs that we use to calculate the workflow 
turnaround time as follows:  

FWorkflowTime =  TLatencyMax + TDataSum +  
  TLength! NWidth)/NCores 

Where 
TLatencyMax : Time to acquire resources for the 
workflow. This corresponds to batch queue wait times in 
HPC centers and virtual machine startup overheads on 
cloud machines.  
TDataSum  : Time to transfer initial input and final 
output data between client desktop and the workflow 
execution platform; 
TLength  : Workflow length time as defined above; 
NWidth  : Width/maximum fanout of the workflow; 
NCores  : # of available cores to run workflow. 



 

 

C. Comparison with Traditional Whitebox Model 
Whitebox model assumes that the workflow structure and 

all attributes for each workflow task are available. This is 
similar to workflow scheduling algorithms that is used to 
manage execution of a workflow on a diverse distributed set 
of resources. This means the data input, data output and the 
CPU time for each task is known before workflow’s launch. 
Also, the fanout of each stage of the workflow is known 
from the structure. Given this relatively fine-grained detail, 
each workflow task can be scheduled independently. Each 
task incurs a latency time to access one CPU core, but needs 
the core only for the duration of that task. The workflow 
turnaround time for a workflow given the whitebox model is 

FWorkflowTime = " FiStageTime 
Where  
FiStageTime is the time taken by workflow stage i, and is: 

FiStageTime =  
TiData +  
Ceil(NiTaskWidth/NiCores)!TiLatencyOne + 
(TiTaskLength ! NiTaskWidth)/NiCores 

 
Where:  
TiData : Time to transfer input, output data 
between desktop and the execution platform for the ith 
stage; 
TiLatencyOne  : Latency time to start executing one task 
in the ith stage on one core, due to queue wait or VM 
start- time; 
TiTaskLength : Maximum task runtime among those 
workflow tasks scheduled concurrently in the ith stage;  
NiTaskWidth : Width/fanout of the number of tasks in ith 
stage; 
NiCores : # of available cores to run tasks; NiCores 
! NiTasks. 

V. ANALYSIS FRAMEWORK AND ASSUMPTIONS 
The goal of our analysis is to evaluate the effectiveness 

and limitations of BReW for workflow resource selection 
when compared to the whitebox model. Effectiveness is 
measured by the ability to accurately discriminate between or 
rank the resource platforms based on the makespan estimated 
for a given workflow, rather than the precision of the 
absolute values estimated for the makespan.  

BReW is implemented as a prototype decision making 
framework that takes the specification of a workflow and 
considers it against resource platforms it is configured for to 
provide the makespan estimate for the workflow on each 
platform. Our framework implements both the proposed 
blackbox model and the whitebox model. This allows us to 
compare the makespan estimates from both the models for 
the same workflow, with the blackbox model using only the 
workflow dimensions as input while the whitebox uses the 
complete workflow DAG details. The details of workflow 
specification used, resource platform configurations, and 
assumptions of our experiments are described here. 

A. Resource Platform Configuration 
We perform the analysis for three types of platforms, and 

four platform instances: Local Cluster, Azure Cloud, IU 
BigRed HPC cluster, and SDSC TeraGrid HPC Cluster. The 
local cluster is a hypothetical cluster configured with 
between 1—512 CPU cores rated at 2.5GHz connected on a 
1Gbps LAN to the desktop client. While not explicitly 
considered, a 1-core local cluster is the equivalent of a 
workstation. For the shared HPC clusters and Azure, we use 
prior micro-benchmarks and public data to define their 
configuration. The Azure cloud has up to 2048 cores 
available rated at 1.6GHz with a 10Mbps network 
connection to the desktop client. While the Azure cloud may 
be much larger, this is representative of policy limits that 
may be enforced. The median VM startup latency is 
measured to be a linear function of number of cores required 
at (200+20!cores). The shared HPC clusters are 
modeled on the TeraGrid clusters at Indiana University 
(BigRed) and San Diego Supercomputing Center. They have 
similar configurations with 2048 available cores rated at 
2.5GHz, a 100Mbps network bandwidth to the desktop 
client, and the queue latency time for job submission is 
provided by the TeraGrid Batch Queue Prediction Service 
(QBETS) [14,16]. We use a 50% quantile for these 
predictions. These platform configurations are provided as a 
text file input to BReW and can be easily updated. 

B. BReW Implementation 
The BReW tool provides blackbox makespan runtimes 

used to rank resource platforms. It uses the blackbox model 
by default but can also provide whitebox model predictions 
if provided the complete workflow DAG. Workflow inputs 
are provided as a DAG in case of whitebox estimates (Figure 
1) or as the workflow dimensions in case of blackbox 
(Figure 2). The nodes in the whitebox workflow DAG are 
tasks that have task runtime, data input and output specified. 
In our implementation, tasks run on a single core by default, 
and tasks that can run concurrently are grouped into stages. 
Stages additionally have the minimum required cores 
(mincore) specified that captures tasks that might require 
simultaneous access to more than one core. BReW supports 
estimates for arbitrary whitebox DAGs, but we limit our 
analysis to workflows that are a linear pipeline of stages. For 
blackbox estimates, the workflow inputs are the task fanout 
width, runtime length, total data input and output, and 
optionally, the mincore (defaulting to workflow width), as 
shown in the bounding box in Figure 2. For convenience, the 
simulator is able to reduce a given whitebox DAG 
specification to the equivalent blackbox dimensions for the 
sake of comparison of the models. Both DAGs and blackbox 
dimensions are represented using a simple XML schema 
input. 

In case of whitebox estimates, the provided DAG is 
traversed and the makespan function applied for the tasks 
and stages in the workflow for each resource platform. 
Queue latency for the HPC clusters is dynamically queried 
from the QBETS web service while static configuration 
values are used for the other platforms. The cumulative 
runtime for the stages is computed and emitted as the 



 

 

makespan for the workflow on each platform. For blackbox, 
we apply the makespan function on the workflow 
dimensions for each platform to provide the makespan 
estimate. It too uses the QBETS service for HPC queue 
latency. In both models, we do not actually execute the 
workflow but just apply the makespan functions. The tool is 
implemented in C# and expected to be publicly available. 

C. Assumptions  
We make the following assumptions in BReW when 

estimating the makespan using the models, to make the 
problem tractable. In both models, we request for the smaller 
of available cores on the resource platform and the minimum 
number required cores for the workflow or stage for 
calculating the queue wait and VM startup latency times. The 
latency time is a function of the number of cores in Azure 
cloud. In HPC clusters, both number of cores and the 
duration they are requested for affect queue latency times.  

In the BReW blackbox model, acquired cores are 
retained for the duration of the workflow, so the latency time 
appears only once per workflow in the blackbox model. In 
the whitebox model, the cores are retained for the duration of 
the task. The latency times appear once per task since they 
are independently scheduled. For concurrent tasks in a stage, 
their latency times also run concurrently, but across stages, 
the latency times accumulate. When more concurrent tasks 
are present than available cores, the latency times of later 
tasks interleave with runtime of prior tasks, thus causing the 
latency times to appear only once per stage even in this case.  

For simplicity, all workflow tasks are assumed to run on 
the same platform. While in the blackbox model, we estimate 
data transfer between desktop workflow client and the 
resource platform only at the start and end of workflow 
execution, in whitebox model, input and output data are 
transferred to and from the desktop client for each workflow 
task. 

VI. MODEL ANALYSIS ON WORKFLOW PARAMETER 
SPACE 

In these analyses, we measure the sensitivity of BReW to 
different workflow characteristics to determine the scope of 
workflows for which the blackbox model shows a high 
degree of consistency in platform selection with the 
whitebox model. We use synthetic workflows using a 
workflow generator tool that produces whitebox DAGs and 
their blackbox dimensions based on provided parameter 
ranges that are fed to the BReW simulator. The parameter 
space that we cover for generating the synthetic workflows is 
shown in Table I. 

TABLE I. SPACE OF SYNTHETIC WORKFLOWS CONSIDERED 

WF Length (L) 20mins–60hrs 

Stage Length 30secs – 6hrs  

# of Stages 4, 10, 50, 100 

WF Width (W) 1–1600 

Mincores per Stage 1, 0.25"W, 0.50"W, 0.75"W, W 

A. Effect of Length 
In the first set of experiments, we evaluate the effect of 

increasing workflow length on the consistency of our 
blackbox model’s platform prediction to the whitebox 
model. We estimate makespan using whitebox and blackbox 
models as we increase the workflow length from 20mins to 
60hrs, and fanout from 1 to 1600 tasks. We use 10-stage 
workflows with uniform fanout, and mincore equal to fanout 
for both workflow and stages. The platforms are assumed to 
have sufficient cores available. The data transfer sizes are 
10MB. 

1) Effect of Workflow Total Length: Figure 3 shows a 
heatmap of the consistency of the BReW blackbox platform 
selection to the whitebox as total workflow length varies on 
the X Axis, and workfllow width on Y axis. Each cell is one 
workflow, and its color indicates if the blackbox and 
whitebox make consistent platform choices. Given that this 
workflow has 10 stages, the length per stage at each cell is 
the workflow length/10. Blue indicates blackbox and 
whitebox are consistent, with specific shades refering to 
specific platforms selected by both models. Bright red is 
correct selection of HPC over Local Cluster and Azure, but 
incorrect discrimination between SDSC and IU BigRed. 
Maroon is absence of estimates due to lack of information 
from the QBETS service. 

QBETS relies on historical data to make queue 
predictions. For workflow that are 200mins or longer with a 

 Figure 3. Heatmap showing consistency of platform prediction using blackbox 
estimates with the whitebox estimates with varying workflow length (X Axis) 
and width (Y Axis). The inconsistency in discriminating between the two HPC 

clusters (bright red) is due to different queue latency times estimated by the 
models. A large region at the upper extreme of width and length (maroon) has 

not data available from QBETS. 

  



 

 

high fanout of 64 to 1600, it does not return any results for 
the blackbox model (maroon color) due to the extreme 
resource needs. Given this constraint of QBETS, the BReW 
blackbox model cannot be used for very long and wide 
workflows. At the very extreme corner of 60hrs and 
1024/1600 width, we see that Azure is selected (dark blue) 
due to lack of information from QBETS for both blackbox 
and whitebox models. 

 At the lower end of the spectrum, for very short 
workflow lengths of 20 to 300mins using fanout of 8 tasks or 
less, we see that both blackbox and whitebox select HPC 
platforms over Azure, but the blackbox is unable to 
discriminate between SDSC and IU BigRed. This is because 
of two reasons: (1) the difference in SDSC and BigRed 
queue times for small jobs below 32 Core-Minutes, where 
BigRed initially has smaller queue times than SDSC, but 
returns larger queue times beyond that (Figure 4), and (2) the 
difference in scheduling approaches for blackbox and 
whitebox models –blackbox requests HPC resources to fit 
the entire workflow while whitebox requests resources for a 
stage at a time, since mincore=fanout. For workflows larger 
than 32 core-mins but the core-time per stage smaller than 32 
core-minutes, the blackbox chooses SDSC while whitebox 
chooses BigRed. When the core-time per stage is greater 
than 32 core-mins, both models choose SDSC (Figure 3, 
light blue). At the lower extreme, the workflow size itself is 
less than 32 core-mins, so both models choose BigRed 
accurately. 

For the rest of the region in light blue, we see that the 
BReW blackbox model is able to accurately track the 
whitebox selection for the workflows considered. In the 
space of synthetic workflows considered for this experiment, 
none of the estimations were incorrect across HPC and 
Azure. 

2) Effect of Length per Workflow Stage: Blackbox and 
whitebox models use different granularity (workflow vs. 
stage/task) for acquiring resources, and hence the length of 
each stage has an impact on the resource prediction. 

We compare the effect of the length per workflow stage 
on the degree of consistency between blackbox and whitebox 
models, measured as the % of times the blackbox model 
makes the same prediction as the whitebox for a set of 

workflows. We consider 162 workflows with length of each 
stage varying from 2mins to 6hrs, uniform fanouts ranging 
from 1 – 1600 tasks each, and with constant 10 stages, all 
using mincore=fanout for the workflow and stages. The 
effect of varying stage length on the consistency % between 
blackbox and whitebox models is plotted in Figure. 

Figure 5 shows that for small workflow stage lengths less 
than 20mins, we are able to give a Blackbox prediction 
consistent with whitebox at least 80% of the time (green). 
The remaining 20% of inconsistency (red) is due to inability 
to discriminate between the two HPC clusters as discussed 
before.  For 20min stages and longer, we see the introduction 
of errors due to lack of data from QBETS for the BReW 
blackbox. This region grows larger as the length per stage 
increases from 20mins to 6hrs, with consistent predictions 
decreasing from 80% to 55%.  

When we vary the number of stages above and below the 
10 stages considered here (not shown due to lack of space), 
we observe the shape of the plot and the green/red/gray 
regions to remain the same but their areas change. The peak 
of the consistent % (green) is observed at workflow lengths 
of 100mins: 95% for 4 stages/25min per stage, 90% for 10 
stage/10min per stage, and 78% for 50 stages/2mins per 
stage. 

3) Effect of Number of Stages in Workflow: Since BReW 
blackbox and whitebox models schedule at different 
granularity (workflow vs. stage/task), the number of stages 
has an impact on the prediction. 

This study is similar to the previous one, except that we 
vary the number of stages from 1 to 100 while keeping their 
overall length constant, for workflows with lengths and 
fanouts that range from 20mins – 60hrs and 1 – 1600 tasks. 
We plot the % of consistent blackbox and whitebox resource 
predictions grouped by stages for a set of 162"5 workflows 
with varying workflow length, fanout, and stages. 

Figure 6 shows that as the number of stages increases, the 
ability of the blackbox model to discriminate between the 
two HPC clusters reduces (red). The percentage of HPC 
discrimination inconsistency increases linearly with number 

 

Figure 4. Plot of queue latency times predicted by QBETS for increasing 
number of requested core-minutes for SDSC and IU BigRed clusters. Plot 

shows crossover between SDSC and BigRed, where latter initially has 
lower latency but increases beyond 32 core-hours. 
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Figure 5. Prediction consistency % between blackbox and whitebox 
models for 162 workflows as length per workflow stage increases. 

Inconsistency of 20% is introduced in small stage lengths <20mins due to 
incorrect queue latency estimation for the two HPCs. For stage lengths > 
30mins, QBETS does not provide sufficient data for making estimates. 

 



 

 

of stages. This is the result of the earlier described queue 
latency difference between the HPC clusters for small stage 
lengths, with its effect being compounded at each stage. As 
the number of stages increase for a constant length 
workflow, the length of the stage decreases, thus pushing 
them into this error space, and these errors also accumulate 
at each workflow stage. 

The inconsistency due to lack of QBETS information is 
almost constant across workflow stages. Since it was mainly 
observed for queue latencies requested by the blackbox 
model, it has no impact in these experiments since the 
blackbox model does not use the number of stages for its 
estimates. For a workflow with just one stage, there is no 
error since the blackbox and whitebox models have identical 
information about the workflow available to them. 

B. Effect of Workflow Width 
The effect of total workflow width was discussed as part 

of discussion on workflow length (Sec VI.A.1). To recap, as 
the workflow width goes beyond 64 tasks for large values of 
workflow lengths of 200mins to 60hrs, we are unable to get 
results from QBETS (maroon in Figure 3). For small values 
of fanout below 32 core-hours, the Blackbox model is unable 
to discriminate between the two HPCs. 

1) Varying width of stages according to a probability 
distribution: We use a normal distribution to generate the 
width of each stage in the workflow. All stages have the 
same mean width (µ), but we increase the standard 
deviations (#) as a fraction of the mean width. As the # 
increases, the width of stages within a workflow shows more 
variability. 

In a normal distribution, 99% of randomly drawn values 
lie within 3# of the mean. For example, with a mean 
workflow stage fanout of µ=20 and using #=0.25µ, the width 
of a stage in the workflow lies between 5 and 35 with 99% 
probability.  

In this experiment, for workflows with lengths and 
fanouts that range from 20mins – 60hrs, 1 – 1600 tasks, we 
increase the fanout # from 0 to µ, and plot the consistency 

between blackbox and whitebox model resource predictions 
on the primary Y Axis. Since the BReW blackbox model 
overestimates the core-hours required by the workflow, we 
also plot the actual utilization % of core-hours by blackbox 
against the acquired core-hours in the secondary Y Axis. 

We observe that with increasing workflow stage width 
variability, the impact on the platform prediction consistency 
between the two models is small. We see that the consistency 
% changes from 75% for no width variation to 65% for #=µ. 
When using a large static variability (#=64, plot not shown) 
we see more errors due to missing HPC prediction values 
even at smaller fanouts for 50 or more stages. 

Despite consistent platform prediction with variability in 
width, the utilization of resources in the blackbox model 
decreases as the variability increases (Figure 7, secondary Y 
axis). Resource utilization is ratio of resources (core-hours) 
actually used  as against the resources that blackbox model 
estimates it will use. However, the blackbox model is just 
used for selection of resource platform and not for resource 
scheduling at runtime. So the actual resource utilization is 
only be affected by the scheduling model at execution. 

C. Effect of Min-Cores 
We vary the mincores required by each stage in the 

whitebox model between 1 (pure loosely coupled), a fraction 
of fanout in a stage, and the max-fanout for a stage (pure 
tightly coupled). We predict the resource platform 
consistency % for synthetic workflows with workflow 
lengths from 20mins – 60hrs, workflow widths from 1 – 
1600 tasks, and with 4, 10 and 50 stages. For the BReW 
blackbox model, we use a constant mincore of workflow 
width (tightly coupled workflow), shown in Figures 8. 

In Figure 8, we observe that when whitebox uses 
mincore=1 and blackbox uses mincore=workflow width, the 
fraction of times that they are consistent is small at 30% 
(green). 50% of the inconsistency is due to lack of 
discrimination between the HPC clusters (red) and 20% due 

!
Figure 6. Prediction consistency % between blackbox and whitebox models 

for 810 workflows. HPC discrimination inconsistencies increase with 
number of stages as it accumulates at each stage. QBETS inconsistencies 

remain static since they were observed for blackbox model which is 
unaffected by number of stages. 
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Figure 7. Prediction consistency % between blackbox and whitebox 

models (primary Y Axis) with increasing workflow stage with variation. 
Minimal impact is seen on consistency % with increasing width 
variation within a workflow. However, resource utilization % 

(secondary Y axis) using blackbox model reduces with width variation 
since cores remain idle for narrower stages in the workflow compared to 

its widest. 

 



 

 

to lack of QBETS data. This is because with mincore=1 in 
whitebox, the HPC clusters are requested one core at a time 
causing the core-hours per task to be small – within the 32 
core-hour region of error seen in Figure 4. As the whitebox 
mincore increases as a fraction of stage width, the region of 
HPC disagreement monotonically decreases with a 
concomitant increase in consistency to reach 75% 
consistency at mincore=stage width. The fraction of time that 
we do not get a result from QBETS is uniformly constant 
(gray), caused by the extreme values of workflow width and 
length used by the BReW blackbox model with 
mincore=workflow width. 

When the same experiment is done using mincore=1 (not 
shown for brevity) for the blackbox model, we see a similar 
HPC discrimination inconsistency with whitebox mincore=1, 
but this diminishes sharply for any higher fractions of 
whitebox mincore. As all tasks are loosely coupled in both 
models, we do not hit extremities where QBETS has no data.  

VII. MODEL ANALYSIS FOR ESCIENCE WORKFLOWS 
In this section, we use BReW to make resource platform 

selections for five different eScience workflows with 
features described in Table II.  

TABLE II. CHARACTERISTICS OF ESCIENCE WORKFLOWS ANALYZED 

Name Domain Length 
(h:m:s) Width Stages Data In/Out 

Montage Astronomy 0:06:10 662 9 700M/1.5M 

MODIS Environ Sci. 0:29:40 60,000 4 400G/1G 

Motif Genomics 1:31:30 135 3 13M/1.2G 

GWAS Comp. Bio. 0:19:00 1100 7 150M/10M 

We compare the blackbox platform prediction against 
whitebox using the four platforms used before: Local cluster, 
SDSC HPC, IU BigRed HPC and Azure Cloud, and in 
addition impose constraints on the number of cores available 
in each platform to mimic real world policy decisions that 
BReW is intended for. In all cases, we use the blackbox 

mincore as the workflow width while the mincore for 
whitebox is 1 in all workflows unless noted otherwise. In the 
evaluation we present below, the intended goal is for BReW 
to make the same platform choice as the whitebox model 
with full workflow DAG knowledge does. 

A. Simple reference: Motif  Network 
The Motif workflow is a long running workflow (shown 

in Figure 1) with just three stages and is not very wide at 135 
tasks [12, 17]. Figure 9 plots the makespan estimates of this 
workflow using the whitebox (Fig.9a) and BReW blackbox 
(Fig.9b) models on the Y axis for 1 to 512 available cores. 
The platform ordering by the models is examined. 

We see that the ordering of resource platforms by BReW 
is consistent with the whitebox for different core 
availabilities considered of the four platforms. The absolute 
values predicted in both cases are also similar with the most 
absolute error exhibited by IU BigRed at 50%. However, 
even this variation is small enough that we can compare the 
platforms with not just the same number of cores but even 
different cores across platforms. For e.g. Azure cloud with 
128 cores has a shorter makespan than cluster with 64 cores 
in both cases. 

B. Short Tasks: Montage Astronomy Image Processing 
Montage is a popular image processing workflow for 

astronomy datasets [18]. It is characterized by seven short 
stages between 11 – 100 seconds long, three of which have 

 
Figure 8. Prediction consistency between blackbox and whitebox models 
as the mincores for each workflow stage in whitebox DAG varies from 1 

core to fractions of stage width (W). Blackbox uses constant 
mincore=workflow width. 

 

(a) MOTIF Whitebox 

 
(b) MOTIF BReW Blackbox 

 
Figure 9. Estimated runtime for MOTIF with whitebox & blackbox models 

with increasing number of available cores on the 4 platforms. Platform 
selection is consistent across all core availabilities. 

 



 

 

fanouts between 166 – 662 tasks. Whitebox and BReW 
blackbox makespan estimates are shown in Figure 10 for 1 to 
2048 available cores on each platform. 

 We see that the ordering across Cloud, HPC and Cluster 
platforms are consistent across both models across different 
core availabilities. Beyond 128 cores, we see the Azure 
Cloud runtime increasing for BReW since the sequential VM 
startup latency time outstrips the application runtime gains. 
The whitebox model starts VMs independently in parallel 
since the application is loosely coupled (mincore=1), giving 
it constant latency times.  

 However, BReW fails to discriminate between IU 
BigRed and SDSC HPC platforms. The cause for this is the 
difference in latency times of the HPC systems when the 
workflows have short stages, as discussed in Section VI.A.2. 
Given that this is a loosely coupled workflow (mincore=1) 
with short tasks (<2mins), it falls in the far left of the X axis 
in Figure 4 at ~2 core-mins in the whitebox model, where 
SDSC latencies are longer than BigRed. However, our 
blackbox model treats this as a workflow requiring 4000 
core-mins (662 width, 6:10mins length) and it falls at the far 
right of the X Axis in Figure 4, where IU BigRed latencies 
are longer than SDSC. 

C. Data intensive: MODIS Environmental Data Subsetting 
The MODIS satellite data reduction pipeline is a 4-stage, 

highly data parallel and data intensive workflow with stage 
widths of 1000 to 60,000 loosely coupled tasks used for 

processing 1-years’ worth of data [19]. Figure 11 shows its 
whitebox and BReW runtime estimates for 1—2048 cores.  

While the data transfers were marginal in earlier 
workflows, the input and intermediate data are large in this 
workflow. We see that BReW predicts the platform selection 
ordering consistent with the whitebox model. Our blackbox 
underestimates the data transfer times since it is not aware of 
the intermediate data transfers, but overestimates the 
computation compensating for each other. 
 

D. Compute Intensive: GWAS 
The Genome Wide Association Study (GWAS) 

workflow [20] implements computational and statistical 
techniques to analyze relationships between gene markers 
and features seen in subjects. The compute intensive GWAS 
workflow consists of two fork-join stages of fanouts 1100 
and 150 that take about 10mins each. Figure 12 shows the 
whitebox and blackbox estimates for GWAS on the four 
platforms. 

The behavior of GWAS is similar to Montage: the 
blackbox model tracks the whitebox model for selection 
across cluster, cloud and HPC but fails to order SDSC and 
HPC due to the short runtimes of the stages. In addition, we 
see that BigRed estimates for Blackbox hits another 
crossover point at 1024 cores that causes its latency times to 
increase further and obviate application runtime gains from 
the additional cores. Azure hits a similar transition point at 
256 cores. 

(a) Montage Whitebox 

 
(b) Montage BReW Blackbox 

 
Figure 10. Estimated runtime for Montage with whitebox & blackbox 
models with increasing number of available cores on the 4 platforms. 

Platform selection is consistent across Local cluster, HPC and Cloud but not 
within the 2 HPC platforms. 

 

(a) MODIS Whitebox 

 
(b) MODIS Blackbox 

 
Figure 11. Estimated runtime for MODIS with whitebox & BReW models 

with increasing number of available cores. 

 



 

 

VIII. CONCLUSION 
BReW introduces a novel, model for making high-level 

resource platform selection decisions that is crucial for 
domain scientists and policy makers as new resource 
platforms like clouds emerge. BReW is distinct from 
traditional workflow execution scheduling, and it uses 
limited workflow knowledge to make platform selections 
with low user overhead. Our detailed analysis using synthetic 
workflows has shown that BReW is as effective as the more 
complex, whitebox model for a large class of workflows. 
The limited inconsistencies seen were more due to inability 
to discriminate between the HPC clusters and lack of 
QBETS data. Our evaluation with real eScience workflows 
from diverse domains also shows that the blackbox method 
makes accurate platform selections.  
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(a) GWAS Whitebox!

 
(b) GWAS Blackbox 

 
Figure 12. Estimated Runtime for GWAS from whitebox & blackbox 

models with increasing number of available cores 
 


