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ABSTRACT 

This paper gives an overview of recent developments 

in the Building Controls Virtual Test Bed (BCVTB), 

a framework for co-simulation and hardware-in-the-

loop.  

First, a general overview of the BCVTB is presented. 

Second, we describe the BACnet interface, a link 

which has been implemented to couple BACnet 

devices to the BCVTB. We present a case study 

where the interface was used to couple a whole 

building simulation program to a building control 

system to assess in real-time the performance of a 

real building. Third, we present the 

ADInterfaceMCC, an analog/digital interface that 

allows a USB-based analog/digital converter to be 

linked to the BCVTB. In a case study, we show how 

the link was used to couple the analog/digital 

converter to a building simulation model  for local 

loop control. 

INTRODUCTION 

This paper describes two interfaces that have been 

implemented in the Building Controls Virtual Test 

Bed (Wetter, 2011). The BCVTB is a modular 

framework, developed at the Lawrence Berkeley 

National Laboratory.  The BCVTB is based on the 

Ptolemy II software from UC Berkeley (Brook et. al., 

2007). Ptolemy II is an open-source software 

framework supporting experimentation with actor-

oriented design. Actors are software components that 

execute concurrently and communicate through 

messages sent via interconnected ports. A model is a 

hierarchical interconnection of actors. The BCVTB 

allows users to couple different simulation tools 

during the run-time and also to couple tools with 

hardware through the BACnet and the analog/digital 

interfaces. The BCVTB allows advanced users to 

 define new Heating, Ventilating, and Air 

Conditioning (HVAC) components and 

systems in a modular, hierarchical, object-

oriented, equation-based graphical modeling 

environment and couple them to whole 

building simulation programs,  

 simulate innovative new HVAC system and 

control architectures for which models do 

not yet exist in off-the-shelve building 

simulation programs,  

 analyze dynamic effects in HVAC systems, 

modeled in an object-oriented, equation-

based graphical modeling environment such 

as Modelica (Fritzson et al., 1998), and their 

local and supervisory control loops, 

modeled in a modeling environment such as 

MATLAB/Simulink (Mathworks, 2010), 

Modelica or Ptolemy II, and  

 simulate virtual experiments prior to full-

scale testing in a laboratory or a real 

building in order to determine the range of 

required boundary conditions, the type of 

experiments that need to be conducted and, 

for example, to improve a control logic in 

simulation where iterations can be made 

faster than in an actual experiment. 

In this paper, we describe the interfaces for 

hardware-in-the-loop experimentation that have been 

integrated in the BCVTB. The first interface is the 

BACnet (ASHRAE, 2004) interface. This interface 

allows users to couple the BCVTB with BACnet 

compliant building control systems. This paper  

shows an application where a whole building 

simulation program was linked to a building control 

system using the BACnet interface. The coupling of 

the building with the control system allowed the use 

of measured data to assess in real-time the 

performance of the building.  

This paper also presents the analog/digital interface 

that has been implemented in the BCVTB. This 

interface allows the BCVTB to be linked to a USB-

based analog/digital converter. We show in a case 

study how the link was used to couple a virtual 

building to a particular commercial product in order 

to perform a hardware-in-the-loop simulation. 



 

 

BACNET 

Introduction 

The BACnet interface has been developed to allow a 

link between the BCVTB and real control system 

hardware. For the coupling, two new actors have 

been implemented and added to the BCVTB library: 

 An actor, called BACnetReader that can 

read from BACnet devices. 

 An actor, called BACnetWriter that can 

write to BACnet devices. 

The BACnetReader and the BACnetWriter use the 

open source BACnet protocol stack developed by 

Karg (2009) and shipped with the BCVTB 

installation. These two actors require a configuration 

file that specifies the BACnet devices, the object 

types and the property identifiers with which data are 

to be exchanged. 

Reading from BACnet 

The BACnetReader actor reads an xml configuration 

file to determine what data it needs to read from 

BACnet devices. This configuration file specifies 

BACnet object types and their child elements. A 

child element can be either another object type or a 

BACnet property identifier. The xml has the 

following syntax: 

<?xml version="1.0" encoding="utf-8"?> 

<BACnet> 

   <!-- Child elements are not shown. --> 

</BACnet> 

The above BACnet element requires at least one 

child element of the form 

<Object Type="Device" Instance="123"> 

   <!-- Child elements are not shown. --> 

</Object> 

where the elements and attributes have the following 

values: 

 The name of the element needs to be set to 

Object. 

 The attribute Type needs to be set to Device.  

 The attribute Instance needs to be set to its 

instance number, which is a unique number 

that is assigned at the discretion of the 

control provider. 

Any Object element can contain other Object 

elements and other PropertyIdentifier elements. 

The Object elements can have values for the attribute 

Type  such as Analog Input, Analog Output, Analog 

Value, Binary Input, Binary Output, Binary Value, 

Calendar, Command,  Device,  Event Enrollment,  

File, Group,  Loop,  Multi State Input, Multi State 

Output, Notification Class, Program, Schedule, 

Averaging, Multi State Value, and Trend Log. A 

complete list of attributes can be found in Chapter 12 

of the BACnet Standard (ASHRAE, 2004). 

Each of these object types has its own set of 

properties. These properties are declared in the 

element PropertyIdentifier which has one attribute 

called Name. 

The following code shows an example of a 

configuration file that was used to read data from 

BACnet device. 

<?xml version="1.0" encoding="utf-8"?> 

<BACnet> 

 <Object Type="Device" Instance="637501">    (1)     

  <PropertyIdentifier Name="Local_Date"/>       (2)                

  <Object Type="Analog Input" Instance="1">    (3)                     

 <PropertyIdentifier               

         Name="Object_Identifier"/>           (4) 

 <PropertyIdentifier               

         Name="Units"/>                           (5) 

       <PropertyIdentifier                  

         Name="Present_Value"/>               (6) 

  </Object> 

  <Object Type="Analog Output" Instance="2"> (7)     

      <PropertyIdentifier                    

 Name="Present_Value"/>          

  </Object> 

  </Object> 

 <Object Type="Device" Instance="637502">       

  <Object Type="Analog Input" Instance="1">                     

       <PropertyIdentifier                  

         Name="Present_Value"/>          

  </Object> 

  <Object Type="Analog Output" Instance="3">  

      <PropertyIdentifier                    

 Name="Present_Value"/>          

  </Object> 

 </Object> 

</BACnet> 

The numbered items have the following 

functionalities: 

(1) declares the BACnet device of the control system. 

(2) declares a BACnet property identifier of the 

device with instance number 637501. This statement 

will cause the BACnetReader to read the local date 

from the device. 

(3) (7) declare BACnet object types that are children 

of the device object type with instance number 

637501.  



 

 

(4)(5)(6) declare BACnet property identifiers of the 

device with instance number 1. These statements will 

cause the BACnetReader to read its object identifier, 

its units and its present value. 

Writing to BACnet 

The BACnetWriter actor can write to BACnet 

devices.  It provides the WritePropertyService that is 

specified in Section 15.9 of the BACnet Standard 

(ASHRAE, 2004). The configuration file that is read 

by this actor is almost identical to the one used for 

the BACnetReader. The only difference is that the 

xml elements of type PropertyIdentifier have the 

additional attributes ApplicationTag, Priority and 

Index.  

 The parameter ApplicationTag specifies the 

data format that is used to send the value to 

the BACnet device. Possible entries are 

NULL, BOOLEAN, UNSIGNED_INT, 

SIGNED_INT, REAL, DOUBLE, 

OCTET_STRING, CHARACTER_STRING, 

BIT_STRING, ENUMERATED, DATE, 

TIME, OBJECT_ID, 

MAX_BACNET_APPLICATION_TAG. 

 The parameter Priority sets the priority of 

the write operation. Allowed entries are any 

integers from 0 to 16. The highest priority is 

1 and the lowest is 16. If Priority 0 is given, 

then no priority is sent. 

 The parameter Index is the index number of 

an array. If this parameter is -1, the index is 

ignored and the entire array is referenced.  

Figure 1 and Figure 2 show the Ptolemy II system 

models that use the BACnetReader and the 

BACnetWriter actors to read and write properties 

from and to BACnet devices. A detailed description 

of how to configure these actors can be found in the 

BCVTB manual (BCVTB Documentation, 2011). 

 

 

Figure 1: Ptolemy II system model that uses the 

BACnetReader actor 

 
 

 

Figure 2: Ptolemy II system model that uses the 

BACnetWriter actor 

Application 

A real-time whole building performance monitoring 

tool that uses the BACnetReader has been 

implemented at a site in the Chicago, IL, area. The 

facility is a two-story building with a gross floor area 

of 70,000 ft
2
 (6503 m

2
). About 80% of the floor area 

serves as a drill deck for personnel training and 

ceremonies. The rest of the building is used for 

administration and is lightly occupied.  

There are two 100-ton (352 kW) air-cooled chillers 

and associated chilled water pumps providing 

cooling for the whole building. Steam for heating is 

supplied by a campus-wide distribution system and 

converted to hot water locally. The drill deck is 

served by two single-zone Variable Air Volume 

(VAV) Air Handling Units (AHU). The office area is 

served by one VAV AHU with VAV terminal units. 

There is a classroom in the building, which is served 

by a single-zone VAV AHU.  

A commercial Energy Management System (EMCS) 

is installed in this building. In order to accommodate 

the needs for real-time energy simulation, additional 

sensors were installed to provide the measurements 

for outdoor air dry bulb and relative humidity, wind 

speed and direction, global solar irradiation, direct 

normal solar irradiation and diffuse solar irradiation. 

To compare the simulation results with the actual 

performance of the building, sub-systems such as 

lighting, plug-loads and chillers, dedicated electrical 

power sub-meters were installed to measure the 

lighting power, plug load power and chiller power. 

The requirements for sensor accuracy were taken 

from Gillespie et al. (2007).  

A whole-building simulation model representing the 

design intent of the envelope, the HVAC system, the 

lighting system and the control system was created 

for EnergyPlus (U.S. Department of Energy, 2011). 

The model was then calibrated based on EMCS trend 

data collected between April and July, 2010 (O’Neill 

et al., 2011). Since the EMCS uses a proprietary 

communication protocol, a BACnet server was 

installed and connected to the EMCS so that the 

BACnetReader in the BCVTB can communicate with 

the EMCS. The real-time simulation is launched by 



 

 

starting the BCVTB through the Graphical User 

Interface (GUI) or through the console. The latter 

allows use of the BCVTB in an automated workflow 

or in a window-less system.  

Figure 3 shows the overall system architecture that 

was implemented at this facility. It consists of two 

sub-systems: (i) the EMCS that serves as the data 

acquisition system and (ii) the real-time simulation 

environment that integrates the EnergyPlus 

simulation, a PostgreSQL database and the 

BACnetReader, and synchronizes the simulation to 

real-time. The sub-systems reside in two different 

computers connected using a Local Area Network 

(LAN).  

There are two processes running in parallel. The 

BACnetReader acquires the relevant EMCS data 

through an Ethernet connection. The sampling 

interval is 5 minutes. The data is then passed to the 

PostgreSQL database. The EnergyPlus simulation 

program establishes the communication with the 

server that is launched by the BCVTB. At each time 

step, the EnergyPlus simulator receives the weather 

data as inputs and advances the model by one time 

step. Once the simulation is finished for that time 

step, the BCVTB writes the results to the database.  

The existing EMCS has about 1,200 control points 

including both physical points and virtual points such 

as control set points. About 700 control points that 

are relevant to the proof-of-concept demonstration 

have been made accessible through the BACnet 

server. The BACnetReader in the BCVTB reads these 

data points and sends them to the database. Several 

manual checks have been conducted by exporting the 

data from the database to a spreadsheet and 

comparing to the trending data in the EMCS over one 

month period. The comparison shows that the data 

stored in the database match exactly the trending data 

in the EMCS. 

Figure 4 shows a comparison of the simulated and 

measured building total electric power from October 

26 to October 31, 2010. The blue line represents the 

simulation results while the red line represents the 

actual measurements. As can be seen from the chart 

in Figure 4, significant differences between the 

simulated and measured performance were recorded. 

Further analysis of the electric power indicated that 

different chiller operation strategies were the cause of 

the considerable performance deviations. The 

difference was due to the chiller being scheduled to 

be off after October 15 in the EnergyPlus model, 

which was based on design documents, while in 

reality, chiller ON/OFF was only controlled by 

outside air temperature. Simulation showed that free 

cooling was sufficient to handle the building cooling 

load.  

ANALOG/DIGITAL INTERFACE 

Introduction 

An interface between the BCVTB and USB-based 

analog/digital converters has been developed.  Since 

the interfaces to such devices are specific to 

particular product lines, it was necessary to use a 

particular product for the first implementation and 

the USB-1208LS (Measurement Computing 

Corporation, 2011) was selected. Two actors have 

been implemented to access read- and write-

functions that are provided in a Dynamic Link 

Library (DLL) by the manufacturer. This allows the 

BCVTB to be linked to this analog/digital converter. 

This approach can be extended to different hardware. 

Similar to the BACnet interface, two actors have 

been implemented: 

 An actor, called ADInterfaceMCCReader 

that can read from the analog/digital 

converter. 

 An actor, called ADInterfaceMCCWriter 

that can write to the analog/digital 

converter. 

USB-1208LS 

The bus-powered USB-1208LS is an analog and 

digital input/output interface to any USB port. This 

module provides eight single-ended or four 

differential analog inputs with 12-bit resolution. 

When configured for single-ended mode, each analog 

input has 11-bit resolution, due to restrictions 

imposed by the analog/digital converter. In this 

mode, the input signal is referenced to signal ground 

and the input range is ±10V.When configured for 

differential mode, each analog input has 12-bit 

resolution. In this mode, the input signal is measured 

with respect to a reference signal and the input range 

must remain between −10V to +20V range. The 

USB-1208LS offers sample rates up to 1.2 

kilosamples/sec. In addition to the analog inputs, the 

unit provides two 10-bit analog outputs. 

Calibration 

Prior to using the USB-1208LS, its analog inputs and 

outputs need to be calibrated. This can be done with 

the InstaCal (Quick Start Guide, 2010) program 

which shipped with the converter. InstaCal is an 

installation, configuration, calibration, and test 

program for use with the analog/digital converter. 

With InstaCal, you can change device configuration 

settings, calibrate analog inputs and outputs, and test 

the device's analog channels. 

In the remainder of the paper the terminologies 

 analog/digital converter will refer to the 

USB-1208LS that encapsulates an analog to 

digital and a digital to analog converter, 



 

 

 analog to digital converter will refer to the 

process of reading data from the USB-

1208LS, and 

 digital to analog converter will refer to the 

process of writing data to the USB-1208LS. 

Reading from the analog/digital converter 

The ADInterfaceMCCReader is an actor that reads an 

xml configuration file to determine what data needs 

to be read from the analog to digital converter. 

The xml-configuration file has the following syntax: 

<?xml version="1.0" encoding="utf-8"?> 

     <ADInterfaceMCC> 

     <!-- Child elements are not shown. --> 

     </ADInterfaceMCC> 

The above element ADInterfaceMCC must have at 

least one child element of the form 

<Object BoardNumber = "0" ChannelNumber = "0" 

ChannelGain = "2" ChannelOptions = "0"  

ApplicationTag = "read"/> 

where the elements and attributes have the following 

values: 

 The element name needs to be set to Object. 

 The attribute BoardNumber is the board 

number associated with the board used to 

collect the data. 

 The attribute ChannelNumber is the analog 

to digital (A/D) channel number. 

 The attribute ChannelGain is the A/D range 

code. 

 The attribute ChannelOptions is reserved for 

future use by the hardware manufacturer and 

should be set to zero. 

 The attribute ApplicationTag is a value that 

needs to be set to read. 

A detailed description of these attributes can be read 

from the BCVTB manual. 

To read data from the analog to digital converter, the 

ADInterfaceMCCReader actor calls an executable 

program that is in the bcvtb/lib/adInterfaceMCC-

stack directory. The low level implementation of this 

function is 

java -jar adInterfaceReader.jar BoardNumber 

ChannelNumber ChannelGain ChannelOptions 

where the program arguments are replaced by the 

values specified in the xml configuration file. 

Writing to the analog/digital converter 

The ADInterfaceMCCWriter is an actor that is 

similar to the ADInterfaceMCCReader. In contrast to 

the reader, the ADInterfaceMCCWriter needs as 

inputs the data that should be written to the digital to 

analog converter. Its xml configuration file has the 

same syntax as the configuration file of the reader: 

<?xml version="1.0" encoding="utf-8"?> 

     <ADInterfaceMCC> 

     <!-- Child elements are not shown. --> 

     </ADInterfaceMCC> 

The above element ADInterfaceMCC has identical 

syntax to the child element of the 

ADInterfaceMCCReader with the only differences 

being that 

 the attribute ChannelNumber is the digital to 

analog (D/A) channel number, 

 the attribute ChannelGain is the D/A range 

code, and  

 the attribute ApplicationTag is a value that 

must  be set to write. 

Similar to the ADInterfaceMCCReader, the 

adInterfaceMCC-stack provides the following 

function to write to the digital to analog converter: 

java -jar adInterfaceWriter.jar BoardNumber 

ChannelNumber ChannelGain ValueToBeWritten 

ChannelOptions 

The program argument ValueToBeWritten is the 

value that will be written to the digital to analog 

converter. 

Application 

Figure 5 shows an example where the 

ADInterfaceMCCReader and the 

ADInterfaceMCCWriter have been used to couple a 

building simulation model with the analog/digital 

converter.  

This application demonstrates the capability to link 

the BCVTB to analog devices, such as sensors or 

actuators that can be used in a hardware-in-the-loop 

simulation.  

Some of the actors used for the simulation are 

numbered. This case study emulates an application 

where the BCVTB is used for hardware-in-the-loop 

simulation.   

In this configuration, the ADInterfaceMCCReader 

(1) reads the current value of a voltage signal that 

comes from a test board (Figure 6) and is applied to 

the input of the analog to digital converter. In a real 

application, this signal could have been generated by 

a power meter measuring plug loads in a real 

building. This voltage signal is then scaled to 

represent the measured plug load power (2), added to 

the heating power (3) and fed into a room model (4). 

The room model is a surrogate for the real building. 

A proportional controller (5) varies the heating power 



 

 

to regulate the simulated room air temperature at a 

desired set-point. The room model computes the new 

room air temperature and sends its value to the 

ADInterfaceMCCWriter (6), which then controls the 

digital to analog converter, producing an output  

voltage that is proportional to the room air 

temperature. This voltage signal can then be used for 

further applications. 

Another application, illustrated in Figure 7, is to use 

the analog/digital interface for hardware-in-the-loop 

control. The room air temperature in a real building 

(1) is measured with a temperature sensor (2). The 

voltage from the sensor (3) is input to the analog to 

digital converter (4) and the digital value is sent to a 

building simulation program (6) by using the 

analog/digital interface (5). The role of the building 

simulation program is to compute the actuator 

position that will be needed to keep the room air 

temperature at a desired set-point. The analog/digital 

interface (7) maps the required actuator position to a 

voltage value and controls the digital to analog 

converter (8), which then generates the voltage signal 

(9), which is then applied to an actuator (10) in the 

real building. 

SUMMARY 

This paper described two interfaces that have been 

recently added to the BCVTB. The first interface is 

the BACnet interface. This interface is used to couple 

the BCVTB with BACnet compliant building control 

systems. The second interface is an interface to a 

USB-based analog/digital converter for linking the 

BCVTB to an analog/digital data acquisition device.  

Two application cases have been presented.  

The BACnet and the analog/digital interfaces extend 

the applicability of the BCVTB to read and write real 

measured data. These data can then be used in other 

tools for real-time assessment of the performance of 

real buildings. Additionally, the BACnet and the 

analog/digital interfaces also extend the capability of 

the BCVTB to operate in hardware-in-the-loop mode. 
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Figure 3: Overall system architecture 

 

Figure 4: Simulated and measured building total electric power  

 

 

Figure 5: Ptolemy II system model that uses the ADInterfaceMCCReader and the ADInterfaceMCCWriter actors 



 

 

                       

Figure 6: Test board with the USB-based analog/digital converter (USB-1208LS) 

 

 

Figure 7:  Example of an application that could use the BCVTB for hardware-in-the-loop 




