

BacNet and Analog/Digital Interfaces of the Building
Controls Virtual Testbed

Thierry Stephane Nouidui, Michael Wetter, Zhengwei Li, Xiufeng Pang, Prajesh Bhattachayra,
Philip Haves

November 2011

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or The Regents of the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of
California.

BACNET AND ANALOG/DIGITAL INTERFACES OF THE BUILDING CONTROLS

VIRTUAL TESTBED

Thierry Stephane Nouidui
1
, Michael Wetter

1
, Zhengwei Li

2
, Xiufeng Pang

1
, Prajesh

Bhattacharya
1
, Philip Haves

1

1
Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A.

2
Georgia Institute of Technology, Atlanta, GA, U.S.A.

ABSTRACT

This paper gives an overview of recent developments

in the Building Controls Virtual Test Bed (BCVTB),

a framework for co-simulation and hardware-in-the-

loop.

First, a general overview of the BCVTB is presented.

Second, we describe the BACnet interface, a link

which has been implemented to couple BACnet

devices to the BCVTB. We present a case study

where the interface was used to couple a whole

building simulation program to a building control

system to assess in real-time the performance of a

real building. Third, we present the

ADInterfaceMCC, an analog/digital interface that

allows a USB-based analog/digital converter to be

linked to the BCVTB. In a case study, we show how

the link was used to couple the analog/digital

converter to a building simulation model for local

loop control.

INTRODUCTION

This paper describes two interfaces that have been

implemented in the Building Controls Virtual Test

Bed (Wetter, 2011). The BCVTB is a modular

framework, developed at the Lawrence Berkeley

National Laboratory. The BCVTB is based on the

Ptolemy II software from UC Berkeley (Brook et. al.,

2007). Ptolemy II is an open-source software

framework supporting experimentation with actor-

oriented design. Actors are software components that

execute concurrently and communicate through

messages sent via interconnected ports. A model is a

hierarchical interconnection of actors. The BCVTB

allows users to couple different simulation tools

during the run-time and also to couple tools with

hardware through the BACnet and the analog/digital

interfaces. The BCVTB allows advanced users to

 define new Heating, Ventilating, and Air

Conditioning (HVAC) components and

systems in a modular, hierarchical, object-

oriented, equation-based graphical modeling

environment and couple them to whole

building simulation programs,

 simulate innovative new HVAC system and

control architectures for which models do

not yet exist in off-the-shelve building

simulation programs,

 analyze dynamic effects in HVAC systems,

modeled in an object-oriented, equation-

based graphical modeling environment such

as Modelica (Fritzson et al., 1998), and their

local and supervisory control loops,

modeled in a modeling environment such as

MATLAB/Simulink (Mathworks, 2010),

Modelica or Ptolemy II, and

 simulate virtual experiments prior to full-

scale testing in a laboratory or a real

building in order to determine the range of

required boundary conditions, the type of

experiments that need to be conducted and,

for example, to improve a control logic in

simulation where iterations can be made

faster than in an actual experiment.

In this paper, we describe the interfaces for

hardware-in-the-loop experimentation that have been

integrated in the BCVTB. The first interface is the

BACnet (ASHRAE, 2004) interface. This interface

allows users to couple the BCVTB with BACnet

compliant building control systems. This paper

shows an application where a whole building

simulation program was linked to a building control

system using the BACnet interface. The coupling of

the building with the control system allowed the use

of measured data to assess in real-time the

performance of the building.

This paper also presents the analog/digital interface

that has been implemented in the BCVTB. This

interface allows the BCVTB to be linked to a USB-

based analog/digital converter. We show in a case

study how the link was used to couple a virtual

building to a particular commercial product in order

to perform a hardware-in-the-loop simulation.

BACNET

Introduction

The BACnet interface has been developed to allow a

link between the BCVTB and real control system

hardware. For the coupling, two new actors have

been implemented and added to the BCVTB library:

 An actor, called BACnetReader that can

read from BACnet devices.

 An actor, called BACnetWriter that can

write to BACnet devices.

The BACnetReader and the BACnetWriter use the

open source BACnet protocol stack developed by

Karg (2009) and shipped with the BCVTB

installation. These two actors require a configuration

file that specifies the BACnet devices, the object

types and the property identifiers with which data are

to be exchanged.

Reading from BACnet

The BACnetReader actor reads an xml configuration

file to determine what data it needs to read from

BACnet devices. This configuration file specifies

BACnet object types and their child elements. A

child element can be either another object type or a

BACnet property identifier. The xml has the

following syntax:

<?xml version="1.0" encoding="utf-8"?>

<BACnet>

 <!-- Child elements are not shown. -->

</BACnet>

The above BACnet element requires at least one

child element of the form

<Object Type="Device" Instance="123">

 <!-- Child elements are not shown. -->

</Object>

where the elements and attributes have the following

values:

 The name of the element needs to be set to

Object.

 The attribute Type needs to be set to Device.

 The attribute Instance needs to be set to its

instance number, which is a unique number

that is assigned at the discretion of the

control provider.

Any Object element can contain other Object

elements and other PropertyIdentifier elements.

The Object elements can have values for the attribute

Type such as Analog Input, Analog Output, Analog

Value, Binary Input, Binary Output, Binary Value,

Calendar, Command, Device, Event Enrollment,

File, Group, Loop, Multi State Input, Multi State

Output, Notification Class, Program, Schedule,

Averaging, Multi State Value, and Trend Log. A

complete list of attributes can be found in Chapter 12

of the BACnet Standard (ASHRAE, 2004).

Each of these object types has its own set of

properties. These properties are declared in the

element PropertyIdentifier which has one attribute

called Name.

The following code shows an example of a

configuration file that was used to read data from

BACnet device.

<?xml version="1.0" encoding="utf-8"?>

<BACnet>

 <Object Type="Device" Instance="637501"> (1)

 <PropertyIdentifier Name="Local_Date"/> (2)

 <Object Type="Analog Input" Instance="1"> (3)

 <PropertyIdentifier

 Name="Object_Identifier"/> (4)

 <PropertyIdentifier

 Name="Units"/> (5)

 <PropertyIdentifier

 Name="Present_Value"/> (6)

 </Object>

 <Object Type="Analog Output" Instance="2"> (7)

 <PropertyIdentifier

 Name="Present_Value"/>

 </Object>

 </Object>

 <Object Type="Device" Instance="637502">

 <Object Type="Analog Input" Instance="1">

 <PropertyIdentifier

 Name="Present_Value"/>

 </Object>

 <Object Type="Analog Output" Instance="3">

 <PropertyIdentifier

 Name="Present_Value"/>

 </Object>

 </Object>

</BACnet>

The numbered items have the following

functionalities:

(1) declares the BACnet device of the control system.

(2) declares a BACnet property identifier of the

device with instance number 637501. This statement

will cause the BACnetReader to read the local date

from the device.

(3) (7) declare BACnet object types that are children

of the device object type with instance number

637501.

(4)(5)(6) declare BACnet property identifiers of the

device with instance number 1. These statements will

cause the BACnetReader to read its object identifier,

its units and its present value.

Writing to BACnet

The BACnetWriter actor can write to BACnet

devices. It provides the WritePropertyService that is

specified in Section 15.9 of the BACnet Standard

(ASHRAE, 2004). The configuration file that is read

by this actor is almost identical to the one used for

the BACnetReader. The only difference is that the

xml elements of type PropertyIdentifier have the

additional attributes ApplicationTag, Priority and

Index.

 The parameter ApplicationTag specifies the

data format that is used to send the value to

the BACnet device. Possible entries are

NULL, BOOLEAN, UNSIGNED_INT,

SIGNED_INT, REAL, DOUBLE,

OCTET_STRING, CHARACTER_STRING,

BIT_STRING, ENUMERATED, DATE,

TIME, OBJECT_ID,

MAX_BACNET_APPLICATION_TAG.

 The parameter Priority sets the priority of

the write operation. Allowed entries are any

integers from 0 to 16. The highest priority is

1 and the lowest is 16. If Priority 0 is given,

then no priority is sent.

 The parameter Index is the index number of

an array. If this parameter is -1, the index is

ignored and the entire array is referenced.

Figure 1 and Figure 2 show the Ptolemy II system

models that use the BACnetReader and the

BACnetWriter actors to read and write properties

from and to BACnet devices. A detailed description

of how to configure these actors can be found in the

BCVTB manual (BCVTB Documentation, 2011).

Figure 1: Ptolemy II system model that uses the

BACnetReader actor

Figure 2: Ptolemy II system model that uses the

BACnetWriter actor

Application

A real-time whole building performance monitoring

tool that uses the BACnetReader has been

implemented at a site in the Chicago, IL, area. The

facility is a two-story building with a gross floor area

of 70,000 ft
2
 (6503 m

2
). About 80% of the floor area

serves as a drill deck for personnel training and

ceremonies. The rest of the building is used for

administration and is lightly occupied.

There are two 100-ton (352 kW) air-cooled chillers

and associated chilled water pumps providing

cooling for the whole building. Steam for heating is

supplied by a campus-wide distribution system and

converted to hot water locally. The drill deck is

served by two single-zone Variable Air Volume

(VAV) Air Handling Units (AHU). The office area is

served by one VAV AHU with VAV terminal units.

There is a classroom in the building, which is served

by a single-zone VAV AHU.

A commercial Energy Management System (EMCS)

is installed in this building. In order to accommodate

the needs for real-time energy simulation, additional

sensors were installed to provide the measurements

for outdoor air dry bulb and relative humidity, wind

speed and direction, global solar irradiation, direct

normal solar irradiation and diffuse solar irradiation.

To compare the simulation results with the actual

performance of the building, sub-systems such as

lighting, plug-loads and chillers, dedicated electrical

power sub-meters were installed to measure the

lighting power, plug load power and chiller power.

The requirements for sensor accuracy were taken

from Gillespie et al. (2007).

A whole-building simulation model representing the

design intent of the envelope, the HVAC system, the

lighting system and the control system was created

for EnergyPlus (U.S. Department of Energy, 2011).

The model was then calibrated based on EMCS trend

data collected between April and July, 2010 (O’Neill

et al., 2011). Since the EMCS uses a proprietary

communication protocol, a BACnet server was

installed and connected to the EMCS so that the

BACnetReader in the BCVTB can communicate with

the EMCS. The real-time simulation is launched by

starting the BCVTB through the Graphical User

Interface (GUI) or through the console. The latter

allows use of the BCVTB in an automated workflow

or in a window-less system.

Figure 3 shows the overall system architecture that

was implemented at this facility. It consists of two

sub-systems: (i) the EMCS that serves as the data

acquisition system and (ii) the real-time simulation

environment that integrates the EnergyPlus

simulation, a PostgreSQL database and the

BACnetReader, and synchronizes the simulation to

real-time. The sub-systems reside in two different

computers connected using a Local Area Network

(LAN).

There are two processes running in parallel. The

BACnetReader acquires the relevant EMCS data

through an Ethernet connection. The sampling

interval is 5 minutes. The data is then passed to the

PostgreSQL database. The EnergyPlus simulation

program establishes the communication with the

server that is launched by the BCVTB. At each time

step, the EnergyPlus simulator receives the weather

data as inputs and advances the model by one time

step. Once the simulation is finished for that time

step, the BCVTB writes the results to the database.

The existing EMCS has about 1,200 control points

including both physical points and virtual points such

as control set points. About 700 control points that

are relevant to the proof-of-concept demonstration

have been made accessible through the BACnet

server. The BACnetReader in the BCVTB reads these

data points and sends them to the database. Several

manual checks have been conducted by exporting the

data from the database to a spreadsheet and

comparing to the trending data in the EMCS over one

month period. The comparison shows that the data

stored in the database match exactly the trending data

in the EMCS.

Figure 4 shows a comparison of the simulated and

measured building total electric power from October

26 to October 31, 2010. The blue line represents the

simulation results while the red line represents the

actual measurements. As can be seen from the chart

in Figure 4, significant differences between the

simulated and measured performance were recorded.

Further analysis of the electric power indicated that

different chiller operation strategies were the cause of

the considerable performance deviations. The

difference was due to the chiller being scheduled to

be off after October 15 in the EnergyPlus model,

which was based on design documents, while in

reality, chiller ON/OFF was only controlled by

outside air temperature. Simulation showed that free

cooling was sufficient to handle the building cooling

load.

ANALOG/DIGITAL INTERFACE

Introduction

An interface between the BCVTB and USB-based

analog/digital converters has been developed. Since

the interfaces to such devices are specific to

particular product lines, it was necessary to use a

particular product for the first implementation and

the USB-1208LS (Measurement Computing

Corporation, 2011) was selected. Two actors have

been implemented to access read- and write-

functions that are provided in a Dynamic Link

Library (DLL) by the manufacturer. This allows the

BCVTB to be linked to this analog/digital converter.

This approach can be extended to different hardware.

Similar to the BACnet interface, two actors have

been implemented:

 An actor, called ADInterfaceMCCReader

that can read from the analog/digital

converter.

 An actor, called ADInterfaceMCCWriter

that can write to the analog/digital

converter.

USB-1208LS

The bus-powered USB-1208LS is an analog and

digital input/output interface to any USB port. This

module provides eight single-ended or four

differential analog inputs with 12-bit resolution.

When configured for single-ended mode, each analog

input has 11-bit resolution, due to restrictions

imposed by the analog/digital converter. In this

mode, the input signal is referenced to signal ground

and the input range is ±10V.When configured for

differential mode, each analog input has 12-bit

resolution. In this mode, the input signal is measured

with respect to a reference signal and the input range

must remain between −10V to +20V range. The

USB-1208LS offers sample rates up to 1.2

kilosamples/sec. In addition to the analog inputs, the

unit provides two 10-bit analog outputs.

Calibration

Prior to using the USB-1208LS, its analog inputs and

outputs need to be calibrated. This can be done with

the InstaCal (Quick Start Guide, 2010) program

which shipped with the converter. InstaCal is an

installation, configuration, calibration, and test

program for use with the analog/digital converter.

With InstaCal, you can change device configuration

settings, calibrate analog inputs and outputs, and test

the device's analog channels.

In the remainder of the paper the terminologies

 analog/digital converter will refer to the

USB-1208LS that encapsulates an analog to

digital and a digital to analog converter,

 analog to digital converter will refer to the

process of reading data from the USB-

1208LS, and

 digital to analog converter will refer to the

process of writing data to the USB-1208LS.

Reading from the analog/digital converter

The ADInterfaceMCCReader is an actor that reads an

xml configuration file to determine what data needs

to be read from the analog to digital converter.

The xml-configuration file has the following syntax:

<?xml version="1.0" encoding="utf-8"?>

 <ADInterfaceMCC>

 <!-- Child elements are not shown. -->

 </ADInterfaceMCC>

The above element ADInterfaceMCC must have at

least one child element of the form

<Object BoardNumber = "0" ChannelNumber = "0"

ChannelGain = "2" ChannelOptions = "0"

ApplicationTag = "read"/>

where the elements and attributes have the following

values:

 The element name needs to be set to Object.

 The attribute BoardNumber is the board

number associated with the board used to

collect the data.

 The attribute ChannelNumber is the analog

to digital (A/D) channel number.

 The attribute ChannelGain is the A/D range

code.

 The attribute ChannelOptions is reserved for

future use by the hardware manufacturer and

should be set to zero.

 The attribute ApplicationTag is a value that

needs to be set to read.

A detailed description of these attributes can be read

from the BCVTB manual.

To read data from the analog to digital converter, the

ADInterfaceMCCReader actor calls an executable

program that is in the bcvtb/lib/adInterfaceMCC-

stack directory. The low level implementation of this

function is

java -jar adInterfaceReader.jar BoardNumber

ChannelNumber ChannelGain ChannelOptions

where the program arguments are replaced by the

values specified in the xml configuration file.

Writing to the analog/digital converter

The ADInterfaceMCCWriter is an actor that is

similar to the ADInterfaceMCCReader. In contrast to

the reader, the ADInterfaceMCCWriter needs as

inputs the data that should be written to the digital to

analog converter. Its xml configuration file has the

same syntax as the configuration file of the reader:

<?xml version="1.0" encoding="utf-8"?>

 <ADInterfaceMCC>

 <!-- Child elements are not shown. -->

 </ADInterfaceMCC>

The above element ADInterfaceMCC has identical

syntax to the child element of the

ADInterfaceMCCReader with the only differences

being that

 the attribute ChannelNumber is the digital to

analog (D/A) channel number,

 the attribute ChannelGain is the D/A range

code, and

 the attribute ApplicationTag is a value that

must be set to write.

Similar to the ADInterfaceMCCReader, the

adInterfaceMCC-stack provides the following

function to write to the digital to analog converter:

java -jar adInterfaceWriter.jar BoardNumber

ChannelNumber ChannelGain ValueToBeWritten

ChannelOptions

The program argument ValueToBeWritten is the

value that will be written to the digital to analog

converter.

Application

Figure 5 shows an example where the

ADInterfaceMCCReader and the

ADInterfaceMCCWriter have been used to couple a

building simulation model with the analog/digital

converter.

This application demonstrates the capability to link

the BCVTB to analog devices, such as sensors or

actuators that can be used in a hardware-in-the-loop

simulation.

Some of the actors used for the simulation are

numbered. This case study emulates an application

where the BCVTB is used for hardware-in-the-loop

simulation.

In this configuration, the ADInterfaceMCCReader

(1) reads the current value of a voltage signal that

comes from a test board (Figure 6) and is applied to

the input of the analog to digital converter. In a real

application, this signal could have been generated by

a power meter measuring plug loads in a real

building. This voltage signal is then scaled to

represent the measured plug load power (2), added to

the heating power (3) and fed into a room model (4).

The room model is a surrogate for the real building.

A proportional controller (5) varies the heating power

to regulate the simulated room air temperature at a

desired set-point. The room model computes the new

room air temperature and sends its value to the

ADInterfaceMCCWriter (6), which then controls the

digital to analog converter, producing an output

voltage that is proportional to the room air

temperature. This voltage signal can then be used for

further applications.

Another application, illustrated in Figure 7, is to use

the analog/digital interface for hardware-in-the-loop

control. The room air temperature in a real building

(1) is measured with a temperature sensor (2). The

voltage from the sensor (3) is input to the analog to

digital converter (4) and the digital value is sent to a

building simulation program (6) by using the

analog/digital interface (5). The role of the building

simulation program is to compute the actuator

position that will be needed to keep the room air

temperature at a desired set-point. The analog/digital

interface (7) maps the required actuator position to a

voltage value and controls the digital to analog

converter (8), which then generates the voltage signal

(9), which is then applied to an actuator (10) in the

real building.

SUMMARY

This paper described two interfaces that have been

recently added to the BCVTB. The first interface is

the BACnet interface. This interface is used to couple

the BCVTB with BACnet compliant building control

systems. The second interface is an interface to a

USB-based analog/digital converter for linking the

BCVTB to an analog/digital data acquisition device.

Two application cases have been presented.

The BACnet and the analog/digital interfaces extend

the applicability of the BCVTB to read and write real

measured data. These data can then be used in other

tools for real-time assessment of the performance of

real buildings. Additionally, the BACnet and the

analog/digital interfaces also extend the capability of

the BCVTB to operate in hardware-in-the-loop mode.

ACKNOWLEDGEMENT

This research was supported by the Assistant

Secretary for Energy Efficiency and Renewable

Energy, Office of Building Technologies of the U.S.

Department of Energy, under Contract No. DE-

AC02-05CH11231.

REFERENCES

ASHRAE. 2004. ANSI/ASHRAE Standard 135-

2004, BACnet - A Data Communication

Protocol for Building Automation and Control

Networks. ISSN 1041-2336.

BCVTB Documentation. 2011. Online available at:

http://simulationresearch.lbl.gov/bcvtb/releases/1

.0.0/doc/manual/index.xhtml [last accessed:

05/20/2011].

Brook C., Lee E., Liu X., Neuendorffer S., Zhao Y.,

Zheng H. 2007. Ptolemy II – heterogeneous

concurrent modeling and design in Java.

Technical report No. UCB/EECS-2007-7,

Berkeley, CA: University of California at

Berkeley.

Fritzson P. and Engelson V. 1998. “Modelica, A

Unified Object-Oriented Language for System

Modeling and Simulation.” In Proceedings of

ECOOP'98 (the 12th European Conference on

Object-Oriented Programming).

Gillespie K. L. Jr, Haves P., Hitchcock R. J.,

Deringer J. J., Kinney K. 2007. A Specification

Guide for Performance Monitoring System.

Berkeley, CA: Lawrence Berkeley National

Laboratory, http://cbs.lbl.gov/performance-

monitoring/specifications/ [last accessed:

05/20/2011].

Karg S. 2009. http://bacnet.sourceforge.net/ [last

accessed: 05/22/2011].

Mathworks. 2010. MATLAB/Simulink. Online

available at: http://www.mathworks.com [last

accessed: 05/20/2011].

Measurement Computing Corporation. 2011. Online

available at: http://www.mccdaq.com/ [last

accessed: 05/20/2011].

O’Neill, Z. D., B. Eisenhower, S. Yuan, T. Bailey, S.

Narayanan and V. Fonoberov. 2011. Modeling

and Calibration of Energy Models for a DoD

Building. Accepted. ASHRAE 2011 Annual

Meeting. Montreal, Québec, Canada. June 25–

29, 2011.

Quick Start Guide. 2010. Online available at:

http://www.mccdaq.com/PDFs/Manuals/DAQ-

Software-Quick-Start.pdf [last accessed:

05/22/2011].

U.S. Department of Energy (DOE). 2011.

EnergyPlus. Online available at

http://apps1.eere.energy.gov/buildings/energyplu

s/energyplus_about.cfm[last accessed:

05/20/2011].

Wetter M. 2011. Co-simulation of building energy

and control systems with the Building Controls

Virtual Test Bed, Journal of Building

Performance Simulation, First published on:

11/05/2010 (iFirst), DOI:

10.1080/19401493.2010.518631.

http://simulationresearch.lbl.gov/bcvtb/releases/1.0.0/doc/manual/index.xhtml
http://simulationresearch.lbl.gov/bcvtb/releases/1.0.0/doc/manual/index.xhtml
http://cbs.lbl.gov/performance-monitoring/specifications/
http://cbs.lbl.gov/performance-monitoring/specifications/
http://bacnet.sourceforge.net/
http://www.mathworks.com/
http://www.mccdaq.com/
http://www.mccdaq.com/PDFs/Manuals/DAQ-Software-Quick-Start.pdf
http://www.mccdaq.com/PDFs/Manuals/DAQ-Software-Quick-Start.pdf
http://apps1.eere.energy.gov/buildings/energyplus/energyplus_about.cfm
http://apps1.eere.energy.gov/buildings/energyplus/energyplus_about.cfm

Figure 3: Overall system architecture

Figure 4: Simulated and measured building total electric power

Figure 5: Ptolemy II system model that uses the ADInterfaceMCCReader and the ADInterfaceMCCWriter actors

Figure 6: Test board with the USB-based analog/digital converter (USB-1208LS)

Figure 7: Example of an application that could use the BCVTB for hardware-in-the-loop

