
DISCLAIMER

This document was prepared as an account of work sponsored by the United States

Government. While this document is believed to contain correct information, neither the

United States Government nor any agency thereof, nor the Regents of the University of

California, nor any of their employees, makes any warranty, express or implied, or assumes

any legal responsibility for the accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific commercial product, process, or

service by its trade name, trademark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation, or favoring by the United States

Government or any agency thereof, or the Regents of the University of California. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof or the Regents of the University of

California.

Deadline-Sensitive Workflow Orchestration Without

Explicit Resource Control

Lavanya Ramakrishnana, Jeffrey S. Chaseb, Dennis Gannonc, Daniel
Nurmid, Rich Wolskid

aLawrence Berkeley National Lab, Berkeley, CA1

bDuke University, Durham, NC
cMicrosoft Research, Redmond, WA

dUniversity of California, Santa Barbara,CA

Abstract

Deadline-sensitive workflows require careful coordination of user constraints
with resource availability. Current distributed resource access models pro-
vide varying degrees of resource control: from limited or none in grid batch
systems to explicit in cloud systems. Additionally applications experience
variability due to competing user loads, performance variations, failures, etc.
These variations impact the quality of service(QoS) that goes unaccounted
for in planning strategies. In this paper we propose Workflow ORchestrator
for Distributed Systems (WORDS) architecture based on a least com-
mon denominator resource model that abstracts the differences and captures
the QoS properties provided by grid and cloud systems. We investigate
algorithms for effective orchestration (i.e., resource procurement and task
mapping) for deadline sensitive workflows atop the resource abstraction pro-
vided in WORDS . Our evaluation compares orchestration methodologies
over TeraGrid and Amazon EC2 systems. Experimental results show that
WORDS enables effective orchestration possible at reasonable costs on batch
queue grid and cloud systems with or without explicit resource control.

Key words: grid computing, cloud computing, workflow scheduling,
orchestration, deadline-sensitive workflows

1The work was performed at Indiana University, Bloomington, IN

Preprint submitted to Journal of Parallel and Distributed Computing December 22, 2011

1. Introduction

Large scale computations from various scientific endeavors such as drug
discovery, weather modeling, and other applications are composed as a se-
quence of dependent operations or workflows. A number of these workflows
have user constraints associated with them including deadline and budget.
In addition, these workflow often access shared resources or data and run
computations on grid or cloud systems. For example, a weather prediction
workflow is triggered by streaming sensor atmospheric data and consists of a
number of data-processing steps that use distributed data and resources [8].
This workflow must complete in a timely manner to generate appropriate
forecasts and initiate any emergency management measures that might be
necessary. Thus deadline-sensitive workflows require careful coordination of
workflow tasks with underlying resource behavior to ensure timely comple-
tion.

Resource mechanisms and protocols are available today to coordinate
grid resources and ensure quality of service (QoS) [5, 6, 27]. There are
tools for workflow planning using performance models [3, 10, 18] and ex-
ecution systems or workflow engines for managing runtime environment of
workflows [4, 15]. Today’s planning techniques can provide a “yes” or “no”
answer to the question of whether a workflow will meet its constraints (e.g.,
deadline) on a set of resources. However this information alone is insufficient
for deadline-sensitive applications such as weather prediction, given the un-
derlying uncertainty in resources. Users are willing to run the workflow so
long as the odds of completion are “reasonable”. Users are often willing to
pay extra or trade-off application requirements to ensure timely workflow
completion. Current systems do not allow these trade-offs or speculative
scheduling based on QoS properties of the resources.

Grid and cloud systems provide varying degrees of resource control to an
end user. Users interact with grid systems by submitting jobs to a batch
queue, which executes the job on the user’s behalf once enough resources be-
come available. Cloud systems, unlike batch systems, enable explicit resource
control, i.e., users request specific quantities and types of resources at specific
times. Yet users of both these systems cannot expect strong QoS assurances
due to both availability and reliability variations of underlying hardware and
software services. Additionally, resource systems lack standardized interfaces
and workflow tools interact with these systems using ad hoc mechanisms and
comparison of QoS capabilities is extremely difficult.

2

In this paper, we use the term workflow orchestration to describe the
holistic, coordinated, dynamic and adaptive approach to workflow planning
that works with user requirements and variable resource characteristics while
being agnostic to specific resource policy or systems. A fundamental research
question this paper attempts to address in the context of theWORDS archi-
tecture is how much explicit knowledge of and control over resources is neces-
sary for effective workflow orchestration over grid and cloud systems? To an-
swer this question, we develop a lowest common denominator resource model
that is powerful enough to implement workflow orchestration for deadline-
sensitive workflows over systems like batch queue and cloud systems with or
without explicit resource control. Specifically, we make the following contri-
butions in this paper:

• We developed the Workflow ORchestrator for Distributed Systems
(WORDS) architecture that facilitates the separation of concerns
between resource and application layers in distributed resource envi-
ronments.

• In the context of WORDS we designed a resource abstraction that
consists of a standard set of interfaces and mechanisms required at the
resource layer in grid and cloud systems to implement effective and
predictable QoS for end users.

• We develop a probabilistic QoS model in WORDS to account for the
uncertainty that comes from the resource layer characteristics.

• We evaluate a number of workflow orchestration strategies on top of
the resource abstraction in WORDS for deadline-sensitive workflows.

The rest of this paper is organized as follows. We discuss the WORDS

architecture and associated resource abstraction in Sections 2 and 3. We
explore some workflow orchestration approaches for deadline-sensitive work-
flows atop the WORDS architecture in Section 4. We expand the orches-
tration approaches to schedule a workflow set with deadline and accuracy
constraints in Section 5. Finally, we compare and contrast various workflow
orchestration approaches in the context of scientific workflows over grid and
cloud computing systems (Section 6).

3

2. Overview

In this section, we first define the specific problem associated with dead-
line sensitive workflows and detail the WORDS architecture.

2.1. Problem Description

A deadline-sensitive workflow Wx is a Directed Acyclic Graph (DAG)
that must complete by a deadline D for the results of the computation to be
useful. For example, meteorological workflows need to complete by a certain
deadline since they influence emergency response measures.

The workflows have access to resources R = {R1, ..., Rw} across dis-
tributed sites. In addition for each task Taskk its execution on resource
Rj is given by [n, T] where n is the number of processors required for the
task and T denotes execution time of the application.

Resources are available through either grid or cloud mechanisms. Re-
source procurement is implicit in grid systems. Users submit a job descrip-
tion to a queue managed by batch queueing software such as Maui/PBS. The
job waits its turn to acquire resources. When the requested resources become
available and the job is at the head of the queue, the job starts executing.
The job is killed if it exceeds the requested wall clock time. The users in this
environment do not know when exactly their job might start, though more
recently there are services [18] that provide the methodology for predicting
bounds on the amount of queue wait times. Cloud providers provide stronger
guarantees and immediate access to resources through explicit resource con-
trol since the requests are typically bounded in both time and space. The
most prevalent example of a cloud system in operation today is Amazon’s
EC2 system. In Amazon EC2, resources are accessible to the user almost
instantly, with startup time of the instance and image imposing the only
delays. In addition there is a diversity between the cost models provided by
these systems. However both these systems experience hardware and soft-
ware failures that makes it hard if not impossible to make strong guarantees
as those required by deadline-sensitive workflows.

The goal of the workflow orchestration is to find a schedule for work-
flow Wx on available resource set R such as to meet the deadline D over
diverse resource platforms such as grid and cloud systems. In this paper,
we present and evaluate an architecture over grid and cloud resources that
provides an effective workflow orchestration for deadline-sensitive workflows.
The WORDS architecture enables us to quantify the effectiveness of the

4

Figure 1: WORDS Architecture introduces a clean separation between resource level and
application-level functionalities through a resource abstraction(slot). The workflow plan-
ner interacts with the resource coordinator to facilitate resource procurement.

schedule in meeting the deadline. Next, we describe in this architecture in
detail.

2.2. WORDS
Figure 1 shows the WORDS architecture that introduces a clean separa-

tion between the resource and application layers. WORDS receives a speci-
fication of a workflow as a directed acyclic graph (DAG) and user constraints
(e.g., deadline). The workflow planner communicates user requirements to
the resource coordinator which initiates resource procurement. The resource
coordinator interacts with both grid and cloud sites through conventional
scheduling mechanisms and interfaces.

The resource coordinator interacts with various site-specific resource con-
trol mechanisms and returns a Gantt chart to the application layer. The
Gantt chart consists of a set of resource slots from different sites and its
associated properties. A resource slot is an abstract representation of a re-
source set on a site that has been assigned to the application or user by the
resource layer. A resource slot has defined width (i.e., number of proces-
sors) and length (i.e., duration). The resource slot is central to our resource

5

abstraction. A slot can be resources allocated to a job through the batch
queue system or to a user in cloud systems or through advanced reservation
or probabilistic mechanisms (more in Section 3.1).

The workflow planner determines a schedule by assigning tasks on the
slots using criteria such as computational time, data transfers, success prob-
abilities, cost, etc (more in Section 4). This process of resource acquisition
and task mapping might be iterative with the goal of enhancing the schedule
for some or all tasks in the workflow.

The execution system (bottom of Figure 1), consisting of the workflow
engine and web services, is largely orthogonal to the orchestration compo-
nents. The slot execution manager consults the orchestration system for
resource related decisions (i.e., where and when should a task run). The
workflow planner cannot anticipate all runtime failures that might occur.
The WORDS architecture provides resistance to runtime failures through
the execution system that is responsible for detecting deviations from the
original schedule or other failures. Further discussion on the execution sys-
tem and handling runtime failures is outside the scope of this paper.

The WORDS architecture provides a dynamic, adaptive resource ab-
straction that the higher level workflow orchestration can use for planning
workflows to meet user constraints. Next, we discuss the resource abstraction
provided by WORDS in greater detail.

3. Resource Abstraction

Fundamentally grid and cloud computing systems have different access
models and policies. However there are also similarities - resources are as-
signed to jobs or leases for durations of time; resources are often provisioned
across competing user groups and resource requests might not be fulfilled;
large scale systems might also experience hardware and software failures.
The resource abstraction needs to capture the various dimensions of resource
property including cost, policy and variability associated with policy and
hardware. The WORDS architecture is based on a least common denomi-
nator resource model that abstracts the specific properties of grid and cloud
systems. The model captures the common minimal set of of properties across
the systems that enables the higher-level workflow orchestration to provide
effective QoS guarantees for deadline-sensitive workflows. The model might
not capture additional resource properties that might be provided by spe-
cific systems. The degree of effectiveness of workflow orchestration over each

6

system varies based on specific resource control policies. For example, if the
resource coordinator returns a set of slots from cloud systems that enable ex-
plicit resource control (and hence higher levels of resource access guarantees)
the workflow orchestration can provide higher-levels of QoS.

The resource abstraction captures allocation properties (i.e., duration,
number of processors) cost and QoS properties. Next, we describe these
properties in more detail.

3.1. Probabilistic QoS Model

Uncertainty is inherent to distributed systems. Resource providers find it
hard to make strong guarantees on resource availability since with or with-
out explicit resource control, strong QoS guarantees cannot be made in dis-
tributed systems due to the variability and complexity of the underlying re-
source characteristics and allocation and access policies. Thus a probabilistic
QoS model is a natural choice for these environments.

In our resource abstraction, we define two probabilistic QoS properties
on the slot - the probability of resource allocation at the expected time and
the probability that the resource will not fail for the allotted duration. The
probabilistic resource model allows providers to specify quantitative bounds
on resource requests e.g., there is a 95% chance that a request for a three hour
slot of 16 processors starting in one hour can be met and there is a 99% chance
that resources will stay up during the required duration. These properties
are selected based on the behavior of current day systems. Other parameters
to quantify the QoS models might be necessary in other environments.
Resource Procurement. Explicit resource control is possible in today’s
batch systems through offline or online advanced reservations that allow users
to specify a fixed start time at higher costs. Thus advanced reservations yield
resource slots that have guaranteed start and end times and probability of
procurement very close to one. However, advanced reservations mechanisms
have shown to have a negative impact on utilization and hence resource
providers often allow only limited use of this feature [27, 28]. In addition,
TeraGrid sites require requests to be made at least 24 to 48 hours in advance,
which is not practical for applications with dynamic loads. Similarly control
in cloud systems require resource providers to over-provision resources for
peak demand. Thus there are very limited mechanisms available to provide
predictable resource control to applications especially those that are deadline-
sensitive.

7

Probabilistic guarantees help resource providers manage the variability
in QoS including unexpected load, utilization and other runtime factors.
We use probabilistic resource reservations for enabling dynamic workflow
orchestration over resources with little or no explicit resource control. As
cloud systems advance, the same techniques can be applied to them since
lease or cloud resource requests are analogous to job requests with fixed time
units [11].
Resource Failure. In addition to resource procurement, hardware and soft-
ware services have failure characteristics. We use the probability of resource
availability as a metric for accounting for variability associated with failures
etc.

3.2. Resource Cost models

An important decision factor when it comes to selecting resources is the
resource cost. Scientific users are granted access to supercomputing resources
through a competitive proposal review process and are allocated “service
units” [29]. One SU originally represented one CPU-hour on an IA-64 cluster.
A normalization factor is used based on benchmarking results to account for
different machine configurations. Compute resources in EC2 [1] are available
today as different instance types (e.g., small, large). Users are charged for
the closest instance hour consumed. Thus EC2 resources can be considered
to be available to users as increments of one hour “leases”.

Fundamentally grid and cloud systems use different units for cost. The
slot abstraction allows us to explicitly express and compare costs associated
with resource procurement mechanisms such as advanced reservations. A
direct comparison of the cost from grid and cloud systems for similar type of
resources is outside the scope of this paper.

3.3. Implementation of Probabilistic QoS

For our implementation and evaluation of the probabilistic reservations,
we use VARQ (Virtual Advanced Reservations for Queues) [19] based re-
source slots to determine if effective workflow orchestration is possible with-
out explicit resource control in batch systems. A virtual advanced reserva-
tions obtained through VARQ is an instance of the resource slot abstraction
with probabilistic bounds on obtaining a slot of certain duration by a given
time. In overbooked leasing systems we can calculate an equivalent proba-
bility using the number of resource lease requests that might be overbooked.
VARQ builds on queue wait time prediction techniques from QBETS [18]

8

to give users the ability to request “virtual advanced reservations” i.e., a
user can specify a fixed start time for the job. QBETS consumes historical
resource request data and makes job completion probability predictions us-
ing statistical methods such as a clustering algorithm to categorize similar
job requests, an on-line change point detection heuristic to detect abrupt
variations in the data, and an empirical quantile prediction technique. Pre-
vious studies show that though the queue wait time experienced by jobs is
highly variable, the upper bound predictions produced by QBETS are more
stable, often over days or weeks. Thus VARQ computes a probability tra-
jectory, at 30 second intervals, between the time a user makes a reservation
request and the specified deadline and uses the trajectory to find the latest
point in time where a resource request can be submitted to meet a specified
minimum success probability. Through this methodology, users obtain ac-
cess to probabilistic or virtual advanced reservations that attempt to achieve
some level of resource control over systems that provide little or no explicit
resource control. The mechanism does have certain cost trade-offs; for ex-
ample, a resource request might start earlier than the predicted start time
and a workflow might not be ready to run. In this case additional resource
allocation time will be charged to the user even though the resource might
be idle.

VARQ has been evaluated before and shown as a feasible approach of
getting a probabilistic guarantee on resources for user jobs in batch queue
systems, that do not have any explicit resource control. However, the use
of VARQ for workflow scheduling and its impact on workflow orchestration
strategies has not been studied in detail before. In our implementation,
the workflow orchestration uses a VARQ client to query for alternative slot
requests across different sites.

We use the Availability Prediction Service (AVP) [2] to determine the
probability that a resource might fail during an allotted duration. AVP
uses historical data collected on the systems to determine the probability of
failure.

4. Workflow Orchestration

Our resource abstraction is analogous to the internet protocol hourglass
model used in computer networks, where irrespective of the specific protocols
in the application layer or transport layer, the only protocol used for passing
data packets is the internet protocol. The hourglass model allows protocols

9

Algorithm 1 DAG Scheduler: Probabilistic DAG Scheduler for queue and
slot systems
Assign latest completion times for the tasks by assigning deadlines to each
task bottom-up
Sort the tasks by latest finish times
for all T in DAG in sorted order do
earliestStartT ime ⇐ LatestF inishT ime(Parents(T))
for each resource slot do
if QUEUE then
latestF inishT ime ⇐ Maximum(earliestStartT ime +
duration, taskDeadline)

else
latestF inishT ime ⇐ find position where task will fit on slot

end if
if task can complete by deadline then
resourceAcqProb ⇐ ProbSlotAcquisition
resourceUpProb ⇐ ProbSlotDoesNotFail
taskSuccessProbabilityOnResource ⇐ resourceAcqProb ∗
resourceUpProb
taskSuccessProbabilityRelativeToParents ⇐ calculate task suc-
cess probability considering placement of parent tasks

end if
end for
selectedResource ⇐ Resource where task has
Maximum(taskSuccessProbabilityRelativeToParents)

end for

and algorithms in each layer in the WORDS architecture to evolve indepen-
dent of changes in the other layer and communication between the layers is
facilitated through the slot abstraction. Various resource protocols in grid
and cloud systems [13, 26, 32] and workflow orchestration algorithms are be-
ing investigated for specific applications [16, 25, 31]. However, the resource
abstraction and associated QoS model inWORDS provides a uniform knowl-
edge of resource properties that was previously not available to higher-level
tools. In this section we detail different workflow orchestration approaches
that are possible using the resource abstraction in WORDS for deadline-
sensitive workflows as described in Section 2.1. Specifically, we detail the im-

10

pact of different resource procurement choices for a workflow (Section 4.1).
Next, we describe modifications to an existing DAG scheduling algorithm
that facilitates the use of the probabilistic QoS model (Section 4.2). We
discuss the different orchestration implementations in Section 4.3.

4.1. Resource Procurement

The workflow planner interacts with the resource coordinator to procure
resources. In batch systems resource acquisition is closely associated with the
execution queue. Jobs are submitted to a queue from which jobs are mapped
onto resources. However, as we move to cloud or lease based systems, resource
acquisition is a distinct step. Resource procurement for a workflow can be:
Task-based. In a task based strategy, resources are acquired just-in-time
for each task in the workflow, i.e., for a n-task workflow a separate resource
request is made for each task T1 to Tn. This is similar to the state of the
art in workflow grid system where every task is submitted to the queue and
waits its turn for execution. Once the task completes and returns to the
workflow engine, the next set of tasks are launched In a task-based strategy
any overheads associated with a request (e.g., batch queue wait time, virtual
machine startup time) is incurred for each task.
Workflow-based. In a workflow based strategy, resources are acquired prior
to scheduling for the entire workflow, i.e., a single request would be made
that will satisfy all tasks T1 to Tn in the workflow. We need mechanisms
to determine appropriate resource requests for the entire workflow. When
merging resource requests across different tasks, gaps in the schedule might
develop resulting in resource wastage. Resource wastage is an additional
cost that must be accounted for in workflow planning. In addition, a hybrid
approach that requests for resources for part of the workflows is also possible.

The orchestration system might iteratively query for resources to improve
the schedule at possibly higher costs. This is useful in situations where a
user might not be satisfied with the initial schedule and might be willing
to allocate a higher budget for the workflow execution. Iterative queries
might be implemented for parts or the entire workflow. This is facilitated by
mechanisms at the resource layer that provide higher QoS guarantees such
as advanced reservations.

4.2. Task mapping

Scheduling parallel and distributed workflows on heterogenous resources
is a known NP-complete problem and a number of heuristics have been pro-

11

posed [20, 30]. These heuristics focus on optimizing the makespan of the
workflow using projected application running times and data transfer times.
However, these strategies are insufficient when users try to understand the
properties of a proposed schedule (e.g., cost, chance of meeting the dead-
line). Thus in this paper we consider task mapping strategies focused on the
probability of workflow completion before a deadline as basis for our task
mapping approach.

Algorithm 1 describes the probabilistic task mapping approach for batch
queue and slot systems. The first phase traverses the DAG from bottom-up
and assigns deadlines for the tasks given a workflow deadline and execution
time of each task. Subsequently the tasks are sorted by deadline for the
scheduling phase. Each task T has a duration d and must be scheduled no
earlier than earliestStartTime and must finish no later than latestFinishTime.
The only difference in the slot based system is that the algorithm tries to
find a space on the slot where the task can be mapped. The difference arises
from the resource model characteristics. In a batch queue system, requests
are bound by the size of the cluster whereas when resource procurement is
decoupled from the mapping, the scheduler is bound by the size of the slot.

Subsequently all task mappings that meet the task deadline are consid-
ered for selection and the best success probability mapping is selected. For
any task in a workflow, the probability that it will succeed depends on the
resource on which it is scheduled as well as the probability of its parent tasks
finishing. When two tasks are scheduled on independent resource slots their
probabilities are independent and the probability of a task is the joint prob-
ability of its parent and itself. However in a slot abstraction, if a Task T
and its parent is scheduled on the same resource slot then the probabilities
of completion are identical since the probabilities of resource acquisition and
resource failures of the slots are identical for both tasks. The slot acquisition
and slot failure probabilities are constant for the allotted duration of the
slot. If a Task T has multiple parents, the Task T has the same probability
of finishing as its weakest parent. Parent tasks might have different success
probabilities based on a number of factors including if their parents were
on different slots. The weakest parent is the parent task that has the least
success probability for completion. The process is repeated for all tasks in
the workflow. The probability of a workflow completing is the minimum of
the success probabilities of all leaf nodes.

This task mapping approach takes care of various dimensions of the re-
source and application characteristics. First, we consider the performance

12

of applications on each resource to determine on which resources, the task
is likely to meet its deadline. By using the success probability of resource
procurement and the probability that the resource will not fail duration the
allotted duration, we are able to pick a resource such as to increase the prob-
ability of the task and hence the workflow completing. For deadline-sensitive
applications, using the performance or execution time of the individual tasks
indicates whether a deadline can be met. However there is no difference to
our applications between a workflow that completes a few minutes before the
deadline and an hour before the deadline. Thus minimizing the makespan
is not the goal of our DAG scheduling approach. Using the probability of
getting the resource by the time and its failure characteristics, we are able to
gauge the run-time characteristics of the workflow completing by the dead-
line. While our resource abstraction provides cost information of the slots,
cost minimization is not the goal during task mapping for this particular case
study. In previous work, we illustrate the use of budget and costs during re-
source procurement and task mapping [24].

4.3. Orchestration Implementation

Selecting different strategies for resource acquisition, task mapping and
scheduling enhancement can result in distinct orchestration approaches with
different trade-offs. Table 1 shows the orchestration approaches we imple-
ment for comparison and summarize the effects on factors such as makespan
and cost that were discussed earlier. For batch systems we compare a tra-
ditional batch queue approach as used in systems today (tagged as BQP).
In the BQP schedule, we identify the “weak” links (i.e., the tasks that have
lower probabilities of completion) in the workflow for an initial schedule and
use that as a basis for additional resource queries. This schedule enhance-
ment can be implemented at a task-level (tagged as Task), workflow-level
(Slot) or a hybrid approach for a subset of the tasks. Our hybrid approach
(referred to as Boundary) is based on attempting to get a single advanced
reservation on each site for parts of the workflow that are scheduled on it. In
this mechanism we consider the earliest task and latest task scheduled on the
resource to define the time boundary and the maximum width of any task on
the resource as the slot width for the request. On EC2 systems we compare
task and slot based implementations. We evaluate these various schemes in
the context of scientific workflows.

In this paper, our focus is on deadline-sensitive workflows where users
specify a deadline on the completion of the workflow. For such time-sensitive

13

Table 1: Workflow orchestration implementations. We apply various resource procurement
and schedule enhancement strategies on batch grid systems and EC2 cloud systems.

System Type Description

Grid/Batch

BQP Uses batch queue probability prediction data
to select resources for each task

Task Use BQP scheduler and sort tasks by their suc-
cess probabilities. Attempt to enhance each
task’s success by VARQ based advanced reser-
vations

Boundary Use BQP scheduler and procure advanced
reservations grouping all the mappings on a
single resource into a single slot request

Slot Query for VARQ slots for entire workflow and
apply the probabilistic slot-based DAG sched-
uler

Cloud/EC2
EC2-Task Resources procured independently for each

task
EC2-Slot Resources are acquired for the entire workflow

and slot based DAG scheduler is used

applications, cost is often not a limiting factor, hence cost minimization is not
a goal for our workflow orchestration approach. The complexity of resource
querying and acquisition is at most O(n) and the complexity of the DAG
scheduler is O(n ∗ 2). Thus, the worst case complexity for our workflow
orchestration approach is O(n2).

5. Scheduling Workflow Sets

We consider a simple case of scheduling a workflow set with the constraint
that M out of N workflows must complete by a given deadline with no fault
tolerance. In our case, the workflow set consists of identical members. We
implement a simple set of policies using the slot based mechanism to procure
resources for a workflow set and use the slot based DAG scheduler to meet the
constraint of scheduling at least M out of N workflows by a given deadline.

In our implementation, the resource acquisition policy asks for slots for
the duration between expected start time and the deadline for the workflow
set. We make a resource query that is designed to ask for a resource width

14

 0
 10
 20
 30
 40
 50
 60
 70
 80

-2
0-

-1
1

-1
0-

-1 0-
9

10
-1

9
20

-2
9

30
-3

9
40

-4
9

50
-5

9
60

-6
9

70
-7

9
80

-8
9

90
-9

9
10

0-
10

9
11

0-
11

9
12

0-
12

9
14

0-
14

9
16

0-
16

9
23

0-
23

9
24

0-
24

9
25

0-
25

9
26

0-
26

9
32

0-
32

9

Pe
rc

en
ta

ge
 o

f e
nt

rie
s

Relative start time (in Mins)

ncsatg
abe

(a) advance request of 1 hour

 0
 10
 20
 30
 40
 50
 60
 70
 80

-1
0-

-1 0-
9

10
-1

9
20

-2
9

30
-3

9
40

-4
9

50
-5

9
60

-6
9

80
-8

9
10

0-
10

9
11

0-
11

9
12

0-
12

9
13

0-
13

9
15

0-
15

9
21

0-
21

9
30

0-
30

9

Pe
rc

en
ta

ge
 o

f e
nt

rie
s

Relative start time (in Mins)

ncsatg
abe

(b) advance request of 4 hours

Figure 2: Probabilistic advanced reservations have variable start times. We show the
histogram of difference in actual start times from expected start times on two resources
for requests made (a) 1 hour (b) 4 hours in advance. NOTE: Only intervals with entries
have been shown in this graph.

 0
 10
 20
 30
 40
 50
 60
 70
 80

1-
30

31
-6

0
61

-9
0

91
-1

20
12

1-
15

0
15

1-
18

0
18

1-
21

0
21

1-
24

0
24

1-
27

0
27

1-
30

0
30

1-
33

0
33

1-
36

0
36

1-
39

0
39

1-
42

0
42

1-
45

0

Pe
rc

en
ta

ge
 o

f e
nt

rie
s

Difference in Cost (Predicted - Actual) (seconds)

Advanced slot 1hr
Advanced slot 2hr
Advanced slot 3hr
Advanced slot 4hr

(a) ncsatg

 0
 10
 20
 30
 40
 50
 60
 70
 80

1-
30

31
-6

0
61

-9
0

91
-1

20
12

1-
15

0
15

1-
18

0
18

1-
21

0
21

1-
24

0
24

1-
27

0
27

1-
30

0
30

1-
33

0
33

1-
36

0
36

1-
39

0
39

1-
42

0
42

1-
45

0

Pe
rc

en
ta

ge
 o

f e
nt

rie
s

Difference in Cost (Predicted - Actual) (seconds)

Advanced slot 1hr
Advanced slot 2hr
Advanced slot 3hr
Advanced slot 4hr

(b) abe

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Pr

ed
ic

te
d

ad
di

tio
na

l c
os

t (
m

in
s)

Probability

ncsatg
abe

(c) predicted cost with
probability

Figure 3: Probabilistic advance reservations incur additional costs if and when they start
before expected start time. Here we show the cost variations between the predicted and
actual cost over a set of requests on two TeraGrid resources (a) ncsatg (b) abe. (c) shows
the effect on cost for different probability values.

that minimally can satisfy the constraint M and possibly more.
The results from the resource query are sorted by highest success prob-

ability and maximum processor width and the best result is picked for the
schedule. The maximum number of possible DAGs are scheduled on these
slots and we calculate the effective success probability of M-out-of-N work-
flows completing [22].

6. Evaluation

In this section, we present an experimental evaluation of the resource
abstraction and the orchestration techniques in WORDS . First, we perform
experiments on probabilistic resource procurement on batch systems to study

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

W
or

kf
lo

w
 s

uc
ce

ss
 p

ro
ba

bi
lit

y

Deadline (hrs)

BQP(2 resources)
Task(2 resources)

Boundary(2 resources)
Slot(2 resources)

BQP(3 resources)
Task(3 resources)

Boundary(3 resources)
Slot(3 resources)

(a) Probability

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

To
ta

l c
os

t f
or

 w
or

kf
lo

w
 (h

rs
)

Deadline (hrs)

BQP(2 resources)
Task(2 resources)

Boundary(2 resources)
Slot(2 resources)

BQP(3 resources)
Task(3 resources)

Boundary(3 resources)
Slot(3 resources)

(b) Cost

Figure 4: Comparison of different resource acquisition techniques for the lead workflow.
We compare (a) the effective probability and (b) cost as deadline varies up to 24 hours.
In (b) the costs for BQP - 2 and 3 resource cases are identical and similarly the cost of
Slot in the two and three resources in the set are identical

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25W
or

kf
lo

w
 s

uc
ce

ss
 p

ro
ba

bi
lit

y

Deadline (hrs)

BQP
Task

Boundary
Slot

(a) Probability

 10

 100

 1000

 10000

 0 5 10 15 20 25To
ta

l c
os

t f
or

 w
or

kf
lo

w
 (h

rs
) i

n
lo

g
sc

al
e

Deadline (hrs)

BQP
Task

Boundary
Slot

(b) Cost

Figure 5: Comparison of different resource acquisition techniques for scoop workflows.
We compare (a) the effective probability and (b) cost (shown in log scale) as deadline
varies up to 24 hours.

the feasibility of the approach as a means of resource procurement. Next,
we compare our orchestration techniques in grid and cloud environments and
study the effect on makespan and cost. Finally, we study the effect of user
parameters such as deadline and accuracy on scheduling a set of workflows
on probabilistic resources.

Our experiments consist of trials performed on the TeraGrid to illustrate
the effects of probabilistic reservations on grid systems. The simulations
data is from TeraGrid and Amazon EC2 that are leading examples of grid
and cloud systems today. Our simulations compare the effect of varying
orchestration technique parameters when using grid and cloud resources il-

16

-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 5 10 15 20 25

W
or

kf
lo

w
 s

uc
ce

ss
 p

ro
ba

bi
lit

y

Deadline (hrs)

BQP
Slot

(a) Probability

 100

 1000

 10000

 0 5 10 15 20 25To
ta

l c
os

t f
or

 w
or

kf
lo

w
 (h

rs
) i

n
lo

g
sc

al
e

Deadline (hrs)

BQP
Slot

(b) Cost

Figure 6: Comparison of different resource acquisition techniques for motif workflow.
We compare (a) the effective probability and (b) cost (shown in log scale) as deadline
varies up to 24 hours

 1

 10

 100

 1000

 10000

lead motif scoop ncfs

C
os

t (
in

 D
ol

la
rs

)[L
og

 s
ca

le
]

Task-EC2Small
Slot-EC2Small

Task-EC2Medium
Slot-EC2Medium
Task-EC2Large
Slot-EC2Large

Task-EC2XLarge
Slot-EC2XLarge

(a) Cost

 0.1

 1

 10

lead motif scoop ncfs

M
ak

es
pa

n
(in

 H
rs

)[L
og

 s
ca

le
]

Task-based(20s)
Slot-based(20s)

Task-based(70s)
Slot-based(70s)

Task-based(120s)
Slot-based(120s)

(b) Makespan

Figure 7: Comparison of (a) cost and (b) makespan from task-based and workflow-based
scheduling for workflows on Cloud (EC2) resources. The Y axis is in log scale.

lustrating the trade-offs from these environments.
Workflows. We use four grid workflow examples that routinely run on Ter-
aGrid or other high performance systems - lead, motif, scoop and ncfs [23].
The workflows have varying characteristics in terms of resource requirements
and duration. The weather, storm-surge and flood-plain mapping workflows
are time-sensitive.
Machines. For our batch experiments we use probabilistic resource data
from three TeraGrid machines (tagged as ncsatg, abe and uctg in this paper).
The TeraGrid clusters that have the following specifications: abe - 1200
node quad-core system, ncsatg - 631 node dual processors and uctg - 128
node dual processors. We obtain resources acquisition probabilities through
QBETS and reliability probabilities through AVP [2] for failure probabilities.

17

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

Ef
fe

ct
iv

e
su

cc
es

s
pr

ob
ab

ilit
y

(M
 o

f N
)

Deadline (Hrs)

1 of 5
3 of 5
5 of 5
1 of 7
4 of 7
7 of 7
1 of 9
5 of 9
9 of 9

1 of 11
7 of 11

11 of 11
1 of 13
7 of 13

13 of 13

(a) probability with D

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

N
um

be
r o

f w
or

kf
lo

w
s

sc
he

du
le

d

Number of workflows required

5 workflows
6 workflows
7 workflows
8 workflows
9 workflows

10 workflows
12 workflows
13 workflows
14 workflows

(b) probability with M

Figure 8: We apply a slot based workflow orchestration to a workflow set to meet the
constraint of at least M out of N workflows must finish within the deadline D. We study
the variation of (a) probability with deadline for different M/N (b) variation of effective
probability with variation in M for different N values and deadline of 7 hours

We use VARQ to obtain probabilistic advanced reservations.

6.1. Probabilistic Advanced Reservations

In our first experiment we evaluate probabilistic advanced reservations
on batch systems. Our experiment requests 90 minute, 16 node slots (the
approximate time required for a single LEAD workflow) one, two, three and
four hours in advance, with success probabilities ranging from 0.1 to 0.99 on
TeraGrid machines ncsatg and abe. When considering probabilistic advanced
reservations, the slots might arrive exactly at, before or after the expected
start time. Figure 2 shows the start time variation for one and four hour
advance requests over a period of four weeks. Similar results are observed
for the two and three hour advance slots. The majority of the experiments
start in the [-10,10] minute window around the expected start time. If the
slot arrives on time or later, there is no extra cost to the workflow since the
workflow is ready to run. However if the slot arrives earlier, the idle time is
the extra cost that is incurred due to using virtual advanced reservations for
higher level of guarantees. Figure 3 shows the distribution of the difference
between the predicted and actual costs for all advanced requests on (a) ncsatg
and (b) abe. The difference in cost between predicted versus the actual cost
demonstrates that VARQ and QBETS is able to provide an upper bound
on the cost. In all our experiments the cost incurred is always equal to or
lower than that predicted by VARQ. The largest percentage of runs have a
prediction that is higher by 31 to 90 seconds on ncsatg and by 1 to 60 seconds
on abe. Thus the error in the overhead prediction is minimal. Finally,

18

Figure 3(c) shows the variation in predicted cost with probability values.
The predicted cost increases as the desired probability value increases i.e.,
higher levels of guarantee come at higher cost. This is due to the fact that
for assuring a higher level of guarantee VARQ might need to submit the job
significantly earlier than the desired start time and the chances of the job
starting earlier are higher thus resulting in higher costs.

6.2. Orchestration comparison

In this experiment we use simulation to compare the orchestration tech-
niques discussed in Section 4, using a workflow planner simulation. The
simulation uses probabilistic data from TeraGrid machines. We recalculate
the probabilities for tasks when schedules are enhanced by one or more mech-
anisms. We use the cost models described earlier(Section 3.2) to calculate
the cost for each mechanism. The cost is represented as total number of
resource hours used. Thus if a workflow took one hour on 16 processors the
cost is represented as 16 hours. On batch systems, resources can be vacated
when a job or all jobs on a slot are done, thus incurring no costs for additional
slot time at the end of the schedule. Thus to understand the effectiveness of
each of our orchestration strategies, we compare success probability of the
workflow, makespan, and associated resource usage costs. This enables us
to understand the trade-offs between desired success probability, throughput
and resulting costs.

The probabilistic advanced reservation technique does have a known limi-
tation; if there are multiple concurrent large resource requests made through
VARQ, the queries could potentially perturb the predictions by dominating
the workload behavior of the system. The perturbations induced by such
requests are being studied separately. Thus for large workflows (motif, ncfs)
we compare only the BQP and Slot mechanisms since the predictions from
VARQ are not guaranteed to be accurate. Each run was repeated multiple
times over a period of three weeks. The probability predictions are very
stable resulting in identical output.
Batch systems, small workflows. Figure 4 shows the probability and
cost comparisons for the lead workflow for deadlines ranging from two to
twenty-four hours on two (ncsatg and abe) and three sites (additional site
uctg). The additional sites has a slightly higher slot acquisition probability
resulting in higher effective success probabilities on workflow completion.
In these graphs, the success probability is a measure of the chance of the

19

workflow completing by a given deadline given resources can be obtained
and resources do not fail during the allotted duration.

For the lead workflow, the Slot mechanism assures the highest level of
probability among the four techniques. The cost of the slot system is slightly
higher than with vanilla BQP but considerably lower than both Task and
Boundary-based. We see that there is a slight drop in the success probabili-
ties for a deadline of 13 hours. This variation results from the granularity of
the parameter sweep in the heuristic used in VARQ queries. We ask for slots
in the probability range of 0.1 to 0.99 and the VARQ query divides the pa-
rameter range into 10 equal-sized parts and steps through to find a suitable
result. A static advanced reservation on the TeraGrid for a 16 processor, 1.5
hour slot for LEAD workflow would cost anywhere from 24 CPU hours to 48
CPU hours (for premium factors of 1 to 2). The Slot based mechanism costs
less than that.

Figure 5 shows the probability and cost comparisons for the scoop work-
flow for deadlines ranging from one to twenty-four hours. In this case, using
Task -based slots for the individual tasks yields a higher probability than try-
ing to get one big slot for the five parallel tasks. The Boundary slot also
yields higher probability values for deadlines that are higher than 15 hours.
In terms of cost, however, the boundary slots are more expensive (about 100
to 1000 hrs) compared to less than 25 hours for other mechanism. The static
advanced reservation for 80 processors/17 minutes would cost between 22
and 44 CPU hours for this workflow and the Slot mechanism is on the lower
end of this range.
Batch systems, medium and large workflows. Figure 6 shows the prob-
ability and cost comparisons for the motif workflow for the BQP and Slot-
based mechanisms. The success probability of the workflow from a Slot-based
system is higher than the BQP schedule. However as the deadline increases
we see that the probability drops as a result of the reliability prediction for
a 256 processor slot dropping. The Slot mechanism has a steady cost that
is slightly higher than BQP. We compare the BQP approach with slot-based
approach for the ncfs workflow for a 36 hour deadline(Table 2). While the
success probability from the Slot mechanism is slightly higher, the costs are
also higher.

These experiments show that trying to procure resources individually for
each task that is the current state of art, results in a very low probability
of completion of the workflow by the deadline. Using a slot based orches-
tration, possible through the resource abstraction, enables us to increase the

20

Table 2: Comparisons for an ncfs workflow scheduled for a deadline of 36 hours

BQP Slot
Probability 0.0037 0.0066
Cost (Hours) 5631.5 16640.4

probability of workflows completing by the deadline. Thus WORDS based
scheduling approaches results in a more effective workflow orchestration. Tra-
ditional workflow planning mechanisms that use performance based planning
have no knowledge of what the probability of workflow completion are. Our
experiments with different sized workflows also show that the benefits of the
slot mechanism might be slightly diminished as the parallelism and the du-
ration of the tasks increases beyond a certain amount. However this effect
will vary based on the workflow size, size of resources and the load on the
resources. More detailed experiments might be needed in the future to study
the correlation of these factors, but the results from this paper demonstrate
that WORDS provides a strong foundation for more effective orchestration
than current day systems for deadline-sensitive workflows.
Cloud (EC2). Cloud systems today implement explicit resource control.
However they do have distinct overheads and cost models that affect the
nature of workflow orchestration. For this set of experiments we assume EC2
systems have high acquisition (0.9999) and success probabilities (0.9999). We
compare and contrast a Task -based and Slot-based policy. We calculate the
EC2 costs for the instance-hours used by the workflow. We consider both
computational costs (for different instance sizes) as well as data transfer costs
for input and output data transfers to and from the cloud.

Figure 7(a) shows that for all instance sizes, the slot-based system in-
curs lower cost than a task-based mechanism for the lead, motif and scoop
workflows. However for the ncfs workflow, where each task executes for
many hours, leaving resources idle in the slot system increases the cost sig-
nificantly compared to the task-based approach. Earlier experiments reveal
that startup overhead for a small instance image varies from 20 to 30 seconds
for 1 to 8 virtual machines [21]. We compare the makespans for overheads of
20,70 and 120 seconds. Figure 7(b) shows the effect of startup and shutdown
overheads on the makespan. In the task-based strategy the startup and shut-
down overheads get added to each task’s execution time. Our results show
that the slot based system produces better makespans than the task-based
systems. As the overheads increase, the difference also increases, as expected.

21

6.3. Workflow Sets

We perform a set of experiments with the lead workflow set to meet the
constraint that minimally M out of N workflows must complete by deadline
D. We assume workflows are scheduled for a start time that is 12 hours which
is a reasonable time frame for advanced reservation requests. We explore the
variation of the following parameters- effective success probability, deadline,
M and N. Figure 8(a) shows the variation in the effective success probability
of getting M out of N workflows with deadline and different M/N pairs.
For short deadlines, limited resource time is available and we see slightly
lower success probabilities. As expected, the success probability achievable
increase as the deadlines are further out and remains fairly steady thereafter.
For a given workflow set with N workflows, as M (the required number of
workflows) increases we see that the effective success probability decreases.
We observe that for short deadlines, the number of workflows scheduled is
often less than N (the total), however at larger deadlines, all N workflows are
scheduled. Finally, Figure 8(c) shows the variation in the effective success
probability with varying M at a deadline of 7 hours. We see that there is
a rapid decrease in probability as M increases for a given N since as more
workflows are required to complete the guarantee that the system can make is
lower that all the required ones will complete. Thus by changing the deadline
and the value of M the user can determine various schedules that meet the
user’s needs.

6.4. Summary

From our evaluation we see that probabilistic resource decisions help us
understand the possibility of meeting a workflow deadline. Effectiveness of
workflow orchestration varies based on workflow characteristics (e.g. struc-
ture, deadline) and resource availability. Generally, slot based acquisition
works well for our small and medium sized (lead,scoop, motif) workflow ex-
amples on both batch and cloud systems. For our larger sized workflow
example (ncfs) the benefits are not substantial due to increased costs. In
addition, we show that our probabilistic reservations accurately predict an
upper bound on the additional cost. The probabilistic reservations cost lesser
than advanced reservations on TeraGrid systems. By using slot-based orches-
tration approaches we are able to achieve higher-levels of guarantee and hence
more effective workflow orchestration atop grid and cloud systems even when
there is no explicit resource control.

22

7. Related Work

Today, workflow management and resource management tools are focused
on scheduling individual DAGs largely towards managing turnaround time
of the workflow and do not consider other QoS properties. . However there
are no tools or systems available today that can harness a distributed set of
resources and trade-off multiple resource selection QoS parameters such as
cost, performance and reliability. Here we describe the related work to our
workflow orchestration system.

Resource Management. Several research efforts have proposed bounded
resource units such as leases, slices, advanced reservations, etc [6, 9, 12, 13].
These abstractions define properties for time and resource information but
have little or no QoS information. The concept of decoupled resource selec-
tion and scheduling [32] and the slot abstraction [12, 26] has been discussed
earlier. However, to our knowledge, the interaction and the interfaces be-
tween the application layer requirements and resource model variability and
their impact on high-level workflow orchestration have not been studied be-
fore.

Workflow Scheduling. Workflow tools provide planing and optimiza-
tion techniques and fault tolerance to react to changes in grid resource and
services performance and reliability. The tools do not consider the spec-
trum of QoS issues that arises from the interplay of user constraints and
resource behavior. Mandal et. al [17] propose a heuristic strategy using per-
formance model based in-advance scheduling for optimal load-balancing on
grid resources using the GrADS infrastructure [14]. Blythe et. al. [3] identify
and evaluate two resource allocation strategies for workflows - task-based
and workflow-based. The task-based algorithm greedily allocates tasks to re-
sources. Workflow-based algorithms find an optimal allocation for the entire
workflow and perform better for data-intensive applications.

Various DAG scheduling algorithms have been proposed for grid environ-
ments for optimizing makespan, meeting deadline and/or budget constraints
or dealing with uncertainty [16, 25, 31]. The underlying assumption of all
these algorithms is that resources are guaranteed to be available at a given
time, whereas resource availability is highly variable. Deelman et al. [7] de-
tail the computational and storage costs of running the Montage workflow on
Amazon EC2 resources. Our approach is orthogonal and is focused on prob-
abilistic resource acquisition and workflow mapping for deadline-sensitive
applications.

23

Heuristic techniques are often used to qualitatively select and map re-
sources to available resource pools and optimize one ore more resource selec-
tion criteria such as performance and reliability. However these techniques
are insufficient for making complex trade-off decisions between one or more
workflows.

8. Conclusions

In this paper we present the WORDS architecture that provides a clean
separation between resource and application layer for deadline-sensitive work-
flow orchestration. The core of the WORDS architecture is a probabilistic
QoS based resource abstraction that enables higher-level tools to implement
effective workflow orchestration across systems with different levels of re-
source control. We design, implement and evaluate task-based and workflow-
based orchestration algorithms in the context of the WORDS architecture.
A workflow-based dynamic resource acquisition and planning strategy works
well for all workflows in our example set on both cloud and grid systems
but sometimes at a higher cost. Experiments demonstrate that effective or-
chestration is possible even on batch queue systems that have no explicit
resource control through slots implemented with virtual advanced reserva-
tions. WORDS provides a strong foundation for dynamic, adaptive next-
generation workflow orchestration in distributed systems.

9. Acknowledgements

This work was funded through a National Science Foundation(NSF) coop-
erative Agreement issued to Rice University (No. CCR-0331645) with a sub
agreement to the University of North Carolina at Chapel Hill and through
NSF Cooperative Agreements ATM-0331480. This research was supported
in part by the NSF TeraGrid resources. This work was supported by the Di-
rector, Office of Science, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

References

[1] Amazon Web Services http://aws.amazon.com/.

[2] Availability Prediction Service. http://nws.cs.ucsb.edu/ewiki/nws.
php?id=Availability+Prediction+Service.

24

[3] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and
K. Kennedy. Task Scheduling Strategies for Workflow-based Applica-
tions in Grids. In CCGRID, pages 759–767, 2005.

[4] Condor DAGMan. http://www.cs.wisc.edu/condor/dagman/.

[5] K. Czajkowski, I. Foster, and C. Kesselman. Agreement-based Resource
Management, 2005.

[6] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke.
SNAP: A Protocol for Negotiating Service Level Agreements and Coor-
dinating Resource Management in Distributed Systems, 2002.

[7] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The Cost
of Doing Science on the Cloud: The Montage Example. In Proceedings
of SC’08, Austin, TX, 2008. IEEE.

[8] K. K. Droegemeier and et. al. Service-Oriented Environments for Dy-
namically Interacting with Mesoscale Weather. Computing in Science
and Engg., 7(6):12–29, 2005.

[9] I. Foster, A. Roy, and V. Sander. A Quality of Service Architecture that
Combines Resource Reservation and Application Adaptation, 2000.

[10] Y. Gil, E. Deelman, J. Blythe, C. Kesselman, and H. Tangmunarunkit.
Artificial Intelligence and Grids: Workflow Planning and Beyond. IEEE
Intelligent Systems, special issue on e-science, Jan/Feb, 2004.

[11] L. E. Grit. Extensible Resource Management for Networked Virtual
Computing. PhD thesis, Durham, NC, USA, 2007.

[12] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. G.
Yocum. Sharing Networked Resources with Brokered Leases. In
USENIX Annual Technical Conference, pages 199–212, 2006.

[13] Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, and A. Chien. Effi-
cient Resource Description and High Quality Selection for Virtual Grids.
In Proc. of 5th IEEE Symp. on Cluster Comp. and the Grid, 2005.

[14] K. Kennedy and et. al. Toward a Framework for Preparing and Execut-
ing Adaptive Grid Programs. In Proceedings of NSF Next Generation

25

Systems Program Workshop (International Parallel and Distributed Pro-
cessing Symposium 2002), Fort Lauderdale, FL, April 2002.

[15] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. Lee, J. Tao, and Y. Zhao. Scientific Workflow Management and the
Kepler System, 2005.

[16] G. Malewicz. Parallel Scheduling of Complex DAGs Under Uncertainty.
In Proceedings of the 17th Annual ACM Symposium on Parallel Algo-
rithms(SPAA), pages 66–75, 2005.

[17] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey,
B. Liu, and L. Johnsson. Scheduling Strategies for Mapping Application
Workflows onto the Grid. In High Performance Distributed Computing
(HPDC 2005)., pages 125–134. IEEE Computer Society Press, 2005.

[18] D. Nurmi, J. Brevik, and R. Wolski. QBETS: Queue Bounds Estimation
from Time Series. In Proceedings of 13th Workshop on Job Scheduling
Strategies for Parallel Processing (with ICS07), June 2007.

[19] D. Nurmi, J. Brevik, and R. Wolski. VARQ: Virtual Advance Reserva-
tions for Queues. Proceedings 17th IEEE Symp. on High Performance
Distributed Computing (HDPC), 2008.

[20] D. Nurmi, A. Mandal, J. Brevik, C. Koelbel, R. Wolski, and K. Kennedy.
Evaluation of a Workflow Scheduler Using Integrated Performance Mod-
elling and Batch Queue Wait Time Prediction. In Proceedings of SC’06,
Tampa, FL, 2006. IEEE.

[21] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov. Eucalyptus:A Technical Report on an Elastic
Utility Computing Archietcture Linking Your Programs to Useful Sys-
tems. Technical Report 2008-10, University of California, Santa Barbara,
California, August 2008.

[22] G. Radke and J. Evanoff. A Fast Recursive Algorithm to Compute
the Probability of M-out-of-N events. In Reliability and Maintainability
Symposium, 1994. Proceedings., Annual, 1994.

[23] L. Ramakrishnan and D. Gannon. A Survey of Distribted Workflow
Characteristics and Resource Requirements. Technical Report TR671,

26

Department of Computer Science, Indiana University, Indiana, Septem-
ber 2008.

[24] L. Ramakrishnan and D. A. Reed. Predictable quality of service atop
degradable distributed systems. In Journal of Cluster Computing, 2009.

[25] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. Dikaiakos. Scheduling
Workflows with Budget Constraints. In S. Gorlatch and M. Danelutto,
editors, Integrated Research in GRID Computing, CoreGRID, pages
189–202. Springer-Verlag, 2007.

[26] G. Singh, C. Kesselman, and E. Deelman. Application-level Resource
Provisioning on the Grid. In Proceedings of 2nd IEEE Intl Conference
on e-Science and Grid Computing, Amsterdam, 2006. IEEE.

[27] W. Smith, I. Foster, and V. Taylor. Scheduling with Advanced Reserva-
tions. In Parallel and Distributed Processing Symposium (IPDPS 2000),
pages 127–132.

[28] Q. Snell, M. Clement, D. Jackson, and C. Gregory. The Performance
Impact of Advance Reservation Meta-Scheduling. In 6th Workshop on
Job Scheduling Strategies for Parallel Processing, pages 137–153, 2000.

[29] TeraGrid Service Units. http://kb.iu.edu/data/ascf.html.

[30] N. B. Tracy D. Braun, Howard Jay Siegel. A Comparision of Eleven
Static Heuristics for Maping a Class of Independent Tasks onto Hetero-
geneous Distributed Computing Systems. J. of Parallel and Distributed
Computing 61, 810-837., 2001.

[31] J. Yu and R. Buyya. Scheduling Scientific Workflow Applications with
Deadline and Budget Constraints Using Genetic Algorithms. Scientific
Programming, 14(3-4):217–230, 2006.

[32] Y. Zhang, A. Mandal, H.Casanova, A. Chien, Y. Kee, K. Kennedy,
and C. Koelbel. Scalable Grid Application Scheduling via Decoupled
Resource Selection and Scheduling. CCGrid, May 2006.

27

