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Abstract—The MapReduce paradigm provides a scalable
model for large scale data-intensive computing and associated
fault-tolerance. With data production increasing daily due to ever
growing application needs, scientific endeavors, and consumption,
the MapReduce model and its implementations need to be fur-
ther evaluated, improved, and strengthened. Several MapReduce
frameworks with various degrees of conformance to the key tenets
of the model are available today, each, optimized for specific fea-
tures. HPC application and middleware developers must thus un-
derstand the complex dependencies between MapReduce features
and their application. We present a standard benchmark suite
for quantifying, comparing, and contrasting the performance of
MapReduce platforms under a wide range of representative use
cases. We report the performance of three different MapReduce
implementations on the benchmarks, and draw conclusions about
their current performance characteristics. The three platforms
we chose for evaluation are the widely used Apache Hadoop
implementation, Twister, which has been discussed in the litera-
ture, and LEMO-MR, our own implementation. The performance
analysis we perform also throws light on the available design
decisions for future implementations, and allows Grid researchers
to choose the MapReduce implementation that best suits their
application’s needs.

I. INTRODUCTION

MapReduce is inspired from functional programming prim-
itives ”map” and ”foldr”, whereby a programmer can apply
or ”map” a function to an input set, and in doing so obtain a
resulting output set reflecting the transformation applied, but
bearing the same length. The resulting set, as with ”foldr”

in Haskell, is then submitted to a reduce method whose role
is to apply the function to the ”map” output. In MapReduce,
this occurs in a distributed manner across a wide array of
machines, each holding a piece of a larger input file or
component. The model’s greatest appeal resides in the fact
that it hides parallelization and synchronization responsibilities
from the user. The map and reduce functions are as such
written as single node programs by the programmer, then
subsequently parallelized, and synchronized by the framework.
In comparison to MapReduce, while distributed programming
models such as MPI [1] can offer parallel data processing,
such models require the user to implement data splitting,
data management, parallelization, synchronization and fault-
tolerance with their applications, perhaps differently for each
particular application. MapReduce on the other hand takes all

the aforementioned responsibilities off the programmer’s slate
as the framework internally implements and maintains such
features.

Parallel and distributed applications place a wide range of
requirements on the communication substrate and data for-
mats. These requirements include turn around time, minimal
memory footprint for improved caching efficiency, handling of
CPU-intensive jobs, management of data-intensive jobs, and
fault tolerance when deployed on very large clusters. Such
requirements have led over time to a wide range of design and
implementation choices. A comprehensive benchmark suite
tailored for HPC applications can aid in determining the
MapReduce framework that has the most optimized imple-
mentation for the class of applications under consideration.

In this paper, we compare and study the performance of
Hadoop [2], Twister [3] and LEMO-MR [4] in various real-
world application usage scenarios, including data-intensive,
iterative, CPU-intensive, and memory-intensive loads. We not
only compare the chosen frameworks in several real-world
application scenarios, but also in real-world cluster scenarios,
including fault-prone clusters/applications, physically hetero-
geneous clusters and load-imbalanced clusters. This perfor-
mance study provides insight into the relative strengths and
weaknesses of different implementations under different usage
scenarios. We link the observed behavior of the frameworks
to the design and implementation choices of the particular
MapReduce platform being tested. Our test framework will
be made available to the grid community for researchers to
compare frameworks for their custom usage scenarios and data
sizes of interest.

II. CHOICE OF MAPREDUCE IMPLEMENTATIONS

The MapReduce model is anchored around three central
principles: data management, synchronization/parallelization
abstraction, and fault-tolerance. These principles led us in
the choice of Hadoop, Twister and LEMO-MR. While there
exists many ”MapReduce-like” implementations, very few of
them implement the principles highlighted above and as a
result were not selected. Octopy [5], Skynet [6] among others
are an example of such cases. Other similar implementations
only support very small datasets and interpreted languages,
and as such would not have been competitive choices in



the context and the test environment of this study. Twister
for its part does not feature a node specific fault-tolerance
mechanism, but was selected for its data management and syn-
chronization/parallelization abstraction features. Other known
MapReduce implementations like Amazon EMR [7], are an
adaptation of Apache Hadoop and as such were not included
here. Similarly, DELMA [8] being built ontop of LEMO-
MR, we did not choose to include it here as well. MapRe-
duce frameworks like MARS [9], CGL-MapReduce [10], and
FPMR [11] were also not part of this study, as they are
simply MapReduce API, and not implemented MapReduce
frameworks.

A. Twister: Iterative MapReduce

Twister is an open-source, lightweight MapReduce frame-
work. Twister allows for data access via local disks, and offers
efficient support for iterative MapReduce computations [3].
Twister uses a publish/subscribe messaging infrastructure for
communication and data transfer. The framework does not
provide job specific fault-tolerance, but rather fault-tolerance
in certain stages. A task along the path of a job can be
restarted, but not rescued if one of the nodes performing
it fails. Although unique to Twister, the iterative nature of
the framework can be replicated in Hadoop or any other
framework closely following the MapReduce model through
scripting. We demonstrate such an approach and compare it
to Twister’s inherent iterative feature in section IV.

B. Hadoop MapReduce

Hadoop is an open-source MapReduce framework [2] an-
chored on its own file system: The Hadoop Distributed File
System (HDFS) [12], inspired from the Google File System
[13]. The HDFS sits as a layer of abstraction between Hadoop
and the native file system. Upon copy of the data file into the
Hadoop input directory, the HDFS automatically splits the file
into blocks [13]. The blocks are then replicated according to
a replication factor pertaining to Hadoop’s internal settings
and distributed among chosen nodes called DataNodes. As
cluster nodes fail, DataNodes are given the ability to repli-
cate their own file blocks. DataNodes also periodically send
updates and reports of block conditions, such as block usage
and integrity to the master node. Even though it is expensive,
especially for heavy computational loads, this organization is
necessary for fault-tolerance, because it is less expensive to
bring the computation to the data rather than bringing the data
to the computation [14].

C. LEMO-MR

LEMO-MR is a low overhead MapReduce implementa-
tion, optimized for in-memory and specially CPU-intensive
applications. As shown in [4], overhead prone MapReduce
implementations tend to perform poorly in CPU-intensive
contexts, as that overhead is exacerbated in such settings.
Cluster upkeep and fault-tolerance expectedly add overhead
costs. To tackle these problems, LEMO-MR adopts a ”node
independence” policy, whereby nodes are not tightly coupled

to their master, and as such do not require constant commu-
nication with it. Also, nodes do not ”own” the data they run
on and can be swiftly replaced upon failure, because their
failure does not involve the disappearance of their data or
the need to replicate such data. This allows the framework
to avoid running and maintaining resource hungry daemons,
keep constant pings between nodes, and execute performance
hampering redundancy checks not at the node level, but rather
at the master level. The master is in any case likely to be
idle while the nodes are performing, and can take on those
responsibilities. Leaving it to the nodes can impede on the
performance of the task they are processing.

D. Summary of Differences

Twister, as of version 0.90 does not feature a node-specific
fault-tolerance mechanism. The death of a node is not detected,
and the task the node was processing is not reassigned to
a healthy machine. In Twister’s case, a faulty job must be
restarted. This is akin to restarting a Hadoop or LEMO-MR job
from the beginning because a node died 99% through the job.
LEMO-MR and Hadoop are capable of detecting failures and
are also capable of replacing dead nodes with healthy ones,
in some cases with minimal impact on application runtime.
Hadoop uses the HDFS for this purpose. The HDFS sits on top
of the file system present on its nodes. It was mainly designed
for fault-tolerance, and with its replication policy, speculative
tasks policy, and need for constant node pinging, can cause
Hadoop to incur some performance degradation. LEMO-MR
features a low overhead approach, in that it reduces inter-node
communication to a minimum. The framework also features
a fault-tolerance mechanism completely independent of data
placement. Hadoop has a full-fledged load balancer service.
LEMO-MR however, much like Twister, does not feature a
load balancer, allowing for slow nodes to transfer parts of
their load to fast ones. Finally, Twister is iterative by nature, a
feature not available to Hadoop and LEMO-MR through their
framework, but rather, through elaborate user scripting.

III. PERFORMANCE TEST DESIGN

The tests Hadoop, Twister and LEMO-MR are subjected
to in this paper are meant to represent the characteristics
of possible problems solved using the MapReduce paradigm.
Depending on the nature of the application, be it data-
intensive, iterative, CPU-intensive, or fault-prone, different
design choices in a MapReduce framework can lead to either
good or dismal performance. Our goal with these tests is to
highlight the strength and weaknesses of the tested subjects
under a slew of possible domain problems they are expected
to face as MapReduce frameworks.

A. Data-Intensive Tests

In contrast to a data-Intensive application, the amount of
data produced by CPU or memory-intensive applications tends
to be small. For instance, searching through 1 TB of files for
a keyword would yield an output file with just a filename and
a line number, while sorting 1 TB of data would yield a 1 TB



output file. While the first example can be considered CPU-
intensive depending on the search algorithm, the latter case
is clearly data-intensive. In this paper, we qualify as data-
intensive, not only the processing of large input, but also the
production of large output. Such applications tend to involve
the reducer more than the mapper, and tend to be much slower
than the other classes of MapReduce applications because of
the constant I/O solicitations.

B. CPU-intensive Tests

CPU-intensive applications tend to involve the CPU for
longer cycles than data-intensive applications. While moni-
toring CPU usage on the worker nodes, with a CPU-intensive
program in MapReduce, all CPUs in a multicore case tend to
show very close to 100% of activity for the entire span of the
application. The same type of monitoring for a purely data-
intensive application, such as random number generation as we
will feature later, tends to keep the CPU usage around 5 to
10% on average. CPU-intensive applications may not process
very large input data, but will spend more time processing
each piece of data compared to a data-intensive application
which processes a lot of data, but may spend very little time
on processing each piece of it.

C. Memory-Intensive Tests

A memory intensive application in a MapReduce context
requires large memory space from each worker node as data
needs to be entirely loaded into memory, rather than processed
line by line, or in small feeds. The latter case is usually
common to CPU and data intensive applications. While a
CPU-intensive application might require each worker to read
in one integer, and subsequently find all of its factors, then
move to read another integer into the same variable to the
same end, a memory intensive application will require perhaps
a thousand integers be loaded into memory to determine their
common divisors. Memory-intensive applications can usually
not be run on single node systems because of their memory
limitations. Such limitations need however to be tested in
the MapReduce arena because of the differences in memory
footprints imposed by the implementations. While a worker
node has access to the same physical memory capacity before
Hadoop, Twister or LEMO-MR is run on it, the question is:
How much available memory is left for data processing on
the node once the MapReduce implementation has started?
The tests in this rubric are designed to answer the above
question, and will quantify the memory footprints of the
different implementations.

D. Cluster Heterogeneity Tests

Heterogeneity, as we define it for this benchmark, pertains to
the configuration of nodes in a cluster. In our tests, we setup a
cluster of 60 cores, composed of a 48 core computer, an 8 core
computer and a 4 core machine. Similarly, disk speed, memory
capacity and speed decrease with the machine class. The 48
core machine we feature has as such faster and more memory
than the 8 core machine, which similarly dominates our 4 core

machine. The goal of our heterogeneity test is to determine the
extent to which each MapReduce framework adapts to such
a diverse environment. The naive implementation approach
of MapReduce is to allocate equal work for all machines.
This common approach as shown in [15] [16], [17] works
rather flawlessly for homogeneous cluster, but presents dismal
performance in heterogeneous settings as the same references
put it. It is good to remember that MapReduce was first
presented as the ”framework” for commodity machines. Such
machines could be a mix of modern and ancient machines
randomly collected for the purpose of building a cluster. In
such settings, a MapReduce platform with strong heteroge-
neous cluster support could be preferred.

E. Load-Balancing Tests

Load-balancing here pertains to how well a MapReduce
implementation adapts to a homogeneous cluster turned het-
erogeneous with one or more of its members under load or
stress. While a static load balancing strategy like advertised in
LEMO-MR can help with a physically heterogeneous cluster, a
homogeneous cluster prone to change due to load imbalance
can offer it an unsolvable challenge. This condition is ever
more popular in community owned clusters and research
laboratory settings, perhaps with users running different types
of applications on the same nodes. This as we will show can
negatively impact the performance of a MapReduce framework
devoid of an on-the-fly load re-adjustment strategy.

F. Iterative Application Tests

Iterative applications typically require multiple passes on
the same data to achieve a desirable or a required output. In
Hadoop and LEMO-MR cases, this would require constantly
serializing and de-serializing such data, as the data needs to
be loaded from disk to memory, then back to disk, as many
times as there are iterations. Twister however, benefits from
memory transfers between iterations, allowing more efficient
iterative application processing.

G. Fault-Tolerance Tests

Fault tolerance is a key component for users of the MapRe-
duce model, as faced with a cluster of hundreds and thousands
of nodes, the probability of a faulty machine is simply height-
ened. The prospect of total job failure and time loss because
of a single node failure is simply unacceptable. Fault-tolerance
can however be realized in different ways, with performance
critical consequences. Twister, being devoid of a node specific
fault-tolerance mechanism, it is not capable of salvaging a
job which has lost a certain number of its nodes. For this
benchmark category, we solely test Hadoop and LEMO-MR
for fault response and application runtime under increasingly
dying nodes. We start of with a cluster of 50 nodes, 200 cores
total, and progressively kill 1, 2, 3, 4 and 8 nodes, then record
application slowdown in the face of those failures.



IV. DISTRIBUTED LARGE-SCALE DATA PROCESSING

In this section, we effectively test Hadoop, Twister and
LEMO-MR with data-intensive, CPU-intensive, iterative, and
memory-intensive applications. We subsequently test our three
MapReduce frameworks in a physically heterogeneous cluster
and a load-imbalanced homogeneous cluster. We used for
testing purposes Apache Hadoop 0.20, Twister 0.90 and our
only and LEMO-MR presented in [4]. In all the experiments
showcased, we ran Twister and LEMO-MR along side Hadoop
using identical nodes, identical node counts, identical input
data and similar user source code. Among the applications
selected, were:

• A random floating point number generator for our data-
intensive tests, where between 100GB and 1TB of float-
ing point random numbers are generated.

• Matrix multiplication for our CPU-intensive rubric.
• PigeonHole sort for our memory-intensive tests. This

test loads large unsorted sets into memory from an
already space-demanding algorithm. Memory exhaustion
is caught and recorded for the sizes for which it occurs.

• Distributed Grep for cluster heterogeneity tests, Iterative,
and Load-balancing tests.

• Wordcount from Hadoop’s own package for fault-
tolerance.

V. PERFORMANCE RESULTS

Grid and Cloud Computing Research Lab Cluster at Bingham-
ton University

• Dual core – One desktop-class machine, which has a
single 2.4Ghz Intel Core 6600 with 2 GB of ECC RAM,
running Linux 2.6.24.

• Quad core – 1U nodes in a cluster, each of which has
two 2.6Ghz Intel Xeon CPUs, 8 GB of RAM 4 cores,
and run a 64 bit version of Linux 2.6.15

• 8 core – 1U nodes in a cluster, each of which has two
2.6Ghz Intel Xeon CPUs, 8 GB of RAM 8 cores, and
run a 64 bit version of Linux 2.6.15.

• 48 core – 1U nodes in a cluster, each of which has two
2.6Ghz Intel Xeon CPUs, 16 GB of RAM 48 cores, and
run a 64 bit version of Linux 2.6.15.

The top plot of Figure 1 shows Hadoop, Twister and
LEMO-MR each running 64-core clusters with identical nodes,
producing identical output sizes, and using similar source code
in doing so. Twister operates map to reduce transfers through
memory. This allows Twister to start stronger than Hadoop
with 40 and 50 MB of generated random numbers. Twister
then quickly slows down as its memory gets progressively
consumed, and finally exhausted at the 93 MB mark. LEMO-
MR uses a hybrid approach capable of starting with a memory-
based transfer scheme between map and reduce, then progres-
sively dump its memory content to file, making it capable to
use its memory longer, and as such run efficiently as the figure
shows. Hadoop uses solely a file-based approach. Twister’s
design can be fast and efficient with jobs requiring much
map side data processing and very limited reduce side data
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Fig. 1: 64-core Hadoop, Twister and LEMO-MR clusters each producing from 40 MB
to 1.5 TB of random floating point numbers. The maximum output scale of the top
graph is very small with 90 MB of data for a data-intensive experiment, because, per our
research and experiments, Twister is not capable of passing more than 93 MB of data
from its mapper to its reducer, as the transfer is memory-based, rather than file-based
like Hadoop and memory/file-based like LEMO-MR.

processing, such as CPU and memory-intensive jobs. In the
realm of data intensity however, any processing necessitating
more than 93 MB of data to be transferred from the mappers

to the reducers would result in memory insufficiency errors
on Twister’s part. It should be noted that as we studied
Twister’s source code, we noticed memory threshold increase
instructions, preceding job starting instructions. The 93 MB
limit we observed here could be raised with RAM upgrades
on the worker nodes, and higher memory allocations in the
Twister source code itself. However, despite all the mitigating
measures laid out above, Twister will ultimately be limited
in data-intensive applications by the physical memory size
of its nodes. LEMO-MR and Hadoop can however process
terabytes, if not petabytes of data from their mappers to their
reducers, if the disk-space capacity on the worker nodes allows
it. In the bottom plot of Figure 1 , Hadoop and LEMO-MR
generate random number filed output files from 100 GB up to
1.6 TB. Hadoop uses ”shuffling” for passage of intermediate
data from mapper to reducers [18], [19]. Shuffling consists of
providing each datanode with the intermediate result of every
other datanode [19]. This mechanism provides fault-tolerance
support for failure occurring during the transitional phase, but
pays a performance penalty for growing data sizes, as the
overhead incurred by the method is exacerbated.

In Figure 2, CPU-intensity is tested. This job is CPU-
intensive as the frameworks in presence here perform little
data reading and witting operations, but rather lengthy loops
and floating point multiplications, one matrix after another. For
this experiment, all cores in the cluster were recorded with an
average of 93% utilization throughout the length of each run,
with the exception of Hadoop with a lower mark at 89%. This
condition is explained in [19] where Hadoop is shown to lose
CPU cycles due to skipped cycle meant for processing data, to
the benefit of cluster maintenance. Contrarily to our previous
data-intensive tests, and even though millions of matrices are
read in and multiplied, a single resulting matrix is passed from
mapper to reducer from each mapper. The cumulus of data
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Fig. 2: 64-core Hadoop, Twister and LEMO-MR clusters, each multiplying from 2 to
120 million 33 x 33 matrices.
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Fig. 3: 5 million 33 x 33 matrices processed by an increasing number of cores ranging
from 2 to 64. This graph shows how much processing time is reduced as each framework
gets more processing power added to its ranks.

passed from mapper to reducer being very small, Twister can
be seen here to thrive. In fact, LEMO-MR and Twister have
similar performance, even as Twister shows slightly faster runs
than LEMO-MR. Hadoop, here proves to be slower in this
CPU-intensive scenario. Hadoop uses a number of overhead-
prone operations such as data chunk replication, constant
worker node pings along with speculative and redundant jobs,
mainly for fault-tolerance reasons [20]. These measures can
however impede performance in any application setting [3]
However, in [4] this situation is shown to be further aggravated
in CPU-intensive scenarios where the pre-dominance of CPU
operations and the long processing nature of tasks make
duplicating tasks and speculative jobs launched by Hadoop
more costly than in data-intensive or memory-intensive cases.

In Figure 3, we show how and at what pace each MapRe-
duce framework is capable of reducing runtime with the
addition of more processing cores. The trends noticed in
Figure 2 hold true here as well. Twister is faster than LEMO-
MR in this context, while Hadoop shows to be slowest overall.
Figure 4, next, shows the speedup of all three frameworks.

In Figure 4, Twister shows better scalability than LEMO-
MR and Hadoop. Even as the advantage is minimal versus
LEMO-MR, it displays better CPU usage. Further more, the
use of a brokering medium in Twister’s case with NaradaBro-
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Fig. 4: Speed-up computed from Twister, Hadoop and LEMO-MR clusters processing 5
million 33 x 33 matrices, with diverse cluster sizes ranging from 2 to 64 cores. Speed-up

is computed as
T1

Tp
and represents how fast each cluster performs relative to a single

node system. Twister runs and scales slightly better than LEMO-MR, and much better
than Hadoop for this CPU-intensive test.
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Fig. 5: Shows how much memory Twister, Hadoop and LEMO-MR make available for
similar user programs on each node. Hadoop shows at 100 MB memory limit, while
Twister shows 500 MB, and LEMO-MR, a 520 MB limit, before causing a memory
exhaustion error.

kering or Active MQ [21] [22] allows the framework to decou-
ple communication from processing, making processing more
efficient. Heavily communicating nodes need to spare some
of their cycles to that end, thus reducing the overall amount
of cycles available for user data processing. This condition
worsens further in CPU-intensive cases. With LEMO-MR,
communication is kept at a minimum, but is not brokered
like with Twister, thus causing worker nodes to still ”burden”
themselves with it.

Figure 5 tests the memory footprint of each MapReduce
implementation. Should an input file need to be completely
loaded into memory at once in order to be efficiently pro-
cessed, a single node would not be a good candidate, if the
file’s size sits beyond its memory limits. In such a case, the
file might need to be broken down, and sequentially processed.
With a cluster of machines, the break down still occurs, but in
smaller sizes, and the processing in this case is in parallel. This
case however implies that the MapReduce framework involved
leaves enough space in memory after its own maintenance
operations for user data to reside in memory. As Figure
5 shows, Hadoop leaves 100MB per node, Twister leaves
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Fig. 6: Hadoop, Twister and LEMO-MR running on performance equivalent 60 core
homogeneous and heterogeneous clusters. The application tested here is distributed grep
for 36 billion words. Hadoop shows a bigger disparity and loss of performance between
its homogeneous and heterogeneous runs.

500MB per node, and LEMO-MR, 520MB per node. In our
previous data-intensive test, in Figure 1, Twister was shown
to default with 93 MB of data sent to its reducer. The limit
shown in that experiment pertains to how much data each node
is capable of passing from mapper to reducer, and not how
much memory space each mapper or worker node disposes of
for ”mapping” as this particular experiment shows.

Figure 6: [15], [16] and [17] have shown Hadoop to
perform rather slowly in heterogeneous environments. Cluster
Heterogeneity in our tests pertains to the diverse processor and
memory configurations of cluster nodes. The cumulus of cores
however in both clusters (homogeneous and heterogeneous)
is the same. This condition, as it was previously shown
[15] [16], [17], can greatly impact MapReduce performance
if mitigating design decisions are not effectively taken in
a given MapReduce implementation. While it would stand
to intuition for embarrassingly parallel applications, that a
60 core cluster composed of a 4 core machine, an 8 core
machine and a 48 core machine would perform equally as
a 60 core cluster with 3 20 core machines, previous work,
and tests in figure 6 show otherwise. In brief, the uniformity
of MapReduce input chunk, and task definitions, cause the
MapReduce model to be slower on heterogeneous clusters.
This test simply shows how slower each framework tested is.
Hadoop implements speculative execution for load-balancing
purposes. Load-balancing is however not akin to heterogeneity
in Hadoop’s context because in the former, the homogeneous
nature of the cluster makes lackluster performance on a node’s
part easily detected, and as a result, load is transferred. Not
having a homogeneous lineup means not being able to set a
standard as to what ”slow” is. Slow for a 48 core machine
might means very fast for a 4 core machine. As a result, load
transfer in a heterogeneous cluster under Hadoop is bound
to occur excessively and counter-productively, thus negatively
impacting performance as shown here.

Figure 7 shows load balancing tests whereas, homogeneous
machines operate first freely, followed by tests in which
one node, node1 here is put under extreme stress. Hadoop
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Fig. 7: Shows two graphs. The first, on top, portrays a homogeneous cluster of 3 nodes
for Hadoop, Twister and LEMO-MR. All 3 nodes operate freely and are under no external
load. Hadoop shows a slight load disparity between nodes, even as they operate freely.
The bottom graph however depicts the same cluster, but this time with node1 under
immense stress. Hadoop here, because of its speculative algorithm, can be seen shifting
load to less stressed machines. Nearly 4.2 billion words in Hadoop case are shifted from
the overloaded machine, to the ”free” machines.
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Fig. 8: This graph shows how each framework represented slowed down faced with
CPU stressful conditions applied to node1 in Figure 7. All four cores on node1, the
candidate node, were stressed to 99%-100%.

implements speculative execution, and as such benefits here
from the duplicate tasks running on the ”free” machines.
The framework then discards the late arrivals from the slow
node, and moves onto reducing, thus completing its run faster,
relative to its previous run. LEMO-MR, and Twister do not
feature active mechanisms to deal with this condition and find
themselves outstaged by Hadoop. Hadoop merely shifts 4.2
billion words to both node2 and node3 from node1, allowing it
to perform better in homogeneous imbalanced clusters. In this
test, conditions imposed on node1 can however be considered
extreme, as all 4 cores were made busy to 99%-100%. In
less intense scenarios, as might be the generic case, the
disparity might be less severe between Hadoop, LEMO-MR
and Twister. As Figure 8 shows, Hadoop was slowed down
by only 5% relative to its free run, versus 94% for Twister,
and 98% for LEMO-MR. It is however worth mentioning that
Twister and LEMO-MR still ran much faster in their free
and stressed runs than Hadoop in both, even considering its
mitigating algorithm. Relative to its free run, however, Hadoop
performed overwhelmingly better in its stressed run vis-a-vis
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Fig. 9: Hadoop, LEMO-MR and Twister performing distributed grep in an iterative
manner. Twister here benefits from its iterative nature, and departs further from Hadoop
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Fig. 10: This graph shows how Hadoop and LEMO-MR behave faced with defaulting
or dying nodes. Both clusters start with 200 cores, and progressively, in separate runs
lose 4, 8, 16, and 32 cores. Hadoop slows down much faster than LEMO-MR.

LEMO-MR and Twister.

In Figure 9, despite the clear advantage exhibited by
Twister, it is good to note that for much larger datasets, Twister
would require constantly increasing number of nodes to offset
the memory limit observed in Figure 1.

Figure 10 shows fault-tolerance tests between Hadoop and
LEMO-MR. The absence of Twister in these tests is due to
the fact that Twister does not feature a node specific fault-
tolerance mechanism [3], and as such killing nodes mid-
processing would leave the framework to hang, as the master
would wait indefinitely for the dead node to send its output
for the job to be reduced and completed. In these tests,
LEMO-MR takes the upper hand over Hadoop as its fault-
tolerance mechanism is independent of file chunk location
but rather, node availability [4]. The overhead involved for
Hadoop in replicating chunks from node failures and verifying
the integrity of its input structure is leading to its demise in this
particular case. Note however that LEMO-MR’s advantage is
sanctioned by overhead incurred in providing the rescuer nodes
with the input chunk processed by the faulty nodes. This one
time penalty is however almost constant throughout the entire
experiment.

VI. RELATED WORK

MRBench [23] is a benchmarking tool implemented for the
comparison Hadoop to relational database systems. MRBench
is based on TPC-H which is used to evaluate database systems
that have realistically complex queries. TPC-H queries are
converted into MapReduce jobs and each job includes multiple
steps of MapReduce. The output produced from each step
becomes the input for the next step except for the last step
which basically collects the result of the operation. [24]
compares MapReduce with parallel SQL DBMS’s in terms of
performance and development complexity. The authors show
that tested parallel DBMS’s out-perform Hadoop on data-
intensive analysis benchmarks while recognizing the ease of
use and advanced fault-tolerance that Hadoop provides over
the DBMS’s. In Cogset [25], data storage is distributed over
the cluster through partitioning and replications, while data
access is done through traversals. In [19], Cogset is compared
with Apache Hadoop and shown to be outperforming Hadoop
with database specific operations. The authors highlight the
reasons for their results and offer some minor modifications
to Hadoop on the causes of the performance gap.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we identified six applications and cluster
categories pertinent to MapReduce performance and tested
them with three well known MapReduce variants: Hadoop
[2], Twister [3] and LEMO-MR [4]. We not only provide
performance relevant design details of three MapReduce im-
plementations, but also highlight throughout our tests, the
best current choice of the three frameworks for a given HPC
application scenario.

• Twister is efficient for jobs requiring significant map

side data processing and very limited reduce side data
processing, such as CPU and memory-intensive jobs. For
our test infrastructure, Twister was better than Apache
Hadoop when data transfer between the Mapper and Re-
ducer was less than 93 MB, because it uses memory based
transfers as opposed to the file based transfers used by
Hadoop. The 93 MB threshold can be increased slightly
by allocating more memory to the worker processes, but
is still limited by the maximum memory footprint of a
Java process on a given node.

• Hadoop is designed to make use of the maximum disk
space available to each node and hence is known to scale
seamlessly for very large data sizes. LEMO-MR uses a
hybrid approach starting with a memory-based transfer
scheme between Map and Reduce, then progressively
changing to the Hadoop model for larger data sizes.

• Twister and LEMO-MR are optimized for CPU-intensive
Map and Reduce jobs compared to Hadoop, which spends
extra CPU cycles on high overhead prone fault tolerance
related tasks. For the matrix multiplication experiment,
the CPU utilization for Twister and LEMO-MR was 93%
while it was 89% for Hadoop.

• As the processing power is increased for a given applica-
tion, Twister’s performance improvement is best, closely



followed by LEMO-MR. Hadoop has the highest over-
head per node, and as such, when nodes were increased
from 8 to 64 nodes, Twister’s speedup improvement was
by a factor of 7.5, LEMO-MR’s was 7, and Hadoop’s
was by a factor of 4.

• LEMO-MR has the least memory footprint allowing for
520MB of data to be processed per node, closely followed
by Twister which allowed 500 MB of data to be loaded
in to memory for processing, per node. Hadoop has the
highest memory footprint and it allowed only 100 MB of
data to be processed per node, before throwing an out of

memory error.
• The uniformity of input chunk to each node renders

Hadoop unable to make efficient use of a heterogeneous
cluster. It is unable to determine what ”slow” means
for tasks mapped to nodes with different memory and
processor configurations, and as a result load transfer
operations occur excessively and inefficiently.

• In a homogeneous cluster, Hadoop’s load management
significantly outperforms both LEMO-MR and Twister.
When random nodes experience stress, induced by our
tests, Hadoop benefits from its speculative execution
model which duplicates tasks and is not affected by the
slow nodes.

• For applications requiring multiple iterations, Twister
showed to be best. Apart from its ease in running itera-
tive applications, compared to Hadoop and LEMO-MR,
Twister also offers significant performance advantages to
such applications. This is illustrated with Twister being
from 2 up to 5 times faster than Hadoop and LEMO-MR.

In future work, we will release the scripts, data, and code
associated with this benchmark project, and maintain an up-
dated website including performance data for new MapReduce
implementations as they become available.
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