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Abstract

Recent advances in methods for computing both Hashin-Shtrikman bounds and related self-

consistent (or CPA) estimates of elastic constants for polycrystals composed of randomly oriented

crystals can be applied successfully to hexagonal close packed solid He4. In particular, since the

shear modulus C44 of hexagonal close-packed solid He is known to undergo large temperature

variations when 20 mK ≤ T ≤ 200 mK, bounds and estimates computed with this class of effective

medium methods, while using C44 → 0 as a proxy for melting, are found to be both qualitatively

and quantitatively very similar to prior results obtained using Monte Carlo methods. Hashin-

Shtrikman bounds provide significantly tighter constraints on the polycrystal behavior than do the

traditional Voigt and Reuss bounds.
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I. INTRODUCTION

Methods for computing Hashin-Shtrikman1−4 bounds and related self-consistent (also

coherent potential approximation, or CPA) estimates5−8 of elastic constants for polycrys-

tals composed of anisotropic crystals have been known for about five decades, and actively

applied to a wide variety of real systems for about three decades. To reduce the overall com-

putational effort required by these methods, some simplifications were introduced recently by

the author.9−10 In particular, difficulties inherent in tracking the Hashin-Shtrikman bound-

ing curves have been minimized by noting that the self-consistent estimates of the effective

elastic constants are themselves very robust, involving a quickly converging iteration proce-

dure. Once these self-consistent values are known, they may then be used to speed up the

computations of the Hashin-Shtrikman bounds themselves, especially for orthorhombic or

less symmetric systems.

Although it is well-known that isotropic elastic materials have compressional/extensional

modes measured typically by a hydrostatic bulk modulus, as well as distortional modes mea-

sured typically by a shear modulus, the majority of elastic materials have more complicated

behavior than that observed in the isotropic case. In general there may be as many as

five shear-like modes and just one bulk-like mode. But for anisotropic media, the coupling

among shear and bulk modes is nontrivial, and can lead to complexities in the analysis of

elastic data, whether laboratory or field measurements, and whether the data are derived

from quasi-static or dynamic measurements, as is often the case whether ultrasonic, acoustic,

or seismic waves11 are used to probe such media.

There are basically seven types of elastic crystal symmetries (see Nye12) usually con-

sidered: cubic, hexagonal, tetragonal, trigonal, orthorhombic, monoclinic and triclinic. Of

these seven, cubic symmetry is the only one that has a simply defined bulk modulus, since

the bulk modulus K in this case can be precisely determined and will give the same value

whether the measurement is made in compression via uniformly applied external pressure,

or in either extension or compression if the sample can be uniformly strained. In all other

cases, the measured results can differ depending on whether they are obtained using ap-

plied strains, applied stresses, or combinations of these. Furthermore, the shear behavior

of anisotropic media can be quite complex since – in orthorhombic symmetry systems (for

example) – there are three independent twisting shears that can be applied to any material
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sample, as well as three quite different shearing forces that can result (for example) from

applying a uniaxial compression (or extension) in any of the three principal orthogonal di-

rections. These cases do not exhaust all the possibilities for shearing motions, but all others

can normally be found by considering linear combinations of the ones already mentioned.

It is because of these complexities that Voigt13 and Reuss14 studied elastic systems and

determined that there were two sets of constants that seemed to capture much of the nature

of these linear elastic materials. These results were then called the Voigt and Reuss averages

of shear and bulk behavior until Hill15 showed that these same averages were actually rigorous

bounds on the possible responses and behaviors of these complicated systems. Since Hill’s

work, the Voigt and Reuss estimates of elastic response have become known as the Voigt

and Reuss (rigorous) bounds on elastic system (really polycrystalline) behavior.

Subsequently, Hashin and Shtrikman1 also studied the problem of finding bounds on

elastic constants and determined that it was possible to do somewhat better than these

early bounds of Voigt and Reuss. They established general procedures for computing such

bounds and carried the work through themselves for some of the simpler cases, including

cubic materials. Other workers continued to elaborate the theory, including first Peselnick

and Meister,2 Watt and Peselnick,3 and also Watt4 alone, who subsequently published a long

series of papers on methods covering essentially all of the crystal classes of common interest.

Another line of thinking on such problems arose around the same time as the work of Pe-

selnick and Meister,6 and was focused on effective-properties estimates, rather than rigorous

bounding methods. This work was based in part on early scattering theory approaches by

Soven5 and Taylor6 via the coherent potential approximation (CPA), and then carried fur-

ther for elastic constants by Gubernatis and Krumhansl,7 and also in related work by Willis,8

who based some of his ideas on earlier work in this area by Hill.16 Olson and Avellaneda17

also contributed to the same stream of ideas.

The present study will make use of the same theoretical tools, but will apply them to the

problem of determining what might be the predicted response of polycrystals composed of

solid He4, when it appears in the form of a polycrystal. In particular, the tools already at

hand appear to be sufficiently rigorous and relatively easy to use for computing estimates

and bounds on the elastic responses of such systems. The methods developed for orthotropic

systems10 are more general than what is required for polycrystals of hexagonal closed packed

He4. But those codes could also be used instead of the ones we develop here, based on the
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somewhat simpler earlier work.9

Recommended advanced textbooks on elasticity include Landau and Lifshitz18 and

Ting.19

The first application of this analysis will be to determine the isotropic polycrystal con-

stants for an aggregate composed of hexagonal close-packed solid He4. It is known that

helium solidifies only in the presence of external pressure; so such prestress must also be

the source of nonzero values of the shear constants C44 and C55 (to be defined in Section II)

in particular. Therefore, a second application makes use of these results to study how the

softening of these shear constants C44 = C55 in such an isotropic polycrystal of hexagonal

close-packed solid He4 affects the overall behavior of such a system.

The physical issue to be addressed then concerns the observed large variation in elastic

behavior observed in the temperature range 20 to 200 mK. Some similar work along these

lines has been published previously by Maris and Balibar.20 However, these authors used

Monte Carlo computer simulations to obtain their estimates, whereas the present work shows

how to get comparable results more quickly and easily using the established analytical and

semi-analytical methods, including those published previously by the author.9,10

II. ELASTIC PROPERTIES OF POLYCRYSTALS COMPOSED OF HEXAGO-

NAL CRYSTALS

There are both explicit and implicit assumptions in the polycrystal constants estimation

procedures. In particular, one strong assumption is that a polycrystal is macroscopically

isotropic, and (at least equally important) that there are no gaps (holes) within the poly-

crystal.

If the dimensionless second rank tensor of strain for an elastic body in three dimensions

is ǫij , with i, j = 1, 2, 3 being the three spatial dimensions in some convenient choice of

coordinate system, and the second rank tensor of stress (having dimensions of pressure)

of the same body is σij in the same coordinate system, then the stress is related to the

strain (see Landau and Lifshitz18) by the fourth rank tensor cijkl according to: σij = cijklǫkl,

assuming the Einstein convention of summation over repeated indices k, l = 1, 2, 3. It is

often convenient to simplify the mathematics of these relationships by replacing tensor with

matrix notation. In this case, the cijkl’s are replaced by the matrix Cij , while the stress and
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strain tensors are replaced by vectors according to the well-known (see Ting19 for extensive

discussion) Voigt 6 × 6 matrix prescription relating the stiffnesses Cij to stresses σij and

strains ǫij :
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. (1)

Equation (1) clearly implies the six equations: σ11 = C11ǫ11 + C12ǫ22 + C13ǫ33, . . ., σ23 =

C66ǫ12. [Also note that we are using the lower-case c four-index notation for elastic tensor

cijkl and the upper-case C two-index notation Cij as shown in (1) commonly used in the

Voigt matrix notation for elasticity. Both of these quantities as used here are for isothermal

conditions, but may or may not (depending on the context) also incorporate prestress (see

Barron and Klein21 and Stixrude22 for extended discussions of this point).]

The example shown in (1) is that for orthorhombic symmetry, which is the most general

case that will be considered (although briefly) in the present work. The elastic constants

C44, C55, C66 are elastic moduli for the twisting shear strains: ǫ23, ǫ13, ǫ12, and their related

stresses. For isotropic elastic materials, C11 = C22 = C33 = λ + 2µ, C44 = C55 = C66 = µ,

and C12 = C13 = C23 = λ, where λ and µ are the two Lamé constants, and the isotropic

bulk and shear moduli are given (in this very special case) by K = λ + 2µ/3 and G = µ,

respectively. For a thorough discussion of the orthorhombic case, see Ref. 10.

For polycrystals composed of grains having hexagonal symmetry, the number of inde-

pendent components of the elastic matrix for individual grains is reduced due to higher

symmetry so that C22 = C11, C23 = C13, and C55 = C44. One further restriction is the

condition C11 = C12 + 2C66, which is often used to eliminate either C12 or C66 from the list

of measured constants.

For hexagonal symmetry elastic materials, there are four simple eigenvectors and eigen-

values. Three of these are associated with the twisting shear modes ǫ23, ǫ13, and ǫ12, and

their respective stiffnesses, namely C44, C55 = C44, and C66. There will also be three eigen-

modes associated with the 3 × 3 submatrix in the upper lefthand corner of the full elastic

matrix. But typically (for hexagonal symmetry) only one of these modes will generally be
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simply related to a pure mode (since C13 = C23 for hexagonal symmetry), and this is the

shear mode corresponding to ǫ22 = −ǫ11, having the eigenvalue C11 − C12 = 2C66. Thus,

there are four simple shear modes, and two other eigenmodes of the system that are of mixed

character, being linear combinations of an effective bulk modulus and a fifth effective shear

modulus. It is these last two modes that make it necessary to study these issues related

to the Voigt, Reuss, and Hashin-Shitrikman bounding methods for overall bulk and shear

moduli of hexagonal-symmetry-based polycrystals. Analysis of these systems is normally de-

signed to quantify the behavior of random polycrystals, where the use of the word “random”

implies that the polycrystals are composed of a large enough number of small (and tightly

fitting) crystallites oriented randomly in space so that the overall polycrystalline behavior is

close to isotropic, and there is no porosity present in the aggregate. The effective isotropic

constants can therefore be taken to be effective bulk K∗ and shear G∗ moduli. The main

goal of the polycrystal analysis is therefore to localize these values by providing rigorous

upper and lower bounds on both quantities. The traditional bounds/estimates for these

quantities are the Voigt (KV , GV ) and Reuss (KR, GR) estimators. These were originally

proposed as useful estimates, but later proven by Hill to be rigorous upper (Voigt) and lower

(Reuss) bounds on the polycrystal constants K∗ and G∗. The work of Hashin and Shtrikman

then led to more refined upper and lower bounds that generally improve upon the Voigt and

Reuss bounds.

III. BOUNDS AND ESTIMATES OF ELASTIC CONSTANTS FOR POLYCRYS-

TALS

Self-consistency conditions (which for elasticity are also the same as the CPA or coherent

potential approximation) are given by:

KSC = K∗ and GSC = G∗, (2)

where in the formulas of Appendix A all the quantities having ± subscripts or superscripts

are replaced with the corresponding expressions with either SC subscripts or ∗ superscripts

[these being entirely equivalent in either case because of the identities in (2)]. The PM and

and HS subscripts are also irrelevant for these self-consistency conditions. Self-consistency

results have been easily achieved for all the hexagonal (and also cubic, trigonal and tetrago-
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nal) examples known to the author. Orthorhombic symmetry10 (not specifically considered

here) is however more difficult to treat than these other cases. We are studying only hexag-

onal symmetry in the present examples.

Table 1 lists the elastic constant values used for the first example. Experimental data

are from Crepeau et al.,21 Greywall and Munarin,22 and Greywall.23 Table 2 displays the

corresponding results found for the Reuss bound (R), Hashin-Shtrikman lower bound (HS−),

self-consistent estimate (SC), Voigt-Reuss-Hill estimate (VRH), geometric mean estimate

(GM), Hashin-Strikman upper bound (HS+), and Voigt upper bound (V). The geometric

mean (GM) estimate for bulk and shear moduli is given by

KGM ≡ (KRKV )1/2 and GGM ≡ (GRGV ).1/2 (3)

A graphical representation of these same results is presented in Figure 1.

Table 3 lists the elastic constant values used for the second example. These simulation

results are from Pessoa et al.24 and Ardila et al.25 Table 4 displays the corresponding results

again, as in Table 2. A graphical representation of the same results is also presented in

Figure 2.

When considering the graphical results in Figures 1 and 2, note that the VRH arithmetic

mean always lies exactly at the center of Voigt-Reuss (VR) bounding box. Although it

appears to be true that the self-consistent results lie at the center of the Hashin-Shitrikman

bounding box for hexagonal systems, we know (from other work) that this is not always true

for arbitrary anisotropic symmetry. Also note that the HS bounding box is NOT centered

within the VR bounding box. The geometric mean (GM) estimate is expected to lie close

to, but somewhat lower than and to the left of, the VRH estimate in such diagrams, since

K2
V RH − K2

GM = (KV − KR)2/4 and, similarly, for the corresponding averages of shear

modulus G.

While some bound optimization effort is generally required for orthorhombic-based

polycrystals10, the formulas for hexagonal-based polycrystals are quite straightforward9 to

apply, and no additional effort is normally required to obtain valid and useful results.

All the formulas used in these examples are summarized in Appendix A.
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IV. EFFECTS DUE TO RISING TEMPERATURE OR DECREASING CONFIN-

ING PRESSURE

To understand how the mechanical behavior of hcp solid He4 changes when the system

temperature increses and/or when confining pressure declines, we can treat certain elastic

constants as variable and thereby use them as proxies for the changing thermodynamic

conditions. Shear modulus is expected to serve as a good proxy for these purposes, since

significant reduction of shear modulus results in an effective liquefaction of the medium. As

discussed in the Appendices A and B, there are effectively four (possibly) distinct elastic

constants associated with shear modes of the hexagonal system: C44 = C55, C66, Gv
eff , and

Gr
eff . The formulas for Gv

eff and Gr
eff are (15) and (18), which show that they are not likely

to be strong functions of changing thermodynamic conditions. However. changes in both

C44 and C66 have similarly strong effects on the values of GV and GR in (14) and (17). Since

the value of C66 = (C11 −C12)/2 is clearly tightly coupled to two other elastic constants, we

will use only C44 as our proxy for changing thermodynamic conditions.

Examples of the results for effective C∗

11 and G∗ are displayed in the following two exam-

ples.

A. Examples based on measured elastic constant data for solid He4

The first set of examples (Figures 3 and 4) makes use of data from experimental results

of Crepeau et al.23, Greywall and Munarin24, and Greywall.25 Figure 3 shows polycrystal

results for effective value C∗

11 = K∗ + 4G∗/3. Figure 4 shows polycrystal results for effective

overall shear modulus value G∗.

B. Examples based on elastic constant values for solid He4 obtained using the

SWF (shadow wave function) formalism

The second set of examples (Figures 5 and 6) makes use of simulated data obtained by

Pessoa et al.26 and Ardilla et al.27 using the shadow wave function (SWF) formalism.28,29

Figure 5 shows polycrystal results for effective value C∗

11 = K∗ + 4G∗/3. Figure 6 shows

polycrystal results for effective overall shear modulus value G.∗
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V. DISCUSSION OF RESULTS

A. A restatement and evaluation of the methods developed

Voigt and Reuss bounds are determined by simple formulas depending only on the stiffness

(Cij) or compliance (Sij) matrix elements of the anisotropic rock crystals. These easy-to-

compute Voigt (13)-(14) and Reuss (16)-(17) bounds on both bulk (K) and shear (G) moduli

can be viewed as establishing a rectangle in the two-dimensional space (K, G) (see Figures 1

and 2), since — if the point (KR, GR) falls at the lower left-hand corner of a rectangle — then

the point (KV , GV ) lies at (and defines) the upper right-hand corner of this rectangle. All the

modulus values of interest in this paper must always fall inside this rectangle. In particular,

the self-consistent estimator (KSC , GSC) = (K∗, G∗) falls somewhere in the middle. But in

general (i.e., for arbitrary crystal symmetries) it seldom lies exactly at the center of this

rectangle. However, we find for these hexagonal-symmetry-based polycrystals that the SC

estimates do in fact tend to lie at the center of the rectangle formed by the Hashin-Shtrikman

bounds. This rectangle is itself offset slightly from the center of the of Voigt-Reuss bounding

rectangle. So the self-consistent values are not identical to the Voigt-Reuss-Hill arithmetic

average, or to the comparable Voigt-Reuss geometric mean (GM) as shown in these same

Figures. But at least for the cases considered here, the SC estimates fall essentially precisely

in the middle of the Hashin-Shtrikman bounding box, which is a convenient simplification

– and one known not to hold in general (specifically, it is definitely NOT true for general

polycrystals formed from crystals having orthorhombic symmetry).

Furthermore, the center point of the VR rectangle is exactly the Hill estimator

(GV RH , KV RH) based on the arithmetic means of the shear and bulk moduli, in all cases for

any symmetry. But this point is only a rather crude estimate of the points of most interest

– both of these Hill averages GV RH and KV RH , being typically too high in value (especially

for the bulk modulus as seen in the present examples).

The next easiest point to compute is actually the self-consistent estimator (K∗, G∗). This

point will also always fall within the Hashin-Shtrikman rectangle, which itself always falls

within the Voigt-Reuss rectangle. But again, the HS rectangle does not necessarily fall

exactly in the middle of the VR rectangle, and probably only does so when the crystals in-

volved are nearly isotropic (for example, cubic symmetry is a case where such behavior might
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be observed). Virtually the same equations that determine these self-consistent estimators,

also determine the Hashin-Shtrikman bounds on K and G. However, these equations for

the HS-bounds actually may also be used to determine many effective constant estimates,

depending on exactly what algorithm is used to explore the values within the Voigt-Reuss

rectangle as already defined.

VI. SUMMARY AND CONCLUSIONS

Hexagonal symmetry for crystals forming solid He polycrystals lead to formulas that are

particularly simple to compute. This fact makes the current results quite straightforward

to analyze compared to the effort that might be required for systems (such as orthorhombic

ones) having lower symmetry.

The analysis methods employed are also fairly well-known, since the main ideas used are

based on the early work of Hashin and Shtrikman,1 Peselnick and Meister,2 Hill,15 Gubernatis

and Krumhansl,7 Willis,8 Watt and Peselnick,3 Watt,4 and others including Berryman,9,10

and additional references in these last two papers.

Figures 3 and 4 for the first data set, and Figures 5 and 6 for the second data set illustrate

the use of the methods presented here for hcp solid He4 polycrystals as the shear constant

C44 = C55 → 0. This exercise provides a different and convenient means of estimating overall

behavior of these systems as they soften due to changes in temperature (i.e., increases) or

pressure (i.e., decreases).
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Appendix A: Simplified results needed for elastic materials having hexagonal sym-

metry

In earlier work the author has discussed the Peselnick and Meister2 and the Watt and

Peselnick3 bounds for hexagonal, trigonal, tetragonal, and cubic symmetries. Note that some

of these simplifications are important to apply to the hexagonal class of elastic symmetry

under consideration here.

Parameters needed to optimize Hashin-Shtrikman bounds can be taken to be K± and

G±, where the ± symbols designate the best comparison material values respectively for the

upper bounds (+) and lower bounds (−), with the K± being bulk moduli and G± being shear

moduli of the comparison materials needed in the Hashin-Shtrikman approach. Normally

K+ and G+ are used together, and K− and G− are used together, without mixing of the

subscripts in the same formulas. An exception is the limit of the self-consistent estimates

in which case only one set of constants applies, and we typically label the starting values

as K0 and G0, and the final results as K∗ and G∗, although KSC and GSC or some variant

thereof may also be used by some authors. The HS bounds themselves will be labelled K±

HS

and G±

HS, although other labels are sometimes also used to give credit to the workers who

obtained bounding results for specific crystal symmetries.

Formulas for the Hashin-Shtrikman bounds in the notation of Peselnick and Meister2 take

the form:

K±

PM = K± +
KV − K±

1 + 2β±(G± − Gv
eff )

(4)

and

G±

PM = G± +
B±

2

1 + 2β±B±

2

. (5)

The Hashin-Shtrikman bounds themselves are then given exactly by K±

HS ≡ K±

PM and

G±

HS ≡ G±

PM . Here KV is the Voigt average of bulk modulus, and the remaining constants

are defined carefully in Appendix B. Definitions of Gv
eff depend specifically on the crystal

symmetry, and examples will be provided later in this Appendix.

It is worthwhile noting that two additional quantities that essentially always play a role

in the HS bounds and also in the self-consistency conditions are the quantities 4G±/3 and

the combinations:

ζ± ≡ G±(9K± + 8G±)

6(K± + 2G±)
. (6)
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These quantities have been shown by Hill,16 Willis,8 and others (including Olson and

Avellaneda17) to be important factors specifically for comparison materials having spher-

ical shapes. Such spherical shapes are the ones typically assumed, whether explicited or

implicitly, in such work on polycrystals. The source of these contributions can probably

be most easily understood by considering Eshelby’s work30 on elasticity of composites con-

taining ellipsoids. In such cases, it is again exactly such factors that play the same type

of role in the formulas for effective elastic constants.8,16 If the comparison materials have

other shapes, then other combinations30,31 of constants can come into play, but the spherical

shapes have been the only ones usually considered for studies to date involving polycrystals

of randomly oriented anisotropic components.

Parameters α± and β± that appear repeatedly in the PMW (Peselnick-Meister-Watt)

works2−4 can be related to the Eshelby30 results by rewriting them in the form:

− 1

α±

= K± + 4G±/3 (7)

and

− 1

2β±

= G± + ζ±. (8)

Another combination of these two that also frequently appears in the formulas is

γ± =
α± − 3β±

9
. (9)

The reason for pointing out this similarity across the different applications is that the

resulting rather complicated formulas often collapse in unexpectedly simple ways if we look

for formulas of the right type. For example, the Hashin-Shtrikman bounds for bulk modulus

found by PMW can be rewritten as:

K±

PM =
KV (Gr

eff + ζ±)

Gv
eff + ζ±

, (10)

which is valid for hexagonal (as well as tetragonal and trigonal — not otherwise considered

here) crystal structures. The quantities Gv
eff (Gr

eff) are the uniaxial shear energies per

unit volume for a unit applied shear strain (shear stress), whose main compressive strain

(stress) is applied to the grains along their axes of symmetry [also see Berryman9 for more

discussion]. (Note that cubic symmetry is special in this regard, since it has a well-defined

bulk modulus – so neither bounds nor estimates are required for bulk modulus in this case.)
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Similarly, if we add ζ± to both sides of (5), then we find that this result can be simplified

to read:
1

G±

PM + ζ±
=

1 − B±

2 /(G± + ζ±)

G± + ζ±
, (11)

which is valid for the same three crystal symmetries. After determination of the B±

2 factors,

these results imply for hexagonal crystals that

1

G±

hex + ζ±
=

1

5

[

1 − α±(KV − K±)

Gv
eff + ζ± + α±

2β±
(KV − K±)

+
2

C44 + ζ±
+

2

C66 + ζ±

]

, (12)

where Gv
eff = (C11 + C33 − 2C13 − C66)/3.

APPENDIX B: Voigt and Reuss bounds and a product formula for elastic systems

having hexagonal symmetry

For hexagonal symmetry, the nonzero stiffness constants are: C11, C12, C13 = C23, C33,

C44 = C55, and C66 = (C11 − C12)/2.

The Voigt average for the effective bulk modulus of polycrystal systems composed of

hexagonal crystals is well-known to be

KV = [2(C11 + C12) + 4C13 + C33] /9. (13)

Similarly, for the effective shear modulus we have

GV =
1

5
(Gv

eff + 2C44 + 2C66) , (14)

where the new term appearing here is essentially defined by (14) [in terms of the traditional

Voigt formula] and given explicitly by

Gv
eff = (C11 + C33 − 2C13 − C66)/3. (15)

The quantity Gv
eff is the energy per unit volume in a grain when a pure uniaxial shear strain

of unit magnitude [i.e., (e11, e22, e33) = (1, 1,−2)/
√

6], whose main compressive strain is

applied to the grain along its axis of symmetry.9

The Reuss average for bulk modulus is determined by 1/KR = 2(S11 + S12) + 4S13 + S33,

where the Sij ’s are compliances determined by taking the inverse of the stiffness matrix Cij.

The Reuss average can also be written as

1

KR − C13

=
1

C11 − C66 − C13

+
1

C33 − C13

(16)
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in terms of stiffness coefficients. The corresponding Reuss average for shear is

GR =

[

1

5

(

1

Gr
eff

+
2

C44

+
2

C66

)]−1

, (17)

which again may be taken as the definition of Gr
eff – i.e., the energy per unit volume in a grain

when a pure uniaxial shear stress of unit magnitude [i.e., (σ11, σ22, σ33) = (1, 1,−2)/
√

6],

whose main compressive pressure is applied to a grain along its axis of symmetry.

We use the following product formula as the formal definition of Gr
eff . For each grain

having hexagonal symmetry, two product formulas hold (see Ref. 9):

3KRGv
eff = 3KV Gr

eff = ω+ω−/2 = C33(C11 − C66) − C2
13. (18)

The symbols ω± stand for the quasi-compressional and quasi-uniaxial-shear eigenvalues for

the crystalline grains. Thus, Gr
eff = KRGv

eff/KV – which is a general formula that holds

not only for hexagonal systems, but also for trigonal and tetragonal symmetries. We can

therefore treat (14) and (17) [or their equivalents for other symmetries] as the fundamental

defining equations for effective shear moduli Gv
eff and Gr

eff

APPENDIX C: Peselnick-Meister-Watt Bounds for Hexagonal Symmetry

Hashin-Shtrikman-style bounds1 on the bulk and shear moduli of isotropic random poly-

crystals composed of hexagonal grains have been derived by Peselnick and Meister,2 with

later corrections by Watt and Peselnick.3 Notation used is very similar to that in the original

Hashin-Shtrikman paper on random polycrystals of grains having cubic symmetry.1 We will

use a slightly modified notation here, taking into account the product formulas (see Eq. (18)

in Appendix B) in order to simplify the statement of the results. Derivations are found in

the references, and therefore not repeated here.

Parameters needed to optimize the Hashin-Shtrikman bounds are K± and G±, which

have the significance of being the bulk and shear moduli of two (±) isotropic comparison

materials. G+, K+ are the values used in the formulas for the upper bounds, and G−, K−

for the lower bounds. Formulas for the bounds are:

K±

PM = K± +
KV − K±

1 + 2β±(G± − Gv
eff)

, (19)
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and

G±

PM = G± +
B±

2

1 + 2β±B±

2

, (20)

where

α± =
−1

K± + 4G±/3
, β± =

2α±

15
− 1

5G±

, γ± =
1

9
(α± − 3β±). (21)

The form of B±

2 depends on the crystal symmetry.

For the case of hexagonal symmetry under consideration, we have

B±

2 =
1

5

[Gv
eff − G±

D±

+
2(C44 − G±)

1 − 2β±(C44 − G±)
+

2(C66 − G±)

1 − 2β±(C66 − G±)

]

, (22)

with

D± = 1 − β±(C11 + C12 + C33 − 3K± − 2G±) − 9γ±(KV − K±). (23)

Using the product formulas, (23) can be simplified to

D± = 1 − 2β±(Gv
eff − G±) − α±(KV − K±). (24)

The comparison materials have definite values assigned to both K± and G±. We have

the general form:

K± =
KV (Gr

eff − G±)

(Gv
eff − G±)

. (25)

The range of values of G± for hexagonal symmetry is given by

0 ≤ G− ≤ min(C44, G
r
eff , C66) (26)

for the K− formula. And, similarly, the K+ formula for hexagonal symmetry is determined

by

max(C44, G
v
eff , C66) ≤ G+ ≤ ∞. (27)

When the values of C44, Gr
eff , Gv

eff , and C66 are known, as they always are if all the crystal

elastic constants are known, it is then straightforward to determine the K± values.

For example, note that, when G− = 0, K− = KR, because KR = KV Gr
eff/Gv

eff from the

product formulas9. When G+ → ∞, K+ → KV . Watt and Peselnick3 performed searches in

the appropriate parameter ranges as determined by (26) and (27). They found consistently

that the optimum choices of the parameters were very close to the upper limits for the

case of G−, and also close to the lower limits for the case of G+. The overall algorithm

for determining the bounds can be greatly simplified if we are willing to accept slightly

15



suboptimal values of the bounds (the results are still bounds, but not quite as tight as they

could be). This approach is easily implemented in code by choosing to use the upper limits

for G− and the lower limits for G+ themselves as our practical estimates of these bounding

values. This approach is the one taken previously by the author.9 For data with normal

ranges of measurement uncertainty, this method is both appropriate, very practical, and the

one used in all our examples here.

Peselnick and Meister2 had originally obtained all the results for hexagonal symmetry,

except for one additional condition that permits C44 to be replaced in some circumstances

by Gr
eff . This new condition was the one added later by Watt and Peselnick.3
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Table 1. Elastic stiffness constants Cij for hcp solid He4. Crystal data from Crepeau et

al.23, Greywall and Munarin24 and Greywall25. [Note that C11 = C12 + 2C66 for hexagonal

symmetry.] All constants are in units of MPa.

Solid He4

C11 C12 C13 C33 C44 C66

40.5 21.3 10.5 55.4 12.4 9.6
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Table 2. Various estimates of the effective elastic stiffness constants of bulk modulus K

and shear modulus G for polycrystalline hcp solid He4. as computed using crystal data

from Crepeau et al.23, Greywall and Munarin24, and Greywall25. Labels indicate Reuss

average (R), Hashin-Shtrikman lower bound (HS−), self-consistent estimate (SC),

Hashin-Shtrikman upper bound (HS+), Voigt-Reuss-Hill arithmetic average (VRH),

geometric mean (GM), and Voigt average (V). All constants are in units of MPa.

Solid He4

KR 24.527 GR 12.59

K−

HS 24.537 G−

HS 13.08

KSC 24.540 GSC 13.21

KV RH 24.541 GV RH 13.19

KGM 24.541 GGM 13.18

K+
HS 24.543 G+

HS 13.34

KV 24.556 GV 13.79
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Table 3. Elastic stiffness constants Cij for hcp solid He4, as computed using the shadow

wave function (SWF) formalism as quoted by Pessoa et al.26 and Ardilla et al.27 [Note that

C11 = C12 + 2C66 for hexagonal symmetry.] All constants are in units of MPa. Quoted

errors are ±0.8 MPa.

Solid He4

C11 C12 C13 C33 C44 C66

60.8 34.4 14.4 77.9 17.1 13.2
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Table 4. Various estimates of the effective elastic stiffness constants of bulk mludlus K

and shear modulus G for polycrystalline hcp solid He4. as computed using the shadow

wave function (SWF) formalism as quoted by Pessoa et al.26 and Ardilla et al.27 Labels

indicate Reuss average (R), Hashin-Shtrikman lower bound (HS−) self-consistent estimate

(SC), Hashin-Shtrikman upper bound (HS+), Voigt-Reuss-Hill arithmetic average (VRH),

geometric mean (GM), and Voigt average (V). All constants are in units of MPa.

Solid He4

KR 36.201 GR 17.03

K−

HS 36.205 G−

HS 17.45

KSC 36.206 GSC 17.94

KV RH 36.206 GV RH 17.98

KGM 36.206 GGM 17.95

K+
HS 36.207 G+

HS 18.14

KV 36.211 GV 18.93
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FIG. 1: Bulk and shear modulus bounds and estimates using solid He4 crystal data from Crepeau

et al.,23 Greywall and Munarin,24 and Greywall.25
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26 and Ardila et al.
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